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Abstract

The capacitated clustering problem (CCP) is a general model relevant for a vari-
ety of important applications in areas such as parallel computing and very large
scale integration design. However, the problem is known to be NP-hard, and thus
computationally challenging. In this work, we present an original and highly effec-
tive variable neighborhood search algorithm for the problem, which is characterized
by its neighborhood decomposition technique and a probability-based diversifica-
tion strategy. The proposed algorithm is assessed via extensive experiments on 110
benchmark instances commonly used in the literature. Computational results show
that the algorithm significantly outperforms the existing state-of-the-art algorithms
in the literature. This work advances the state-of-the-art of solving the capacitated
clustering problem and can be useful for the related practical applications. The key
feature of the algorithm, i.e., combining the neighborhood decomposition-driven lo-
cal search with the perturbation, is of general interest and can help to design effective
heuristic algorithms for other important clustering problems.
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1 Introduction

Clustering problems represent a class of relevant models with a variety of prac-
tical applications. The goal of a clustering problem is to group a given set of
items into a number of fixed or variable K (K > 2) clusters to optimize an
objective function under some possible imperative constraints. Examples of
clustering problems include semi-supervised graph clustering [16], constrained
graph clustering in biological networks [40], graph partitioning [1,19,26,43],
and various p-center and p-median problems [5,7,8,15,27,36]. In general, clus-
tering problems are NP-hard and thus computationally challenging.

The capacitated clustering problem (CCP) studied in this work is a typical
clustering problem with a number of applications. Representative applications
that can be conveniently formulated by CCP concern facility locations [9],
parallel computing [19], very large scale integration design [41], and creation
of peer review groups [6].

CCP generalizes three NP-hard problems: the graph partitioning problem
(CPP) [1,11,13,30], the handover minimization problem [28,32], and the max-
imally diverse grouping problem (MDGP) [3,12,23,33]. Consequently, solving
CCP is a computationally difficult task and represents a formidable challenge
from the perspective of designing effective search algorithms.

The CCP problem can be described as follows. Given a weighted complete
graph G = (V, E,c,w) and a positive integer K, where V = {vy,v9,..., 05}
is the set of NV vertices, E represents the set of N(N —1)/2 edges, ¢ = {¢;; >
0:{vi,v;} € E} is the set of edge weights, and w = {w; > 0 : v; € V'} is the
set of vertex weights, the capacitated clustering problem (CCP)[9] involves
partitioning the vertex set V into K disjoint clusters C4, Cy, ..., Ck such that
the sum of vertex weights (i.e., ,cc, w(v)) of each cluster Cy (9 = 1,2,..., K)
lies in a given interval [L, U], while maximizing the sum of the edge weights
in the same clusters, where L and U are called the lower and upper bounds of
the capacity of each cluster, respectively. An illustrative example for CCP is
given in Fig. 1.

Formally, CCP can be stated as follows [9,28]:

K N-1 N
(CCP) Maximize f= Y. > i XigXjg (1)

g=1 i=1 j=i+1

K
Subject to Y X, =1,4i=1,2,...,N (2)
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Fig. 1. An illustrative example for CCP. Given a weighted complete graph
G = (V,E,c,w) with |V] = 14, w; = 1.0 for all vertices v; in V, the number of
clusters K = 4, and lower and upper bounds [L, U] = [3, 4], the corresponding CCP
consists of partitioning the set V' of vertices into 4 clusters C1, Csy, C3 and Cy, such
that L < 3~ oo w(v) < U for Vg € {1,2,3,4}, while the sum of the edge (indicated

in red) weights in the same clusters is maximized.
X, €{0,1},i=1,2,...,N;g=1,2,..., K (4)

where X, is a binary variable that takes the value of 1 if the vertex v; is
located in cluster C, and 0 otherwise. Thus, the objective function f, which
is to be maximized, adds up the edge weights ¢;; for edges whose endpoints i
and j belong to the same cluster C; (X;, = X;;, = 1). The set of constraints
(2) guarantees that each vertex belongs to exactly one cluster, and the set of
constraints (3) forces the sum of vertex weights of each cluster lies in [L, U].

Due to the importance of CCP, various search methods have been proposed
in the literature. As the review in Section 2 shows, most existing studies fo-
cus on heuristic algorithms which aim to find satisfactory solutions as fast
as possible, without optimality guarantee of the attained solutions. In par-
ticular, the most effective algorithms are based on neighborhood search (also
called stochastic local search [20]) whose performance critically depends on
the adopted neighborhoods as well as the way the neighborhoods are exam-
ined. Indeed, given that these algorithms need to evaluate a set of candidate
solutions at each iteration, the search becomes very time-consuming for solv-
ing large problems. Thus, research on the design of new algorithms as well as
efficient neighborhood examination methods becomes highly relevant.

In this work, we aim to advance the state-of-the-art of CCP in terms of prac-
tical solving of large problem instances. Inspired by a related work on the
maximally diverse grouping problem [24], some early studies about the neigh-



borhood decomposition strategies [10,21,38] and the technique of don’t look
bits |2,39], we propose a new heuristic algorithm called the neighborhood
decomposition-driven variable neighborhood search algorithm for CCP. Ex-
tensive experimental results show that the proposed algorithm outperforms
significantly the state-of-the-art CCP algorithms on the 110 benchmark in-
stances widely used in the literature.

The remaining parts of paper are organized as follows. In Section 2, we review
representative recent studies on CCP. In Section 3, we describe the proposed
algorithm. In Section 4, experimental results and comparisons are reported to
assess the algorithm. Section 5 shows an analysis of key algorithmic compo-
nents. Last section summarizes the main findings of this work and provides
research perspectives.

2 Literature review

Since the introduction of CCP, a large number of studies have been devoted to
the problem. Useful information about the studies on CCP prior to 2011 can
be found, for instance, in [9,28]. In this section, we focus on the most recent
developments on solving methods for CCP.

Among the existing algorithms, only one provides exact solutions [25], based
on linear and quadratic models solved by commercial optimizers (CPLEX
and Gurobi). However, the test instances studied are quite small (N < 50),
compared to the instances tested in this study (240 < N < 2000). To handle
large instances, heuristic algorithms are typically used, which can be roughly
divided into four categories.

The first category is based on the greedy randomized adaptive search pro-
cedure (GRASP) metaheuristic [37|, which iterates a stochastic greedy con-
struction procedure and a subsequent neighborhood search procedure. In [9],
Deng and Bard proposed the first reactive GRASP procedure for CCP. In
[28,29], Martinez-Gavara et al. introduced a simplified version of Deng and
Bard’s GRASP method and several variants, where a special restricted candi-
date list strategy was used by the greedy construction procedure and different
neighborhoods (e.g., the insertion neighborhood, the swap neighborhood, or a
new 2-1 exchange neighborhood) were employed in the neighborhood search
procedure.

The second category is based on the tabu search (TS) metaheuristic [14].
In [28], Martinez-Gavara et al. proposed a TS algorithm based on the 2-1
exchange neighborhood, and a hybrid local search algorithm integrating a
simplified GRASP procedure and the TS algorithm (GRASP+TS). They also



presented an adapted version of the TS algorithm with strategic oscillation
initially designed for the related MDGP, where the insertion and swap neigh-
borhoods are adopted as the basic neighborhood structures. In [42], Zhou et al.
introduced a penalty-based TS algorithm (FITS) that explores both feasible
and infeasible regions.

The third category relies on the variable neighborhood search (VNS) meta-
heuristic [18,31]. In [22], based on the insertion neighborhood, the swap neigh-
borhood, and the 2-1 exchange neighborhood, Lai and Hao introduced an
iterated variable neighborhood search (IVNS) algorithm by integrating organ-
ically an extended variable neighborhood descent method and a randomized
shake procedure. In [4], Brimberg et al. proposed a general variable neighbor-
hood search (GVNS) algorithm and a skewed general variable neighborhood
search (SGVNS) algorithm based on the same three neighborhoods.

The fourth category relies on the hybrid population-based evolutionary frame-
work which combines a local search procedure and a crossover operator. In [9],
Deng and Bard mixed a GRASP procedure, a path relinking procedure and
a variable neighborhood descent method. In [42], in addition to the FITS al-
gorithm, Zhou et al. proposed a memetic algorithm by combining the FITS
algorithm serving as a local search procedure and a clustering-based crossover
operator.

According to the computational results reported in the above studies, we iden-
tify five state-of-the-art algorithms: GRASP+TS [28], FITS |42], IVNS [22],
GVNS [4], and SGVNS [4]. These algorithms will be used as our reference
algorithms for the computational studies of Section 4.

Our literature review indicates that the best performing CCP algorithms
are all neighborhood search algorithms which explore iteratively one or more
neighborhoods (e.g., insertion neighborhood, swap neighborhood, and 2-1 ex-
change neighborhood). Specifically, for a given neighborhood, such an algo-
rithm needs, at each iteration, to examine all or some neighbor solutions to
identify the solution of interest (e.g., the best solution among all neighbor so-
lutions or an improving solution better than the current solution). The search
becomes very time-consuming when the neighborhood contains many neigh-
bor solutions (this is typically the case of the swap neighborhood and the 2-1
exchange neighborhood). Thus, the issue of a fast examination of the consid-
ered neighborhoods becomes critical and directly impacts the performance of
the search algorithm.

In this work, to speed up neighborhood examination, we design a neighborhood
decomposition strategy for the CCP. This strategy divides a given neighbor-
hood into a number of disjoint subsets (called neighborhood blocks) of neigh-
bor solutions and identifies each promising neighborhood block with a 0-1



state variable. This decomposition accelerates neighborhood examination by
checking only the promising neighborhood blocks. This is in sharp contrast to
existing algorithms in the literature that do not make a distinction between
promising neighbor solutions and non-promising neighbor solutions and thus
waste computation time by repetitively re-examining non-promising neighbor
solutions.

3 Neighborhood decomposition-driven variable neighborhood search

The proposed neighborhood decomposition-driven variable neighborhood search
(NDVNS) algorithm is based on the general variable neighborhood search
metaheuristic [18,31]. The primary innovative ingredients of the algorithm
include its neighborhood decomposition strategy designed for CCP to accel-
erate the search process and a probabilistic perturbation strategy to control
the tradeoff between search intensification and diversification.

The current neighborhood decomposition strategy dynamically partitions a
neighborhood into a number of disjoint neighborhood blocks, and enables the
search algorithm to only examine the promising neighborhood blocks which
are identified by a 0-1 state value. By ignoring the other blocks, the algorithm
significantly increases its computational efficiency. The current neighborhood
decomposition strategy is related to early candidate list based neighborhood
decomposition strategies and the don’t look bits technique. The candidate list
approach was used to decompose a given neighborhood into coordinated sub-
sets so that the search algorithm only focuses on some subsets with desirable
features [10,21,38]. The don’t look bits technique was initially developed to
speed up local search procedures for the traveling salesman problem [2] and
subsequently adapted to the quadratic assignment problem (QAP) [39]. In
particular, taking QAP as an example, to avoid scanning a full neighborhood,
the don’t look bits technique employs a dynamically updated 0-1 vector to dis-
tinguish the promising items from the unpromising items. Then the search ex-
amines only the promising items, which significantly speeds up the algorithm.
On the other hand, unlike these early approaches, the current decomposition
strategy does not employ any candidate list and uses a simple 0-1 state ma-
trix to perfectly identify the visited subsets that do not contain an improving
solution.

Basically, for a given problem instance, i.e., a double-weighted complete graph
G = (V, E, c,w), a positive integer K, and the lower bound L and upper bound
U of clusters on the capacity, the proposed algorithm explores the search space
) composed of all feasible K -partitions of the vertex set V' satisfying the capac-
ity constraints of clusters, i.e., Q = {{C},Cs,...,Cx}: V =UZKC;, C:NC; =
0 Vi # j,L <|Cy| < U,Vg}, where |Cy| = X ec, w(v).
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The main framework and components of the NDVNS algorithm are described
in the following subsections.

3.1 Main framework of the NDVNS Algorithm

Algorithm 1: Neighborhood decomposition-driven variable neighborhood

search (NDVNS) for capacitated clustering

Input: A double-weighted complete graph G = (V, E, ¢, w), an integer
K, time limit t,,,,, and parameters «, Q, Knin, Kmaz

Output: The best feasible K-partition of G found (s*)

s < Initial Solution(G, K)

s <— NDVNDj;(s) /* Local search, Algorithm 2 */

¥4 s

k<« kmin

while time() < tpq. do

s < Shake(s,k)  /x Perturb the solution s, Section 3.3 */

5"« NDVNDy(s') /* Local search, Algorithm 2 */
if (4 +a-d(s",5) > 1) A (55 +a-d(s",5") > 1) then
s 5
if f(s") > f(s*) then
s* 5"
else
r < rand(0, 1)
if r < ) then
/* () is a parameter */

else

| k< k+1
end
end
else

| k< k+1
end
if £ > k0, then
end
end
return s*

The NDVNS algorithm (see the flowchart in Fig. 2) combines an initialization
procedure aiming at generating a feasible solution, two local search procedures
(i.e., NDVND,; and NDVND3) and a shake procedure aiming at diversifying
the search process.

Algorithm 1 shows the main framework of the NDVNS algorithm, where s and
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Fig. 2. The main flowchart of the proposed NDVNS algorithm.

s* denote respectively the current solution and the best solution found so far,
d(-,-) is a distance function defined by the partition distance metric [3,17,35],
and k is the current perturbation strength of the perturbation strategy (see
Section 3.3).

The algorithm starts from an initial solution generated by the two-stage ini-
tialization procedure of [22] (line 1 of Algorithm 1), and then performs a local
search procedure (i.e., NDVND3) to locally improve the initial solution (line
2). After that, the perturbation strength k of the shake procedure Shake(-,-)
is initially set to the minimum value k,,;, and the search process enters a
“while” loop in which several operations are iteratively performed to improve
the current solution until the time limit (¢,,4.) is reached (lines 5-28).

At each “while” loop, the current solution s is first perturbed by the Shake(-,-)
procedure and is then improved by a fast local search procedure (i.e., NDVND,)
(lines 6 and 7). Then, the resulting solution s" is conditionally accepted ac-
cording to its quality and distances to s and s* (lines 8-9), similar to the
SGVNS algorithm of [4]. Moreover, the value of k is set to k., and the
recorded best solution is updated if an improved solution is found, i.e., s* < s
and k£ < k,,in, and the value of k is increased as k < k + 1, otherwise. In
addition, the algorithm employs a probability @) (a parameter) to control the



perturbation strength £ to maintain a suitable tradeoff of search intensifica-
tion and diversification (lines 15-20). That is, the value of k switches to kpin
with probability @) if the recorded best solution s* has not been improved
during the current iteration. Finally, the value of k is reset to k,;, as long as
k reaches the allowed maximum value k., (lines 25-27). We describe below
the components of the algorithm.

3.2 Local Optimization Methods of the NDVNS Algorithm

This subsection presents the neighborhood decomposition-driven variable neigh-
borhood descent (NDVND) methods and the local optimization procedure.

3.2.1 General procedure of variable neighborhood descent method

Variable neighborhood descent (VND) is a local search approach that ex-
plores local optimal solutions with several ordered neighborhoods Ny (6 =
1,2,...,0maz). Specifically, the VND method starts with the first neighbor-
hood Ny (6 = 1), and then switches to the next neighborhood Nyy; when
a local optimum with respect to the current neighborhood Ny is attained.
Moreover, VND switches immediately to the first neighborhood N; from the
current neighborhood Ny (6 = 2,3,...,0,,4,) as soon as an improving solu-
tion is found. Finally, VND stops when the search process reaches the last
neighborhood Ny and no improving solution can be found in Ny

max max *

3.2.2  Newghborhoods and neighborhood decomposition

Like previous studies [4,22,28|, our NDVNS algorithm employs three comple-
mentary neighborhoods, i.e., the insertion neighborhood Ny, the swap neigh-
borhood N, and the 2-1 exchange neighborhood Nj.

The insertion neighborhood N is generated by the OneM ove operator. Given
asolution s = {C4, (s, ..., Ck}, the OneM ove operator (denoted by < v, C;, C; >)
transfers a node v from its current cluster C; to another cluster C; (1 < j #
i < K), such that the resulting solution denoted by s & < v, C;, C; > is still
feasible. As such, the neighborhood Nj(s) is composed of all possible feasible
solutions which can be obtained by applying the OneM ove operator to s, i.e.,

Nl(S) :{SEB<U,C¢,C]' > IUGC@,|CZ‘|—M<’U) > L, (5)
G5l +w(v) < Ui #j}

Clearly, the size of N;(s) is bounded by O(N x K).



Meanwhile, according to the formulation of CCP (see the illustrative example
in Fig. 1) and the definition of Ni(s), it is easy to observe that the neighbor-
hood Nj(s) can be partitioned into K x (K — 1) disjoint neighborhood blocks
Bili][j](s) (1 <1, < K, i # j), i.e., Ni(s) = Ur<izj<x Bili][j](s), where the
neighborhood block B [i][j](s) is defined as:

Bﬂl“j](s) = {SEB < U,C@Cj >0 € OZ', |OI| — w(v) > L, (6)
|G +w(v) <U

Moreover, these neighborhood blocks can be characterized by a K x K bi-
nary asymmetric state matrix M; (see example in Fig. 3 (a)), where entry
Mi[i][j] (¢ # j) takes O if the corresponding block Bi[i][j](s) has been pre-
viously checked by the algorithm and does not contain any improving solu-
tion, and takes 1 otherwise. The diagonal entries of M; always take 0. Thus,
the state matrix distinguishes the promising neighborhood blocks (marked
with M;[i][j] = 1) from non-promising neighborhood blocks (marked with
M, [i][j] = 0). With an appropriate update of the state matrix M; as we detail
in Section 3.2.4, we can focus on the blocks By [i][j](s) (i # j) with M;[i][j] =1
and speed up the search without missing improving solutions (i.e., guarantee-
ing the correctness of the neighborhood search process).

Since it is not necessary to examine the neighborhood blocks By [i][j](s) with
Mi][j] = 0 (i # j), the complexity of examining neighborhood N;(s) can be
reduced from O(K x (K —1)x P) to O(mx P), where m is the number of blocks
Bi[i][5)(s) with Mi[i][j] = 1 (i # j) and P = Maxys, )=, {| B1[d][4](s)[}-
As such, the complexity reduction (i.e., search speed-up) becomes significant
when m becomes much less than the total number of neighborhood blocks
(i.e., m << K x (K —1)). We observe that this remains true especially when
the number K of clusters is large. The same justification holds for the two
other neighborhoods N, and Nj.

The swap neighborhood Nj is induced by the Swap(-,-) operator. Given
two vertices v and wu located in different clusters of the current solution
s ={C1,Cy, ..., Ck}, Swap(v,u) generates a neighbor solution of s by swap-
ping the clusters of v and wu if the resulting solution is feasible. Thus, the swap
neighborhood Nj(s) is given by:

Ny(s) = {s @ Swap(v,u) :v € Cj,u € C;, L < |Ci| +w(u) — w(v),

|C;] +w(v) —w(u) <U,i#j} (7)

whose size is bounded by O(N?).

The neighborhood N»(s) can be partitioned into K x (K —1)/2 disjoint blocks
Bsli][7](s) (1 <i < j < K) since Byfi][7](s) (i # j) is the same as Bs[j][i](s),

10



i.e., No(s) = Ui<icj<x B2li][j](s), where each Bs[i|[j](s) is defined as:

Bs[i][j](s) = {s @ Swap(v,u) : v € Cj,u € Cj, L < |C;| + w(u) — w(v), ®)
|C5| +w(v) —w(u) <U}

Thus, we can characterize the neighborhood Ny(s) with a K x K binary sym-
metric state matrix M, (see example in Fig.3 (b)), where the entry Ms[i][j]
(i < j) corresponds to the neighborhood block Bsl[i][j](s) and takes 0 if
By[i][7](s) has been previously examined and does not contain any improv-
ing solution, and takes 1 otherwise.

The neighborhood Nj is induced by the 2-1 exchange operator Exchange(-, -, -).
Given three vertices v, u, and z in the current solution s = {Cy,Cs, ..., Ck},
where v and u are located in the same cluster C; and z is located in another
cluster C}, the Exchange(-,-,-) operator transfers the vertices v and u from
C; to C; and simultaneously transfers vertex z from C; to Cj, such that the
resulting solution is still feasible. As such, the neighborhood Nj3(s) can be
written as:

N5(s) = {s ® Exchange(v,u, z) : v,u € C;,z € C;, L <|Ci| —w(u)—
w(v) +w(z), |C] +wv) +w(u) —w(z) < U,i# 5}

(9)

The size of N3(s) is bounded by O(N3).

Similar to the neighborhood Nj(s), the neighborhood N3(s) can be parti-
tioned into K x (K — 1) disjoint blocks Bsl[i][j](s) (i # 7), i.e., N3(s) =
Ur<izj<i Bs[i][j](s), where each Bs|i][j](s) is defined as:

Bsli|[7](s) = {s & Exchange(v,u,z) : v,u € Cy;,z € C;, L < |C]

Cwu) — w(v) + w(z), (O] + w(w) + wlw) —w(z) <vy L0

The neighborhood Nj is also associated with a K x K binary asymmetric
state matrix Mz (see Fig.3 (c)), the entry Mj[i][j] corresponds to the block
Bjs[i][7](s) and its value has the same meaning as in M [¢][j] and Ms[d][j].

The above neighborhood decomposition technique is based on the following
key observation. For many clustering or grouping problems including CCP,
the objective function is given by the sum of subunit objectives defined on K
individual clusters. This particular feature makes most neighborhood blocks
mutually independent in terms of the move value As(s) = f(s@® Move) — f(s)
(i.e., the change of objective function value between the current solution s
and a neighbor solution s ® Move generated by transforming s with the Move
operator). As a result, when a given neighborhood block is exploited, the move

11
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Fig. 3. Three illustrative examples for the state matrices of the neighborhoods Ny,
Ny and N3, where M7 and M3 are asymmetric, M are symmetric, and the value
of K is 8. The diagonal elements of matrices are indicated in red, and the elements
taking the value of 1 are indicated in blue. Mpy[i][j] (6 = 1,2,3) corresponds to the
neighborhood block By[i][j] and Myli][j] = 0 if By[i][j] has been previously checked
by the algorithm and does not contain any improving solution, and Mpy[i][j] = 1
otherwise.

values of neighborhood moves will not be affected for most other neighbor-
hood blocks. Our neighborhood decomposition technique enables the search
algorithm to explicitly take advantage of this feature. By concentrating on the
promising blocks By[i|[j] (i # 7, 6 = 1,2,3) which are identified by Mp[i][j] = 1
(i.e., the unexamined blocks or the blocks affected in the previous iterations),
the algorithm will increase considerably its computational efficiency and search
effectiveness, as confirmed by the computational results reported in Section 4.
Neighborhood decomposition has recently contributed to effectively solve the
maximally diverse grouping problem [24].

3.2.8  Neighborhood decomposition-driven VND

Based on the above standard VND framework and the neighborhoods Ny, Ns,
and N3 as well as their decompositions presented in Section 3.2.2, we introduce
the neighborhood decomposition-driven VND algorithm (i.e., NDVND,,
where 0,,,, represents the number of neighborhoods used) as follows. First,
NDVNDsy, ... (see Algorithm 2) initializes all state matrices My (0 = 1,2, ..., 0,4z)
(lines 3 and 4), and then explores dynamically the given neighborhoods (lines
5-14). For each neighborhood Ny (0 = 1,2,...,0,,4.), the search is performed
with the LN Sy procedure described in Algorithms 3 and 4, where the neigh-
borhood blocks By[i][j](s) with My[i][j] = 1 are orderly examined and the
state matrices My (0 = 1,2,...,04,) are accordingly updated.

The proposed NDVNS algorithm employs two neighborhood decomposition-
driven VND procedures for local optimization. The first one (NDVND, with
Omaz = 2) uses neighborhoods Ny and Ny, while the second one (NDVNDj3 with

12
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Omaz = 3) explores neighborhoods N, Ny, N3. Since NDVND3 explores one
more neighborhood, it is much more time-consuming than NDVND,. Thus,
NDVNDj; is performed only once at the the beginning of the present NDVNS
algorithm, while NDVND, is used as the main search procedure.

In addition, NDVND, and NDVNDj uses the incremental technique of [22] to
evaluate efficiently the quality of a neighbor solution in Ny(s) (6 € {1,2,3}).
For this, a N x K matrix v is maintained during the search process, where
Yillg] = Zuec,cin (1 <1 < N,1 < g < K). With the help of this matrix, the
quality of a neighbor solution can be rapidly assessed in O(1), and the matrix
v can be updated in O(N) after each solution transition.

Algorithm 2: Neighborhood Decomposition-driven Variable Neighbor-
hood Descent Method (NDVNDy, ) with the 6,,,, neighborhoods
Function NDVNDy, . (s0)

Input: Solution sq

Output: The local optimum solution s

S < S

Initialize the state matrices My, ..., My, ..

/% Myfillj] = 1, Mylili] ¢ 0, 1< 0 < Oy «/
f <1 /* 0 denotes the index of current neighborhood */

while 0§ < 6,,,. do

(Improve,s, My, ..., My, )< LSNg(s, My,..., My, )

/* Algorithms 3 or 4 */
if (0> 1) A (Improve = true) then

| 01
else

| 0 0+1
end
end
return s

3.2.4  Update of state matrices and the related principle

In the NDVNS algorithm, all three neighborhoods Ny, Ny and N3 are examined
block by block, as shown in Algorithms 3 and 4, and the associated state
matrices M, My and M3 are accordingly updated as the search progresses.

The updating rule of these state matrices can be described as follows. For a
neighborhood Ny(s) (6 = 1,2,3), the entry My[i][j] (i # j) is first set to 0
once the neighborhood block By[i][j](s) has been checked. Then, the entries
My[i][t], My[t][i], Molj][t], and Mp[t][j] (1 <t < K, t # i,j) all are set to 1
if an improving solution is found in the block By[i][j](s), and keep unchanged
otherwise, as illustrated in Algorithms 3 and 4. Clearly, the time complexity

13
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Algorithm 3: Local optimization with the neighborhood N,

Function LSNy(< s, My, ..., My,,.. >)
Input: s, My, ..., My,,,.

Output: < Improve,s, My, ..., My, . >
Improve < true

3 while Improve = true do

4

© o N o o

10
11
12
13
14
15
16
17
18
19
20
21
22

Improve < false
for i < 1 to K do
for j «+ 1 to K do
if Mi[i][j] = 1 then
Mili][j] < 0
for each s € Bi[i][j](s) do
if f(s') > f(s) then
S48
Improve < true
end
end
end
if Improve = true then
| Update My, ..., My,,. /* Section 3.2.4 %/
end
end
end
end
return < Improve, s, My,..., My, .. >

of updating the state matrices My, My and Mj is bounded by O(K).

According to the objective of CCP, the move value Ay changes only for the
moves of a few of neighborhood blocks. Furthermore, given that the blocks
By[i][j](s) with My[i][j] =0 (0 = 1,2,3, ¢ # j) have been checked previously
without finding any improving solution, ignoring the candidate solutions in-
cluded in these neighborhood blocks will save a significant amount of compu-
tational effort. Thus, the above updating rule speeds up the search process
without compromising solution quality. Moreover, it is worth noting that ac-
cording to this updating rule, a larger number (K') of clusters means usually a
smaller proportion of blocks whose states need to be updated, implying a more
significant search speedup in this case. In other words, the advantage of the
neighborhood decomposition technique becomes even more evident when the
number K of clusters is large. This is indeed confirmed by our computational
results of Section 4.

14



© N O VR %N

B T S S S S S = S SF Ry
= O © 0 N oL A W N = O

Algorithm 4: Local optimization with the neighborhood Ny (6 = 2 or 3)

Function LSNy(< s, My, ..., M, . >)
Input: s, My, ..., My, ..

Output: < Improve, s, My, ..., M, . >

max

Improve < false
for i < 1 to K do
for j < 0 to K do
if Mpy[i][j] = 1 then
Myli][j] 0
/* Also, [][z]<—0 if =2 */
for each s € Byli][j](s) d
if f(s') > f(s) then
S48
Improve < true
end
end
if Improve = true then
Update M, ..., My,,.. /* Section 3.2.4 */
return < Improve, s, My,..., My, .. >
end
end
end
end
return < Improve, s, My, ..., My . >

3.3  Shake Procedure

To enhance its diversification ability, our NDVNS algorithm employs a Shake
procedure to perturb the solutions returned by the local search procedure
NDVND,. The Shake procedure is composed of k consecutive swap operations,
where k is the perturbation strength, which is probabilistically adjusted during
the search process as described in Algorithm 1. For each swap operation, two
vertices v and u located in different clusters are first selected randomly, and
then their positions are swapped to generate a feasible solution.

3.4 Discussions

Compared to the existing CCP algorithms in the literature, the primary inno-
vation of our approach is the neighborhood decomposition-driven VND meth-
ods and the probabilistic strategy to determine the perturbation strength.

First, NDVNS is the first heuristic algorithm that applies the neighborhood
decomposition technique to solve CCP, which proves to be quite successful.
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Among the three adopted neighborhoods, this study is the first to introduce
an effective decomposition of the 2-1 exchange neighborhood, which is gener-
alizable to local search algorithms for other problems.

Second, NDVNS reinforces the VNS method by employing a probabilistic
strategy to tune the perturbation strength. This strategy is of general nature
and can be usefully combined with other VNS procedures to control search
intensification and diversification.

Finally, compared to the work on MDGP in [24], the current work shares
the idea of neighborhood decomposition as well as the general variable neigh-
borhood search framework. Meanwhile, given that CCP and MDGP are two
different problems, NDVNS is different from the algorithm presented in [24].
In particular, NDVNS features the new 2-1 exchange neighborhood (with its
decomposition) and the probabilistic perturbation strategy. As it is shown
in Section 4, the NDVNS algorithm integrating these features, along with the
problem-specific design of other search components, generally outperforms the
state-of-the-art CCP algorithms available in the literature.

4 Experimental Results and Comparisons

This section is dedicated to an performance assessment of our NDVNS al-
gorithm, based on computational experiments on benchmark instances com-
monly used in the literature.

4.1 Benchmark Instances

The test suite is composed of 110 commonly-used benchmark instances (avail-
able at http:www.mi.sanu.ac.rs/ nenad/ccp or from [28|), belonging to five
groups:

e RanReal240: This set contains 20 small instances with N = 240, K = 12,
L =75, and U = 125, where the vertex weights are an integer randomly
generated in the intervals [1,10] and the edge weights are a real number
randomly generated in [0, 100].

e RanReal480: This set contains 20 medium-sized instances with N = 480,
K =20, L = 100, and U = 150, where the vertex weights and the edge
weights are generated as in the set RanReal240.

e RanReal960: This set contains 30 large instances with N = 960, including
10 instances with K = 30, L = 120 and U = 180, 10 instances with K = 40,
L =90 and U = 135, and 10 instances with K = 60, L = 60 and U = 90,
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where the vertex weights are an integer randomly generated in [1,10] and
the edge weights are a real number randomly generated in [0, 100].

e MDG-a: This set contains 20 large instances with N = 2000, K = 50,
L =150 and U = 250, the vertex weights are an integer generated randomly
in [1,10], and the edge weights are an integer generated randomly in [0, 10].

e MDG-a-40: This set contains 20 large instances with N = 2000, K = 40,
L = 200 and U = 300, with the same vertex weights and edge weights as
the MDG-a instances.

4.2 Ezrperimental Protocol

Table 1

Settings of parameters
Parameters Section Description Values
kmin 3.1 minimum strength of the shake procedure 1
kmaz 3.1 maximum strength of the shake procedure N/K
Q 3.1 a parameter used in the diversification mechanism 0.2
« 3.1 a parameter used in the acceptance criterion 0.01

Table 1 indicates the parameter setting, which was obtained empirically. Our
experiment shows that among these parameters, () is the most critical. We
present a detailed analysis of this parameter in Section 5. It worth mentioning
that this parameter setting (default setting) was used consistently in our ex-
periments to solve all 110 instances, though fine-tuning some parameters on
an instance-by-instance basis would lead to improved results.

To evaluate the NDVNS algorithm, we used five state-of-the-art CCP algo-

rithms as the reference methods, including GRASP+TS [28], FITS [42], IVNS

[22], GVNS [4], and SGVNS [4]. The source codes of GRAPS+TS and IVNS

are available at http://www.info.univ-angers.fr/pub/hao/CCP.html, while
the source codes of GVNS and SGVNS are provided by their authors at

http:www.mi.sanu.ac.rs/ nenad/ccp. The source code of the NDVNS al-

gorithm will be available at http://www.info.univ-angers.fr/pub/hao/

NDVNS.html. All compared algorithms (written in C++) were compiled by

the same g+-+ compiler with the “-O3” option.

All the computational experiments are based on the same computing platform
with an Intel E5-2670 processor, running Linux. Due to the stochastic feature
of the algorithms, each algorithm was run 20 times with different random
seeds for each instance, and the stopping condition for one run is a maximum
time limit ¢,,,, set to be N seconds, where N is the number of vertices in
the benchmark instance. To run the reference algorithms, we used the pa-
rameter settings that were calibrated by their authors and provided in the
corresponding papers.
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4.8  Computational Results on the Small and Medium Instances

The computational results of the compared algorithms on the 40 small or
medium-sized instances with N = 240 or 480 (i.e., the sets Ran240 and
Ran480) are summarized in Table 2. Column 1 of Table 2 gives the name
of each instance. Columns 2-7 and 8-13 report respectively the best and aver-
age objective values (frest and fu) over 20 runs of each reference algorithm
and the NDVNS algorithm, which are considered as two important perfor-
mance indicators of algorithms. The row “Avg.” shows the average values for
each column, and the row “#best” indicates the number of instances for which
the associated algorithm obtains the best value in term of f,,, or fi.s+ among
all the compared algorithms. To check whether there exists a significant dif-
ference between the NDVNS algorithm and each reference algorithm in terms
of foug and fieq, we report the p-values from the non-parametric Friedman
tests in the last row, where a p-value smaller than 0.05 indicates a significant
difference between the compared results. In addition, for each instance, the
best value in terms of fi; and f,,4 among the compared results are indicated
in bold.

Table 2 shows that for the instances with N < 480, the NDVNS algorithm
outperforms the reference algorithms in terms of the best objective value fyes:.
Specifically, for the 40 instances tested, the reference algorithms respectively
obtained the best value (in bold) in terms of fu.s for 0, 10, 0, 2, and 9 in-
stances, against 26 instances for the NDVNS algorithm. Moreover, the small p-
values (< 0.05) confirm the statistical significance of these differences in terms
of frest. On the other hand, the NDVNS algorithm outperforms significantly
GRASP-+TS, FITS, GVNS, and IVNS in terms of f,,,, but performs worse
than SGVNS. Specifically, the reference algorithms obtained respectively the
best value (in bold) in terms of f,,, for 0, 5, 0, 0, and 24 instances, against
11 instances for the NDVNS algorithm. We conclude that for the instances
with N < 480, NDVNS is the best algorithm for attaining the best objective
values ( fyes:) while SGVNS is the leading algorithm in terms of average results

(favg)‘

4.4 Computational Results on the Large-Scale Instances

The computational results of the compared algorithms on the 70 large-scale
instances (RanReal960, MDG-a, and MDG-a-40) are summarized in Tables
3-5 respectively with the same information as in Table 2.

Table 3 indicates that for the RanReal960 instances, the NDVNS algorithm
outperforms all reference algorithms. In terms of fi.s;, NDVNS obtained the
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Table 4

Comparisons of the proposed algorithm with the state-of-the-art algorithms on the
20 MDG-a instances with N = 2000 and K = 50, where the best results among the
compared algorithms are indicated in bold in terms of fpes; and foug.

Soest

fav

g
Instance GRASP+TSFITS GVNS IVNS SGVNS NDVNS GRASP-+TSFITS GVNS IVNS SGVNS NDVNS
MDG-a_21 369103 383164 388242 379513 389845 391259 363528.40 382387.05 387751.50 377608.90 389471.25 390647.15
MDG-a_22 367627 380817 385196 382052 386956 388476 364577.70 380489.60 384455.70 377874.60 386325.55 387718.60
MDG-a_23 369009 380630 386046 379366 388159 389363 365738.50 379334.85 385496.80 375544.75 387518.10 388908.60
MDG-a_24 370891 381783 387680 379047 388799 390269 363101.70 380560.55 386803.60 377026.10 388546.25 389655.40
MDG-a_25 380735 390623 396571 388897 398327 399478 375489.75 386346.05 396070.55 386168.00 397873.45 399002.40
MDG-a_26 383826 393222 400519 392935 402295 403457 380869.35 392916.10 399804.40 390523.15 401795.95 402740.95
MDG-a_ 27 365606 377617 380535 378129 381291 383780 362665.50 376721.60 379874.45 373828.35 380868.30 382951.05
MDG-a_ 28 370385 380748 386077 380642 386986 389025 364047.95 379732.95 385251.70 376880.50 386453.65 388516.50
MDG-a_ 29 366279 378239 382417 376229 383418 385316 361792.25 377540.40 381512.10 371959.05 382756.50 384816.05
MDG-a_ 30 380142 389452 395759 389449 397325 398211 377323.00 389254.10 394851.85 387218.35 396433.40 397776.80
MDG-a_ 31 369944 379407 385176 379815 386039 388375 365812.55 378922.70 384524.35 375535.30 385337.85 387562.05
MDG-a_ 32 372470 383333 391777 382573 393268 394611 368952.30 382737.35 391092.15 380767.40 392862.30 394031.35
MDG-a_ 33 368150 379047 383038 379938 384568 385806 363019.50 376641.80 382235.55 374720.60 383941.90 385212.70
MDG-a_ 34 373454 386544 393926 387577 394413 396725 370093.50 385459.25 392935.35 382141.40 393869.45 395823.10
MDG-a_35 376886 386347 393507 384031 394771 396054 373400.00 385302.60 392811.75 382317.85 393963.25 395455.20
MDG-a_ 36 384916 396368 400766 395439 402072 403604 376033.60 394103.05 399943.25 390926.50 401657.85 403111.10
MDG-a_ 37 372157 386195 387114 385363 388769 390289 369583.10 385797.30 386444.35 382197.80 388192.80 389612.25
MDG-a_ 38 378374 388712 394526 385978 396163 397407 371013.30 387807.15 393843.30 384883.95 395810.45 396710.05
MDG-a_ 39 374068 385975 390260 387159 391915 393415 371801.55 383036.10 389648.75 381376.55 390930.80 392799.15
MDG-a_ 40 387742 396321 404520 394522 405680 407084 384148.60 395505.80 403704.15 392126.10 405348.25 406615.75
Avg. 374088 385227 390683 384433 392053 393600.20 369649.61 384029.82 389952.78 381081.26 391497.87 392983.31
#best 0 0 0 0 0 20 0 0 0 0 0 20
p-value 7.74E-06 7.74E- 7.74E- 7.74E- 7.74E- 7.74E-06 7.74E- 7.74E- 7.74E- 7.74E-
06 06 06 06 06 06 06 06

Table 5

Comparisons of the proposed algorithm with the state-of-the-art algorithms on the

20 MDG-a-40 instances with N = 2000 and K = 40, where the best results among

the compared algorithms are indicated in bold in terms of fyesr and foug-

fbest favg
Instance GRASP+TS GVNS IVNS SGVNS NDVNS GRASP+TS GVNS IVNS SGVNS NDVNS
MDG-a_21.40 437628 458203 449022 459655 461300 435028.95 457507.35 445994.60 459018.80 460489.15
MDG-a_22.40 434004 454485 447832 455658 457462 429590.60 453702.10 444332.10 455257.05 456962.95
MDG-a_23.40 433885 455745 448024 456318 458604 429239.65 455005.25 444144.45 455876.95 457849.00
MDG-a_24.40 432413 457319 446320 458037 460224 426743.05 456093.20 444043.70 457644.95 459361.60
MDG-a_25.40 443602 467531 458432 468641 470546 438365.10 466648.55 455520.40 468224.85 469807.70
MDG-a_26.40 451858 472182 466960 473489 474918 442170.55 471496.70 462133.90 472921.25 474434.10
MDG-a_27.40 426581 449333 443892 450753 451999 423135.80 448546.30 440947.35 450218.55 451516.85
MDG-a_28.40 433276 455484 449530 455923 458620 429343.70 454500.60 446270.70 455332.30 457840.85
MDG-a_29.40 426057 451006 444445 451617 454117 422597.40 450200.25 439232.10 450966.00 453453.80
MDG-a_30.40 445550 466359 459836 466361 468982 438784.85 465028.80 456448.10 465895.50 468292.20
MDG-a_31.40 431695 454500 447463 455835 457570 428142.10 454009.15 442404.05 455311.90 456756.95
MDG-a_32.40 441853 462193 454347 463455 464911 431007.95 461403.60 449071.55 462833.70 464399.70
MDG-a_33.40 433898 451683 446617 452969 454717 428970.00 450944.00 442452.45 452552.90 454069.95
MDG-a_34.40 373598 393515 383611 395198 396610 368232.75 392736.80 381652.00 394776.85 395850.30
MDG-a_35.40 445028 463392 455965 464883 466869 440927.55 462869.85 451299.60 464526.40 466308.65
MDG-a_36.40 452963 471675 467716 473135 474665 445388.75 471188.60 460190.30 472601.50 474018.35
MDG-a_37.40 437611 456642 453007 458099 459380 428557.25 455860.90 449737.50 457121.15 458843.50
MDG-a_ 38.40 445151 465807 455905 466562 468630 441406.40 464713.85 453176.75 465750.15 468039.25
MDG-a_39.40 441583 459938 457019 460785 462909 437246.90 459021.00 449321.25 460127.15 462352.60
MDG-a_40.40 455220 476752 466277 477949 479308 449236.45 475739.55 460905.65 477365.60 478777.80
Avg. 436173 457187.20 450111.00458266.10460117.05 430705.79 456360.82 445963.93 457716.18 459471.26
#best 0 0 0 0 20 0 0 0 0 20
p-value 7.74E-06 7.74E- 7.74E- 7.74E- 7.74E-06 7.74E-06 7.74E-06 7.74E-06
06 06 06

best value for 29 out of 30 instances, against 0, 1, 0, 0 and 0 instances for
the reference algorithms. In terms of f,,4, NDVNS reported the best value
for 27 out of 30 instances, while the reference algorithms obtained the best
value only for 0, 2, 0, 0 and 1 instances respectively. Moreover, the small p-
values further confirm the statistical significance of the differences between
the NDVNS algorithm and the reference algorithms.

Moreover, Tables 4 and 5 show an even stronger dominance of NDVNS over
the reference algorithms for the largest MDG-a and MDG-a-40 instances with
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N = 2000, by reporting the best fy. and fu., values for all the instances.

Given that the computational experiments and comparisons are based on
the same computing platform and the same stopping condition, these results
clearly indicate that the NDVNS algorithm is the best algorithm for solving
large instances with at least N = 960 vertices and K = 30 clusters. Interest-
ingly, the improvement of NDVNS over the existing CCP algorithms increases
with the instance size. This implies that NDVNS could be a useful tool that
can be applied to solve large scale practical problems with a high number of
candidate elements to be grouped into many clusters.

5 Discussions and Analyses

This section investigates the impacts of key components of the NDVNS algo-
rithm, and the spatial distribution of high-quality local optimum solutions.

5.1 Parameter Sensitivity Analysis

The NDVNS algorithm relies on two important parameters ) and «, which
are studied in this subsection.

5.1.1 Sensitivity Analysis of the Parameter ()

As explained in Section 3.1, a particular feature of the NDVNS algorithm
concerns the use of the probability ) to control the perturbation strength
k of the shake procedure where a smaller () means a stronger diversification
ability of the algorithm and vice-versa. To analyze the impact of ) on the
performance of the algorithm and find a proper @) value, we carried out an
experiment based on 40 representative instances. In this experiment, we varied
the value of @ in the range {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0} and
ran the corresponding NDVNS algorithm 20 times for each possible value of )
and each instance according to the experimental protocol of Section 4.2. The
computational results are summarized in Table 6. The first column and first
row of the table give respectively the names of instances and the values of @,
and columns 2-11 respectively report the average objective value (f,,,) over
20 independent runs of the NDVNS algorithm for each instance and each @
value. In addition, the row “Avg.” shows the average result for each column,
and the row “#best” shows the number of instances for which the associated
@ value generated the best result in terms of f,,, among the tested @) values.

Table 6 indicates that the performance of the NDVNS algorithm is sensitive
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to the setting of parameter () and the impact of the setting of parameter ()
depends on the instances to be solved. Specifically, for large instances with
N = 2000, small @ values (< 0.2) led to better results. Moreover, for smaller
instances with N < 960, the effectiveness of () varied largely according to the
instances. For example, for RanReal480 1, () = 0.2 produced the best result
in terms of f,,4, while for another instance named RanReal480_2, @) = 0.5 is
the best setting. Finally, one observes from Table 6 that () = 0.2 led to the
best result in terms of “Avg.”, and thus this setting was used as the default
value of () in the present work.

5.1.2  Sensitivity Analysis of the Parameter a

To enhance its diversification ability, the NDVNS algorithm employs the pa-
rameter « to determine whether a newly generated solution should be ac-
cepted as the current solution (line 8 of Algorithm 1), where a larger value
of a means that the algorithm emphasizes more on the distance of the off-
spring solution from the current solution and the best solution found so far.
To show the impact of this parameter, we carried out an additional experi-
ment based on 10 representative instances. We ran the algorithm with « in
the range of {0.002,0.004,0.006,0.008,0.01,0.02,0.03,0.04} to solve each in-
stance 20 times. The computational results are summarized in Table 7. The
first column and the first row give respectively the names of instances and the
settings of parameter a. The average objective values (f,,,) over 20 runs are
reported in columns 2-9 respectively for each a value. The last row “#Best”
shows the number of instances for which the corresponding « value led to the
best result in terms of f,,, among all the tested « values.

Table 7 shows that the performance of the algorithm depends on the setting of
a. A too small or too large value of « deteriorates the performance. Specifically,
for « = 0.002 that is the smallest value tested, the algorithm performed the
worst. Moreover, for a = 0.04 that is the largest value tested, the algorithm
failed to obtain the best result in terms of f,,, for any instance. On the other
hand, one observes that the setting of & = 0.01 led to the best result for 4 out
of 10 instances, which implies the best performance of the algorithm. Hence,
the default value of a was set to 0.01 in this study.

5.2 Effectiveness of the Neighborhood Decomposition Strategy

The neighborhood decomposition technique described in Section 3.2.2 is the
most essential component of the NDVNS algorithm. In order to analyze its
effectiveness, we carried out an additional experiment to compare the NDVNS
algorithm and a NDVNS variant denoted by NDVNS-D, which was created
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Table 7
Influence of parameter o on the average objective values (fqu9). The NDVNS algo-
rithm was run 20 times for each instance and each « value, and the best results are

indicated in bold among the tested parameter settings.
Instance/« 0.002 0.004 0.006 0.008 0.01 0.02 0.03 0.04

RanReal480_01 551972.05 553334.08 554664.70 554943.00 555519.77 555222.15 554532.40 555212.73
RanReal480_ 02 506587.35 507526.65 509512.47 509651.18 509766.19 509771.40 509395.45 509391.92
RanReal480_ 03 492032.45 493338.74 495741.40 496315.30 495276.96 495539.21 495714.79 495542.26
RanReal480_ 04 517084.98 518199.11 520179.98 520144.21 520456.70 519745.04 520140.74 520306.09
RanReal480_ 05 479475.83 481015.04 482583.06 482837.64 482337.86 482508.11 481984.18 482389.91

MDG-a_21 388733.50 390682.95 390544.65 390762.65 390630.90 390746.05 390672.10 390611.90
MDG-a_ 22 385473.20 387601.00 387741.65 387631.65 387583.40 387500.95 387561.90 387676.05
MDG-a_ 23 386416.55 388803.75 388831.65 388880.25 388969.10 388788.70 388827.70 388735.15
MDG-a_24 387404.90 389537.45 389855.90 389800.25 389804.70 389715.60 389719.45 389697.50
MDG-a_25 396814.05 399019.30 399135.10 399106.85 399150.95 398981.35 399115.50 399033.00
#Best 0 0 2 3 4 1 0 0

by disabling the neighborhood decomposition strategy of NDVNS (i.e., all the
entries of state matrices My, Ms, and Mz are always set to the value of 1
during the search process). In this experiment, we ran both algorithms 20
times for each of 40 representative instances, and the results are summarized
in Table 8. Column 1 of the table gives the names of instances, columns 2-
3 report the best objective values (fps:) over 20 runs for each algorithm,
columns 4-5 indicate the average objective value ( f,,4), columns 6-7 give the
worst objective value (fuorst), and the last two columns show the standard
deviation (o) of the objective values obtained. The rows “#better”, “#equal”,
and “#worse” indicate the number of instances for which the corresponding
algorithm obtained a better, equal, and worse result compared to the other
algorithm. In addition, the p-values from the non-parametric Friedman tests
are provided for each performance indicator in the last row of the table.

Table 8 shows that NDVNS dominates the NDVNS-D variant in terms of
foest, favg, and fuorst. Specifically, for each tested instance, NDVNS obtained
a better result than NDVNS-D in terms of fyes, favg, and fuorst. Moreover,
the standard deviations (o) are smaller with NDVNS than with NDVNS-D
on most instances. The statistical differences of the compared algorithms are
confirmed by small p-values (< 0.05). This experiment demonstrates the effec-
tiveness of the neighborhood decomposition strategy of the NDVNS algorithm.

5.8 Spatial distribution of high-quality solutions

To understand intuitively the spatial distribution of high-quality local op-
timum solutions in the search space and the rationality of the underlying
strategies of the proposed algorithm, we conducted an additional computa-
tional experiment to show a rough picture as to how high-quality solutions
could be distributed in the search space. In this experiment, the NDVNS al-
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tative instances.
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Table 8

Comparison between the proposed NDVNS algorithm and its variant denoted by the
NDVNS-D algorithm in which the neighborhood neighborhood strategy is disabled.
Dominating values between the two compared algorithms are indicated in bold for
each instance and each performance indicator.

foest favg fworst

Instance NDVNS NDVNS-D NDVNS NDVNS-D NDVNS NDVNS-D NDVNS NDVNS-D
RanReal480_01 556477.17 556280.14 555549.33 555188.88 552936.00 549586.97 823.69 1441.65
RanReal480_ 02 511381.67 511156.11 509625.83 508838.48 505101.17 504309.24 1504.78 1953.92
RanReal480_03 497586.82 497492.28 495715.20 495595.49 493672.18 493368.03 1449.09 1499.75
RanReal480_04 523258.76 522697.56 520445.75 520276.45 517178.17 516555.37 1743.75 1505.43
RanReal480_05 484541.10 484217.10 482670.41 482420.78 480870.94 479795.19 1129.91 1258.78
RanReal960_01.30 1340580.00 1339721.61 1338735.21 1337128.18 1335372.26 1333572.21 1079.28 1327.26
RanReal960_02.30 1435894.10 1432847.02 1432816.25 1431412.37 1431006.80 1429735.56 1258.08 866.59
RanReal960_03.30 1399371.79 1396425.01 1396676.76 1394971.21 1392729.52 1392159.71 1560.16 1252.32
RanReal960_04.30 1414472.27 1413280.79 1412766.74 1410858.71 1410140.56 1406130.61 1106.39 1749.05
RanReal960_05.30 1372173.99 1370546.90 1370903.70 1368766.98 1369593.86 1366537.32 752.46 1222.22
RanReal960_01.40 1042160.11 1040891.98 1040859.48 1038960.64 1039445.10 1035496.19 729.39 1441.51
RanReal960_02.40 1117362.73 1115627.50 1115766.18 1113797.06 1113129.71 1110776.04 1102.45 1288.23
RanReal960_03.40 1088482.73 1087850.94 1087361.36 1085841.46 1084553.32 1084119.65 857.30 824.45
RanReal960_04.40 1102093.11 1100375.06 1100356.79 1098719.99 1098057.48 1096684.10 1053.52 1105.54
RanReal960_05.40 1066512.35 1064464.01 1064946.28 1062779.69 1063548.18 1061008.97 901.98 999.41
RanReal960_01.60 733456.08 731350.74 731642.79 729716.28 730397.52 728080.80 833.78 837.64
RanReal960_02.60 776818.81 775654.32 774895.27 772275.93 772821.57 769968.23 907.74 1182.85
RanReal960_03.60 760549.17 759597.79 758954.36 757088.50 757406.97 755836.32 858.37 850.66
RanReal960_04.60 769889.49 767863.97 768146.77 766096.19 766488.28 764262.17 916.02 889.35
RanReal960_05.60 749585.55 747151.07 747026.39 745440.24 745099.96 T742728.88 1017.47 1078.15
MDG-a_21 391375.00 390547.00 390724.55 389740.95 389947.00 388851.00 362.89 396.02
MDG-a_22 388315.00 387383.00 387513.50 386596.25 387003.00 385926.00 346.58 406.09
MDG-a_23 389437.00 388321.00 388879.50 387909.05 388218.00 387210.00 320.46 317.16
MDG-a_ 24 390204.00 389533.00 389726.40 388761.40 389141.00 387878.00 292.65 409.48
MDG-a_ 25 399482.00 398824.00 398931.90 398227.00 398315.00 397773.00 318.32 329.20
MDG-a_ 26 403151.00 402656.00 402653.30 402100.95 401907.00 401471.00 316.88 294.16
MDG-a_ 27 383599.00 382724.00 382984.05 381960.65 382307.00 381385.00 283.87 321.03
MDG-a_28 388917.00 388106.00 388480.90 387551.10 387746.00 386965.00 309.98 325.49
MDG-a_29 385599.00 384607.00 384860.65 383847.75 384148.00 383189.00 384.72 391.42
MDG-a_30 398146.00 397380.00 397687.00 396764.20 397191.00 395634.00 294.11 363.92
MDG-a_21.40 461467.00 460399.00 460667.70 459906.10 459840.00 458802.00 358.25 405.02
MDG-a_22.40 457376.00 456526.00 456782.20 456084.20 455514.00 455358.00 416.19 315.13
MDG-a_23.40 458711.00 458054.00 457912.05 456990.45 457138.00 455904.00 364.49 462.72
MDG-a_24.40 459778.00 458703.00 459164.10 458127.35 458404.00 457108.00 331.25 448.82
MDG-a_25.40 470605.00 469873.00 469607.40 469119.20 468781.00 468034.00 357.85 424.64
MDG-a_26.40 475036.00 474078.00 474313.50 473349.90 473408.00 471753.00 415.44 575.59
MDG-a_27.40 451983.00 451363.00 451253.05 450589.65 450777.00 449563.00 334.28 450.01
MDG-a_28.40 458496.00 457561.00 457585.55 456946.50 456221.00 456069.00 482.50 322.54
MDG-a_29.40 453877.00 453216.00 453416.60 452515.05 452757.00 451725.00 334.95 425.75
MDG-a_ 30.40 468597.00 468312.00 468128.40 467430.10 467418.00 466729.00 368.32 434.44
Avg. 681919.97 680841.45 680678.33 679517.28 679143.26 677700.96 714.49 809.83
7#Better 40 0 40 0 40 0 30 10
#Equal 0 0 0 0 0 0 0 0
#Worse 0 40 0 40 0 40 10 30
p-value 2.54E-10 2.54E-10 2.54E-10 2.04E-3

gorithm was performed 20 times for each instance and all the high-quality
local optimum solutions returned by the local search method NDVND, were
collected respectively for each instance, where a solution s is considered to be
of high-quality if its objective value f(s) is superior to the average objective
value f,,, reported in Section 4, i.e., f(S) > faug-

Following [23,34], we visualize the spatial distribution of the collected high-
quality solutions in Euclidean space R*® by using a multidimensional scaling
(MDS) procedure as follows. First, we generate a distance matrix D;y; be-
tween solutions in the original search space €2, where [ is the number of the
collected solutions and the partition distances d;; € D;y; between solutions are
calculated. Then, from the distance matrix D;y;, the [ coordinate points are
generated in Euclidean space R? by using the classic emdscale method whose
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goal is to minimize the distance distortion caused between the original space
and Euclidean space. Finally, the scatter graph of these [ coordinate points is
plotted in R3.

Fig. 4 shows the scatter graphs for six selected instances. One clearly observes
that high-quality local optimum solutions attained by the proposed algorithm
are grouped in clusters in the search space. This finding implies that when the
search process reaches a high-quality solution, it is very useful to make a suf-
ficient exploitation around this solution by performing limited perturbations
and subsequent local searches. On the other hand, when a search region has
been sufficiently exploited and the search process is trapped into a deep local
optimum, it is necessary to jump out of the trap by performing some large
perturbation operations. In the NDVNS algorithm, this is jointly achieved by
the intensification-oriented NDVND, procedure and the probabilistic pertur-
bation of the shake procedure.

6 Conclusion and Future work

The neighborhood decomposition-driven variable neighborhood search algo-
rithm proposed in this work for solving the capacitated clustering problem
integrates the ideas of neighborhood decomposition and probability-based per-
turbation. By isolating promising candidate solutions to be considered at each
search iteration, neighborhood decomposition constitutes a powerful technique
to speed up neighborhood examination and enable more focused searches.

We have performed extensive experiments on 110 instances commonly used
in the literature to show the competitiveness of the proposed algorithm. The
computational results demonstrate that the algorithm performs extremely well
on the test suite compared to the state-of-the-art methods in the literature.
The advantage of the algorithm is even more evident in terms of computational
efficiency and search effectiveness when large-scale problem instances are con-
sidered. This work thus advances the state-of-the-art of solving the challenging
capacitated clustering problem. Moreover, given that the considered problem
is a general model to formulate a variety of practical applications, the publicly
available code of the algorithm can help to solve these practical problems.

The ideas of neighborhood decomposition-driven local search and probability-
based perturbation are of general nature. Thus, it would be interesting to
check the usefulness of these ideas on other clustering or grouping problems
such as those mentioned in the introduction.
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