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Abstract

In this work, we investigate the equal circle packing problem on a sphere
(ECPOS), which consists in packing N equal non-overlapping circles on a
unit sphere such that the radius of circles is maximized. The problem is of
great interest in biology, engineering and operations research and thus has a
rich research history both from theoretical and computational aspects. We
propose from the point of view of computational research an e�ective iter-
ated dynamic neighborhood search (IDNS) algorithm for the ECPOS prob-
lem. The algorithm includes a multiple-stage local optimization method, a
general dynamic neighborhood search method and an adjustment method
of the minimum distance between the points on the unit sphere. Extensive
experiments are conducted with the proposed algorithm on 205 instances
commonly used in the literature. Computational results show that the algo-
rithm is highly e�ective by improving the best-known results for 42 instances
and matching the best-known results for other 116 instances, while missing
the best-known results for only 5 instances. For the remaining 42 instances,
the best-known results are reported for the �rst time by the IDNS algorithm.
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1. Introduction

Given N equal non-overlapping circles and a unit sphere with the surface
S2, the circle packing problem studied in this work consists in packing these
N circles on the surface such that the radius (or the angular diameter) of
the circles is maximized, where each circle corresponds to a spherical cap
de�ned as the inside of the circumference of a circle on S2 [43]. This problem
is also known as the Tammes problem in the literature [42] and is equivalent
to the problem of maximizing the minimum distance between N points on
S2, where each point corresponds to the center of a spherical cap on S2.
Throughout this paper, these two equivalent descriptions of the problem will
be indi�erently used according to the context.

Unlike other circle packing problems, such as packing circles into a regular
container (e.g., circle or square) [1, 5, 16, 24, 25, 28, 35, 36, 49, 50], packing
equal circles on the sphere does not involve the container boundary and
thus is very interesting. It can act as a remarkable test system to evaluate
various global optimization techniques due to its NP-hard feature [9] and
the fact that the number of locally optimal solutions increases exponentially
as the number of circles N increases. On the other hand, this problem is a
well-known global optimization model with a large number of applications in
biology, engineering, operations research and information theory [3, 15, 17,
21, 26, 27, 44]. For instance, the globally optimal solution of the problem
corresponds to the ground-state structure of atomic clusters [40], while the
optimal solutions of some instances correspond to the structures of spherical
pollen-grains, and the problem with N = 13 is the famous 13-sphere problem
in mathematics [29, 30]. Recently, this problem was applied to �nd diversi�ed
neurons in the design of neural networks [48] and to distribute a group of N
agents on a sphere while maximizing the minimum inter-agent distance [2].
Interested readers are referred to [40] for more application examples.

Due to its practical importance and theoretical signi�cance, the ECPOS
problem has received a lot of attention since 1930 and a large number of
related researches have been reported in the literature examining both the-
oretical and computational aspects. The earliest work about this problem
stems from the botanist Tammes who studied the distribution of hollows on
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the surface of spherical pollen-grains [37]. Since then, a number of approaches
were proposed to �nd or prove the optimality of solutions to the problem.

Up to now, the proven optimal solutions were found only for very small
instances with N = 1− 14 and 24 [8, 18, 29, 30, 31, 32]. For example, Musin
and Tarasov proved the optimality of solutions by mathematical methods
for N = 13 and 14 [29, 30]. For larger instances, the optimality proofs of
solutions are di�cult for mathematical methods and exact algorithms. Thus,
for large-scale instances, many researchers turned to methods of �nding high-
quality suboptimal solutions, instead of proving the solution optimality. The
employed approaches mainly include mathematical methods, construction
methods based on prior knowledge of the problem, and numerical global
optimization methods.

In 1983, based on the theory of bar structures, Taenia and Gáspár im-
proved the best-known con�gurations by a mathematical method for in-
stances with N = 18, 27, 34, 35 and 40 [41], without giving an optimality
proof.

After that, many construction methods were proposed to predict the opti-
mal solutions by utilizing prior knowledge of the problem. In 1987, inspired
by the structure of virus coats, Taenia and Gáspár [42] investigated four
packing sequences of circles on the sphere by taking into account of rota-
tional symmetry of the regular tetrahedron, octahedron and icosahedron,
and obtained some multi-symmetric packing con�gurations by a construc-
tion method for N = 78, 96, 108, 144, 150, 192, 198, 270, 360, 372, 480,
492. Subsequently, Gáspár further extended one of these sequences to sev-
eral large instances with N = 150, 216, 300, 432, 750 and 1080 [12]. These
highly symmetrical con�gurations were shown to be very promising candi-
dates for optimal solutions for the special sizes. Between 1994 and 2000,
Hardin et al. solved the ECPOS problem by some construction methods and
presented for the �rst time the putatively optimal solutions for all instances
in the range of N ≤ 130. All the best solutions obtained are available online
in [34], together with some other best-known results collected from other re-
searchers. Moreover, the authors also generated high-quality solutions with
icosahedral symmetry for a number of large-scale instances between N = 60
and N = 33002 and made them available online in [14]. At the present time,
these results can be regarded as the best-known results for the ECPOS prob-
lem. In 2000, Teshima and Ogawa proposed a novel construction method
named the minimum-zenith method and tested their method on all instances
in the range of N ≤ 150. This method starts from an initially constructed

3



partial solution, and then sequentially packs the remaining circles on the
surface of the unit sphere such that the zenith angle is as small as possible.

Besides these mathematical and construction methods, some numerical
global optimization methods were proposed in the literature, without uti-
lizing prior knowledge of the problem. In 1977, Mackay et al. solved the
ECPOS problem by an iterative numerical optimization algorithm and then
listed for the �rst time the putatively optimal solutions for all the instances
with up to N = 27 [26]. In 1986, Clare and Kepert improved the best-known
results for a number of instances in the range of N = 20 − 40 by minimiz-
ing orderly a series of energy functions Em(X) (m ≥ 1) de�ned on the unit
sphere:

Em(X) =
∑

1≤i<j≤N

(
1

dij
)m (1)

where X is a con�guration of N points on the unit sphere, m is a positive
integer and dij denotes the distance between points i and j [7]. It is worth
noting that the local minimum solutions of Em(X) will converge to a local
minimum solution of the ECPOS problem as the value of m increases to a
very large number. The optimization process was conducted in a multi-start
fashion, each rerun starting from an initial random solution. In 1991, the
same authors applied their approach to instances with N = 19 − 80 and
improved again the best-known results for many of them. Their computa-
tional results showed that the best-known con�gurations are generally of low
symmetry, di�ering from the constructed solutions. In the same year, using
a variant of this approach, Kottwitz further improved the best-known results
for a number of instances in the range of N = 15−90 [17]. It should be noted
that the algorithm proposed in the present work also falls into this category
of optimization methods, where a potential function is minimized via a series
of random perturbations (or restarts) and gradient-based local optimizations
[7, 17]. This type of optimization methods were also widely used to solve the
related circle or sphere packing problems in the literature [1, 4, 5, 13, 19]

In addition, a number of studies were dedicated to some variants of the
ECPOS problem. For example, Appelbaum and Weiss investigated the prob-
lem of packing equal circles on a hemisphere [3]. Tarnai et al. and Fowler et
al. studied respectively the problems of packing regular triplets or tetrahe-
dral quartets of circles on a sphere [11, 39, 40].

Our motivation is twofold in this work. First, we undertake to devise
a highly e�ective heuristic algorithm for the ECPOS problem due to its
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important applications and computational challenges. Second, we propose a
general-purpose approach for global optimization of non-convex continuous
functions, thus providing more tools for global optimization.

The contributions of this work can be summarized as follows. First, we
propose the iterated dynamic neighborhood search (IDNS) global optimiza-
tion algorithm for solving the ECPOS problem. Computational results show
that the proposed algorithm performs very well and improves the best-known
results for a number of instances widely tested in the literature. Second,
the two main components (i.e., the dynamic neighborhood search and the
multiple-stage local optimization) of the IDNS algorithm are of general na-
ture. The dynamic neighborhood search can be applied to perform global
optimization of any non-convex di�erentiable function, while the multiple-
stage local optimization is applicable to geometry optimization problems in
which the system is composed of a number of particles interacting via a
short-ranged potential.

The rest of paper is organized as follows. In Section 2, the mathemat-
ical formulations of the ECPOS problem and our proposed algorithm are
described. In Section 3, the performance of our proposed algorithm is as-
sessed based on a large number of instances and the structural features of
putatively optimal solutions are investigated. Section 4 analyzes the key al-
gorithmic components, including the parameters and the local optimization
method. Finally, the last section provides several research perspectives.

2. Global optimization method

We �rst introduce the non-linear optimization formulations of the EC-
POS problem, and then describe the iterated dynamic neighborhood search
(IDNS) global optimization algorithm for solving it. The proposed algorithm
can be viewed as an iterated neighborhood search method whose main idea
is to control dynamically the size of neighborhood to reach a good tradeo�
between the intensi�cation and diversi�cation of the search process. In this
sense, the proposed algorithm shares the same idea with some popular global
optimization algorithms, such as the basin-hopping algorithm and its vari-
ants [20, 45]. However, to deal with our particular problem, the proposed
IDNS algorithm integrates some innovations in terms of global optimization
as explained below.
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2.1. Formulations of the ECPOS problem

Given a positive number N , the ECPOS problem aims to distribute N
points (or circles) on the unit sphere such that the minimum distance D be-
tween points is maximized. In three-dimensional Cartesian coordinate sys-
tem, the ECPOS problem can be described as follows:

Maximize D (2)

s.t.
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 ≥ D, 1 ≤ i, j ≤ N ; (3)√
x2i + y2i + z2i = 1, 1 ≤ i ≤ N ; (4)

where (xi, yi, zi) and (xj, yj, zj) respectively represent the Cartesian coordi-
nates of points ri and rj. Constraints (3) ensure that the distance between
any two points is larger than D, and constraints (4) ensure that all N points
are con�ned on the surface of the unit sphere S2.

The problem de�ned by Eqs. (2)-(4) is a constrained optimization prob-
lem and intractable for the popular local optimization methods.

To make local optimization methods applicable to this constrained opti-
mization problem, we �rst convert the ECPOS problem into a series of con-
straint satisfaction subproblems by successively �xing the value of minimum
allowed distance D to a constant number, where the goal of each subproblem
is to �nd a solution for which the minimum distance between points is larger
than or equal to the given D value. Then, we solve each subproblem by
a stochastic optimization approach called the dynamic neighborhood search
method. Given a set of points X = {r1, r2, . . . , rN} on the unit sphere S2

and a �xed minimum distance D (> 0) between points, the constraint satis-
faction subproblem can be converted into a minimization problem as follows
by means of the penalty function method:

Miminize Ec
D(X) =

N−1∑
i=1

N∑
j=i+1

max2{0, D − d(i, j)} (5)

s.t. ri, rj ∈ S2, i, j = 1, 2, . . . , N (6)

where d(i, j)(=
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2) represents the Euclidean
distance between the points ri and rj, and max{0, D−d(i, j)} represents the
overlap depth between two spherical caps with the centers at points ri and
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rj. E
c
D(X) = 0 means that X is feasible, and infeasible otherwise. Thus, the

goal of subproblem is to �nd a feasible solution X with Ec
D(X) = 0 for the

given D value.
The subproblem de�ned by Eqs. (5) and (6) is still a constrained opti-

mization problem which is not easy to handle by popular local optimization
methods like the LBFGS method. To perform the local optimization, we
convert the problem further to an unconstrained optimization problem by
using the spherical coordinate transformation of points on S2:

x = sinϕcosθ; (7)

y = sinϕsinθ; (8)

z = cosϕ; (9)

where (x, y, z) and (ϕ, θ) represent respectively the Cartesian coordinates
and the spherical coordinates of a point r on the unit sphere.

Thus, under the spherical coordinate system of points, a candidate so-
lution can be indicated as (X,D) in which X = (θ1, ϕ1, . . . , θN , ϕN) and D
denotes the minimum allowed distance between points, and the subproblem
de�ned by Eqs. (5) and (6) can be equivalently expressed as an unconstrained
optimization problem as follows:

ED(ϕ, θ) =
∑

1≤i≤j≤N

max2{0, D−√
2− 2sinϕisinϕjcos(θi − θj)− 2cosϕicosϕj}

(10)

where ϕ = (ϕ1, ϕ2, . . . , ϕN) ∈ RN , θ = (θ1, θ2, . . . , θN) ∈ RN , since both
the functions sin(x) and cos(x) are a periodic function with respect to the
variable x in R (= (−∞,+∞)).

2.2. General procedure of iterated dynamic neighborhood search

The IDNS algorithm is a trajectory-based stochastic optimization ap-
proach whose pseudo-code is given in Algorithm 1, where X∗ and D∗ respec-
tively denote the best solution found so far and the corresponding minimum
distance between points, while X and D respectively denote the current solu-
tion and corresponding minimum allowed distance between points. The algo-
rithm includes three components, a multiple-stage local optimization method,
a dynamic neighborhood search (DNS) method and an adjustment procedure
of the minimum distance between points.
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Algorithm 1: General procedure of the Iterated dynamic Neigh-
borhood Search (IDNS) algorithm

Input: Number of points to be distributed (N), time limit (tmax)
Output: The best con�guration found (X∗, D∗)

1 δ ← 0.7

2 D ← 4×
√

δ
N

3 X ← RandomSolution(N) /* Generate an initial solution */

4 X ← LocalOptimization(X,D)
5 /* ED(X) < 10−25 means that X is a feasible solution */

6 while ED(X) < 10−25 ∧ time() ≤ tmax do
7 δ ← δ + 0.001

8 D ← 4×
√

δ
N

/* Increase the value of D */

9 X ← DNS(X,D) /* Minimize the function ED(X)
defined in Eq.(10) by the DNS method */

10 end

11 (X∗, D∗)←MinDistanceAjustment(X,D) /* Adjust the

minimum distance D between N points */

12 while time() ≤ tmax do
13 D ← D∗

14 X ← RandomSolution(N) /* A random solution */

15 X ← DNS(X,D)
16 if ED(X) < 10−25 then

17 (X,D)←MinDistanceAjustment(X,D)
18 if D > D∗ then

19 D∗ ← D
20 X∗ ← X /* Save the best solution found */

21 end

22 end

23 end

24 return (X∗, D∗)
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The algorithm is performed in a two-phase fashion. At the �rst phase,
from an initial value of D empirically estimated (lines 1�2), an initial solution
X is generated by randomly distributing N points on the surface S2 of the
unit sphere and is improved by the minimization of the function ED(X).
Subsequently, the algorithm enters a `while' loop and performs a number of
iterations until an infeasible solution with ED(X) > 10−25 is reached (lines
6�10). At each iteration, the value of D is �rst progressively increased (lines
7�8) and then the DNS procedure is used to �nd a feasible solution under
the current D value by minimizing the function ED(X) (line 9). After that,
the result of the DNS procedure is used as the input of the next iteration.
The algorithm enters the second phase once the DNS procedure fails to �nd
a feasible solution for the current D value and the given input solution.

At the second phase of the search, the algorithm performs a number
of iterations until the time limit (tmax) is reached (lines 12-23). At each
iteration, starting from a solution generated randomly, the DNS procedure
is performed to optimize the objective function ED(X) with D∗ set to be the
value of D (lines 13�15). Then, the minimum distance adjustment procedure
is used to maximize the value of D once a feasible solution X with ED(X) <
10−25 is found, while maintaining the feasibility of solution (line 17). After
that, the best solution X∗ found so far and the corresponding D value (i.e.,
D∗) are updated if an improved solution is found (lines 18�21).

2.3. Dynamic neighborhood search method

For the trajectory-based global optimization, one important issue con-
cerns the strategy used to accept the new solution as the current solution,
and di�erent strategies will result in various global optimization algorithms.
For example, the basin-hopping algorithm employs the Metropolis acceptance
rule, which depends on the change in the objective value and a parameter T
called the temperature, to accept the new solution [45].

As an initial step, we design a new metaheuristic approach called dy-
namic neighborhood search (DNS) to search for the global optimum of an
unconstrained continuous optimization problem with the �rst-order deriva-
tive. The pseudo-code of the DNS method is given in Algorithm 2, where
Xcur and X

b respectively denote the current solution and the best solution
found by the current DNS run. Starting from an input solution X0, the DNS
method performs a number of iterations to improve its quality until an op-
timal solution X (i.e., ED(X) = 0 for the present study) is encountered or

9



Algorithm 2: Dynamic neighborhood search (DNS) for the mini-
mization of the function ED(X)

1 Function DNS()
Input: Input solution X0, minimum distance allowed D between

points
Output: The best solution found (Xb)

2 Xcur ← LocalOptimization(X0, ED(·))
3 Xb ← Xcur /* Xcur denotes the current solution */
4 β ← 0
5 while (β ≤ βmax) ∧ (ED(Xb) > 10−25) do
6 η ← ηf (β) /* Determine the strength of perturbation */
7 M ←Mf (β) /* Determine the maximum size of current

neighborhood */
8 /* Construct a neighborhood with a maximum

cardinality M for Xcur */
9 ED(Xnbest)← +∞ /* Xnbest denotes the best solution in

the neighborhood */
10 for k ← 1 to M do
11 Xneighbor ← Perturbation(Xcur, η)
12 Xneighbor ← LocalOptimization(Xneighbor, ED(·))
13 if ED(Xneighbor) < ED(Xnbest) then
14 Xnbest ← Xneighbor

15 end
16 if ED(Xneighbor) < ED(Xcur) then
17 Xnbest ← Xneighbor

18 break
19 end
20 end
21 Xcur ← Xnbest /* update the current solution */

22 if ED(Xcur) < ED(Xb) then
23 Xb ← Xcur /* Save the best solution found */
24 β ← 0
25 else
26 β ← β + 1
27 end
28 end

29 return Xb
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the best solution Xb cannot be improved during βmax consecutive iterations
(lines 5�28), where βmax is a parameter called the maximum search depth.

At each iteration, the DNS method �rst constructs a neighborhoodN(Xcur)
for the current solution Xcur (lines 10�20) and then selects a best solution
from N(Xcur) to replace the current solution (line 21), where the size of the
constructed neighborhood is dynamically controlled by a function (line 7).
Figure 1 provides a schematic diagram to illustrate the search process of the
DNS method. One can observe from the �gure that the size of the neigh-
borhood varies dynamically during the search and that the DNS method is
allowed to accept deteriorated solutions to escape from local optima.

To construct a neighborhood of the current solution, the DNS method
employs a perturbation operator and a subsequent local optimization pro-
cedure to generate each neighboring solution (lines 11�12). Speci�cally, a
random perturbation operator with a strength η is �rst applied to the cur-
rent solution Xcur and then a local optimization procedure is applied to the
perturbed solution to improve its quality, and the resulting solution is used as
a member of the current neighborhood. This process is repeated at most M
times to generate the members of the current neighborhood N(Xcur), where
M is the maximum size of the neighborhood. The neighborhood construction
process stops once a better neighborhood solution than the current solution
Xcur is encountered (lines 16�19).

To reach a suitable tradeo� between diversi�cation and intensi�cation
of the search, the DNS algorithm determines dynamically the perturbation
strength η in an interval [ηmin, ηmax] by using a periodic function ηf (·) de-
scribed by Fig. 2 (b), given that a smaller perturbation strength implies a
more intensi�ed search and a larger perturbation strength implies a more
diversi�ed search. On the other hand, the neighborhood size plays also a
key role for the tradeo� between diversi�cation and intensi�cation, since a
larger neighborhood allows a more intensi�ed search, but requires a higher
computational e�ort, while a smaller neighborhood allows a more diversi�ed
search. Thus, to reach a suitable tradeo�, the DNS method employs a pe-
riodic function Mf (·) described in Fig. 2 (a) to dynamically determine the
value of M , making it vary periodically in an interval [Mmin,Mmax].
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Figure 1: A schematic diagram illustrating the dynamic neighborhood search (DNS) ap-
proach, where the size of neighborhood varies dynamically according to a function Mf (·)
with respect to the search depth β.
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Figure 2: The variations of the strength of current perturbation (η) and the size of current
neighborhood (M) as a function of the search depth (β).

Fig. 2 indicates that the neighborhood size M and the perturbation
strength η will respectively reach their maximum value and minimum value
at the beginning of the search or when an improved solution is found (i.e.,
β = 0) to reinforce search intensi�cation, and then vary dynamically to
reinforce search diversi�cation. Eventually, the combined use of dynamic
strategies for M and η will cause the DNS algorithm to reach a desirable
diversi�cation and intensi�cation tradeo�.
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2.4. Multiple-stage Local optimization method

Algorithm 3: Multiple-Stage local optimization

1 Function LocalOptimization()
Input: Input solution X, the minimum distance allowed (D)

between the points, the precisions
{ε0, ε1, ε2, ε3} = {0.1D, 0.01D, 10−4D, 10−12D}, the cuto�
distances for generating the lists of neighbors of circles
{∆1,∆2,∆3} = {3D, 2D, 1.2D}

Output: local minimum solution X
2 X ← LBFGS(X, ε0) /* The first stage */

3 L1 ← ListOfNeighbors(X,∆1)
4 X ← LBFGS(X,L1, ε1) /* The second stage */

5 L2 ← ListOfNeighbors(X,∆2)
6 X ← LBFGS(X,L2, ε2) /* The third stage */

7 L3 ← ListOfNeighbors(X,∆3)
8 X ← LBFGS(X,L3, ε3) /* The fourth stage */

9 return X

The local optimization procedure is the most time-consuming component
of our IDNS algorithm and plays a crucial role for its performance, where
most of the computational time is consumed by the evaluations of the ob-
jective function ED(X) and its gradient g(X). In the local optimization,
given that the overlaps occur only between the neighboring circles in the
candidate solution X, we speed up the evaluations of the objective function
ED(X) and its gradient g(X) by considering the possible adjacency relations
between circles in the current solution.

To do this, the local optimization method whose pseudo-code is given in
Algorithm 3 is performed in multiple stages, where each stage is composed
of a construction procedure that involves a list of neighboring circles and a
local search method based on the neighboring list.

Speci�cally, the local optimization method employed by the algorithm is
divided into four stages. At the �rst stage (line 2), the LBFGS method [22]
with a low stopping precision of ε0 = 0.1D is performed to improve the input
solution, where D is a given and allowed distance between the centers of
circles and the overlap is calculated for each pair of circles in the evaluation
of ED(X) (i.e., each pair of circles is considered to be adjacent in this stage).
For most circles, the adjacency relations indicating whether two circles are
adjacent in the resulting solution will be determined in the �rst stage and do
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not change in the following stages. The number of iterations needed at this
stage is very small due to the low stopping precision, and the computational
complexity of each iteration is high (i.e., O(N2)), which is the same as the
complexity of a single function evaluation or gradient evaluation.

At the second stage (lines 3�4), the adjacency list L1 between circles is
�rst generated by considering a cuto� distance ∆1, and two circles ri and
rj are identi�ed as neighbors if the distance between their centers on the
unit sphere is less than ∆1. Then, the second LBFGS method is performed
utilizing the result of the �rst stage as the starting point, where only those
overlaps between circles identi�ed by the adjacency list L1 are considered in
the evaluation of objective function ED(X) and its gradient g(X). Thus, the
time complexity of function and gradient evaluations is only O(N), which is
much cheaper than the �rst stage. Subsequently, similar to the second stage,
the third and fourth stages are performed by constructing the adjacency lists
L2 and L3 based on the result of the previous stage and performing the
corresponding LBFGS procedure (lines 5�8), where the cuto� distances ∆i

(i = 2, 3) decrease gradually to reduce the sizes of the constructed adjacency
lists L2 and L3.

The idea of this multiple-stage local optimization method is very general
and can be applied to a number of geometry optimization problems in which
the interaction between two particles can be described by a short-ranged
potential with respect to their distance, such as circle and sphere packing
problems and the structural optimization of Lennard-Jones clusters [45].

2.5. Perturbation Operator

Algorithm 4: Perturbation operator

1 Function Perturbation()
Input: Input solution X = (θ1, ϕ1, . . . , θN , ϕN), parameter η1
Output: The perturbed solution X

2 /* rand(−η1, η1) is a random number in (−η1, η1) */

3 for i← 1 to N do

4 θi ← θi + rand(−η1, η1)
5 ϕi ← ϕi + rand(−η1, η1)
6 end

7 return X = (θ1, ϕ1, . . . , θN , ϕN)

To optimize globally the objective function ED(·) de�ned in Eq.(10), the
DNS method employs a perturbation operator to escape from the current
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local minimum. The pseudo-code of the perturbation operator is given in
Algorithm 4. Given a candidate solution X = (θ1, ϕ1, . . . , θN , ϕN), the per-
turbation operator shifts each coordinate of the solution X in the interval
[−η1, η1] to obtain a new solution, where the value of η1 is determined as
η1 = η × θ0 in which η is a number in (0, 1) and is called the perturbation
strength and θ0 represents the minimum angle between any two points on
the unit sphere and is determined as θ0 = arccos(2−D

2

2
).

2.6. Minimum distance adjustment method

Algorithm 5: Adjustment method of minimum distance (D) be-
tween points

1 Function MinDistanceAdjustment()

Input: Input solution (X0, D0), maximum number of iterations K (= 15)
Output: The feasible local optimum con�guration (X,D)

2 X ← X0, D ← D0, ρ← 102

3 for i← 1 to K do

4 (X,D) ← LocalOptimization(Uρ, X,D) /* Minimize Uρ(X,D)
using the LBFGS method */

5 ρ← 5× ρ
6 end

7 return (X,D)

Given a con�guration (X,D) on the sphere, the minimum distance ad-
justment method aims to slightly modify the coordinates of N points (i.e.,
the centers of spherical caps), such that no overlap occurs between any two
spherical caps in the resulting con�guration, while the minimum distance D
between points is maximized. The adjustment of minimum distance D is
equivalent to obtaining a local solution to a constrained optimization prob-
lem.

As in [19], to locally optimize the constrained optimization problem, we
employ the sequential unconstrained minimization technique (SUMT) [10].
First, we convert the constrained optimization problem into a series of un-
constrained optimization problems which can be written as follows:

Minimize Uρ(X,D) = −D2 + ρ× E(X,D) (11)

where ρ is a penalty factor and each given ρ value de�nes a unconstrained
optimization problem, D is a variable representing the minimum allowed
distance between points, and E(X,D) is a penalty term with 2N+1 variables
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which measures the degree of constraint violation in (X,D), and E(X,D) = 0
if and only if (X,D) is a feasible solution.

E(X,D) =
N−1∑
i=1

N∑
j=i+1

max2{0, D − d(i, j)} (12)

wheremax{0, D−d(i, j)} represents the overlap depth between two spherical
caps and d(i, j) is the Euclidean distance between two points (i.e., the centers
of two spherical caps) and can be written as:

d(i, j) =
√

2− 2sinϕisinϕjcos(θi − θj)− 2cosϕicosϕj (13)

Then, the adjustment method (see Algorithm 5) solves in order a series
of unconstrained optimization problems de�ned by Eq.(11) with increasing ρ
values. Starting from a con�guration (X0, D0) to be adjusted and an initial
ρ value (ρ0 = 102), the adjustment procedure performs K iterations. At each
iteration, the procedure locally optimize the function de�ned in Eq.(11) by a
LBFGS method [22] and the resulting solution is used as the input solution of
the next iteration, followed by increasing the value of ρ by setting ρ← 5×ρ.
As ρ increases to a very large value, the adjustment method converges to a
feasible solution with E(X,D) = 0 in which the value of D is maximized.

3. Computational results and comparisons

To evaluate the performance of the IDNS algorithm and predict the glob-
ally optimal con�guration of the ECPOS problem, we conducted extensive
experiments whose experimental conditions and computational results are
given in the following subsections.

3.1. Parameter settings and experimental protocol

Table 1: Settings of parameters
ParametersSectionDescription Values
Mmin 2.3 minimum size of neighborhood 1
Mmax 2.3 maximum size of neighborhood 6
ηmin 2.3 minimum strength of perturbation 0.3
ηmax 2.3 maximum strength of perturbation 0.6
ηs 2.3 incremental change of strength of perturbation 0.01
βmax 2.3 maximum depth of search 500
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The algorithm adopts several parameters whose default settings are given
in Table 1, which were determined by a preliminary experiment described in
Section 4. In this study, all computational experiments were carried out with
the parameter default settings. It is worth noting that these settings are not
optimal and �ne-tuning some parameters could help the algorithm to �nd
improved results 1

The IDNS algorithm was implemented in the C++ language and all com-
putational experiments were carried out on a computer with an Intel(R)
Xeon (R) Platinum 9242 CPU (2.3 GHz)2, running a Linux operating sys-
tem. Given its stochastic feature, the IDNS algorithm was run 10 times on
each instance in the range of 5 ≤ N ≤ 200 and on several selected large-scale
instances with 201 ≤ N ≤ 1080 to assess its average performance. The stop-
ping criterion of the algorithm is a maximum time limit tmax which was set
according to the size of instances. Considering that the ECPOS problem is
very hard to solve especially for the large-scale instances and that the time
complexity of evaluating the objective function in Eq.(10) is high, tmax was
set to 5N minutes.

3.2. Computational results and comparison on the instances with N ≤ 200

This section aims to assess the performance of the IDNS algorithm on
the instances with N ≤ 200 and show the structural features of best con�g-
urations found. Subsection 3.2.1 shows the computational results and makes
a comparison with the best-known results in the literature. Subsection 3.2.3
plots the packing densities and presents some representative con�gurations
for the best solutions found in this work.

1We indeed obtained a number of better results than those reported in this paper by
using alternative parameters values.

2The executable code of the IDNS algorithm and the best solutions reported in this
work are online available at https://github.com/XiangjingLai/Tammes-problem
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3.2.1. Comparison with the best-known results

Table 2: Computational results and comparison on small instances in the range of 6 ≤
N ≤ 50.

N BKR (deg) dbest(deg) davg (deg) dworst (deg) σ time(s)
6 90.000000000 90.000000000 90.000000000 90.000000000 0.0 0
7 77.869542155 77.869542155 77.869542155 77.869542155 0.0 0
8 74.858492186 74.858492186 74.858492186 74.858492186 0.0 1
9 70.528779366 70.528779366 70.528779366 70.528779366 0.0 1
10 66.146821988 66.146821988 66.146821988 66.146821988 0.0 1
11 63.434948823 63.434948823 63.434948823 63.434948823 0.0 1
12 63.434948823 63.434948823 63.434948823 63.434948823 0.0 1
13 57.136703078 57.136703078 57.136703078 57.136703078 0.0 2
14 55.670569996 55.670569996 55.670569996 55.670569996 0.0 3
15 53.657850130 53.657850130 53.657850130 53.657850130 0.0 5
16 52.244395753 52.244395753 52.244395753 52.244395753 0.0 3
17 51.090328552 51.090328552 51.090328552 51.090328552 0.0 5
18 49.556654768 49.556654768 49.556654768 49.556654768 0.0 7
19 47.691914109 47.691914109 47.691914109 47.691914109 0.0 9
20 47.431036227 47.431036227 47.431036227 47.431036227 0.0 4
21 45.613223106 45.613223106 45.613223106 45.613223106 0.0 14
22 44.740161167 44.740161167 44.740161167 44.740161167 0.0 16
23 43.709964205 43.709964205 43.709964205 43.709964205 0.0 13
24 43.690767108 43.690767108 43.690767108 43.690767108 0.0 4
25 41.634461260 41.634461260 41.634461260 41.634461260 0.0 17
26 41.037661607 41.037661607 41.037661607 41.037661607 0.0 14
27 40.677600685 40.677600685 40.677600685 40.677600685 0.0 15
28 39.355143569 39.355143569 39.355143569 39.355143569 0.0 17
29 38.713651194 38.713651194 38.713651194 38.713651194 0.0 20
30 38.597115954 38.597115954 38.597115954 38.597115954 0.0 26
31 37.709829144 37.709829144 37.709829144 37.709829144 0.0 25
32 37.475213975 37.475213975 37.475213975 37.475213975 0.0 17
33 36.254552976 36.254552976 36.254552976 36.254552976 0.0 22
34 35.807784396 35.807784396 35.807784396 35.807784396 0.0 28
35 35.319807591 35.319807591 35.319807591 35.319807591 0.0 29
36 35.189732258 35.189732258 35.189732258 35.189732258 0.0 31
37 34.422408009 34.422408009 34.422408009 34.422408009 0.0 38
38 34.250660672 34.250660672 34.250660672 34.250660672 0.0 22
39 33.489046580 33.489046580 33.489046580 33.489046580 0.0 40
40 33.158356264 33.158356264 33.158356264 33.158356264 0.0 31
41 32.729094415 32.729094415 32.729094415 32.729094415 0.0 36
42 32.506386350 32.506386350 32.506386350 32.506386350 0.0 26
43 32.090624406 32.090624406 32.090624406 32.090624406 0.0 47
44 31.983423033 31.983423033 31.983423033 31.983423033 0.0 47
45 31.323081434 31.323081434 31.323081434 31.323081434 0.0 67
46 30.959163488 30.959163488 30.959163488 30.959163488 0.0 57
47 30.781815961 30.781815961 30.781815961 30.781815961 0.0 41
48 30.762785551 30.762785551 30.762785551 30.762785551 0.0 17
49 29.923585114 29.923585114 29.923585114 29.923585114 0.0 62
50 29.752956397 29.752956397 29.752956397 29.752956397 0.0 55
#Improved 0 0 0
#Equal 45 45 45
#Worse 0 0 0

The computational results of our IDNS algorithm on the instances with
N ≤ 200 are summarized in Tables 2�5. The �rst and second columns of
the tables give the sizes of instances (N) and the best-known results (BKR)
in the literature in terms of the angular diameter d ∈ [0, 360] (in degree) of
packed circles, where the notation `N/A' means that the corresponding result
is not available. It should be noted that these best-known results were gener-
ated by previous researchers using various approaches, such as mathematical
methods, construction algorithms and global optimization algorithms. Most
of them were collected over past 30 years by Sloane et al. and are available
online at a website maintained by Sloane [34]. The computational results
of our IDNS algorithm are reported in the last �ve columns, including the
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largest angular diameter of circles found over 10 independent runs (dbest), the
average angular diameter (davg), the smallest angular diameter (dworst), the
standard deviation of angular diameter (σ), and the average computational
time in seconds to reach its �nal result for each run of IDNS (time). In addi-
tion, the last rows `#Improved' `#Equal' and `#Worse' in Tables 2�4 show
the number of instances for which the IDNS algorithm obtained a better,
equal or worse result compared to the best-known result in the literature in
terms of dbest, davg and dworst.

Tables 2 and 3 show that the IDNS algorithm is very e�cient for the
instances in the range of 6 ≤ N ≤ 100, which are widely studied in the
literature. For 92 out of 95 instances, the proposed IDNS algorithm matched
the best-known result with a success rate of 100%. Moreover, for the instance
with N = 97, the IDNS algorithm consistently improves the best-known
result. For other two instances, the IDNS algorithm matched the best-known
results in terms of dbest, but the average result and worst result are worse
than the best-known result with a success rate of less than 100%. In terms of
computational e�ciency, the IDNS algorithm is very fast for most instances.
Speci�cally, the average computational time is less than 500 seconds except
for 3 instances with N ∈ {81, 90, 94}.

Table 4 gives the computational results on the 50 instances with 101 ≤
N ≤ 150, where the �rst 30 instances with 101 ≤ N ≤ 130 were widely
studied in the literature and the next 20 instances with 131 ≤ N ≤ 150 were
mainly studied in [43]. One observes that the IDNS algorithm improved
the best-known results for 26 out of these 50 instances in this range, where
6 instances lie in the range of N ∈ [101, 130] and 20 instances lie in the
range of N ∈ [131, 150]. Nevertheless, the IDNS algorithm missed the best-
known results for 3 instances, implying that they are hard instances for the
IDNS algorithm. In terms of davg, our IDNS algorithm obtains a better or
equal result with respect to the best-known result for 24 and 21 instances,
respectively, indicating a strong search ability of the algorithm. Moreover,
the standard deviation of the objective values is very small for most instances,
implying a good robustness of the algorithm. The computational time which
re�ects the hardness of instances, varies drastically in the interval [200, 30000]
depending on the instances to be solved.
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Table 3: Computational results and comparison on the instances in the range of 51 ≤ N ≤
100. The improved results are indicated in bold compared with the best known results in
the literature in terms of dbest, davg and dworst.

N BKR (deg) dbest (deg) davg (deg) dworst (deg) σ time(s)
51 29.368406881 29.368406881 29.368406881 29.368406881 0.0 59
52 29.194757905 29.194757905 29.194757905 29.194757905 0.0 43
53 28.813897205 28.813897205 28.813897205 28.813897205 0.0 63
54 28.716920530 28.716920530 28.716920530 28.716920530 0.0 81
55 28.262791418 28.262791418 28.262791418 28.262791418 0.0 60
56 28.148046651 28.148046651 28.148046651 28.148046651 0.0 51
57 27.826675948 27.826675948 27.826675948 27.826675948 0.0 61
58 27.556415956 27.556415956 27.556415956 27.556415956 0.0 69
59 27.394975670 27.394975670 27.394975670 27.394975670 0.0 72
60 27.192830003 27.192830003 27.192830003 27.192830003 0.0 65
61 26.873277866 26.873277866 26.873277866 26.873277866 0.0 80
62 26.683996996 26.683996996 26.683996996 26.683996996 0.0 83
63 26.486922511 26.486922511 26.486922511 26.486922511 0.0 66
64 26.235043312 26.235043312 26.235043312 26.235043312 0.0 80
65 26.069829948 26.069829948 26.069829948 26.069829948 0.0 102
66 25.947443691 25.947443691 25.947443691 25.947443691 0.0 80
67 25.683981345 25.683981345 25.683981345 25.683981345 0.0 101
68 25.463824458 25.463824458 25.463824458 25.463824458 0.0 69
69 25.333636438 25.333636438 25.333636438 25.333636438 0.0 271
70 25.170919984 25.170919984 25.170919984 25.170919984 0.0 146
71 24.987938062 24.987938062 24.987938062 24.987938062 0.0 424
72 24.926486081 24.926486081 24.926486081 24.926486081 0.0 131
73 24.553779249 24.553779249 24.553779249 24.553779249 0.0 177
74 24.420939780 24.420939780 24.420939780 24.420939780 0.0 121
75 24.301722513 24.301722513 24.301722513 24.301722513 0.0 192
76 24.128194442 24.128194442 24.128194442 24.128194442 0.0 263
77 24.001283683 24.001283683 24.001283683 24.001283683 0.0 180
78 23.931025420 23.931025420 23.931025420 23.931025420 0.0 275
79 23.623991696 23.623991696 23.623991696 23.623991696 0.0 134
80 23.553067202 23.553067202 23.553067202 23.553067202 0.0 159
81 23.347637682 23.347637682 23.347637632 23.347637599 4.09E-08 6557
82 23.194607406 23.194607406 23.194607406 23.194607406 0.0 468
83 23.082997639 23.082997639 23.082997639 23.082997639 0.0 123
84 23.051730642 23.051730642 23.051730642 23.051730642 0.0 152
85 22.779162071 22.779162071 22.779162071 22.779162071 0.0 207
86 22.674369389 22.674369389 22.674369389 22.674369389 0.0 179
87 22.546657426 22.546657426 22.546657426 22.546657426 0.0 163
88 22.467881045 22.467881045 22.467881045 22.467881045 0.0 119
89 22.316602355 22.316602355 22.316602355 22.316602355 0.0 243
90 22.154023258 22.154023258 22.154023258 22.154023258 0.0 1002
91 22.051796329 22.051796329 22.051796329 22.051796329 0.0 197
92 22.027581468 22.027581468 22.027581468 22.027581468 0.0 174
93 21.810380126 21.810380126 21.810380126 21.810380126 0.0 244
94 21.723713484 21.723713484 21.723709135 21.723708651 1.45E-06 1320
95 21.594550060 21.594550060 21.594550060 21.594550060 0.0 226
96 21.520609925 21.520609925 21.520609925 21.520609925 0.0 183
97 21.400619755 21.400650276 21.400650276 21.400650276 0.0 309
98 21.371060736 21.371060736 21.371060736 21.371060736 0.0 153
99 21.135967381 21.135967381 21.135967381 21.135967381 0.0 248
100 21.031202000 21.031202000 21.031202000 21.031202000 0.0 229
#Improved 1 1 1
#Equal 49 47 47
#Worse 0 2 2

Table 5 shows the computational results on the instances in the range
of 151 ≤ N ≤ 200 which were rarely studied in the literature, where the
available best-known results for several instances are taken from the website
maintained by Sloane [14] and two previous papers [12, 42]. For most in-
stances in this range, the putatively optimum solutions are generated for the
�rst time by us. One can observe from Table 5 that for most instances, the
standard deviation of the objective values obtained by the IDNS algorithm is
very small, indicating a good algorithmic robustness. For the eight instances
whose best-known results have been reported in the previous studies, the
best, average and worst objective values of the IDNS algorithm are superior
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to the best-known results except for N = 200. On the other hand, the table
shows that the computational time of the IDNS algorithm on these large
instances is usually much longer than on the smaller instances in Tables 2�4,
which means the di�culty increases signi�cantly as the size N increases in
the general cases.

Table 4: Computational results and comparison on the instances in the range of 101 ≤
N ≤ 150. The improved results are indicated in bold compared with the best known results
in the literature in terms of dbest, davg and dworst, and the worse results are indicated in
italic.

N BKR (deg) dbest (deg) davg(deg) dworst(deg) σ time(s)
101 20.928683418 20.928683418 20.928683418 20.928683418 0.0 231
102 20.855688715 20.855688715 20.855688715 20.855688715 0.0 1029
103 20.738269268 20.738269268 20.738269268 20.738269268 0.0 444
104 20.656620961 20.656620961 20.656620961 20.656620961 0.0 332
105 20.538852367 20.538852367 20.538852367 20.538852367 0.0 245
106 20.439408913 20.439408913 20.439408913 20.439408913 0.0 357
107 20.361203471 20.361203471 20.361199947 20.361198437 2.31E-06 5073
108 20.304444715 20.304444715 20.304444715 20.304444715 0.0 324
109 20.149319591 20.149319591 20.149319591 20.149319591 0.0 579
110 20.111327602 20.096120236 20.096117678 20.096117039 1.28E-06 4025
111 19.982476901 19.993724800 19.975084380 19.968707889 1.02E-02 6454
112 19.891304375 19.891304375 19.891304375 19.891304375 0.0 8305
113 19.805601302 19.805601302 19.805601302 19.805601302 0.0 287
114 19.745009357 19.745009357 19.745009357 19.745009357 0.0 309
115 19.623993121 19.623993121 19.623993121 19.623993121 0.0 1854
116 19.549796869 19.549796869 19.549796869 19.549796869 0.0 378
117 19.461291100 19.461291100 19.461291100 19.461291100 0.0 284
118 19.389349705 19.389510434 19.389510434 19.389510434 0.0 3504
119 19.325751352 19.314184273 19.314061399 19.313118887 3.18E-04 21104
120 19.324020069 19.264740121 19.264740121 19.264740121 0.0 251
121 19.135729782 19.146164522 19.146161475 19.146151839 4.20E-06 21761
122 19.070036856 19.075939806 19.071748646 19.070036856 2.18E-03 4927
123 19.006389067 19.006389067 19.006389067 19.006389067 0.0 678
124 18.953911647 18.953911647 18.953911647 18.953911647 0.0 633
125 18.844815070 18.844831207 18.836924324 18.832117202 5.93E-03 12947
126 18.781585614 18.781585614 18.781585614 18.781585614 0.0 302
127 18.690056810 18.690313825 18.690133280 18.690056810 1.13E-04 9012
128 18.634972596 18.634972596 18.634972596 18.634972596 0.0 1050
129 18.563472647 18.563472647 18.563472647 18.563472647 0.0 359
130 18.510352167 18.510352167 18.510352167 18.510352167 0.0 295
131 18.2831860 18.420047209 18.420047209 18.420047209 0.0 397
132 18.3665155 18.384277320 18.384275633 18.384268888 3.37E-06 12680
133 18.1164476 18.273124165 18.273124165 18.273124165 0.0 371
134 18.0352521 18.200068456 18.200068456 18.200068456 0.0 1590
135 17.8995373 18.136512220 18.136512220 18.136512220 0.0 464
136 17.8995373 18.078032313 18.077511271 18.075228366 9.95E-04 29274
137 17.8597825 18.005882786 18.005882786 18.005882786 0.0 389
138 17.6717639 17.943942754 17.943942739 17.943942678 3.04E-08 20303
139 17.6355493 17.883394318 17.883394318 17.883394318 0.0 3195
140 16.5945958 17.828027560 17.828027560 17.828027560 0.0 1365
141 17.5598327 17.751660456 17.747822554 17.746935482 1.78E-03 10294
142 17.4217485 17.693922247 17.693922247 17.693922247 0.0 682
143 17.4136350 17.636328052 17.622533056 17.621000295 4.60E-03 2635
144 17.4803100 17.592390582 17.583784340 17.582828097 2.87E-03 413
145 17.3587143 17.520387535 17.508005494 17.496640380 9.33E-03 28443
146 17.3312211 17.466893736 17.454847184 17.440061598 1.17E-02 24851
147 17.1801361 17.401249997 17.395218183 17.383314817 7.42E-03 22485
148 17.0450209 17.343053927 17.342073075 17.340310702 7.77E-04 23831
149 17.0020507 17.281266525 17.281266525 17.281266525 0.0 701
150 17.1075768 17.249816554 17.249816554 17.249816554 0.0 696
#Improved 26 24 22
#Equal 21 21 23
#Worse 3 5 5
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Table 5: Computational results and comparison on the instances in the range of 151 ≤
N ≤ 200. The improved results are indicated in bold compared with the best-known
results in the literature in terms of dbest, davg and dworst.

N BKR (deg) dbest(deg) davg(deg) dworst (deg) σ time(s)
151 N/A 17.174585202 17.174335564 17.173790743 2.75E-04 28925
152 16.22487558 17.127321801 17.125969412 17.114890190 3.70E-03 28376
153 N/A 17.072410149 17.070127387 17.050645569 6.50E-03 31578
154 N/A 17.020367720 17.020306724 17.020198307 5.93E-05 31959
155 N/A 16.957032553 16.957011737 16.956958629 2.82E-05 36105
156 N/A 16.921870518 16.916458988 16.896145681 1.01E-02 28653
157 N/A 16.844221939 16.843639388 16.841328510 1.04E-03 34454
158 N/A 16.795708629 16.795185682 16.794085637 4.86E-04 32221
159 N/A 16.746475459 16.742873946 16.736992394 4.27E-03 26687
160 N/A 16.693204542 16.688543911 16.683883308 4.66E-03 21204
161 N/A 16.638778470 16.636422193 16.632985911 2.00E-03 34002
162 16.132192103 16.606770297 16.602243974 16.594900388 4.93E-03 26900
163 N/A 16.541137966 16.540163192 16.534523100 1.92E-03 30097
164 N/A 16.485809203 16.484338634 16.483441050 9.05E-04 20602
165 N/A 16.434849648 16.433901863 16.433104855 6.11E-04 33673
166 N/A 16.397996521 16.397966946 16.397743224 7.56E-05 37243
167 N/A 16.336594952 16.331890626 16.327290716 3.75E-03 34163
168 N/A 16.293215766 16.289906102 16.285491526 2.59E-03 32061
169 N/A 16.255546787 16.250942915 16.234537037 5.86E-03 25506
170 14.845631806 16.236217883 16.236081108 16.235783104 1.54E-04 28226
171 N/A 16.166465249 16.163859419 16.159066566 2.47E-03 31094
172 N/A 16.130878909 16.123784273 16.107224050 1.08E-02 41078
173 N/A 16.056631001 16.056626463 16.056603037 8.24E-06 39171
174 N/A 16.022382474 16.021977313 16.020436609 7.12E-04 39804
175 N/A 15.985629022 15.984740458 15.983094748 9.48E-04 39044
176 N/A 15.930734011 15.928351550 15.925833252 1.81E-03 36209
177 N/A 15.881694787 15.881482809 15.880798140 2.74E-04 34020
178 N/A 15.853104024 15.852002724 15.848687784 1.67E-03 41147
179 N/A 15.825647953 15.825626868 15.825488740 4.64E-05 44799
180 15.818759283 15.818759336 15.818759336 15.818759336 0.0 34856
181 N/A 15.738653922 15.738644273 15.738627742 6.57E-06 28114
182 14.515037788 15.676673420 15.676534933 15.675344730 3.97E-04 38433
183 N/A 15.637263188 15.635386225 15.632446644 1.90E-03 29236
184 N/A 15.586160863 15.586153058 15.586089294 2.13E-05 46139
185 N/A 15.549278801 15.549094271 15.548645292 2.04E-04 48282
186 N/A 15.506034396 15.506029750 15.506008334 7.91E-06 30011
187 N/A 15.451118279 15.451106542 15.451043774 2.45E-05 32681
188 N/A 15.420083491 15.420083403 15.420083394 2.91E-08 27161
189 N/A 15.379486067 15.379418380 15.379108477 1.08E-04 42820
190 N/A 15.357312790 15.356122097 15.348075717 2.73E-03 44676
191 N/A 15.311391737 15.311391737 15.311391737 0.0 23064
192 15.17866313 15.293846752 15.293846752 15.293846752 0.0 17657
193 N/A 15.226804266 15.226804198 15.226803926 1.36E-07 25765
194 N/A 15.185373070 15.185019272 15.183262743 6.08E-04 40756
195 N/A 15.148661157 15.137439936 15.134135175 5.39E-03 40147
196 N/A 15.099589969 15.097575664 15.096137624 1.18E-03 37635
197 N/A 15.055765691 15.054106350 15.052257521 1.28E-03 30738
198 14.60186 15.021343394 15.020387794 15.018682441 9.38E-04 40019
199 N/A 15.001874047 14.994478168 14.989824292 4.28E-03 37995
200 14.995766166 14.996344132 14.973669204 14.947701872 1.62E-02 43699

To give an intuitive interpretation for the solutions of the ECPOS prob-
lem, Fig. 3 provides a graphical representation of the best solutions of four
representative instances, i.e., N = 149, 150, 171 and 177, where each point
on the sphere corresponds to a circle with angular diameter of dbest. Fig. 3
shows that the best packing con�guration found for these four instances has
a high symmetry.

22



(a) N = 149 (b) N = 150 (c) N = 171 (d) N = 177

Figure 3: Best packing con�gurations found in this work for four representative instances,
where each circle is colored according to its number of nearest neighbors.

(a) Previous solu-
tion for N = 111

(b) Improved solu-
tion for N = 111

(c) Previous solu-
tion for N = 122

(d) Improved solu-
tion for N = 122

(e) Previous solu-
tion for N = 127

(f) Improved solu-
tion for N = 127

Figure 4: Comparisons of Voronoi representations between the previous best-known so-
lution and the improved best solution for three representative instances in the range of
N ≤ 130.

As demonstrated above, our IDNS algorithm improves the best-known
results for 7 out of 125 instances with N ≤ 130 which are the most studied in
the literature. To disclose the di�erences between the improved solutions and
the previous best-known solutions, we give the Voronoi representations for
three representative instances in Fig. 4, since be the Voronoi representation
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of solutions is able to more clearly exhibit the features of the con�guration
compared to the direct representation in Fig. 3.

The Voronoi representation is a con�guration consisting of N points on
the sphere, constituting a partition of the spherical surface S2. Speci�cally,
the spherical surface S2 is partitioned to N disjoint Voronoi cells C1, C2, . . . ,
CN , where each cell Ci is a polygon on the sphere and corresponds to a given
point ri that is the spherical cap center. Each polygon is colored according to
the number of its edges to portray its con�guration characteristics. Formally,
a cell Ci on S

2 can be written as follows [33]:

Ci = {x ∈ S2 : |x− ri| = min1≤k≤N |x− rk|} (14)

The con�guration of solutions in the Voronoi representation is character-
ized by its topological defects, where a topological defect can be de�ned as a
building block of one or several adjacent non-hexagonal cells. Non-hexagonal
cells are inevitable for the con�gurations on a sphere according to Euler's for-
mula F − E + V = 2, where F is the number of faces, E is the number of
edges, and V is the number of vertices [33]. In the previous studies of the
well-known Thomson problem [46, 47], the topological defects are widely used
to characterize spherical con�gurations. In this study, the Voronoi represen-
tation is able to portray a fuller range of the structural di�erences between
solutions. The con�gurations of Fig. 4 show that the improved solutions
di�er signi�cantly from the previous best-known solutions for these three
representative instances.

3.2.2. Comparison with the popular basin-hopping algorithm

To further assess the proposed IDNS algorithm, we compared it with the
basin-hopping (BH) algorithm [45], which is a very popular Monte Carlo
search based global optimization algorithm in the literature. At each iter-
ation, the algorithm performs a perturbation move followed by a local op-
timization step to generate the new solution and then uses the Metropolis
rule to accept the new solution. Speci�cally, the Metropolis acceptance rule
is based on the objective change (i.e., ∆f = f(Xnew)− f(Xcur)) between the
current solution Xcur and the new solution Xnew and a temperature parame-
ter T , and the new solution is accepted to become the current solution with

a probability of min{1, e−
∆f
T }.

To conduct our comparative study, we �rst created a variant BH∗ of the
IDNS algorithm, where the DNS procedure is replaced by the basin-hopping
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algorithm while keeping other algorithmic components unchanged. In this
experiment, the BH∗ algorithm and the IDNS algorithm were respectively
performed 10 times for each of 20 selected hard instances. The computa-
tional results are reported in Table 6, including the best objective values
over 10 runs (dbest), the average objective values (davg) and the worst objec-
tive values (dworst). The last rows `#Better', `#Equal' and `#Worse' of table
respectively give the numbers of instances for which an algorithm obtained
a better, equal and worse result compared to its competitor.

Table 6 shows that the IDNS algorithm outperforms signi�cantly the
BH∗ algorithm on the tested instances. In terms of dbest, the IDNS algorithm
obtained a better and worst result than BH∗ respectively for 18 and 1 out of
the 20 instances. In terms of davg and dworst, the IDNS algorithm obtained
a better result respectively for 19 and 18 instances. To assess the statistical
signi�cant di�erences between the results of the compared algorithms, the
Wilcoxon signed-rank test was applied to the values of dbest, davg and dworst,
leading to p-values smaller than 0.05. This experiment indicates that the
IDNS algorithm is a very competitive global optimization algorithm on the
studied ECPOS problem.

Table 6: Comparison between the IDNS algorithm with the popular basin-hopping (BH)

algorithm [45] on 20 hard instances in the range of N ≤ 200. The dominating results are

indicated in bold in terms of dbest, davg and dworst.
N dbest davg dworst

BH∗ IDNS BH∗ IDNS BH∗ IDNS

127 18.690305208 18.690313825 18.690147913 18.690133280 18.690050921 18.690056810

146 17.465930886 17.466893736 17.451844964 17.454847184 17.441095528 17.440061598

148 17.341860444 17.343053927 17.338237872 17.342073075 17.327139650 17.340310702

151 17.174567161 17.174585202 17.158951212 17.174335564 17.151670952 17.173790743

153 17.071090417 17.072410149 17.054333877 17.070127387 17.049804683 17.050645569

156 16.921411941 16.921870518 16.900683613 16.916458988 16.893047572 16.896145681

157 16.841950790 16.844221939 16.838713157 16.843639388 16.835548149 16.841328510

159 16.738050945 16.746475459 16.736353245 16.742873946 16.732368911 16.736992394

160 16.693204542 16.693204542 16.684477146 16.688543911 16.681472974 16.683883308

166 16.397924415 16.397996521 16.396660396 16.397966946 16.391921250 16.397743224

168 16.290928822 16.293215766 16.288824441 16.289906102 16.285974926 16.285491526

170 16.197343742 16.236217883 16.194450377 16.236081108 16.191882989 16.235783104

174 16.019628627 16.022382474 16.016837296 16.021977313 16.013224168 16.020436609

176 15.925604169 15.930734011 15.922735014 15.928351550 15.920273618 15.925833252

183 15.637185316 15.637263188 15.624755792 15.635386225 15.617711750 15.632446644

185 15.547603918 15.549278801 15.541858678 15.549094271 15.538561262 15.548645292

189 15.378978288 15.379486067 15.375799277 15.379418380 15.367998919 15.379108477

195 15.133901510 15.148661157 15.132159787 15.137439936 15.131164954 15.134135175

196 15.100659852 15.099589969 15.096130061 15.097575664 15.093690564 15.096137624

200 14.955636253 14.996344132 14.951768478 14.973669204 14.945801468 14.947701872

#Better 1 18 1 19 2 18

#Equal 1 1 0 0 0 0

#Worse 18 1 19 1 18 2

p-value 4.63E-4 1.03E-4 2.19E-4
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3.2.3. Packing density and representative packing patterns

This subsection investigates the packing density and the representative
con�gurations of putatively optimal solutions. The packing density p of a
feasible packing con�guration of N equal circles with an angular diameter
of d (∈ [0, π]) on the unit sphere is de�ned as the ratio of the area of N
spherical caps to the whole area of the spherical surface and is calculated as
follows [43]:

p(N, d) =
N

2
(1− cos(d

2
)) (15)

The packing densities of the best con�gurations found in this study are
plotted in Fig. 5 as a function of N for the instances in the range of N ≤ 200.
We observe from Fig. 5 that the packing densities of these best con�gurations
vary markedly at the beginning and then trend gradually toward a stable
status as the number (N) of circles increases. On the other hand, we also
observe that there are some special sizes for which the packing density is
much higher or lower than its neighboring sizes, such as N = 7, 12, 13, 24,
48, 72, 98 and 180.
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Figure 5: The packing densities of putatively optimal solutions as a function of the size
N of instances.
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(a) N = 50 (b) N = 110 (c) N = 72 (d) N = 131 (e) N = 89

(f) N = 149 (g) N = 93 (h) N = 150 (i) N = 87 (j) N = 69

(k) N = 126 (l) N = 105 (m) N = 120 (n) N = 144 (o) N = 142

(p) N = 174 (q) N = 171 (r) N = 165 (s) N = 177 (t) N = 198

Figure 6: Voronoi representations of the best solutions for some representative instances.

To show the structural characteristics of the best solutions found, we
give in Fig. 6 the Voronoi representation for several representative instances,
where the structural characteristics are well exhibited by the topological de-
fects. According to the �gure, the structural characteristics of these best
con�gurations can be summarized as follows. First, these best solutions
exhibit various categories of packing patterns which di�er signi�cantly for
N = 50, 72, 87, 89, 120, 126, 142 and 171. Second, some best solutions share
almost the same packing pattern and the only di�erence between their con-
�gurations lies in the distance between topological defects. This phenomenon
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occurs noticeably for N = 50 and 110, 72 and 131, and 93 and 150. Third,
some con�gurations share the same topological defects, as exempli�ed by the
cases for N = 89, 93, 126 and 149. Fourth, some con�gurations exhibit very
similar but di�erent packing patterns, such as N = 105 and 126, and so on.

3.3. Computational results on large-scale instances

To assess the scalability of the algorithm, we tested the IDNS algorithm
on 10 selected large-scale instances with N ranging from 216 to 1080 com-
monly studied in previous investigations [12, 14, 38, 42]. The computational
results are summarized in Table 7, where most of the best-known results
were obtained by the construction methods based on prior knowledge of the
problem and the symbols have the same meaning as in Tables 2�4.

Table 7: Computational results and comparison on 10 large-scale instances with N > 200.
The improved results are indicated in bold compared with the best-known results in the
literature in terms of dbest, davg and dworst, and the worse results are indicated by italic.

N BKR (deg) dbest(deg) davg(deg) dworst(deg) σ time(s)
216 14.21184 14.39684 14.38763 14.38318 4.70E-03 46560
270 12.93699 12.93699 12.91552 12.89962 1.75E-02 47296
282 12.44139 12.62615 12.62492 12.62147 1.50E-03 61031
360 11.20247 11.16916 11.16604 11.16304 1.76E-03 86359
372 10.92372 10.99022 10.98682 10.98404 1.85E-03 66034
432 9.98344 10.19665 10.19331 10.19099 1.67E-03 88961
480 9.69375 9.67197 9.67059 9.66887 9.53E-04 107098
492 9.46111 9.55591 9.55240 9.55028 1.97E-03 93310
750 7.74674 7.75782 7.75632 7.75531 7.09E-04 165102
1080 6.44607 6.47834 6.47737 6.47618 6.48E-04 232943
#Improved 7 7 7
#Equal 1 0 0
#Worse 2 3 3

Table 7 shows that the IDNS algorithm is very e�ective compared to
other algorithms in the literature at obtaining the best-known results for
these large-scale instances, improving the best-known result for 7 instances
and matching the best-known result for one instance, while missing the best-
known results only for two instances. The average result davg and the worst
result dworst over 10 independent runs of the IDNS algorithm are both su-
perior to the best-known results for 7 instances. Such an outcome discloses
that the multi-symmetric packing con�gurations obtained by the construc-
tion methods are not optimal even if they have a beautiful graphical repre-
sentation and are widely conjectured to be the optimal solutions [14].
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Nevertheless, the fact that the IDNS algorithm failed to �nd the best-
known results for two instances indicates that the best-performing construc-
tion approaches still can be competitive for some special sizes compared to
the IDNS algorithm. In terms of the computational time, the results of the
IDNS algorithm are relatively long for these instances, which means that they
are much harder to solve compared to the smaller instances with N ≤ 200.

(a) Best con�guration found for
N = 480

(b) Voronoi representation of the
best solution found for N = 480

(c) Best con�guration found for
N = 1080

(d) Voronoi representation of the
best solution found for N = 1080

Figure 7: Best con�gurations found in this work and their Voronoi representations for two
selected large-scale instances.

To provide an intuitive picture of the best con�gurations of the large-scale
instances, we give in Fig. 7 the packing con�gurations and the corresponding
Voronoi representations of the best solutions found for two representative
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instances with N = 480 and 1080. The con�gurations in Fig. 7 show that
the surface S2 of the unit sphere contains a number of vacancies that were
not covered by circles, leading to several regular topological defects in the
Voronoi representations.

4. Analysis of key algorithmic components

We now turn our attention to analyzing two important components of the
IDNS algorithm: the setting of key parameters and the multiple-stage local
optimization method.

4.1. Sensitivity of key parameters

The DNS procedure of the proposed IDNS algorithm employs several
parameters. This subsection analyzes their sensitivity and undertakes to
�nd the appropriate settings for them. Due to a high correlation between
parameters, we focus on the combination of three parametersMmax, ηmax, ηs,
whereMmax represents the maximum neighborhood size , ηmax represents the
maximum perturbation strength, and ηs represents the incremental change
of perturbation strength per iteration.

To check the sensitivity of these three parameters, we carried out an
additional experiment based on 20 representative instances in the range of
N ≤ 200, where 9 parameter combinations shown in Table 8 were tested.
For each parameter combination, the IDNS algorithm was run 5 times on
each instance, and the computational results are summarized in Table 8,
where the �rst column gives the sizes (N) of instances, the second row gives
the parameter settings, columns 2-10 give the average objective values davg
(in degree), and the last row shows the number of instances for which the
associated parameter combination produced the best result among all the
tested parameter combinations.

Table 8 shows that the performance of the IDNS algorithm is sensitive
to the setting of these three parameters. The parameter combination of
(Mmax,ηmax,ηs)= (6, 0.6, 0.01) produced the best result in terms of the aver-
age objective value for 10 out of the 20 instances, and other 8 combinations
respectively produced the best result for 0, 3, 1, 0, 2, 0 , 4, 0 instances,
respectively. This outcome indicates (6, 0.6, 0.01) is the best combination for
the parameters (Mmax, ηmax,ηs) among the combinations tested, and thus
was chosen as the default setting for the IDNS algorithm.
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Finally, our experiments indicated that the parameters Mmin, ηmin of the
DNS method also signi�cantly impact the performance of the IDNS algo-
rithm, while this is not the case for the parameter βmax. To sum, the settings
of parameters have a great in�uence on the performance of the IDNS algo-
rithm. Fine-tuning these parameters could lead to new results still better
than those reported in this paper.

4.2. Importance of multiple-stage local optimization

The multiple-stage local optimization method is a main component of the
proposed IDNS algorithm. To check its e�ciency and e�ectiveness, we carried
out a comparative experiment based on all the instances in the range of 6 ≤
N ≤ 200. In this experiment, for each instance, 1000 initial solutions were
�rst randomly generated, and then from each initial solution the multiple-
stage local optimization method and the standard LBFGS method (i.e., one-
stage local optimization method) were run to minimize the objective function
ED(X) de�ned in Eq. (10), where the value of D was set to the current best-
known result. The average running time in seconds is plotted in Fig. 8 as a
function of N for the two local optimization methods. Thus this is a time-to-
target analysis, which illustrates the time needed for both methods to reach
the same local minimum solution from a given starting point.

Fig. 8 shows that the multiple-stage local optimization method signi�-
cantly outperforms the popular one-stage LBFGS method in terms of compu-
tational speed. The running time increases almost linearly for the multiple-
stage local optimization method as the size N of instance increases, which
is a desired feature for the local optimization. However, the running time of
the one-stage LBFGS method increases almost quadratically with respect to
N . Moreover, the running time of the one-stage local optimization method
is much longer than that of the multiple-stage local optimization method
especially for the large instances. This experiment clearly shows that the use
of the multiple-stage local optimization method is able to signi�cantly speed
up the search process of the IDNS algorithm.
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Figure 8: Comparison between the multiple-stage local optimization method and one-stage
local optimization method.

To further check whether the multiple-stage local optimization strategy
can be applied to other geometry optimization problems, we applied the
method to the well-known Lennard-Jones cluster problem and conducted
an experiment on 4 representative instances (LJ200, LJ400, LJ600 and LJ800),
where the multiple-stage local optimization method and the standard LBFGS
method were respectively used in one run of the DNS algorithm for each
tested cluster. The computational results show that the multiple-stage local
optimization is faster than the standard LBFGS method on the Lennard-
Jones clusters. Speci�cally, our multiple-stage local optimization method for
104 performed local optimizations requires on average 0.015, 0.066, 0.15 and
0.235 seconds to converge to the local minimum solutions respectively for
LJ200, LJ400, LJ600 and LJ800 on our computer, while the standard LBFGS
method requires 0.025, 0.115, 0.284, 0.480 seconds to reach the same results.

5. Generality of the DNS method

As one main component of the proposed IDNS algorithm, the dynamical
neighborhood search (DNS) method described in Algorithm 2 is a general-
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purpose optimization algorithm and can be applied to other optimization
problems. To show its generality and e�ectiveness, we carried out an addi-
tional experiment by applying DNS to another well-known global optimiza-
tion problem, i.e., the structural optimization of Lennard-Jones (LJ) clusters.
In this experiment, the DNS method was performed in a multi-start fashion
with the following parameter setting: Mmin = 5, Mmax = 10, ηmin = 0.8,
ηmax = 0.9, ηs = 0.01 and βmax = 300.

To assess the performance of the DNS method, we used the very popular
basin-hopping (BH) algorithm [45] as the reference algorithm. Both the tem-
perature parameter T and the perturbation strength η of the BH algorithm
were set to 0.8. To make a fair comparison, the two compared algorithms em-
ployed the same stopping condition, which is a maximum number MaxStep
of local optimizations �xed to 104.

The experimental results of these two algorithms are summarized in Ta-
ble 9, where the �rst two columns give the sizes of the instances and the
best-known results (BKR) reported in the literature. The results of the two
algorithms are shown in the remaining columns. Columns 3�4 give the best
objective values (fbest) obtained over 100 independent runs for the two algo-
rithms, columns 5-6 present the average objective values (favg), and columns
7-8 show the success rates (SR) of hitting the best-known results for the
two algorithm. The last row indicates the number of instances for which
the corresponding algorithm yielded the best result between the compared
algorithms in terms of fbest, favg and SR.

Table 9 discloses that the DNS algorithm performed better than the popu-
lar BH algorithm for the optimization of Lennard-Jones clusters. Speci�cally,
in terms of fbest, both algorithms found the best-known solutions for the 10
tested instances, including the hardest instances LJ75, LJ98 and LJ102 in the
range of N ≤ 110. For the average objective values, the DNS method ob-
tained the best result for 9 instances, while the BH algorithm reached the
best result only for 3 instances. In terms of the success rate of hitting the
best-known solution, DNS obtained the best results for 9 instances against 5
instances for BH. For an intuitive interpretation of the solutions of Lennard-
Jones clusters, we provide in Fig. 9 the best con�gurations found by our
DNS method for two hard instances LJ98 and LJ102. This experiment shows
the competitiveness of the DNS method for �nding Lennard-Jones clusters
compared with the popular BH algorithm. This experiment provides an ex-
ample of applying our DNS algorithm as a general-purpose method to solve
other challenging global optimization problems with an di�erentiable objec-
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tive function. It would be very interesting to check its e�ectiveness on other
global optimization problems in the future.

In addition, it should be noted that there exist a number of successful
speci�c optimization algorithms for the Lennard-Jones clusters in the lit-
erature, such as the monotonic global optimization based on a two-phase
local search method [23] and the funnel hopping algorithm [6]. These algo-
rithms outperform our DNS method especially on several hardest instances
such as LJ75, LJ98 and LJ102. However, these algorithms employ more or
less problem-speci�c knowledge of Lennard-Jones (LJ) clusters. Compared
to those specialized methods, our DNS method has the advantage of wider
applications due to its generality.

Table 9: Comparative results of the DNS method with the popular basin-hopping (BH)

algorithm [45] on 10 representative Lennard-Jones clusters. The best results among the

compared algorithms are indicated in bold in terms of fbest, favg and the success rate

(SR).
N BKR fbest favg SR

BH DNS BH DNS BH DNS

38 -173.9284 -173.9284 -173.9284 -173.8135 -173.9014 83/100 96/100

55 -279.2485 -279.2485 -279.2485 -279.2485 -279.2485 100/100 100/100

69 -359.8826 -359.8826 -359.8826 -359.8755 -359.8799 84/100 96/100

70 -366.8923 -366.8923 -366.8923 -366.8923 -366.8923 100/100 100/100

75 -397.4923 -397.4923 -397.4923 -396.2922 -396.2851 1/100 1/100

78 -414.7944 -414.7944 -414.7944 -414.7510 -414.7837 62/100 90/100

90 -492.4339 -492.4339 -492.4339 -491.6150 -492.3017 73/100 93/100

98 -543.6654 -543.6654 -543.6654 -542.4750 -543.4987 1/100 1/100

100 -557.0398 -557.0398 -557.0398 -555.3898 -556.7677 57/100 85/100

102 -569.3637 -569.3637 -569.3637 -568.3133 -568.8893 16/100 5/100

#Best 10 10 3 9 5 9
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(a) LJ98 (b) LJ102

Figure 9: Best solutions found by our DNS method for two hard instances.

6. Conclusions and future work

We propose a novel heuristic algorithm called the iterated dynamic neigh-
borhood search (IDNS) algorithm for the well-known equal circle packing
problem on a sphere (ECPOS), which has a number of signi�cant applica-
tions in various domains. the ECPOS problem consists of packing N equal
non-overlapping circles on a sphere such that the radius of circles is maxi-
mized and can be modeled as a non-convex constrained optimization problem.
The proposed IDNS method relies on a spherical coordinate transformation
of points in three-dimensional space that transforms the original constrained
optimization problem into a series of unconstrained optimization subprob-
lems, accompanied by a dynamic neighborhood search method to solve the
unconstrained optimization subproblems, and a minimum distance adjust-
ment method to adjust the minimum distance between N centers of spherical
caps formed by circles.

The performance of the IDNS algorithm was assessed by conducting ex-
tensive experiments on 205 widely used instances with up to N = 1080. The
experimental results showed that the IDNS algorithm was very e�ective and
e�cient compared with other methods for obtaining the best-known results
in the literature. The algorithm improved the best-known results for 42 in-
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stances and missed the best-known results for only 5 instances, while match-
ing the best-known result for the remaining ones. On the other hand, the
IDNS algorithm obtained a result inferior to the best-known result in the lit-
erature on several special instances for which construction methods based on
prior knowledge of the problem hold the current best-known records. These
outcomes indicate that our IDNS algorithm and the existing construction
methods are complementary for solving the challenging Tammes problem.

The basic idea of the IDNS algorithm, i.e., transforming a constrained op-
timization problem de�ned on a curved surface into a series of unconstrained
optimization subproblems and then solving them sequentially by the dynamic
neighborhood search (DNS) method, is very general, and is applicable to a
number of other constrained optimization problems such as the minimum en-
ergy con�guration problems on the unit sphere. Moreover, the DNS method
underlying the IDNS algorithm is also a general-purpose heuristic approach
and can be applied to any unconstrained optimization problem with a �rst-
order derivative such as sphere packing problems. In the future, we intend to
further improve the DNS method by employing more e�ective perturbation
strategies and local optimization methods. In addition, the multiple-stage
local optimization method proposed in this study is very e�cient to speed up
the search process and can be applied to other related geometry optimization
problems as well.
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