Neighborhood decomposition-driven variable
neighborhood search for capacitated clustering

Xiangjing Lai?, Jin-Kao Hao™*, Zhang-Hua Fu %9, Dong Yue®

& Institute of Advanced Technology, Nanjing University of Posts and
Telecommunications, Nanjing 210023, China

PLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France

CInstitute of Robotics and Intelligent Manufacturing, The Chinese University of
Hong Kong, Shenzhen 518172, China

dShenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen
518172, China

Computers € Operations Research, May 2021
https://doi.org/10.1016/j.cor.2021.105362

Abstract

The capacitated clustering problem (CCP) is a general model relevant for a vari-
ety of important applications in areas such as parallel computing and very large
scale integration design. However, the problem is known to be NP-hard, and thus
computationally challenging. In this work, we present an original and highly effec-
tive variable neighborhood search algorithm for the problem, which is characterized
by its neighborhood decomposition technique and a probability-based diversifica-
tion strategy. The proposed algorithm is assessed via extensive experiments on 110
benchmark instances commonly used in the literature. Computational results show
that the algorithm significantly outperforms the existing state-of-the-art algorithms
in the literature. This work advances the state-of-the-art of solving the capacitated
clustering problem and can be useful for the related practical applications. The key
feature of the algorithm, i.e., combining the neighborhood decomposition-driven lo-
cal search with the perturbation, is of general interest and can help to design effective
heuristic algorithms for other important clustering problems.

Keywords: Capacitated clustering, graph partitioning, heuristic search, neighbor-
hood decomposition, combinatorial optimization.

* Corresponding author.

Email addresses: laixiangjing@gmail.com (Xiangjing Lai),
jin-kao.hao@univ-angers.fr (Jin-Kao Hao), fuzhanghua@cuhk.edu.cn
(Zhang-Hua Fu), medongy@vip.163.com (Dong Yue).

Preprint submitted to Elsevier 15 May 2021

1 Introduction

Clustering problems represent a class of relevant models with a variety of prac-
tical applications. The goal of a clustering problem is to group a given set of
items into a number of fixed or variable K (K > 2) clusters to optimize an
objective function under some possible imperative constraints. Examples of
clustering problems include semi-supervised graph clustering [16], constrained
graph clustering in biological networks [40], graph partitioning [1,19,26,43],
and various p-center and p-median problems [5,7,8,15,27,36]. In general, clus-
tering problems are NP-hard and thus computationally challenging.

The capacitated clustering problem (CCP) studied in this work is a typical
clustering problem with a number of applications. Representative applications
that can be conveniently formulated by CCP concern facility locations [9],
parallel computing [19], very large scale integration design [41], and creation
of peer review groups [6].

CCP generalizes three NP-hard problems: the graph partitioning problem
(CPP) [1,11,13,30], the handover minimization problem [28,32], and the max-
imally diverse grouping problem (MDGP) [3,12,23,33]. Consequently, solving
CCP is a computationally difficult task and represents a formidable challenge
from the perspective of designing effective search algorithms.

The CCP problem can be described as follows. Given a weighted complete
graph G = (V, E,c,w) and a positive integer K, where V = {vy,v9,..., 05}
is the set of NV vertices, E represents the set of N(N —1)/2 edges, ¢ = {¢;; >
0:{vi,v;} € E} is the set of edge weights, and w = {w; > 0 : v; € V'} is the
set of vertex weights, the capacitated clustering problem (CCP)[9] involves
partitioning the vertex set V into K disjoint clusters C4, Cy, ..., Ck such that
the sum of vertex weights (i.e., ,cc, w(v)) of each cluster Cy (9 = 1,2,..., K)
lies in a given interval [L, U], while maximizing the sum of the edge weights
in the same clusters, where L and U are called the lower and upper bounds of
the capacity of each cluster, respectively. An illustrative example for CCP is
given in Fig. 1.

Formally, CCP can be stated as follows [9,28]:

K N-1 N
(CCP) Maximize f= Y. > i XigXjg (1)

g=1 i=1 j=i+1

K
Subject to Y X, =1,4i=1,2,...,N (2)
g=1
N
LSZwZngSU7g:1’277K (3)
=1

Fig. 1. An illustrative example for CCP. Given a weighted complete graph
G = (V,E,c,w) with |V] = 14, w; = 1.0 for all vertices v; in V, the number of
clusters K = 4, and lower and upper bounds [L, U] = [3, 4], the corresponding CCP
consists of partitioning the set V' of vertices into 4 clusters C1, Csy, C3 and Cy, such
that L < 3~ oo w(v) < U for Vg € {1,2,3,4}, while the sum of the edge (indicated

in red) weights in the same clusters is maximized.
X, €{0,1},i=1,2,...,N;g=1,2,..., K (4)

where X, is a binary variable that takes the value of 1 if the vertex v; is
located in cluster C, and 0 otherwise. Thus, the objective function f, which
is to be maximized, adds up the edge weights ¢;; for edges whose endpoints i
and j belong to the same cluster C; (X;, = X;;, = 1). The set of constraints
(2) guarantees that each vertex belongs to exactly one cluster, and the set of
constraints (3) forces the sum of vertex weights of each cluster lies in [L, U].

Due to the importance of CCP, various search methods have been proposed
in the literature. As the review in Section 2 shows, most existing studies fo-
cus on heuristic algorithms which aim to find satisfactory solutions as fast
as possible, without optimality guarantee of the attained solutions. In par-
ticular, the most effective algorithms are based on neighborhood search (also
called stochastic local search [20]) whose performance critically depends on
the adopted neighborhoods as well as the way the neighborhoods are exam-
ined. Indeed, given that these algorithms need to evaluate a set of candidate
solutions at each iteration, the search becomes very time-consuming for solv-
ing large problems. Thus, research on the design of new algorithms as well as
efficient neighborhood examination methods becomes highly relevant.

In this work, we aim to advance the state-of-the-art of CCP in terms of prac-
tical solving of large problem instances. Inspired by a related work on the
maximally diverse grouping problem [24], some early studies about the neigh-

borhood decomposition strategies [10,21,38] and the technique of don’t look
bits |2,39], we propose a new heuristic algorithm called the neighborhood
decomposition-driven variable neighborhood search algorithm for CCP. Ex-
tensive experimental results show that the proposed algorithm outperforms
significantly the state-of-the-art CCP algorithms on the 110 benchmark in-
stances widely used in the literature.

The remaining parts of paper are organized as follows. In Section 2, we review
representative recent studies on CCP. In Section 3, we describe the proposed
algorithm. In Section 4, experimental results and comparisons are reported to
assess the algorithm. Section 5 shows an analysis of key algorithmic compo-
nents. Last section summarizes the main findings of this work and provides
research perspectives.

2 Literature review

Since the introduction of CCP, a large number of studies have been devoted to
the problem. Useful information about the studies on CCP prior to 2011 can
be found, for instance, in [9,28]. In this section, we focus on the most recent
developments on solving methods for CCP.

Among the existing algorithms, only one provides exact solutions [25], based
on linear and quadratic models solved by commercial optimizers (CPLEX
and Gurobi). However, the test instances studied are quite small (N < 50),
compared to the instances tested in this study (240 < N < 2000). To handle
large instances, heuristic algorithms are typically used, which can be roughly
divided into four categories.

The first category is based on the greedy randomized adaptive search pro-
cedure (GRASP) metaheuristic [37|, which iterates a stochastic greedy con-
struction procedure and a subsequent neighborhood search procedure. In [9],
Deng and Bard proposed the first reactive GRASP procedure for CCP. In
[28,29], Martinez-Gavara et al. introduced a simplified version of Deng and
Bard’s GRASP method and several variants, where a special restricted candi-
date list strategy was used by the greedy construction procedure and different
neighborhoods (e.g., the insertion neighborhood, the swap neighborhood, or a
new 2-1 exchange neighborhood) were employed in the neighborhood search
procedure.

The second category is based on the tabu search (TS) metaheuristic [14].
In [28], Martinez-Gavara et al. proposed a TS algorithm based on the 2-1
exchange neighborhood, and a hybrid local search algorithm integrating a
simplified GRASP procedure and the TS algorithm (GRASP+TS). They also

presented an adapted version of the TS algorithm with strategic oscillation
initially designed for the related MDGP, where the insertion and swap neigh-
borhoods are adopted as the basic neighborhood structures. In [42], Zhou et al.
introduced a penalty-based TS algorithm (FITS) that explores both feasible
and infeasible regions.

The third category relies on the variable neighborhood search (VNS) meta-
heuristic [18,31]. In [22], based on the insertion neighborhood, the swap neigh-
borhood, and the 2-1 exchange neighborhood, Lai and Hao introduced an
iterated variable neighborhood search (IVNS) algorithm by integrating organ-
ically an extended variable neighborhood descent method and a randomized
shake procedure. In [4], Brimberg et al. proposed a general variable neighbor-
hood search (GVNS) algorithm and a skewed general variable neighborhood
search (SGVNS) algorithm based on the same three neighborhoods.

The fourth category relies on the hybrid population-based evolutionary frame-
work which combines a local search procedure and a crossover operator. In [9],
Deng and Bard mixed a GRASP procedure, a path relinking procedure and
a variable neighborhood descent method. In [42], in addition to the FITS al-
gorithm, Zhou et al. proposed a memetic algorithm by combining the FITS
algorithm serving as a local search procedure and a clustering-based crossover
operator.

According to the computational results reported in the above studies, we iden-
tify five state-of-the-art algorithms: GRASP+TS [28], FITS |42], IVNS [22],
GVNS [4], and SGVNS [4]. These algorithms will be used as our reference
algorithms for the computational studies of Section 4.

Our literature review indicates that the best performing CCP algorithms
are all neighborhood search algorithms which explore iteratively one or more
neighborhoods (e.g., insertion neighborhood, swap neighborhood, and 2-1 ex-
change neighborhood). Specifically, for a given neighborhood, such an algo-
rithm needs, at each iteration, to examine all or some neighbor solutions to
identify the solution of interest (e.g., the best solution among all neighbor so-
lutions or an improving solution better than the current solution). The search
becomes very time-consuming when the neighborhood contains many neigh-
bor solutions (this is typically the case of the swap neighborhood and the 2-1
exchange neighborhood). Thus, the issue of a fast examination of the consid-
ered neighborhoods becomes critical and directly impacts the performance of
the search algorithm.

In this work, to speed up neighborhood examination, we design a neighborhood
decomposition strategy for the CCP. This strategy divides a given neighbor-
hood into a number of disjoint subsets (called neighborhood blocks) of neigh-
bor solutions and identifies each promising neighborhood block with a 0-1

state variable. This decomposition accelerates neighborhood examination by
checking only the promising neighborhood blocks. This is in sharp contrast to
existing algorithms in the literature that do not make a distinction between
promising neighbor solutions and non-promising neighbor solutions and thus
waste computation time by repetitively re-examining non-promising neighbor
solutions.

3 Neighborhood decomposition-driven variable neighborhood search

The proposed neighborhood decomposition-driven variable neighborhood search
(NDVNS) algorithm is based on the general variable neighborhood search
metaheuristic [18,31]. The primary innovative ingredients of the algorithm
include its neighborhood decomposition strategy designed for CCP to accel-
erate the search process and a probabilistic perturbation strategy to control
the tradeoff between search intensification and diversification.

The current neighborhood decomposition strategy dynamically partitions a
neighborhood into a number of disjoint neighborhood blocks, and enables the
search algorithm to only examine the promising neighborhood blocks which
are identified by a 0-1 state value. By ignoring the other blocks, the algorithm
significantly increases its computational efficiency. The current neighborhood
decomposition strategy is related to early candidate list based neighborhood
decomposition strategies and the don’t look bits technique. The candidate list
approach was used to decompose a given neighborhood into coordinated sub-
sets so that the search algorithm only focuses on some subsets with desirable
features [10,21,38]. The don’t look bits technique was initially developed to
speed up local search procedures for the traveling salesman problem [2] and
subsequently adapted to the quadratic assignment problem (QAP) [39]. In
particular, taking QAP as an example, to avoid scanning a full neighborhood,
the don’t look bits technique employs a dynamically updated 0-1 vector to dis-
tinguish the promising items from the unpromising items. Then the search ex-
amines only the promising items, which significantly speeds up the algorithm.
On the other hand, unlike these early approaches, the current decomposition
strategy does not employ any candidate list and uses a simple 0-1 state ma-
trix to perfectly identify the visited subsets that do not contain an improving
solution.

Basically, for a given problem instance, i.e., a double-weighted complete graph
G = (V, E, c,w), a positive integer K, and the lower bound L and upper bound
U of clusters on the capacity, the proposed algorithm explores the search space
) composed of all feasible K -partitions of the vertex set V' satisfying the capac-
ity constraints of clusters, i.e., Q = {{C},Cs,...,Cx}: V =UZKC;, C:NC; =
0 Vi # j,L <|Cy| < U,Vg}, where |Cy| = X ec, w(v).

1

2
3

N o o R

0]

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

The main framework and components of the NDVNS algorithm are described
in the following subsections.

3.1 Main framework of the NDVNS Algorithm

Algorithm 1: Neighborhood decomposition-driven variable neighborhood

search (NDVNS) for capacitated clustering

Input: A double-weighted complete graph G = (V, E, ¢, w), an integer
K, time limit t,,,,, and parameters «, Q, Knin, Kmaz

Output: The best feasible K-partition of G found (s*)

s < Initial Solution(G, K)

s <— NDVNDj;(s) /* Local search, Algorithm 2 */

¥4 s

k<« kmin

while time() < tpq. do

s < Shake(s,k) /x Perturb the solution s, Section 3.3 */

5"« NDVNDy(s') /* Local search, Algorithm 2 */
if (4 +a-d(s",5) > 1) A (55 +a-d(s",5") > 1) then
s 5
if f(s") > f(s*) then
s* 5"
else
r < rand(0, 1)
if r <) then
/* () is a parameter */

else

| k< k+1
end
end
else

| k< k+1
end
if £ > k0, then
end
end
return s*

The NDVNS algorithm (see the flowchart in Fig. 2) combines an initialization
procedure aiming at generating a feasible solution, two local search procedures
(i.e., NDVND,; and NDVND3) and a shake procedure aiming at diversifying
the search process.

Algorithm 1 shows the main framework of the NDVNS algorithm, where s and

Generate initial solution and initialize
the perturbation strength &

Perform local optimization using
NDVND;

i

Perform perturbation procedure with
the current perturbation strength &

e v

Perform local optimization using
NDVND,

v

Adjust the current perturbation
strength & in a probabilistic way

<>

No

4

G

Fig. 2. The main flowchart of the proposed NDVNS algorithm.

s* denote respectively the current solution and the best solution found so far,
d(-,-) is a distance function defined by the partition distance metric [3,17,35],
and k is the current perturbation strength of the perturbation strategy (see
Section 3.3).

The algorithm starts from an initial solution generated by the two-stage ini-
tialization procedure of [22] (line 1 of Algorithm 1), and then performs a local
search procedure (i.e., NDVND3) to locally improve the initial solution (line
2). After that, the perturbation strength k of the shake procedure Shake(-,-)
is initially set to the minimum value k,,;, and the search process enters a
“while” loop in which several operations are iteratively performed to improve
the current solution until the time limit (¢,,4.) is reached (lines 5-28).

At each “while” loop, the current solution s is first perturbed by the Shake(-,-)
procedure and is then improved by a fast local search procedure (i.e., NDVND,)
(lines 6 and 7). Then, the resulting solution s" is conditionally accepted ac-
cording to its quality and distances to s and s* (lines 8-9), similar to the
SGVNS algorithm of [4]. Moreover, the value of k is set to k., and the
recorded best solution is updated if an improved solution is found, i.e., s* < s
and k£ < k,,in, and the value of k is increased as k < k + 1, otherwise. In
addition, the algorithm employs a probability @) (a parameter) to control the

perturbation strength £ to maintain a suitable tradeoff of search intensifica-
tion and diversification (lines 15-20). That is, the value of k switches to kpin
with probability @) if the recorded best solution s* has not been improved
during the current iteration. Finally, the value of k is reset to k,;, as long as
k reaches the allowed maximum value k., (lines 25-27). We describe below
the components of the algorithm.

3.2 Local Optimization Methods of the NDVNS Algorithm

This subsection presents the neighborhood decomposition-driven variable neigh-
borhood descent (NDVND) methods and the local optimization procedure.

3.2.1 General procedure of variable neighborhood descent method

Variable neighborhood descent (VND) is a local search approach that ex-
plores local optimal solutions with several ordered neighborhoods Ny (6 =
1,2,...,0maz). Specifically, the VND method starts with the first neighbor-
hood Ny (6 = 1), and then switches to the next neighborhood Nyy; when
a local optimum with respect to the current neighborhood Ny is attained.
Moreover, VND switches immediately to the first neighborhood N; from the
current neighborhood Ny (6 = 2,3,...,0,,4,) as soon as an improving solu-
tion is found. Finally, VND stops when the search process reaches the last
neighborhood Ny and no improving solution can be found in Ny

max max *

3.2.2 Newghborhoods and neighborhood decomposition

Like previous studies [4,22,28|, our NDVNS algorithm employs three comple-
mentary neighborhoods, i.e., the insertion neighborhood Ny, the swap neigh-
borhood N, and the 2-1 exchange neighborhood Nj.

The insertion neighborhood N is generated by the OneM ove operator. Given
asolution s = {C4, (s, ..., Ck}, the OneM ove operator (denoted by < v, C;, C; >)
transfers a node v from its current cluster C; to another cluster C; (1 < j #
i < K), such that the resulting solution denoted by s & < v, C;, C; > is still
feasible. As such, the neighborhood Nj(s) is composed of all possible feasible
solutions which can be obtained by applying the OneM ove operator to s, i.e.,

Nl(S) :{SEB<U,C¢,C]' > IUGC@,|CZ‘|—M<’U) > L, (5)
G5l +w(v) < Ui #j}

Clearly, the size of N;(s) is bounded by O(N x K).

Meanwhile, according to the formulation of CCP (see the illustrative example
in Fig. 1) and the definition of Ni(s), it is easy to observe that the neighbor-
hood Nj(s) can be partitioned into K x (K — 1) disjoint neighborhood blocks
Bili][j](s) (1 <1, < K, i # j), i.e., Ni(s) = Ur<izj<x Bili][j](s), where the
neighborhood block B [i][j](s) is defined as:

Bﬂl“j](s) = {SEB < U,C@Cj >0 € OZ', |OI| — w(v) > L, (6)
|G +w(v) <U

Moreover, these neighborhood blocks can be characterized by a K x K bi-
nary asymmetric state matrix M; (see example in Fig. 3 (a)), where entry
Mi[i][j] (¢ # j) takes O if the corresponding block Bi[i][j](s) has been pre-
viously checked by the algorithm and does not contain any improving solu-
tion, and takes 1 otherwise. The diagonal entries of M; always take 0. Thus,
the state matrix distinguishes the promising neighborhood blocks (marked
with M;[i][j] = 1) from non-promising neighborhood blocks (marked with
M, [i][j] = 0). With an appropriate update of the state matrix M; as we detail
in Section 3.2.4, we can focus on the blocks By [i][j](s) (i # j) with M;[i][j] =1
and speed up the search without missing improving solutions (i.e., guarantee-
ing the correctness of the neighborhood search process).

Since it is not necessary to examine the neighborhood blocks By [i][j](s) with
Mi][j] = 0 (i # j), the complexity of examining neighborhood N;(s) can be
reduced from O(K x (K —1)x P) to O(mx P), where m is the number of blocks
Bi[i][5)(s) with Mi[i][j] = 1 (i # j) and P = Maxys,)=, {| B1[d][4](s)[}-
As such, the complexity reduction (i.e., search speed-up) becomes significant
when m becomes much less than the total number of neighborhood blocks
(i.e., m << K x (K —1)). We observe that this remains true especially when
the number K of clusters is large. The same justification holds for the two
other neighborhoods N, and Nj.

The swap neighborhood Nj is induced by the Swap(-,-) operator. Given
two vertices v and wu located in different clusters of the current solution
s ={C1,Cy, ..., Ck}, Swap(v,u) generates a neighbor solution of s by swap-
ping the clusters of v and wu if the resulting solution is feasible. Thus, the swap
neighborhood Nj(s) is given by:

Ny(s) = {s @ Swap(v,u) :v € Cj,u € C;, L < |Ci| +w(u) — w(v),

|C;] +w(v) —w(u) <U,i#j} (7)

whose size is bounded by O(N?).

The neighborhood N»(s) can be partitioned into K x (K —1)/2 disjoint blocks
Bsli][7](s) (1 <i < j < K) since Byfi][7](s) (i # j) is the same as Bs[j][i](s),

10

i.e., No(s) = Ui<icj<x B2li][j](s), where each Bs[i|[j](s) is defined as:

Bs[i][j](s) = {s @ Swap(v,u) : v € Cj,u € Cj, L < |C;| + w(u) — w(v), ®)
|C5| +w(v) —w(u) <U}

Thus, we can characterize the neighborhood Ny(s) with a K x K binary sym-
metric state matrix M, (see example in Fig.3 (b)), where the entry Ms[i][j]
(i < j) corresponds to the neighborhood block Bsl[i][j](s) and takes 0 if
By[i][7](s) has been previously examined and does not contain any improv-
ing solution, and takes 1 otherwise.

The neighborhood Nj is induced by the 2-1 exchange operator Exchange(-, -, -).
Given three vertices v, u, and z in the current solution s = {Cy,Cs, ..., Ck},
where v and u are located in the same cluster C; and z is located in another
cluster C}, the Exchange(-,-,-) operator transfers the vertices v and u from
C; to C; and simultaneously transfers vertex z from C; to Cj, such that the
resulting solution is still feasible. As such, the neighborhood Nj3(s) can be
written as:

N5(s) = {s ® Exchange(v,u, z) : v,u € C;,z € C;, L <|Ci| —w(u)—
w(v) +w(z), |C] +wv) +w(u) —w(z) < U,i# 5}

(9)

The size of N3(s) is bounded by O(N3).

Similar to the neighborhood Nj(s), the neighborhood N3(s) can be parti-
tioned into K x (K — 1) disjoint blocks Bsl[i][j](s) (i # 7), i.e., N3(s) =
Ur<izj<i Bs[i][j](s), where each Bs|i][j](s) is defined as:

Bsli|[7](s) = {s & Exchange(v,u,z) : v,u € Cy;,z € C;, L < |C]

Cwu) — w(v) + w(z), (O] + w(w) + wlw) —w(z) <vy L0

The neighborhood Nj is also associated with a K x K binary asymmetric
state matrix Mz (see Fig.3 (c)), the entry Mj[i][j] corresponds to the block
Bjs[i][7](s) and its value has the same meaning as in M [¢][j] and Ms[d][j].

The above neighborhood decomposition technique is based on the following
key observation. For many clustering or grouping problems including CCP,
the objective function is given by the sum of subunit objectives defined on K
individual clusters. This particular feature makes most neighborhood blocks
mutually independent in terms of the move value As(s) = f(s@® Move) — f(s)
(i.e., the change of objective function value between the current solution s
and a neighbor solution s ® Move generated by transforming s with the Move
operator). As a result, when a given neighborhood block is exploited, the move

11

ofo

0 0 0 0

ofo ofo
ofo]|o ofo

ofo]|o 0
ofo]o0 ofo

0|0
0 ofo

(a) A state matrix of N7 (b) A state matrix of No (c) A state matrix of N3

Fig. 3. Three illustrative examples for the state matrices of the neighborhoods Ny,
Ny and N3, where M7 and M3 are asymmetric, M are symmetric, and the value
of K is 8. The diagonal elements of matrices are indicated in red, and the elements
taking the value of 1 are indicated in blue. Mpy[i][j] (6 = 1,2,3) corresponds to the
neighborhood block By[i][j] and Myli][j] = 0 if By[i][j] has been previously checked
by the algorithm and does not contain any improving solution, and Mpy[i][j] = 1
otherwise.

values of neighborhood moves will not be affected for most other neighbor-
hood blocks. Our neighborhood decomposition technique enables the search
algorithm to explicitly take advantage of this feature. By concentrating on the
promising blocks By[i|[j] (i # 7, 6 = 1,2,3) which are identified by Mp[i][j] = 1
(i.e., the unexamined blocks or the blocks affected in the previous iterations),
the algorithm will increase considerably its computational efficiency and search
effectiveness, as confirmed by the computational results reported in Section 4.
Neighborhood decomposition has recently contributed to effectively solve the
maximally diverse grouping problem [24].

3.2.8 Neighborhood decomposition-driven VND

Based on the above standard VND framework and the neighborhoods Ny, Ns,
and N3 as well as their decompositions presented in Section 3.2.2, we introduce
the neighborhood decomposition-driven VND algorithm (i.e., NDVND,,
where 0,,,, represents the number of neighborhoods used) as follows. First,
NDVNDsy, ... (see Algorithm 2) initializes all state matrices My (0 = 1,2, ..., 0,4z)
(lines 3 and 4), and then explores dynamically the given neighborhoods (lines
5-14). For each neighborhood Ny (0 = 1,2,...,0,,4.), the search is performed
with the LN Sy procedure described in Algorithms 3 and 4, where the neigh-
borhood blocks By[i][j](s) with My[i][j] = 1 are orderly examined and the
state matrices My (0 = 1,2,...,04,) are accordingly updated.

The proposed NDVNS algorithm employs two neighborhood decomposition-
driven VND procedures for local optimization. The first one (NDVND, with
Omaz = 2) uses neighborhoods Ny and Ny, while the second one (NDVNDj3 with

12

© 00 N Ok ®N

e e
ok WY = O

Omaz = 3) explores neighborhoods N, Ny, N3. Since NDVND3 explores one
more neighborhood, it is much more time-consuming than NDVND,. Thus,
NDVNDj; is performed only once at the the beginning of the present NDVNS
algorithm, while NDVND, is used as the main search procedure.

In addition, NDVND, and NDVNDj uses the incremental technique of [22] to
evaluate efficiently the quality of a neighbor solution in Ny(s) (6 € {1,2,3}).
For this, a N x K matrix v is maintained during the search process, where
Yillg] = Zuec,cin (1 <1 < N,1 < g < K). With the help of this matrix, the
quality of a neighbor solution can be rapidly assessed in O(1), and the matrix
v can be updated in O(N) after each solution transition.

Algorithm 2: Neighborhood Decomposition-driven Variable Neighbor-
hood Descent Method (NDVNDy,) with the 6,,,, neighborhoods
Function NDVNDy, . (s0)

Input: Solution sq

Output: The local optimum solution s

S < S

Initialize the state matrices My, ..., My, ..

/% Myfillj] = 1, Mylili] ¢ 0, 1< 0 < Oy «/
f <1 /* 0 denotes the index of current neighborhood */

while 0§ < 6,,,. do

(Improve,s, My, ..., My,)< LSNg(s, My,..., My,)

/* Algorithms 3 or 4 */
if (0> 1) A (Improve = true) then

| 01
else

| 0 0+1
end
end
return s

3.2.4 Update of state matrices and the related principle

In the NDVNS algorithm, all three neighborhoods Ny, Ny and N3 are examined
block by block, as shown in Algorithms 3 and 4, and the associated state
matrices M, My and M3 are accordingly updated as the search progresses.

The updating rule of these state matrices can be described as follows. For a
neighborhood Ny(s) (6 = 1,2,3), the entry My[i][j] (i # j) is first set to 0
once the neighborhood block By[i][j](s) has been checked. Then, the entries
My[i][t], My[t][i], Molj][t], and Mp[t][j] (1 <t < K, t # i,j) all are set to 1
if an improving solution is found in the block By[i][j](s), and keep unchanged
otherwise, as illustrated in Algorithms 3 and 4. Clearly, the time complexity

13

1

2

Algorithm 3: Local optimization with the neighborhood N,

Function LSNy(< s, My, ..., My,,.. >)
Input: s, My, ..., My,,,.

Output: < Improve,s, My, ..., My, . >
Improve < true

3 while Improve = true do

4

© o N o o

10
11
12
13
14
15
16
17
18
19
20
21
22

Improve < false
for i < 1 to K do
for j «+ 1 to K do
if Mi[i][j] = 1 then
Mili][j] < 0
for each s € Bi[i][j](s) do
if f(s') > f(s) then
S48
Improve < true
end
end
end
if Improve = true then
| Update My, ..., My,,. /* Section 3.2.4 %/
end
end
end
end
return < Improve, s, My,..., My, .. >

of updating the state matrices My, My and Mj is bounded by O(K).

According to the objective of CCP, the move value Ay changes only for the
moves of a few of neighborhood blocks. Furthermore, given that the blocks
By[i][j](s) with My[i][j] =0 (0 = 1,2,3, ¢ # j) have been checked previously
without finding any improving solution, ignoring the candidate solutions in-
cluded in these neighborhood blocks will save a significant amount of compu-
tational effort. Thus, the above updating rule speeds up the search process
without compromising solution quality. Moreover, it is worth noting that ac-
cording to this updating rule, a larger number (K') of clusters means usually a
smaller proportion of blocks whose states need to be updated, implying a more
significant search speedup in this case. In other words, the advantage of the
neighborhood decomposition technique becomes even more evident when the
number K of clusters is large. This is indeed confirmed by our computational
results of Section 4.

14

© N O VR %N

B T S S S S S = S SF Ry
= O © 0 N oL A W N = O

Algorithm 4: Local optimization with the neighborhood Ny (6 = 2 or 3)

Function LSNy(< s, My, ..., M, . >)
Input: s, My, ..., My, ..

Output: < Improve, s, My, ..., M, . >

max

Improve < false
for i < 1 to K do
for j < 0 to K do
if Mpy[i][j] = 1 then
Myli][j] 0
/* Also, [][z]<—0 if =2 */
for each s € Byli][j](s) d
if f(s') > f(s) then
S48
Improve < true
end
end
if Improve = true then
Update M, ..., My,,.. /* Section 3.2.4 */
return < Improve, s, My,..., My, .. >
end
end
end
end
return < Improve, s, My, ..., My . >

3.3 Shake Procedure

To enhance its diversification ability, our NDVNS algorithm employs a Shake
procedure to perturb the solutions returned by the local search procedure
NDVND,. The Shake procedure is composed of k consecutive swap operations,
where k is the perturbation strength, which is probabilistically adjusted during
the search process as described in Algorithm 1. For each swap operation, two
vertices v and u located in different clusters are first selected randomly, and
then their positions are swapped to generate a feasible solution.

3.4 Discussions

Compared to the existing CCP algorithms in the literature, the primary inno-
vation of our approach is the neighborhood decomposition-driven VND meth-
ods and the probabilistic strategy to determine the perturbation strength.

First, NDVNS is the first heuristic algorithm that applies the neighborhood
decomposition technique to solve CCP, which proves to be quite successful.

15

Among the three adopted neighborhoods, this study is the first to introduce
an effective decomposition of the 2-1 exchange neighborhood, which is gener-
alizable to local search algorithms for other problems.

Second, NDVNS reinforces the VNS method by employing a probabilistic
strategy to tune the perturbation strength. This strategy is of general nature
and can be usefully combined with other VNS procedures to control search
intensification and diversification.

Finally, compared to the work on MDGP in [24], the current work shares
the idea of neighborhood decomposition as well as the general variable neigh-
borhood search framework. Meanwhile, given that CCP and MDGP are two
different problems, NDVNS is different from the algorithm presented in [24].
In particular, NDVNS features the new 2-1 exchange neighborhood (with its
decomposition) and the probabilistic perturbation strategy. As it is shown
in Section 4, the NDVNS algorithm integrating these features, along with the
problem-specific design of other search components, generally outperforms the
state-of-the-art CCP algorithms available in the literature.

4 Experimental Results and Comparisons

This section is dedicated to an performance assessment of our NDVNS al-
gorithm, based on computational experiments on benchmark instances com-
monly used in the literature.

4.1 Benchmark Instances

The test suite is composed of 110 commonly-used benchmark instances (avail-
able at http:www.mi.sanu.ac.rs/ nenad/ccp or from [28|), belonging to five
groups:

e RanReal240: This set contains 20 small instances with N = 240, K = 12,
L =75, and U = 125, where the vertex weights are an integer randomly
generated in the intervals [1,10] and the edge weights are a real number
randomly generated in [0, 100].

e RanReal480: This set contains 20 medium-sized instances with N = 480,
K =20, L = 100, and U = 150, where the vertex weights and the edge
weights are generated as in the set RanReal240.

e RanReal960: This set contains 30 large instances with N = 960, including
10 instances with K = 30, L = 120 and U = 180, 10 instances with K = 40,
L =90 and U = 135, and 10 instances with K = 60, L = 60 and U = 90,

16

where the vertex weights are an integer randomly generated in [1,10] and
the edge weights are a real number randomly generated in [0, 100].

e MDG-a: This set contains 20 large instances with N = 2000, K = 50,
L =150 and U = 250, the vertex weights are an integer generated randomly
in [1,10], and the edge weights are an integer generated randomly in [0, 10].

e MDG-a-40: This set contains 20 large instances with N = 2000, K = 40,
L = 200 and U = 300, with the same vertex weights and edge weights as
the MDG-a instances.

4.2 Ezrperimental Protocol

Table 1

Settings of parameters
Parameters Section Description Values
kmin 3.1 minimum strength of the shake procedure 1
kmaz 3.1 maximum strength of the shake procedure N/K
Q 3.1 a parameter used in the diversification mechanism 0.2
« 3.1 a parameter used in the acceptance criterion 0.01

Table 1 indicates the parameter setting, which was obtained empirically. Our
experiment shows that among these parameters, () is the most critical. We
present a detailed analysis of this parameter in Section 5. It worth mentioning
that this parameter setting (default setting) was used consistently in our ex-
periments to solve all 110 instances, though fine-tuning some parameters on
an instance-by-instance basis would lead to improved results.

To evaluate the NDVNS algorithm, we used five state-of-the-art CCP algo-

rithms as the reference methods, including GRASP+TS [28], FITS [42], IVNS

[22], GVNS [4], and SGVNS [4]. The source codes of GRAPS+TS and IVNS

are available at http://www.info.univ-angers.fr/pub/hao/CCP.html, while
the source codes of GVNS and SGVNS are provided by their authors at

http:www.mi.sanu.ac.rs/ nenad/ccp. The source code of the NDVNS al-

gorithm will be available at http://www.info.univ-angers.fr/pub/hao/

NDVNS.html. All compared algorithms (written in C++) were compiled by

the same g+-+ compiler with the “-O3” option.

All the computational experiments are based on the same computing platform
with an Intel E5-2670 processor, running Linux. Due to the stochastic feature
of the algorithms, each algorithm was run 20 times with different random
seeds for each instance, and the stopping condition for one run is a maximum
time limit ¢,,,, set to be N seconds, where N is the number of vertices in
the benchmark instance. To run the reference algorithms, we used the pa-
rameter settings that were calibrated by their authors and provided in the
corresponding papers.

17

4.8 Computational Results on the Small and Medium Instances

The computational results of the compared algorithms on the 40 small or
medium-sized instances with N = 240 or 480 (i.e., the sets Ran240 and
Ran480) are summarized in Table 2. Column 1 of Table 2 gives the name
of each instance. Columns 2-7 and 8-13 report respectively the best and aver-
age objective values (frest and fu) over 20 runs of each reference algorithm
and the NDVNS algorithm, which are considered as two important perfor-
mance indicators of algorithms. The row “Avg.” shows the average values for
each column, and the row “#best” indicates the number of instances for which
the associated algorithm obtains the best value in term of f,,, or fi.s+ among
all the compared algorithms. To check whether there exists a significant dif-
ference between the NDVNS algorithm and each reference algorithm in terms
of foug and fieq, we report the p-values from the non-parametric Friedman
tests in the last row, where a p-value smaller than 0.05 indicates a significant
difference between the compared results. In addition, for each instance, the
best value in terms of fi; and f,,4 among the compared results are indicated
in bold.

Table 2 shows that for the instances with N < 480, the NDVNS algorithm
outperforms the reference algorithms in terms of the best objective value fyes:.
Specifically, for the 40 instances tested, the reference algorithms respectively
obtained the best value (in bold) in terms of fu.s for 0, 10, 0, 2, and 9 in-
stances, against 26 instances for the NDVNS algorithm. Moreover, the small p-
values (< 0.05) confirm the statistical significance of these differences in terms
of frest. On the other hand, the NDVNS algorithm outperforms significantly
GRASP-+TS, FITS, GVNS, and IVNS in terms of f,,,, but performs worse
than SGVNS. Specifically, the reference algorithms obtained respectively the
best value (in bold) in terms of f,,, for 0, 5, 0, 0, and 24 instances, against
11 instances for the NDVNS algorithm. We conclude that for the instances
with N < 480, NDVNS is the best algorithm for attaining the best objective
values (fyes:) while SGVNS is the leading algorithm in terms of average results

(favg)‘

4.4 Computational Results on the Large-Scale Instances

The computational results of the compared algorithms on the 70 large-scale
instances (RanReal960, MDG-a, and MDG-a-40) are summarized in Tables
3-5 respectively with the same information as in Table 2.

Table 3 indicates that for the RanReal960 instances, the NDVNS algorithm
outperforms all reference algorithms. In terms of fi.s;, NDVNS obtained the

18

¢0-HOT'T €0-H09'T 0T-"vs'¢c T0-HOS L 0T-d¥?S'C €0-H6¥'9 LO-H9C'T 0T-H¥¢'C Y0-H8S¢'8 0T-HV<'C anpoa-d

11T VT 0 0 g 0 9z 6 4 0 ot 0 189q 7
9¢°'89679¢ 0€°6££99E F1799%9€ 7L 08¢€9¢€ GL OL8Y9E 88°78.9C¢E 0€°€9699¢€ ¥1°86.29€¢ G9°6T£99¢E 16°88¢19¢€ LG €828S9¢ 9¢°82009¢ “8ay
98°GLP8TS ST TLISIC TO'LTTLIG v€€99e1¢g LL°0EVLTIS $0°¢8¢90¢ 1Z'T6V61S 62°0£06T¢ 90°%0T8T¢C 6%°CL89TS 0T"6%€8T¢C €7 1eV0Te 0T Ospleauwey
Z9'P112TS ¥€°6.02C¢ S0°1860¢T¢ 99°TTL61S 22 L9T1ee $T 99€80¢ ¥8'61T£TS 61°¢L0€CS 6T°TLLTICS 26°G0V1TS 2T 9TETTe 19°6VETS 61 0SPIRAHUBY
L€°CE6808 08'€999T9 29°6L9¥T¢ 10°766229 Ty eILyTS 98'816CT¢ £2°99%929 20°0909¢¢ TV°L86529 €L°C8EVLS 9.°2T89Te €0°TET0CE ST Ospledywey
$0°6289€¢ 1€°9V9LESQ 12 L699€S 7L 0Teves 6€°¢VL96S GR'RTEVEC 97 TEERES 99°EIP8ES ¥S7TLLES $EL69CES GCFT6LEC 9¢°6908¢¢ LT 0Spreayuey
FP'8016¥¢ ST T0S6%S SF 8TI8YS 15 8L89FS €1°2OV8Y S 90°09%¢€¢ 8%°Z8Y09S G0°0300¢¢ 08°2906%¢ 18°2998%¢ £9°59C6VC $L1S0TPE 91 OSpreeyuey
G9'GSFITS T16°0TILIS 66°7LLCTS 90°TEIVTC 8€°81091¢ ¥H 8€TV0S T€'S09819 L9°68181¢ 9%'Z8891¢ ST'6T6STS 20°G0TLIC 6L'7TLLOC ST OSpIeeyuey
Ty'009%1¢ €9°TIBEIS 98°¢0TE1¢ 8T°8ETTIC ST €S0ETS LG €186V 06'969%1¢ TS PGLPIS 8€° 68TV 1S 9T 1€1€1¢ 29 L0T¥1C €9'8VLV0¢ V1 0SpIeeyuey
GG°G09€€S 06°L6SVES 89°66L€€S 10°2612€S 6.°€T8EES GG 8TTTES 08'€€99€9 €L°eeveeg €0°L¥TSES €6°C09€€S 18°620S€S TE'9TTLES €1 08presyuRy
I8°TLTIT0S SS9'TELTIOS 82°6.000¢ 89°8.886% 62°92200¢ 10°896.8¥ 89°'999209 8T 11£20¢ 86°L9TT0C 16°90€00S 9¢°GT6T0C €€°99TF6F GI Ospleaywey
€9°9TveCe 16'TPPETS 9€°98CCCS TV 8TT12S $6°9182C¢ $€°8900T¢ 16'650¥2S¢ 66°T19%TS 69°269£TS 09°CE8LLS 6T 166£CS $I°L8ETe TT Ospledywey
6C°CI88TS 90°00€6TS 6£°7EE8TS €0°70991¢ TL'TLOSTS S0°9EEV0e 9T I8%029 92°09002¢ 80°79T6TC SV 9TLLTS ¥97 92028 66°8660¢ 0T Ospleaywey
09°'866CCC G8'PLEYSS 9¢°€€1CCg €L792€€9¢C 0% 7€£92¢2¢ 78 TSGR0V S 06°€8T LSS €€°¢T0LES 80°G98¢¢C¢C F862CT S G8'8989CC CT'0LLEFS 60 OSpleayuey
€' TE9TES 08 P8PTES 62997 1€¢ 06°96662¢ 16°L99T€S GLLTL8IC 99°860£€9 $0°6162€< T6°86%2EC 8T°6L80€¢ TH LIVTES £0°6€SECE 80 OSprReyuey
LY°8YSCYS S T9SShS 78 0V6EV S €0°91€Th e T TSOVPE 06°08.2€¢ L6°1969V9 9% 1209% ¢ 06°6%0ST< S8 T8]EVS €L0L7SYe €4°C99LE¢ L0 OSpIeeyuey
8.°8€1€€S 89'9TIPES 0% 7€92€¢ G6°G8TTES 9€°960€€¢ 68°76E61C 19°€098€9 08" 7S8YES ¥9'TL9€€¢S 98°67€CES LT 166€€S €I'PSISEe 90 OSpleeyuey
8T°1¢8C8Y 09'678E8Y T1°¢8LT8Y 8%°88908% ¥2° L9828V TS EEV69Y 19'THLY8Y 1L LCVV8Y 8€° 65078 L1°860€8Y 99°¥80%8Y 0€°206€LF S0 OspleavTey
$€°¢620CS T9'601TTS SH°6290T¢ 69" T606T¢ €1°¢9012¢ 96°€T¥L0¢ 6%°'8YLTTS 8¢°€092C¢ €7°00912¢ L€°€0102¢ 91°¢0€¢Te 9L°€8GCIC F0O Osplesuwey
97" T1L826% €0°TT696% 8L°LYYS6Y €0 VSTV6Y 09°62096% 9% T9EV8Y L9'978L6T 78°69¥L6¥% LY CCE96V GG CTLI6Y 61°96CL6Y T9'SLV6ST €0 0SPTReHUBRY
8.°96¥0T¢ ¥0°'TI9G0TY 9%°90260¢ €9°%0L20¢ GT°LSL60¢ 89°€9896% 96°999119 6£°EVSTTS ¥8°28T0T¢ 99°20160¢ 09°08¢T1¢ 69°TI6T0S GO Ospledywey
€9°99999g SR THTeee 96°689€2¢ L€°98CCS¢ 72 9LE78¢ 68°89¢0%C 89°6£9999 L1°€6L8GC £8'8EETCC GG T66ESS T6°6879C¢C 9£'899S¥¢ 10 OSpIeeyuey
€1°0€1T1T v€€60218 %$°600T1¢ ¥0°0LETTE $8°6%031¢ 997698808 TT €TETIT 18792818 0T'%9%21¢& 0F"L6611C T9'893T18 0L'1€901¢ 0 OpcIeeyuey
€8°G68861 $9°0T0661 0898861 0S°'T0861 €¥°0V0661T ¥6°079S61 9%°91T661 76912661 99°661661 8¢°CVL861 86°9TTE61T 90°¢06961 61 OpclEeyuey
91°988V61 ST P86V6T 9T°89LV61 61°896€61 €1°CL8Y61 €1°998061 PIL9TS61T 6€°001C61 G9°850S61 6€°29¢V61 6€°001S61 ¥9'6£€T61 81 Opcleeyuey
GL79€T96T 68°6LT1S6T 18 TL6V6T 86°L9¢¥61 TE'EPTI6T 9L°G€8T6T €1°609961 GL'T8YS6T 81°92£961 706761 9€°T9SS6T 1L°63SE6T LT ObgreeyuBy
9.°816€0T S0°€L8€0C 60°12L€0C 9%°¢T1E0C 6£°0TLE0C 9%°66700C S$6°'7L070C 9%°180%0T 66°7S070C $1°09¢€08 66°7S070C 88°620€0G 9T Obgleaywey
8Z°9¥606T 976061 SF TS806T S6°00T06T 8T €T606T L6°8CCLST 8Z'€9ZT6T G8°GETI6T L9°CTCTI6T 08212061 18°¢GCT6T 86°SVESST ST Obgleduwey
Z8'96£8%¢ 0L°T098TT 08°6098CC €8 T1082E 8)°7CC8TT PXalll 144 68°0L88¢C €0°TL68TT L1 €E88TT Th 8EIVTT 68°0L882¢C 88'89¥.2C V1 Opareeyuey
08°9.220T 8¢° LY 120G 18°91020% jaaz4a1ild L8°6€120C L9 VOV66T TI'Sv€T0T £7°8€€208 $S' 168208 £7°8€0208 66°G€£€T0T 6S°80TT0C €1 OpcIeeyuey
91°,€.00¢ €T'89600T £€8°80800¢ T€°€92008 29°26L00¢ 0L°0L0661 66°8L600¢ $S¢ 720108 2€'880108 10°7€L00c TT°LITIOT 0S'€€€00¢ @l Opcleeyuey
€¢°86£108 11°€55¥0T 00°8¥¥¥0¢ 1.°656€£0C 6€°699V0T TI'6%L10C G9L°TTLYOT 1°0€9%Y0¢ SL°TTLVOT LE°CVEV0C SL°TTLYVOT v0'79€€0C 11 Opcleeyuey
20°€2ST6T 2€°€08¢61T $2 eT9C61 ¥8°¢¢816T €T'TI8T6T 66°68188T 26°8%6T61 9%°'826261 26°GS6T6T L6°8T9Z6T 1T'986T61T 10°00206T 0T OFgreeyuey
89°48680T £T°6¥880¢C 60°9€8808C 91" L¥T80¢C 87" ¢26808 89°T8T90C 06°98160T 91°020608 £9°€80608 827292808 9T°69160C 18°€69.0C 60 Obgleauwey
1€°66050T 10°0L6¥%0¢ €7 688708 Y€ €9Cv0C S0°T96¥%0¢ €8°9TLT0C T8'9%Z90T T8'9¥TL0T Gg 1STS0C 0¢°'T0670C T8°9%TS0T 90°'78L50G 80 Obgledywey
0%°€90602 11°70060¢ 2€°60680¢ VL T€980C £2°620608 28°0L190C 0L°€LT60T LE791608 TL20160C 18°66060C 0L°S0€60T TEQLELOT L0 ObeleeyuBRY
GO'€LTITC TO'TRIIICT LR T9V91C 90°€92¢1¢ T0'L8Y91E ¥0°C1621G TE LYLITIT 16'77L91G 26°20L91¢ 10°90991% TELPLITIT 19'7€CFTc 90 Opcreayuey
€9°T0PS61T G8°LLTS6T GG 8BTS6T ¥8F0ST6T 8¢ 0TEC61T 89°L6C161 68°6£9G61 T1°G0SS6T 8L 6FFS6T T eS6¥61 8P F9SS6T 29°¢0zE6T S0 OpgIesyury
16°C81S5% 0€°89VSTT L1 E€V12CE 66°66972C L6°79€2CT 69769028 L1°819¢CC L1°€899TT £€8'2099¢C 09°¥812CC 91°L89¢2e 0S'1.632¢ v0 Opcleeyuey
L€ 189861 €9 79L861 91°019861 0%'068.61 T8 66L86T $T €90S61 88°9L6861T TS 896861 6£°€96861 TG GTESGT 16'VS6861T €0'6L5961 €0 Opcleeyuey
I18'712V02 1Z'09%$0T L2°%92V0C 29°829€0C 8€°62€V0C L1°06L.00% 18°€9S¥0C 9€°¥Z9V0Z 9€'+Z9V0T L8°T9TV0C 9€°PTIH0T $8°060G0C GO ObgleavtTey
0L°689%CC LS VISYPTT 61°C99VCC €8°01CVTe 90°¢08VCC 6L %TLICE 1S°6V672¢ T9°'166%TT 99°606¥¢C 69°998VCC 8% IV6¥CC 00°018¢%G 10 Opgleaywey
SNAAN SNADS SNAI SNAD SLIA SL+dSVHD SNAQN SNADS SNAI SNAD SLId SL+dSVYD eduR)SU]
u:s% «wua%

-Bav [pire #2430 sULI9) UL P[OQ UL PAJRIIPUI I8

suytio8e paredurod oY) Juoure s)MSAI 159q 9} dIoUM ‘((RF[eIURY pUR (Fg[eoyuery s10s oyl “o'1) 07 ‘¢l = M PU® 087 ‘0¥¢ = N
[N S90URISUI [eOMURY (f OU) UO SW)LI0S[e JIe-o7)-jo-oje)s oY) im wijiode SNAQN Ppesodoid oy jo suostredwo)) "z 9[qer,

19

LO-H6T'€ 80-HCE'V 80-HCE'V 90-H.10°C 80-HCE'V 80-HCE'V 80-HCE'V 80-HCEV L0-H6T'€C 80-HCE'¥ anva-d

Lz 1 0 0 4 0 6T 0 0 0 T 0 1s9q#
99°9T06L40T TI'8PTLLOT LETEETLOT S€°90.690T 92°€209L0T 86°LST0¥0T T6'9F0T80T 6£°€¥68L0T 80°0T6E£L0T TL'86LTLOT S€LTTIL0T 61°0L99%0T 8ay
ge'PeTEGL 60°998TCL 6L°€6TLYL LS TLO9VL G0°G868Y L 10°¢TV0CL 06°9.09S2 6E° FSTECL V€ 6798V L 7S L868Y L SV €886¥L 20°026€GL 09°0T 096ledv TRy
0Z°€€08SL 86°€TCTCL TV LV LSV L €7 T6TCVL £€8°60T6V 2 %L 1000T. 0T'8LSVSL L8 CV6ESL 9T TEE/VL T8 6T6LYL 8T°8G80CL 1¢°676S3L 0960 09618y uey
L0°C9CT6L TT'996T6L €7 198982 G9°08948. 86°G8C06. 28°TFS89L 99" F9EV6L S VLYE6L 69708882 2€°G66882 TV VELT6L LO'FOVEIL 0980 096TBOHUERY
76 V868CTL 09°%9292L 8%°9.8TTL 6€ TFE0CL L1°€€L8TL 1.°190969 ¥8'P90TSL 87" 0988CL 08°96TSTL 67 F1SETL €T €66SCL 6L°V6TTOL 09°L0 096ledvTIey
vE €TT99L €S 6T0S9L 80°0TE09. €7 LTERSL TG LGBTIL F1 1892EL 99°081892 6€°¢0299L 86°96TE9L T8°89VT9L 90°620€9L 00°898LEL 09°90 096TRRYURY
16°900L%L 0T 7679V L 86 0S€6EL €8°9V88EL LT°G9TEVL LT°8TSETL ob PHZ8YL 6L°LCTI8YL 2T 69607 L 0S°LVTThL 99°GTLEVL 08'7E80GL 09°20 096Ied TRy
69°L9089L GG HT0LIL Th €LST9L 78°08¢09L 0£°969%92 0L°2128EL 19°0LT0LL L2°LE€169L 9%°L0TV9L Th TT9€9. LT €9TC9L 86°98807. 09°F0 0961B2HURY
6%'$T689L ST TL8LEL LT 9PPTGL g8°09€TGL 79 ehregL 68°60TSCL 60°8TL092 90" T6V6SL 26°6007SL 99°18999. G6°LL999L T9°L6G6CL 09°E0 096[edTRY
LT'6T9VLL TE G09VLL 18°069892 89°09189L 67°5LSTLL 1L LLYVTYL 0S°S8092LL 9€° 1209.LL LL 6VVOLL 0%° 155022 L6°1T6ELL 6V°80TLVL 09°G0 0961BRHURY
8L LRLIEL FH 007 1EL %% 9V6¥TL G8'GOGETL €L°38TLTL 1€°C08969 €7°006E€L L1°06T€EL 0S°8869CL 8L798€CTL 8¢°069LCL TS GLYIO0L 09°T0 096TRRYURY
00°€TTLLO0T 0S'TOPPLOT 991892901 $6'8T9.90T TZ°08%T1L0T 62'¥0T6€0T 1€°'CIT6LOT TS'FIELLOT 89°80S0L0T G6'616690T S9°616TLOT 98°€8LFP0T OV 0T 096[@UTRH
€T°90992L0T $E€SELELOT 90 IF6990T S9°6SC90T L0'9TFILOT S€9VSHEOT 6S°98L9L0T 6L°619FL0T LS'SLLOLOT G6'098890T ¥I'9TICL0T €T'G6LIVOT 0F'60 096[@dquBy
TY'LLBTPTIT LT'C990FTT ¢8°2.6€S€TT F908FPPEIT 9% FS0SETT 60°€SESOTT PE'QIOPPIT LE'9GSTPTIT T9'€LS9STT ¥EC99LETT S0°C9S6ETT TS PASITIT 0F'SO 096TBeHUBRY
80°P9PIPOT VL 8Y00VOT T1°CE8EE0T €T ISE0E01 €T°€E€66€01 L6 T98T00T PI'IZ6EPOT CE'6VLIFOT €€'68GSE0T SC'6TLEE0T S6'9LEEVOT 8P'6S600T OF'LO 096[Eeyu®y
90°690S0TT 16°9Z8T0TT F0°9L1C60T OL'8FTIS60T 99°F9000TT &F €80L90T 8€°GG6LOTT ST TFOFOTT LS TLTL60T TG’ I8CL60T PL'89L00TT LF'ISCTLOT 0F'90 096[@dyuRy
PE06EP90T L6'P8ETI0T HL'¥699S0T 9%°90THPSOT 9%'8LF8S0T T€°6LFSTOT 88°STP990T CS'OTTE90T GS'L6TO90T GL'LF69S0T 60'8ST6SOT S8°L6€GE0T OF'S0 096ledv ey
T1°9SC00TT T9 TI6660T LT'¢8TE60T L9°9L80601 LE €LOTOTT €9°GY€TI0T 86°6cgc0TT @S I89TOTT 9T°GTES60T L6'9T0S60T TI'L68EOTT 1¢'19¢490T OF'F0 096[edqury
€9°9TELB80T 9V'EP9P80T TT°9ZT6LOT 09°'F€0LL0T LL'8F6TS0T ST T698%0T S0°'ZT0680T 0G'G8V980T 0S'€98T80T GT'00GS0T ST'OFEESOT $S'2999G0T OF'€0 096Iedvuey
€0°TO9STIT 6CCE8VITT 99 9FVPLOIT OF'GLTILOIT 9€FLO00TTIT 08 LESSLOT TOTLPLTITT LS'I6TI9TIT 90°TL660TT LE'€9V60TT 6S°LPSOITT 0T'0LEESOT OV'G0 096[@dyuBy
66°LTLOVOT 8I°99L6€0T 1¢°¢STEE0T 9L°0FL0€0T TR'9TIFE0T 7 009866 TL'GELTHOT TL'60STVOT 90°0G6SE0T CL'PEEEOT L9°GFOSE0T LS'SG8E00T 0¥ 10 096[@dyuURY
6L'PTLYBET 61°C69C8ET SE'TO9CLET S6'F0ELELLET LO'TLL8LET S6°6T96€€T 76°TO898ET ST'6L8VSET C9'SOLSLET 0G'EV99LET €8'C066LET SE'T6LOPET 0S0T 096TBOHUBRY
TEL6ES8ET 0%'6T9T8ET TG GLLIOLET €T'889FLET 86°08T6LET 88 9TLLEET TT'PIGL8ET L2'S0SESET T19°€LLISET 8G'CGOSLET GELLETISET 9T'FSOSYET 0860 0961RRHURY
ZT8'0€899FT 9OV TPLEOVT 9L TL68SPT €8°TP8LSPT CL'C09TIFT CO'6SSETHT 66°SFS69FT €T'€GTS9PT E€F'996T9¥T 80°89909¥T 6€°LELEIVT 99°¢8T6TFT 0€'80 096[edUeY
90°GLTOVET 66°CI08EET 69 1CTCEET 0F'9ST8TET €6°€9ThEET €8'99L86T1 89°6Z8TIFPET L9'S000VET €E°09LVEEST GL'S8T0EET SEFOSVEET €G°LLILOET 0£°L0 096[@dyury
OF"29%6THPT 98°C8SPTIVPT 8L°0PLOTPT TL'699L0FT 80°0SLTTIFPT 9€ LP69LET 8€°TEY0THT L9'LSELTIPT €8°6ETETPT L9°900TTPT 8S'9LVETPT FFOSIFSET 0£'90 096[edvUeY
TL'8G60LET 61°8CL99€T 80°9CCT9ET TS 9LT6SET PL'BT999€T CT LLLSTET 88'989ZLET S8'PFCS9ET IS'PEIS9ET LT LTIGIET 96'CL6S9ET €S'GTS0EET 0€'20 096led ey
8T'POPTIPT PP CO9TIVT €9FPSEOVT 08°FgE€COVT TO09FTIFT 8% 06889€T 98°6T6FIPT 6L°SY9GIPT ST'9FP9LOVT $G'PEESOVT LOFPEVIFT L9'ISVOSET 0£'%0 096[@dyury
TI'PGTL6ET 16°10CE6ET 08°0FPF88ET ¥S'LO8SS8ET TC PC606ET 89 TTLLSET 8L'VGS86ET 69°L8FS6ET SL°G0S06ET 0L°998L8€T ST'TOTG6ET S0'9ESSSET 0€'€0 096[edUTRYH
VE€'8GTEEVT LV LVOTEVT €7 68€SThT TO'EELETHT 0L 988EEPT TO LIECO6ET ¥8°6I8SEYT VL'09SSEPT GO'PVOSTVI 61°16L9GFT 67'6GSVEVI €L°€1966E1 0£C0 096[Eeyu®y
€6°CTIYP8EET T6°9PPCEET CO'TIP6CET T8°€L0LTET 8L'CTLTEET LS'V0OTT6ET LV'69E0FET S6°G999EET €C'SLETEET TG'9S0TEET 00'SLSEEET GG EVSTOET 0§10 096TBeHUBRY
SNAAN SNADS SNAT SNAD SLIA SL+dSVyD SNAQN SNADS SNAT SNAD SLIA SL+dSVHD eouEySU]
m:‘s\. wwwa\

-bav [pue #24f 30 SWIIY UI PIOQ UI POYRIIPUI oIe SWIILIOS[e pareduwod oy} Suoure sHNSOI 189 9} dI0YM ‘(09 ‘0F ‘08 = I pue
096 = N T3ILM S9OURISUI [RIYURY ()¢ 91} U0 SUI}LIOS[R 1IR-91)-J0-29R)S 91} M UIItI08[e SN AN posodoid o1y Jo suostreduro)) "¢ a[qe],

20

Table 4

Comparisons of the proposed algorithm with the state-of-the-art algorithms on the
20 MDG-a instances with N = 2000 and K = 50, where the best results among the
compared algorithms are indicated in bold in terms of fpes; and foug.

Soest

fav

g
Instance GRASP+TSFITS GVNS IVNS SGVNS NDVNS GRASP-+TSFITS GVNS IVNS SGVNS NDVNS
MDG-a_21 369103 383164 388242 379513 389845 391259 363528.40 382387.05 387751.50 377608.90 389471.25 390647.15
MDG-a_22 367627 380817 385196 382052 386956 388476 364577.70 380489.60 384455.70 377874.60 386325.55 387718.60
MDG-a_23 369009 380630 386046 379366 388159 389363 365738.50 379334.85 385496.80 375544.75 387518.10 388908.60
MDG-a_24 370891 381783 387680 379047 388799 390269 363101.70 380560.55 386803.60 377026.10 388546.25 389655.40
MDG-a_25 380735 390623 396571 388897 398327 399478 375489.75 386346.05 396070.55 386168.00 397873.45 399002.40
MDG-a_26 383826 393222 400519 392935 402295 403457 380869.35 392916.10 399804.40 390523.15 401795.95 402740.95
MDG-a_ 27 365606 377617 380535 378129 381291 383780 362665.50 376721.60 379874.45 373828.35 380868.30 382951.05
MDG-a_ 28 370385 380748 386077 380642 386986 389025 364047.95 379732.95 385251.70 376880.50 386453.65 388516.50
MDG-a_ 29 366279 378239 382417 376229 383418 385316 361792.25 377540.40 381512.10 371959.05 382756.50 384816.05
MDG-a_ 30 380142 389452 395759 389449 397325 398211 377323.00 389254.10 394851.85 387218.35 396433.40 397776.80
MDG-a_ 31 369944 379407 385176 379815 386039 388375 365812.55 378922.70 384524.35 375535.30 385337.85 387562.05
MDG-a_ 32 372470 383333 391777 382573 393268 394611 368952.30 382737.35 391092.15 380767.40 392862.30 394031.35
MDG-a_ 33 368150 379047 383038 379938 384568 385806 363019.50 376641.80 382235.55 374720.60 383941.90 385212.70
MDG-a_ 34 373454 386544 393926 387577 394413 396725 370093.50 385459.25 392935.35 382141.40 393869.45 395823.10
MDG-a_35 376886 386347 393507 384031 394771 396054 373400.00 385302.60 392811.75 382317.85 393963.25 395455.20
MDG-a_ 36 384916 396368 400766 395439 402072 403604 376033.60 394103.05 399943.25 390926.50 401657.85 403111.10
MDG-a_ 37 372157 386195 387114 385363 388769 390289 369583.10 385797.30 386444.35 382197.80 388192.80 389612.25
MDG-a_ 38 378374 388712 394526 385978 396163 397407 371013.30 387807.15 393843.30 384883.95 395810.45 396710.05
MDG-a_ 39 374068 385975 390260 387159 391915 393415 371801.55 383036.10 389648.75 381376.55 390930.80 392799.15
MDG-a_ 40 387742 396321 404520 394522 405680 407084 384148.60 395505.80 403704.15 392126.10 405348.25 406615.75
Avg. 374088 385227 390683 384433 392053 393600.20 369649.61 384029.82 389952.78 381081.26 391497.87 392983.31
#best 0 0 0 0 0 20 0 0 0 0 0 20
p-value 7.74E-06 7.74E- 7.74E- 7.74E- 7.74E- 7.74E-06 7.74E- 7.74E- 7.74E- 7.74E-
06 06 06 06 06 06 06 06

Table 5

Comparisons of the proposed algorithm with the state-of-the-art algorithms on the

20 MDG-a-40 instances with N = 2000 and K = 40, where the best results among

the compared algorithms are indicated in bold in terms of fyesr and foug-

fbest favg
Instance GRASP+TS GVNS IVNS SGVNS NDVNS GRASP+TS GVNS IVNS SGVNS NDVNS
MDG-a_21.40 437628 458203 449022 459655 461300 435028.95 457507.35 445994.60 459018.80 460489.15
MDG-a_22.40 434004 454485 447832 455658 457462 429590.60 453702.10 444332.10 455257.05 456962.95
MDG-a_23.40 433885 455745 448024 456318 458604 429239.65 455005.25 444144.45 455876.95 457849.00
MDG-a_24.40 432413 457319 446320 458037 460224 426743.05 456093.20 444043.70 457644.95 459361.60
MDG-a_25.40 443602 467531 458432 468641 470546 438365.10 466648.55 455520.40 468224.85 469807.70
MDG-a_26.40 451858 472182 466960 473489 474918 442170.55 471496.70 462133.90 472921.25 474434.10
MDG-a_27.40 426581 449333 443892 450753 451999 423135.80 448546.30 440947.35 450218.55 451516.85
MDG-a_28.40 433276 455484 449530 455923 458620 429343.70 454500.60 446270.70 455332.30 457840.85
MDG-a_29.40 426057 451006 444445 451617 454117 422597.40 450200.25 439232.10 450966.00 453453.80
MDG-a_30.40 445550 466359 459836 466361 468982 438784.85 465028.80 456448.10 465895.50 468292.20
MDG-a_31.40 431695 454500 447463 455835 457570 428142.10 454009.15 442404.05 455311.90 456756.95
MDG-a_32.40 441853 462193 454347 463455 464911 431007.95 461403.60 449071.55 462833.70 464399.70
MDG-a_33.40 433898 451683 446617 452969 454717 428970.00 450944.00 442452.45 452552.90 454069.95
MDG-a_34.40 373598 393515 383611 395198 396610 368232.75 392736.80 381652.00 394776.85 395850.30
MDG-a_35.40 445028 463392 455965 464883 466869 440927.55 462869.85 451299.60 464526.40 466308.65
MDG-a_36.40 452963 471675 467716 473135 474665 445388.75 471188.60 460190.30 472601.50 474018.35
MDG-a_37.40 437611 456642 453007 458099 459380 428557.25 455860.90 449737.50 457121.15 458843.50
MDG-a_ 38.40 445151 465807 455905 466562 468630 441406.40 464713.85 453176.75 465750.15 468039.25
MDG-a_39.40 441583 459938 457019 460785 462909 437246.90 459021.00 449321.25 460127.15 462352.60
MDG-a_40.40 455220 476752 466277 477949 479308 449236.45 475739.55 460905.65 477365.60 478777.80
Avg. 436173 457187.20 450111.00458266.10460117.05 430705.79 456360.82 445963.93 457716.18 459471.26
#best 0 0 0 0 20 0 0 0 0 20
p-value 7.74E-06 7.74E- 7.74E- 7.74E- 7.74E-06 7.74E-06 7.74E-06 7.74E-06
06 06 06

best value for 29 out of 30 instances, against 0, 1, 0, 0 and 0 instances for
the reference algorithms. In terms of f,,4, NDVNS reported the best value
for 27 out of 30 instances, while the reference algorithms obtained the best
value only for 0, 2, 0, 0 and 1 instances respectively. Moreover, the small p-
values further confirm the statistical significance of the differences between
the NDVNS algorithm and the reference algorithms.

Moreover, Tables 4 and 5 show an even stronger dominance of NDVNS over
the reference algorithms for the largest MDG-a and MDG-a-40 instances with

21

N = 2000, by reporting the best fy. and fu., values for all the instances.

Given that the computational experiments and comparisons are based on
the same computing platform and the same stopping condition, these results
clearly indicate that the NDVNS algorithm is the best algorithm for solving
large instances with at least N = 960 vertices and K = 30 clusters. Interest-
ingly, the improvement of NDVNS over the existing CCP algorithms increases
with the instance size. This implies that NDVNS could be a useful tool that
can be applied to solve large scale practical problems with a high number of
candidate elements to be grouped into many clusters.

5 Discussions and Analyses

This section investigates the impacts of key components of the NDVNS algo-
rithm, and the spatial distribution of high-quality local optimum solutions.

5.1 Parameter Sensitivity Analysis

The NDVNS algorithm relies on two important parameters) and «, which
are studied in this subsection.

5.1.1 Sensitivity Analysis of the Parameter ()

As explained in Section 3.1, a particular feature of the NDVNS algorithm
concerns the use of the probability) to control the perturbation strength
k of the shake procedure where a smaller () means a stronger diversification
ability of the algorithm and vice-versa. To analyze the impact of) on the
performance of the algorithm and find a proper @) value, we carried out an
experiment based on 40 representative instances. In this experiment, we varied
the value of @ in the range {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0} and
ran the corresponding NDVNS algorithm 20 times for each possible value of)
and each instance according to the experimental protocol of Section 4.2. The
computational results are summarized in Table 6. The first column and first
row of the table give respectively the names of instances and the values of @,
and columns 2-11 respectively report the average objective value (f,,,) over
20 independent runs of the NDVNS algorithm for each instance and each @
value. In addition, the row “Avg.” shows the average result for each column,
and the row “#best” shows the number of instances for which the associated
@ value generated the best result in terms of f,,, among the tested @) values.

Table 6 indicates that the performance of the NDVNS algorithm is sensitive

22

T 4 0 g 14 T 0 4 L €T L 1s9q#
¢8°¢9¢089 T0°LT€089 Y7 S1v089 96°T€S089 96907089 ¢ c67089 74" L87089 L7 107089 99°969089 €¢°019089 9T LEV089 ‘8ay
GO'LTILIV S0'9C9L9V GP'C08L9V GG L88LIY 0T LLLLIYV 0L'88LLIY GC'686.L97 0G°LT6L9Y 08°98C89¥ 06°6L€897% 08°61€89% 0v'0g eDAN
09°96.LCS¥ 0L'vE8Tsey 0c'veLaSy 96°C86CSY 02'088CSY 0v°L0OTESY Qy'C68Cey 0g'eeTesy 0g'0TVESY 0L°G8VESY S0°6€98ST 07’6z eDAN
0G°9GeTLSY QQTLTCLSY 0T°€8€LEY 00°LTIVLSY 0€°L9TLSY 00°C6ELST Q0°LLELSY 08°96V.LSY 0T 'T99.L¢G¥ 0C'8TI8LEY ST'6V8LST 07’8z eDAN
0€°670TSY 0¢'98604¥ 08°6€0T4¥ Qg TeeTeY 0€°660T4Y 0T"GLCTSY 0L PPETSY 98'8TTISY O¥'8¥9T4Y 0V’ v6914¥ 99°9691ST 0Lz eDAN
06°69LEL7 0T"€S6ELY 00°LL8ELY 08°C968ELY 07 TL8ELY {4 A4 ST €E0VLY GG 9LOVLY 02°89C¥.LY QL TRGVLY 0L ¥vSvLY 079z ®-DAN
QT VLI69Y €9°CcL169Y QT SVv69Y 08°€L7697 06°9SG697 G8'GLE6IY 9C 9€29697Y GG CLE69Y 0L°6LL69V 0€°9010.L7 08°9TT0LY 07z e-DAN
0T°C198SY 06°6898<¥ GG E8LBSY 06°9G16S¥ 0T LLL8SY 07 €668SY ¢€'6L06SY 047690657 ¢9°L8E6STY 09°082¢65Y 96°0€V69Y ov've e-DAN
0S°6CELSY 0C I8ELSY 0€°L0G.LSV 0€°99G.L¢S¥ 0€°'9v9.LSY 0S°809.L¢¥ Qe TGCLEY 00°GLLLSY 00°S108SY 99 TET8STY GECLIBSY 0v'se e-DAN
07 69€9¢¥ ge'v8CIsy 08°GTE9SY 0C'c699¢¥ 0T1°6099¢V 00" T8S99¢SY G9'8C99¢Y 09°9199¢¥ S8 PITLSY G9TLTOLSEY 00°€V0LSY 07z eDAN
06°91¢09¥ 08°0CT09¥ 09°8CT09¥ gy €9€e09¥ 98°L966¢4¥ ¢6°01Cc09% ¢0°89009% 0€°0T909¥% 08°1¢909¥ 06°S 18097 0C'SL909¥ 0V’ 1z eDAN
06°L€0L6¢€ 06°T00L6¢€ 98'097.L6¢€ 09°€ccL6E 90°99¢CL6¢ g9'8TV.L6¢€ 90°98€.L6¢€ 9v'96€L6¢€ 08°'C8LL6E SV TLLLEE 0T'¥5LL6E 08~ ®-HAN
[rans duiastsy 0S¢ T90¥8¢ 01" 1ZGy8E Geyeey8e 0€°¢eeyse 00°'TEVYRE GG TLETRE 0T"GLEVRE G9°€89%8¢€ ST 70678¢ 0S°C6878€ 6¢ ®-DAN
00°¢S6.L8¢ 0G G86.L8¢ G.°00088¢ g€ GLE88E G6°798.L8¢ 0L°c8188¢ Gy 8€E88E 07°85088¢ G0°LEI8RE 0L°TL988¢E 0T°€0L88€ 8¢ ®-DAN
G8°,9¢c8¢ 09°0¥¢c8¢ 09°TLEC8E 09°¢€Se8¢ 06°G€SE8e 0G'€€9¢8¢ 09°€0Lc8¢ SV ¥19¢8¢ 007 10€8¢ 0L°060€8¢ ST VP1€8¢E Lz e-DAN
00°08¢c0¥ 01°v€ccoy G8°6SVc0V 9€'969C0¥ Gy 98¢€c0V ¢ 619c0V 0C°S19¢0¥ G€'€c9c0v 0€°868¢0¥ 0€°200€07% 06°108¢0¥ 9z ®-DAN
0g'vvv86¢ 99'€€g86¢ 0C'94786¢ 07'98¢86¢ 06°L0986¢ GE'EELB6E 0L79€.L86¢ G6°LV.L86¢€ 09°0L066¢ 98°'V.LT66¢ 06°S6166¢€ ez e-HAN
0C'LVv268¢ g1°06¢68¢ G6°LCT68¢ 0C'CL968¢ 20°¢0€68¢ GC'V8E68¢ 08°98C68¢ GC'C6E68¢ 96°C9968¢ 0L°86L68¢ ge'v6868¢ ¥e e-DHAN
G6°TST88¢ 0S°€LTI88E 04°99288¢ 0L7LEVS8E 06°L7788¢ g8'9C988¢ 0¥'9¢¥88¢ 99°09¢88¢ 09°LC688¢ 0€°€6T168¢ 0L°TT068¢ £€¢ ®-DAN
9C'ev0L8E 99 T8698¢ SV aTIL8E 0C'9€EL8E SV TT0L8E g€'09¢CL8¢ 9C'C8VL8E 06°GLTL8E 0¥'8€LL8E OV LLLL8E 08°'7€6.L8¢ %e B-HAN
09°66T06€ 01°¢¢006¢€ 0L°€1€06¢E Sy°80C06¢€ Qc 8€T06¢€ G9°€LS06¢€ 99°¢9€06¢ ¢0°0€€06¢€ Gg'€6.L06¢€ 99°L.806¢€ 02°¢¥806¢€ 12 e-DANW
8LTLGTLVL I8°8TGLVL €9°99CLYL vL°909L72 89°LVGLYL €9°CITLVL TE€VLO0LYL GG €889V L 1C°88997.L €T VI8IVL L6°G9L9VL 09°S0 096TReHURY
LLTLLGBIL P 0LL89L 6E°¥VV89.L CI'E€6€89L SV'c9C89L CSV6LLIL 8€°90€89L 67" 7L9L9L 99°9G6.L9L TP €8GLIL 9L°799.9L 0970 0961edqURY
CE'C816SL ¥8°L0E6SL 9L°0€€6SL 0€°TL96S2L ¢e 09c6SL Y2 086854 TG €EL8SL ¥8°¢V68<L 62°C068S5L €1°8LEBSGL LT7ES8SL 09°€0 0961ReYURY
€9'699V.LL OT L8LVLL G0'CVIvLL 78°8I8V.LL 66°CTVV.LL €T 08LVLL V8 TGEV.LL OV T9TV.LL CL'I8CVLL V9 LGLELL 10°986€LL 09°C0 096[@UTRY
€C°€901¢EL 86°960TECL 8V'G061EL 6T LLLTEL Y0'9SvIEL TG LT9TEL 8V TLITEL V€'808T1¢EL gg'1ee1EL g1°¢9.0¢€L gg'eTOTEL 09°T0 0961edIeY

V.L'ec9v901 08'90T%90T ¢6°96CV90T ceVYEVI0T Qe y08¥90T 89'794¢¥90T T19°¢84Y90T 9€°8vey90T ¢O'T69790T CTL°TB8ES90T €C°€CTPO0T 0F"'SO 096TBHUBRY
0¥ T¥6660T LE'88L660T CL'CVTO0TT TTI'6Z800TT 80°TCTO0TT 99'8¢C00TT 16°06C00TT 96°64949660T CT'8€8660T q9'vE8660T TE0TP660T 0770 096TBHUBRY
¥8°0T¥.L80T @6 T8TLB0T G0°960L80T Gy°92¢0.L80T LG'6€9980T 60°78€L80T ey vyel80T €L°TCSL80T TE'IPSLBOT 0T"868980T Z0°L8L980T OF'€0 096TReHURY
€8°'TCSeTTT G0'88ECTTT €0°97CST1TT VO'9TGCTTIT TLC6ESTTT TLP66F7T1TT 9T'GGLYTITT 96°6€9STTT P8 IV0STTT 6L TILVITT VO ISFPPITT 0720 096TReHURY
0T I%¥0¥01 67°8970701 ¢6 1870701 €2°€0€TV0T 6479990701 ¢g'ceLOvOT 976150701 08°9%80%0T €2¢'Cc190701 0g°80€0¥0T 18°€2C0V0T OF'10 096[eequBy
80°79¢0LET V¢ e8L69¢T 99°74c0.LET CE6100LET 0L LPBOLET 6.709¢0.L€T 70°60¢0LET 01°00¢0.L¢€T €9°0cL0LET L0°6¢9c0LET 0€'VE669ET 0€°G0 096[BHURY
8T°6L0CTVT 67°009CTVT LO'GSTICTPT 69°€9LCTIVI €C¢'8C9CTV1 69°6TSCIVI ¢C'08€CIvI Vevesecivl 60°7€9CTV1 8S°0G0CTVT STOLSTIFT 0E70 096TBHUBRY
€9'TL996¢ET 0C'9€9e6¢€T 0€°'80896¢1 ¢6°C8896¢€T LL'99696€T 1€°€6€96¢€T €V L9T96¢€1 €97L9C96ET 8E'8E€996€T 8C TVC96¢€T 8£°868S6ET 0E°€0 096TBHUBY
LETECCEVT 9e'68LCEVT 6C'9LCEEVT SV 6L9CEVT 0€°660€EVT T€'89VCEVT 8E'GV9CEVT TO'TE9CEVT 89°089€EVT 0L7€6VEETVT QT°€08TEFT 0€°C0 096TBHUBRY
ce Iy69€eT 76°0908€€T 8G'CGI8EET LT°LLG8EET 06°728LEET 0L EVEBEET TO LB98€EET 0S°V6TI8EET 99°LTO06EET GP CY8LEET VE69SLEET 0€°T0 096TRAHURY
8€'8GTTRY LL79LGT8Y L0"9CTERY 67°CLIT8Y 88°IEEEBY 06" 166187 08°GSTERY 69°LG8T87 88°60CE8Y 67°9GLT8Y 8€'8G1C8Y g0 OspIReyURY
6¢°6yc0ce 91°6g€0cs 16°€6€0C¢e G1°98861¢ 98°¢6L0c¢S 6€°€€60CS 8L°€060c¢ 91°90<0c¢ €1°¢8v0ce 6€°8ET1ICS TT°9€S61¢ v0 08pTReYURY
SL°992967 99°L8LG6¥ 16°6¢c967 ¢6°LVCI6¥ 8L°CBGS6V 8¢ '¢c0967 87°€9096V 8C°L69C6TV 87°90¢¢6V 9¢°698967 79 1896V €0 08pIReYURY
6€°08860¢ 1¢'¥62609 0g°6200T¢ ¢eTLT660¢8 91°8€860¢ 6T°PCTIO0TIS 68°9€6609 c87L9960¢ gg'cLL60S L9°6€960¢ 86'71060¢ 20~ OsplesyIey
ov'LLegge 6€°TCheee LL'8T0S¢S¢S ¢c'80veee g9'v0TSSe 86°0L99¢¢ 61°CECees 9V ecLyee TL'68L9SS vg'ecogge £€6°¢08V<¢e 10 0spleayTey
0T 6°0 8°0 L0 90 ¢ 0 70 €0 a0 0 0°0 O /edourysug

"9DURISUI LD 10] P[OQ UI PIJRITPUI J[NSAT 359q 93 Ym 592f gymsor oSeroae o1y uo () Iojourered Jo 9OUSNMPUT ‘g I[GR],

23

to the setting of parameter () and the impact of the setting of parameter ()
depends on the instances to be solved. Specifically, for large instances with
N = 2000, small @ values (< 0.2) led to better results. Moreover, for smaller
instances with N < 960, the effectiveness of () varied largely according to the
instances. For example, for RanReal480 1, () = 0.2 produced the best result
in terms of f,,4, while for another instance named RanReal480_2, @) = 0.5 is
the best setting. Finally, one observes from Table 6 that () = 0.2 led to the
best result in terms of “Avg.”, and thus this setting was used as the default
value of () in the present work.

5.1.2 Sensitivity Analysis of the Parameter a

To enhance its diversification ability, the NDVNS algorithm employs the pa-
rameter « to determine whether a newly generated solution should be ac-
cepted as the current solution (line 8 of Algorithm 1), where a larger value
of a means that the algorithm emphasizes more on the distance of the off-
spring solution from the current solution and the best solution found so far.
To show the impact of this parameter, we carried out an additional experi-
ment based on 10 representative instances. We ran the algorithm with « in
the range of {0.002,0.004,0.006,0.008,0.01,0.02,0.03,0.04} to solve each in-
stance 20 times. The computational results are summarized in Table 7. The
first column and the first row give respectively the names of instances and the
settings of parameter a. The average objective values (f,,,) over 20 runs are
reported in columns 2-9 respectively for each a value. The last row “#Best”
shows the number of instances for which the corresponding « value led to the
best result in terms of f,,, among all the tested « values.

Table 7 shows that the performance of the algorithm depends on the setting of
a. A too small or too large value of « deteriorates the performance. Specifically,
for « = 0.002 that is the smallest value tested, the algorithm performed the
worst. Moreover, for a = 0.04 that is the largest value tested, the algorithm
failed to obtain the best result in terms of f,,, for any instance. On the other
hand, one observes that the setting of & = 0.01 led to the best result for 4 out
of 10 instances, which implies the best performance of the algorithm. Hence,
the default value of a was set to 0.01 in this study.

5.2 Effectiveness of the Neighborhood Decomposition Strategy

The neighborhood decomposition technique described in Section 3.2.2 is the
most essential component of the NDVNS algorithm. In order to analyze its
effectiveness, we carried out an additional experiment to compare the NDVNS
algorithm and a NDVNS variant denoted by NDVNS-D, which was created

24

Table 7
Influence of parameter o on the average objective values (fqu9). The NDVNS algo-
rithm was run 20 times for each instance and each « value, and the best results are

indicated in bold among the tested parameter settings.
Instance/« 0.002 0.004 0.006 0.008 0.01 0.02 0.03 0.04

RanReal480_01 551972.05 553334.08 554664.70 554943.00 555519.77 555222.15 554532.40 555212.73
RanReal480_ 02 506587.35 507526.65 509512.47 509651.18 509766.19 509771.40 509395.45 509391.92
RanReal480_ 03 492032.45 493338.74 495741.40 496315.30 495276.96 495539.21 495714.79 495542.26
RanReal480_ 04 517084.98 518199.11 520179.98 520144.21 520456.70 519745.04 520140.74 520306.09
RanReal480_ 05 479475.83 481015.04 482583.06 482837.64 482337.86 482508.11 481984.18 482389.91

MDG-a_21 388733.50 390682.95 390544.65 390762.65 390630.90 390746.05 390672.10 390611.90
MDG-a_ 22 385473.20 387601.00 387741.65 387631.65 387583.40 387500.95 387561.90 387676.05
MDG-a_ 23 386416.55 388803.75 388831.65 388880.25 388969.10 388788.70 388827.70 388735.15
MDG-a_24 387404.90 389537.45 389855.90 389800.25 389804.70 389715.60 389719.45 389697.50
MDG-a_25 396814.05 399019.30 399135.10 399106.85 399150.95 398981.35 399115.50 399033.00
#Best 0 0 2 3 4 1 0 0

by disabling the neighborhood decomposition strategy of NDVNS (i.e., all the
entries of state matrices My, Ms, and Mz are always set to the value of 1
during the search process). In this experiment, we ran both algorithms 20
times for each of 40 representative instances, and the results are summarized
in Table 8. Column 1 of the table gives the names of instances, columns 2-
3 report the best objective values (fps:) over 20 runs for each algorithm,
columns 4-5 indicate the average objective value (f,,4), columns 6-7 give the
worst objective value (fuorst), and the last two columns show the standard
deviation (o) of the objective values obtained. The rows “#better”, “#equal”,
and “#worse” indicate the number of instances for which the corresponding
algorithm obtained a better, equal, and worse result compared to the other
algorithm. In addition, the p-values from the non-parametric Friedman tests
are provided for each performance indicator in the last row of the table.

Table 8 shows that NDVNS dominates the NDVNS-D variant in terms of
foest, favg, and fuorst. Specifically, for each tested instance, NDVNS obtained
a better result than NDVNS-D in terms of fyes, favg, and fuorst. Moreover,
the standard deviations (o) are smaller with NDVNS than with NDVNS-D
on most instances. The statistical differences of the compared algorithms are
confirmed by small p-values (< 0.05). This experiment demonstrates the effec-
tiveness of the neighborhood decomposition strategy of the NDVNS algorithm.

5.8 Spatial distribution of high-quality solutions

To understand intuitively the spatial distribution of high-quality local op-
timum solutions in the search space and the rationality of the underlying
strategies of the proposed algorithm, we conducted an additional computa-
tional experiment to show a rough picture as to how high-quality solutions
could be distributed in the search space. In this experiment, the NDVNS al-

25

RanReal240_01

RanReal480_01

8 K
S J
- g
&
S ,
w o
Kl ‘
(<] °© * . :
S
S < N
o *
w ! .
<t 5
S ‘
o
8 S
° 4
I o
8 2 0.4
T ! 03
o
S y o 02
T) S
2 03 ! o 01
< 0.2 £ 0.0
@
<] 0.1 < -0.1
? 00 0.2
0 -0.1 -0
d 02 3 -03
'-04 -03 -02 -01 00 01 02 03 04 -04 -03 -02 -01 00 01 02 03 04
Distribution of 2009 high—quality local optima Distribution of 2368 high—quality local optima
RanReal480_15 RanReal960_06.40
o
< S
S
©
I~ >
S 4 ° .
B :‘,;:5 <
S o S
-
o H . .
° o
5 LA
S "y |
g 03
0.2 o g 0.6
- e 0.1 ° 0.4
T 4 9. 0.0 02
-0.1 o~
o o 5
? -02 T > 0.0
~03 -0.2
3 -04 3 0.4
-04 -03 -02 -01 00 01 02 03 04 -04 -03 -02 -01 00 01 02 03 04
Distribution of 2729 high—quality local optima Distribution of 1687 high—quality local optima
MDG-a_40 MDG-a_21.40
o
< S
S
¥ *
: ©
S .
S ¢ .
s @
<
o : S
S ¥
~ N
o S
! 06 o
< 0.4 g - 06
? 0.2 Ll 04
i
° 0.0 N . 0.2
< -0.2 ? 0.0
-0.4 -0.2
3 -06 3 -04
-08 -06 -04 -02 00 02 04 06 08 -08 -06 -04 02 0.0 0.2 0.4

Distribution of 1222 high—quality local optima Distribution of 1939 high—quality local optima

Fig. 4. Spatial distribution of high-quality local optimum solutions for six represen-
tative instances.

26

Table 8

Comparison between the proposed NDVNS algorithm and its variant denoted by the
NDVNS-D algorithm in which the neighborhood neighborhood strategy is disabled.
Dominating values between the two compared algorithms are indicated in bold for
each instance and each performance indicator.

foest favg fworst

Instance NDVNS NDVNS-D NDVNS NDVNS-D NDVNS NDVNS-D NDVNS NDVNS-D
RanReal480_01 556477.17 556280.14 555549.33 555188.88 552936.00 549586.97 823.69 1441.65
RanReal480_ 02 511381.67 511156.11 509625.83 508838.48 505101.17 504309.24 1504.78 1953.92
RanReal480_03 497586.82 497492.28 495715.20 495595.49 493672.18 493368.03 1449.09 1499.75
RanReal480_04 523258.76 522697.56 520445.75 520276.45 517178.17 516555.37 1743.75 1505.43
RanReal480_05 484541.10 484217.10 482670.41 482420.78 480870.94 479795.19 1129.91 1258.78
RanReal960_01.30 1340580.00 1339721.61 1338735.21 1337128.18 1335372.26 1333572.21 1079.28 1327.26
RanReal960_02.30 1435894.10 1432847.02 1432816.25 1431412.37 1431006.80 1429735.56 1258.08 866.59
RanReal960_03.30 1399371.79 1396425.01 1396676.76 1394971.21 1392729.52 1392159.71 1560.16 1252.32
RanReal960_04.30 1414472.27 1413280.79 1412766.74 1410858.71 1410140.56 1406130.61 1106.39 1749.05
RanReal960_05.30 1372173.99 1370546.90 1370903.70 1368766.98 1369593.86 1366537.32 752.46 1222.22
RanReal960_01.40 1042160.11 1040891.98 1040859.48 1038960.64 1039445.10 1035496.19 729.39 1441.51
RanReal960_02.40 1117362.73 1115627.50 1115766.18 1113797.06 1113129.71 1110776.04 1102.45 1288.23
RanReal960_03.40 1088482.73 1087850.94 1087361.36 1085841.46 1084553.32 1084119.65 857.30 824.45
RanReal960_04.40 1102093.11 1100375.06 1100356.79 1098719.99 1098057.48 1096684.10 1053.52 1105.54
RanReal960_05.40 1066512.35 1064464.01 1064946.28 1062779.69 1063548.18 1061008.97 901.98 999.41
RanReal960_01.60 733456.08 731350.74 731642.79 729716.28 730397.52 728080.80 833.78 837.64
RanReal960_02.60 776818.81 775654.32 774895.27 772275.93 772821.57 769968.23 907.74 1182.85
RanReal960_03.60 760549.17 759597.79 758954.36 757088.50 757406.97 755836.32 858.37 850.66
RanReal960_04.60 769889.49 767863.97 768146.77 766096.19 766488.28 764262.17 916.02 889.35
RanReal960_05.60 749585.55 747151.07 747026.39 745440.24 745099.96 T742728.88 1017.47 1078.15
MDG-a_21 391375.00 390547.00 390724.55 389740.95 389947.00 388851.00 362.89 396.02
MDG-a_22 388315.00 387383.00 387513.50 386596.25 387003.00 385926.00 346.58 406.09
MDG-a_23 389437.00 388321.00 388879.50 387909.05 388218.00 387210.00 320.46 317.16
MDG-a_ 24 390204.00 389533.00 389726.40 388761.40 389141.00 387878.00 292.65 409.48
MDG-a_ 25 399482.00 398824.00 398931.90 398227.00 398315.00 397773.00 318.32 329.20
MDG-a_ 26 403151.00 402656.00 402653.30 402100.95 401907.00 401471.00 316.88 294.16
MDG-a_ 27 383599.00 382724.00 382984.05 381960.65 382307.00 381385.00 283.87 321.03
MDG-a_28 388917.00 388106.00 388480.90 387551.10 387746.00 386965.00 309.98 325.49
MDG-a_29 385599.00 384607.00 384860.65 383847.75 384148.00 383189.00 384.72 391.42
MDG-a_30 398146.00 397380.00 397687.00 396764.20 397191.00 395634.00 294.11 363.92
MDG-a_21.40 461467.00 460399.00 460667.70 459906.10 459840.00 458802.00 358.25 405.02
MDG-a_22.40 457376.00 456526.00 456782.20 456084.20 455514.00 455358.00 416.19 315.13
MDG-a_23.40 458711.00 458054.00 457912.05 456990.45 457138.00 455904.00 364.49 462.72
MDG-a_24.40 459778.00 458703.00 459164.10 458127.35 458404.00 457108.00 331.25 448.82
MDG-a_25.40 470605.00 469873.00 469607.40 469119.20 468781.00 468034.00 357.85 424.64
MDG-a_26.40 475036.00 474078.00 474313.50 473349.90 473408.00 471753.00 415.44 575.59
MDG-a_27.40 451983.00 451363.00 451253.05 450589.65 450777.00 449563.00 334.28 450.01
MDG-a_28.40 458496.00 457561.00 457585.55 456946.50 456221.00 456069.00 482.50 322.54
MDG-a_29.40 453877.00 453216.00 453416.60 452515.05 452757.00 451725.00 334.95 425.75
MDG-a_ 30.40 468597.00 468312.00 468128.40 467430.10 467418.00 466729.00 368.32 434.44
Avg. 681919.97 680841.45 680678.33 679517.28 679143.26 677700.96 714.49 809.83
7#Better 40 0 40 0 40 0 30 10
#Equal 0 0 0 0 0 0 0 0
#Worse 0 40 0 40 0 40 10 30
p-value 2.54E-10 2.54E-10 2.54E-10 2.04E-3

gorithm was performed 20 times for each instance and all the high-quality
local optimum solutions returned by the local search method NDVND, were
collected respectively for each instance, where a solution s is considered to be
of high-quality if its objective value f(s) is superior to the average objective
value f,,, reported in Section 4, i.e., f(S) > faug-

Following [23,34], we visualize the spatial distribution of the collected high-
quality solutions in Euclidean space R*® by using a multidimensional scaling
(MDS) procedure as follows. First, we generate a distance matrix D;y; be-
tween solutions in the original search space €2, where [is the number of the
collected solutions and the partition distances d;; € D;y; between solutions are
calculated. Then, from the distance matrix D;y;, the [coordinate points are
generated in Euclidean space R? by using the classic emdscale method whose

27

goal is to minimize the distance distortion caused between the original space
and Euclidean space. Finally, the scatter graph of these [coordinate points is
plotted in R3.

Fig. 4 shows the scatter graphs for six selected instances. One clearly observes
that high-quality local optimum solutions attained by the proposed algorithm
are grouped in clusters in the search space. This finding implies that when the
search process reaches a high-quality solution, it is very useful to make a suf-
ficient exploitation around this solution by performing limited perturbations
and subsequent local searches. On the other hand, when a search region has
been sufficiently exploited and the search process is trapped into a deep local
optimum, it is necessary to jump out of the trap by performing some large
perturbation operations. In the NDVNS algorithm, this is jointly achieved by
the intensification-oriented NDVND, procedure and the probabilistic pertur-
bation of the shake procedure.

6 Conclusion and Future work

The neighborhood decomposition-driven variable neighborhood search algo-
rithm proposed in this work for solving the capacitated clustering problem
integrates the ideas of neighborhood decomposition and probability-based per-
turbation. By isolating promising candidate solutions to be considered at each
search iteration, neighborhood decomposition constitutes a powerful technique
to speed up neighborhood examination and enable more focused searches.

We have performed extensive experiments on 110 instances commonly used
in the literature to show the competitiveness of the proposed algorithm. The
computational results demonstrate that the algorithm performs extremely well
on the test suite compared to the state-of-the-art methods in the literature.
The advantage of the algorithm is even more evident in terms of computational
efficiency and search effectiveness when large-scale problem instances are con-
sidered. This work thus advances the state-of-the-art of solving the challenging
capacitated clustering problem. Moreover, given that the considered problem
is a general model to formulate a variety of practical applications, the publicly
available code of the algorithm can help to solve these practical problems.

The ideas of neighborhood decomposition-driven local search and probability-
based perturbation are of general nature. Thus, it would be interesting to
check the usefulness of these ideas on other clustering or grouping problems
such as those mentioned in the introduction.

28

Acknowledgments

We are grateful to the reviewers for their valuable comments and sugges-
tions which helped us to improve the paper. This work was partially sup-
ported by the six talent peaks project in Jiangsu Province of China (Grant
No. RJFW-011), the National Natural Science Foundation of China (Grant
No. 61703213), the Natural Science Foundation of Jiangsu Province of China
(Grant No. BK20170904), and Shenzhen Science and Technology Innovation
Commission under Grant Nos. JCYJ20180508162601910 and 2019-INT003.

References

[1] U. Benlic and J.K. Hao, A multilevel memetic approach for improving graph
k-partitions, IEEE Transactions on Evolutionary Computation, 15(5): 624-642,
2011.

[2] J.L. Bentley, Fast algorithms for geometric traveling salesman problems, ORSA
Journal on Computing, 4(4): 387411, 1992.

[3] J. Brimberg, N. Mladenovi¢, and D. UroSevi¢, Solving the maximally diverse
grouping problem by skewed general variable neighborhood search, Information
Sciences, 295: 650-675, 2015.

[4] J. Brimberg, N. Mladenovi¢, R. Todosijevi¢, and D. Urosevi¢, Solving the
capacitated clustering problem with variable neighborhood search, Annals of
Operations Research, 272(1): 289-321, 2019.

[5] J. Chang, L. Wang, J.K. Hao, and Y. Wang, Parallel iterative solution-based tabu
search for the obnoxious p-median problem. Computers € Operations Research,
127: 105155, March 2021.

[6] Y. Chen, Z.P. Fan, J. Ma, and S. Zeng, A hybrid grouping genetic algorithm for
reviewier group construction problem. FEzpert Systems with Applications, 38(3):
2401-2411, 2011.

[7] R.L. Church and S. Wang, Solving the p-median problem on regular and lattice
networks, Computers & Operations Research, 123: 105057, November 2020.

[8] C. Contardo, M. Iori, and R. Kramer, A scalable exact algorithm for the vertex
p-center problem, Computers & Operations Research, 103: 211-220, 2019.

[9] Y.M. Deng and J.F. Bard, A reactive GRASP with path relinking for capacitated
clustering, Journal of Heuristics, 17(2): 119-152, 2011.

[10] C.N. Fiechter, A parallel tabu search algorithm for large traveling salesman
problems, Discrete Applied Mathematics, 51: 243-267, 1994.

29

[11] C.E. Ferreira, A. Martin, C.C. de Souza, R. Weismantel, and L.A. Wolsey,
The node capacitated graph partitioning problem: A computational study,
Mathematical Programming, 81: 229-256, 1998.

[12] M. Gallego, M. Laguna, R. Marti, and A. Duarte, Tabu search with strategic
oscillation for the maximally diverse grouping problem, Journal of the Operational
Research Society, 64: 724-734, 2013.

[13] P. Galinier, Z. Boujbel, and M.C. Fernandes, An efficient memetic algorithm
for the graph partitioning problem, Annals of Operations Research, 191(1): 1-22,
2011.

[14] F. Glover and M. Laguna, Tabu search. Springer, Kluwer Academic Publishers,
Boston, MA, 1997.

[15] M. Gnégi and P. Baumann, A matheuristic for large-scale capacitated clustering,
Computers & Operations Research, 132: 105304, August 2021.

[16] G. Gonzélez-Almagro, J. Luengo, J. Cano and S. Garcia, DILS: Constrained
clustering through dual iterative local search, Computers €& Operations Research,
121: 104979, September 2020.

[17] D. Gustield, Partition-distance: A problem and class of perfect graphs arising in
clustering, Information Processing Letters, 82(3): 159-164, 2002.

[18] P. Hansen and N. Mladenovi¢, Variable neighborhood search: Principles and
applications, Furopean Journal of Operational Research, 130(3): 449-467, 2001.

[19] B. Hendrickson and T.G. Kolda, Graph partitioning models for parallel
computing, Parallel Computing, 26(12):1519-1534, 2010.

[20] H. H. Hoos and T. Stiitzle, Stochastic local search: foundations and applications,
The Morgan Kaufmann Series in Artificial Intelligence, Morgan Kaufmann, 2004

[21] M. Laguna, J.W. Barnes and F. Glover, Tahu search methods for a single
machine scheduling problem. Journal of Intelligent Manufacturing, 2: 63-74, 1991.

[22] X.J. Lai and J.K. Hao, Iterated variable neighborhood search for the capacitated
clustering problem, Engineering Applications of Artificial Intelligence, 56: 102—120,
2016.

[23] X.J. Lai and J.K. Hao, Iterated maxima search for the maximally diverse
grouping problem, European Journal of Operational Research, 254(3): 780-800,
2016.

[24] X.J. Lai, J.K. Hao, Z.H. Fu, D. Yue, Neighborhood decomposition based variable
neighborhood search and tabu search for maximally diverse grouping, European
Journal of Operational Research, 289: 1067-1086, 2021.

[25] M. Lewis, H.B. Wang, and G. Kochenberger, Exact solutions to the capacitated
clustering problem: A comparison of two models, Annals of Data Science, 1(1):
15-23, 2014.

30

[26] Z. Lu, J.K. Hao, and Y. Zhou, Stagnation-aware breakout tabu search for
the minimum conductance graph partitioning problem. Computers & Operations
Research, 111: 43-57, 2019.

[27] J. M. Mulvey and M. P. Beck, Solving capacitated clustering problems, European
Journal of Operational Research, 18(3), 339-348, 1984.

[28] A. Martinez-Gavara, V. Campos, M. Gallego, M. Laguna, and R. Marti,
Tabu search and GRASP for the capacitated clustering problem. Computational
Optimization and Applications, 62(2): 589607, 2015.

[29] A. Martinez-Gavara, D. Landa-Silva, V. Campos, and R. Marti, Randomized
heuristics for the capacitated clustering problem, Information Sciences, 417: 154—
168, 2017.

[30] H. Meyerhenke, P. Sanders, and C. Schulz, Parallel graph partitioning for
complex networks, IEEE Transactions on Parallel and Distributed Systems, 28(9):
2625-2638, 2017.

[31] N. Mladenovi¢ and P. Hansen, Variable neighborhood search, Computers &
Operations Research, 24(1): 1097-1100, 1997.

[32] L. F. Moran-Mirabal, J. L., Gonzalez-Velarde, M. G. C. Resende, R. M. A. Silva,
Randomized heuristics for handover minimization in mobility networks. Journal
of Heuristics, 19:845-880, 2013.

[33] G. Palubeckis, A. Ostreika, and D. Rubliauskas, Maximally diverse grouping: an
iterated tabu search approach, Journal of the Operational Research Society, 65(6):
1-14, 2014.

[34] D.C. Porumbel, J.K. Hao, and P. Kuntz, A search space cartography for guiding
graph coloring heuristics. Computers & Operations Research 37(4): 769-778, 2010.

[35] D.C. Porumbel, J.K. Hao, and P. Kuntz, An efficient algorithm for computing
the distance between close partitions, Discrete Applied Mathematics, 159(1): 53—
59, 2011.

[36] J. Puerto, M. Rodriguez-Madrena, and A. Scozzari, Clustering and portfolio
selection problems: A unified framework, Computers & Operations Research, 117:
104891, May 2020.

[37] M.G.C. Resende and C.C. Ribeiro, Greedy randomized adaptive search
procedures, In F. Glover and G. Kochenberger, editors, Handbook of
Metaheuristics, p. 219-249, Kluwer Academic Publishers, 2003.

[38] F. Semet and E. Taillard, Solving real-life vehicle routing problems efficiently
using tabu search, Annals of Operations Research, 41: 469-488, 1993.

[39] T. Stiitzle, Iterated local search for the quadratic assignment problem, European
Journal of Operational Research, 174: 1519-1539, 2006.

[40] D.H. Tran, B. Babaki, D.V. Daele, P. Leyman, and P. De Causmaecker, Local
search for constrained graph clustering in biological networks, Computers &
Operations Research, 132: 105299, August 2021.

31

[41] R. Weitz and S. Lakshminarayan, An empirical comparison of heuristic and
graph theoretic methods for creating maximally diverse groups, VLSI design, and
exam scheduling, Omega, 25(4): 473-482, 1997.

[42] Q. Zhou, U. Benlic, Q.H. Wu, and J.K. Hao, Heuristic search to the capacitated
clustering problem, Furopean Journal of Operational Research, 273(2): 464-487,
2019.

[43] Y. Zhou, J.K. Hao, and A. Gooffon, A three-phased local search approach for
the clique partitioning problem. Journal of Combinatorial Optimization, 32(2):
469-491, 2016.

32

