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Abstract

Predicting the global minimum structures of atomic clusters has important practical implica-

tions in physics and chemistry. This is because the global minimum structures of their potential

function theoretically correspond to their ground state structures, which determine some important

physical and chemical properties of clusters. However, this prediction task is a very challenging

global optimization problem due to the fact that the number of local minima on the potential energy

surface of clusters increases exponentially with the cluster size. In this study, we propose an unbi-

ased global optimization approach, called the iterated dynamic lattice search algorithm, to search

for the global minimum structure of atomic clusters. Based on the iterated local search framework,

the proposed algorithm employs the well-known monotonic basin-hopping method to improve the

initial structures of clusters, a surface-based perturbation operator to randomly change the posi-

tions of selected surface atoms or central atom, a dynamic lattice search method to optimize the

positions of surface atoms, and the Metropolis acceptance rule to accept the optimized new so-

lutions. The performance of the algorithm is evaluated on the 300 widely studied silver clusters

and experimental results show that the proposed algorithm is highly efficient compared to the ex-

isting algorithms. In particular, the proposed algorithm improves the best-known structures for 47

clusters and matches the best-known structures for the remaining clusters. Additional experiments
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are performed to analyze the key components of the algorithm and the landscape of the potential

energy surface of several representative clusters.
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Global Optimization

1. Introduction

Finding the global minimum solution of a high-dimensional non-convex function is an impor-

tant subject in various fields of science and research, such as determining the ground-state structures

of clusters, crystals, and biomolecules (Ali et al., 2006; Wales and Scheraga, 1999). In physics and

chemistry, predicting theoretically the ground-state structure of a cluster (i.e., the cluster optimiza-

tion problem) by minimizing an empirical potential function with a global optimization method

is an important issue, since the physical and chemical properties of cluster depend largely on its

three-dimensional ground-state structure, which theoretically corresponds to the global minimum

solution of the potential function (Wales and Scheraga, 1999).

However, determining the lowest-energy structure of atomic clusters is a very challenging

global optimization task because the number of local minima of the potential function increases

exponentially with the size of the cluster. For example, the number of local minima is more than

1010 on the potential energy surface (PES) of the 55-atom Lennard-Jones cluster (Wales and Scher-

aga, 1999). On the other hand, the main difficulty of optimization also comes from the competition

between minima with similar energies but different structure types. That is, the highly competing

local minima are separated by high barriers on the PES. For example, the 38-atom Lennard-Jones

cluster has a double-funnel energy landscape in which each funnel corresponds to a type of struc-

tural motif, and the global minimum is located in a very narrow funnel with a face-centered cubic

(FCC) motif on the PES (Doye et al., 1999).

Due to the practical importance and computational challenge of structural optimization of

atomic clusters, a large number of approaches have been proposed in the literature to search for

their global minimum structures. According to whether the algorithms use prior knowledge of the

problem or information from putative global optimum structures, these approaches can be divided

into two categories, i.e., the biased algorithms and the unbiased algorithms, where the biased algo-

rithms employ the prior knowledge about the putative global minimum structures to improve the
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efficiency of the algorithm. For example, based on the icosahedral lattice, which is constructed

according to prior knowledge of the global minimum structure, Northby proposed a lattice-based

search algorithm for determining the global minimum structure of Lennard-Jones clusters with

13 ≤ N ≤ 147 (N is the number of atoms) (Northby, 1987), and Romero et al. presented a genetic

algorithm combined with a stochastic search procedure for locating the global minimum structures

of Lennard-Jones clusters in the range of 148 ≤ N ≤ 309 (Romero et al., 1999). Based on the

icosahedral and decahedral lattices, Xiang et al. proposed a greedy search method (GSM) for the

Lennard-Jones clusters with 562 ≤ N ≤ 1000 (Xiang et al., 2004). The advantage of these biased

algorithms is that they can be efficiently applied to the large-scale clusters due to their high effi-

ciency. However, these methods may miss the true global optimal solution because they restrict the

search to the constructed lattice instead of the entire solution space.

In order to improve the search capability and overcome the shortcomings of biased algorithms,

researchers from different fields have proposed a number of unbiased optimization algorithms for

the structural optimization of atomic clusters in the literature. These algorithms belong to the cat-

egory of stochastic optimization methods without assuming the structural features of the global

minimum solution, and the initial configurations used by the algorithms are randomly generated.

Moreover, the unbiased algorithms can be further divided into population-based evolutionary al-

gorithms and trajectory-based iterative algorithms, according to the number of solutions involved

in the search process. For the population-based algorithms, the most representative examples in-

clude the genetic algorithms (Hartke, 1995; Pullan, 1997, 2005, 2010; Zeiri, 1997; Shao et al.,

2018), conformational space annealing algorithm (Lee et al., 2003), particle swarm optimization

algorithms (Yan et al., 2017; Zhou et al., 2020), differential evolution algorithm (Fan et al., 2016),

adaptive immune optimization algorithm (Cheng et al., 2004), and evolutionary programming ap-

proach (Iwamatsu, 2001). On the other hand, the most representative examples of trajectory-based

iterative algorithms include the basin-hopping algorithm and its variants (Doye et al., 1999, 2004;

Grosso et al., 2007; Locatelli and Schoen, 2002; Leary and Doye, 1999; Leary, 2000; Munro et al.,

2002; Rondina and Da Silva, 2013; Wales and Doye, 1997), minima hopping algorithm (Goedecker,

2004), dynamic lattice search algorithm and its variants (Shao et al., 2004; Wu and Wu, 2014),

heuristic algorithms with surface operator and interior operator (Takeuchi, 2006; Lai et al., 2011b),

clustering methods (Bagattini et al., 2018) and Monte Carlo algorithm (Yu et al., 2019; Chen et al.,

2022; Chen and Wang, 2021).
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In this paper, we focus on the structural optimization of silver clusters described by the many-

body Gupta potential (Gupta, 1981; Michaelian et al., 1999) for the following reasons. First, the

structural optimization of silver clusters has been widely studied in the literature due to their im-

portant physical and chemical properties (Day et al., 2017; Duanmu and Truhlar, 2015; Grigoryan

et al., 2013; Angulo and Noguez, 2008). Thus, they can serve as remarkable test systems for the

structural optimization of atomic clusters. Second, the many-body Gupta potential is a popular

potential function in the literature due to their strong ability to model the interactions among the

atoms in the metal clusters such as Ni, Ag, Au, and Al clusters (Michaelian et al., 1999; Sdob-

nyakov et al., 2011; Keyampi et al., 2020) . Third, compared to the pair potential like the popular

Lennard-Jones potential (Wales and Scheraga, 1999), the many-body Gupta potential is much more

difficult to handle. Finally, it should be noted that the algorithm proposed in this study can also be

adapted to optimize other atomic clusters with suitable modifications.

So far, a number of unbiased stochastic optimization algorithms have been proposed in the liter-

ature to search for the global optimal structures for silver clusters described by the Gupta potential.

In 2005, Shao et al. proposed a random tunneling algorithm for the problem with up to N = 80

atoms (Shao et al., 2005). In 2006, Zhan et al. presented the first dynamic lattice search (DLS)

algorithm and applied it to the clusters in the range of 61 ≤ N ≤ 120 (Zhan et al., 2006). Their

experimental results showed that their DLS algorithm significantly outperforms the previous algo-

rithms and improves the best-known solutions for two clusters Ag79 and Ag80. In 2007 and 2008,

Yang et al. and Shao et al. respectively predicted the global optimal structures of silver clusters in

the range of 13 ≤ N ≤ 160 and some selected clusters in the range of 170 ≤ N ≤ 310 by using

the DLS algorithm as well as the DLS method with the constructed core (DLSc) (Yang et al., 2007;

Shao et al., 2008). In 2011, through providing a more accurate definition for the energy of a single

atom, Huang et al. designed two heuristic algorithms based on a modified dynamic lattice search

method, and predicted systematically the global minimum structures of clusters with up to N = 310

atoms (Huang et al., 2011; Lai et al., 2011a). Their experimental results showed that the modified

dynamic lattice search algorithm is very efficient compared to the previous dynamic lattice search

methods and updated the best-known structures for a large number of clusters. In 2014, Wu et

al. further optimized the clusters in the range of N ≤ 150 by an adaptive immune optimization

algorithm combined with the dynamic lattice search method and found an improved configuration

for a small-scale cluster Ag61 (Wu and Wu, 2014). These studies imply that the dynamic lattice
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search methods are the state-of-the-art approaches for the structure optimization of silver clusters

described by the many-body Gupta potential.

From the literature review, we find that dynamic lattice search is a highly efficient approach and

that its variants are the state-of-the-art algorithms for optimizing the silver clusters described by

the Gupta potential. However, the existing algorithms still lack an efficient mechanism to system-

atically exploit the funnels on the potential energy surface (PES) of clusters, where a funnel on the

PES corresponds to a category of structures and consists of a large number of local minima (see

(Leary, 2000) for the detailed definition of the funnels on the PES). Therefore, it is very valuable

to design a new algorithm able to systematically and deeply exploit each funnel on the PES.

The goal of this work is to design a highly efficient structure optimization algorithm by sys-

tematically exploiting the funnels on the PES of the atomic clusters. In particular, we focus on

systematically optimizing the structures of silver clusters in the range of N ≤ 310 due to the fact

that the silver clusters in this size range have become a popular test system for evaluating the per-

formance of cluster optimization algorithms, and a number of optimization algorithms have been

tested on these clusters in the literature (Shao et al., 2005; Zhan et al., 2006; Yang et al., 2007; Shao

et al., 2008; Huang et al., 2011; Lai et al., 2011a; Wu and Wu, 2014).

The main contributions of this work are summarized as follows.

1. We propose an unbiased structure optimization approach called the iterated dynamic lattice

search (IDLS) algorithm for the metal clusters described by the many-body Gupta potential.

The algorithm integrates a surface-based perturbation strategy, a highly efficient dynamic

lattice search method, and the monotonic basin-hopping (MBH) method.

2. We systematically optimize the structures of 300 silver clusters from Ag11 to Ag310, which

are widely studied in the literature, by using the proposed algorithm. Experimental results

show that the algorithm improves the best-known structures for 47 clusters and matches the

best-known structures for the remaining 253 clusters.

3. The structural evolutions of the putative global optimum structures obtained are further ana-

lyzed for the silver clusters studied.

The remaining parts of paper are organized as follows. In Section 2, we describe in detail

the proposed IDLS algorithm. In Section 3, the performance of IDLS algorithm is assessed by

reporting the computational results on the silver clusters widely studied in the literature and mak-

ing comparisons with the best-known results in the literature. Moreover, the evolution of putative
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global minimum structures is further analyzed for the studied clusters. In Section 4, a key com-

ponent of the algorithm is discussed to explain its influence on the performance of the algorithm,

and the landscapes of the PES are analyzed for some representative clusters. In the last section, the

present study is summarized and some research perspectives are provided for future research.

2. Iterated dynamic lattice search method

This section presents the proposed iterated dynamic lattice search (IDLS) algorithm for the

metal clusters described by the many-body Gupta potential. The IDLS algorithm follows the gen-

eral iterated local search framework (Lourenço et al., 2003; Stützle, 2006), which integrates a local

search method, a perturbation operator, and an acceptance criterion for the new solutions. The algo-

rithm uses the monotonic basin-hopping (MBH) method to improve the initial solution, a dynamic

lattice search (DLS) method as the local search method, a surface-based perturbation operator to

jump out of the local minimum traps, and the Metropolis acceptance rule to accept the improved

solutions obtained by DLS. Before presenting the IDLS algorithm, we first describe the Gupta

potential function, which is used to describe the interactions between atomic clusters.

2.1. Gupta potential

The many-body Gupta potential is based on the second moment approximation of the electron

density of states in the tight-binding model and widely used to describe the interactions among the

atoms of metal clusters (Michaelian et al., 1999). Given a cluster configuration X = (r1, r2, . . . , rN)

composed of N atoms in three-dimensional space R3, where ri denotes three-dimensional coordi-

nates (xi, yi, zi) of i-th atom, the Gupta potential energy E(X) of X can be expressed as follows:

E(X) =
UN

2

N∑
i=1

Vi (1)

Vi = A
∑
j,i

exp[−p(
ri j

r0
− 1)] −

√∑
j,i

exp[−2q(
ri j

r0
− 1)] (2)

where ri j represents the Euclidean distance between the i-th and j-th atoms, r0 is the equilibrium

nearest-neighbor distance in the bulk metal, and UN is a function of the cluster size. Obviously, the

Gupta potential contains a short-range repulsive pair potential term and an N-body attractive term,

where the parameters p and q represent the repulsive interaction range and the attractive interaction
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range, respectively, and the value of the parameter A was obtained by minimizing the bulk cohesive

energy (Zhan et al., 2006).

In this study, we use the same parameter settings as in the previous studies for the Gupta poten-

tial, i.e., A = 0.09944, p = 10.12, q = 3.37, which was first obtained in (Michaelian et al., 1999)

and then widely used in global optimization studies of silver clusters (Huang et al., 2011; Lai et al.,

2011a; Shao et al., 2005; Wu and Wu, 2014; Zhan et al., 2006; Yang et al., 2007; Shao et al., 2008).

In particular, for the parameters UN and r0, the reduced units are used, i.e., UN = 1.0 and r0 = 1.0,

since their settings do not influence the cluster geometry structure. In other words, for a cluster

configuration, if r0 is set to a value other than 1 and the coordinates of all atoms in the cluster are

simultaneously scaled by r0, then all the distances ri j (i , j) between the atoms in the resulting

configuration are also simultaneously scaled by r0. As a result, both the geometry structure and the

energy of the cluster will remain unchanged according to Eq. (2). Moreover, it should be noted

that the equilibrium distance r0 = 2.8921Å between the atoms in the silver clusters has been widely

adopted in the literature (Alamanova et al., 2007; Wu et al., 2009).

Thus, for a cluster X with N atoms, the Gupta potential described by Eq. (1) is a non-convex

function with 3N continuous variables, and the corresponding global optimization is a very chal-

lenging unconstrained optimization problem due to the fact the number of local minima increases

exponentially with the cluster size on the PES of the cluster.

2.2. Main Framework of IDLS algorithm

As shown in the pseudo-code of Algorithm 1, the proposed IDLS algorithm is a three-phase

heuristic algorithm, where X and X∗ represent the current configuration and the best configuration

found so far, respectively.

Starting from a randomly generated initial cluster configuration, the algorithm first uses the

monotonic basin-hopping (MBH) method (Leary, 2000) to obtain a compact configuration, since

the initial configuration is usually disordered and contains a number of holes (lines 2–14). At each

iteration of MBH, the current configuration is perturbed, i.e., the coordinates of the atoms of the

current solution are first shifted by a random displacement, i.e., (xi, yi, zi) ← (xi, yi, zi) + ξ (1 ≤

i ≤ N), where ξ is a uniform random vector in [−0.8r0, 0.8r0]3, and then the obtained configuration

is relaxed by the L-BFGS method (Liu and Nocedal, 1989). The resulting configuration is then

accepted as the current solution if and only if the energy of the new cluster is lowered. The MBH
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Algorithm 1: Main framework of the proposed IDLS algorithm
1 Function IDLS()

Input: Size of cluster (N), search depths β1 and β2, temperature T , parameters ηmin, ηmax,
∆η

Output: The best solution found (X∗)
2 /* First Search Phase */
3 X ← InitialS olution(N)
4 X∗ ← L-BFGS(X)
5 NoImprove← 0
6 while NoImprove ≤ β1 do
7 X ← Random Perturbation(X∗)
8 X ← L-BFGS(X)
9 if E(X) < E(X∗) then

10 X∗ ← X, NoImprove← 0
11 else
12 NoImprove← NoImprove + 1
13 end
14 end
15 /* Second Search Phase */
16 X ← X∗, NoImprove← 0, η← ηmin
17 while NoImprove ≤ β2 do
18 Xo ← S ur f ace Perturbation(X, η) /* Algorithm 3 */
19 Xo ← DLS (Xo) /* Algorithm 2 */
20 ∆E = E(Xo) − E(X)
21 if rand(0, 1) < e−

∆E
T then

22 X ← Xo
23 end
24 if E(Xo) < E(X∗) then
25 X∗ ← Xo
26 NoImprove← 0
27 η← ηmin

28 else
29 NoImprove← NoImprove + 1
30 η← η + ∆η
31 if η > ηmax then
32 η← ηmin
33 end
34 end
35 end
36 /* Third Search Phase */
37 Xo ← S ur f ace Perturbation(X∗, 1) /* Algorithm 3 */
38 Xo ← DLS (Xo) /* Algorithm 2 */
39 if E(Xo) < E(X∗) then
40 X∗ ← Xo
41 end
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method stops when the energy of the cluster cannot be lowered any further during β1 successive

perturbations, where β1 is a parameter called the search depth of the MBH method.

Subsequently, based on the compact and ordered configuration from the first phase, the second

phase of the algorithm aims to optimize the positions of the surface atoms of the cluster to further

reduce its energy. This phase is the main search engine of the algorithm (lines 16–35) and can be

considered as an iterated local search method, where a number of iterations are performed until

the cluster energy cannot be improved during β2 consecutive iterations, where β2 is a parameter.

At each iteration, the current solution X is randomly perturbed by a surface-based perturbation

operator and then is locally improved by a dynamic lattice search (DLS) method which can be

considered as a high-level local search method. After that, the solution Xo from the DLS method is

accepted as the current solution according to the Metropolis criterion, i.e., the offspring solution is

accepted as the current solution with a probability of min{1, e
−∆E

T }, where ∆E = E(Xo)−E(X) and T

is the temperature parameter. Moreover, during the search process, the strength η of the perturbation

operator is dynamically adjusted to achieve a good trade-off between search intensification and

diversification (lines 27, 30–33). Thus, this search phase can also be considered as a large-step

Monte Carlo algorithm (Martin, 1992) or an extended basin-hopping algorithm, where the DLS

procedure acts as a strong local search method and the surface-based perturbation operator acts as

a move operator.

The third phase consists of a surface-based perturbation operator and a DLS procedure (lines

37–41), whose goal is to create a central vacancy for the best configuration found so far. This

stage is adopted based on the observation that for some large-scale clusters the putative optimal

configuration has a central vacancy (Xiang et al., 2004; Chen et al., 2022). It should be noted

that in this phase the surface-based perturbation operator only moves the highest-energy atom to

the surface of the cluster, because the central atom has the highest energy for some icosahedral

configurations (Xiang et al., 2004) and moving it to the surface of the cluster will create a central

vacancy for the cluster and reduce significantly the energy of cluster. Finally, the best configuration

X∗ found is returned as the result of algorithm at the end of the search.

The following sections describe in detail the initial solution method, the dynamic lattice search

method, and the surface-based perturbation operator.
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2.3. Initial Solution

The initial configuration of the cluster is randomly generated in a spherical container with the

center at the origin of the three-dimensional Cartesian coordinate system, and the radius R of the

container is calculated as r0 × (3N/4π)
1
3 , where N is the number of atoms and r0 is the equilibrium

distance between two atoms. To obtain an initial configuration of the cluster, all atoms are placed

uniformly and randomly in the container and then the resulting configuration is relaxed by the

L-BFGS method.

2.4. Dynamic Lattice Search Method

Algorithm 2: Dynamic Lattice Search (DLS) Method
1 Function DLS()

Input: A local minimum configuration X, parameter m
Output: The improved configuration X

2 do
3 X0 ← X
4 DL← LatticeConstruction(X) /* Construct the dynamic lattice DL for

the current configuration X */
5 {X1, X2, . . . , Xm} ← LatticeS earch(X,DL) /* Search for m lowest-energy

lattice minima based on DL with a discrete optimization method
*/

6 for i← 1 to m do
7 Xi ← L-BFGS(Xi) /* Relaxation of m lattice minima by a

continuous optimization method L-BFGS */

8 end
9 Xmin ← arg min{E(Xi) : i = 1, . . . ,m}

10 if E(Xmin) < E(X) then
11 X ← Xmin /* Update the current solution */

12 end
13 while E(X) < E(X0)

The dynamic lattice search (DLS) method (Shao et al., 2004) is a highly efficient iterative

search algorithm and was originally proposed based on early optimization techniques of atomic

clusters (Northby, 1987; Xue, 1994; Hartke, 1999) such as the directed mutation (Hartke, 1999).

The current variant of DLS was developed in a previous study (Huang et al., 2011) by one of the

present authors and was shown to be very efficient because of the new definition of the energy of
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a single atom in the cluster. For the completeness of the description of our algorithm, we briefly

introduce the DLS method from the point of view of continuous and discrete optimization, which

provides several new insights and understandings.

The DLS method takes advantage of problem reduction techniques and discretization tech-

niques of continuous solution space. At each iteration, the cluster optimization problem is first re-

duced into a smaller problem by fixing the positions of the low-energy atoms located usually in the

interior of the cluster, and the fixed atoms constitute an interior core of the cluster and the remaining

atoms are called active atoms, whose positions need to be optimized. Then, the resulting smaller

continuous optimization problem is approximately converted into a discrete optimization problem

by detecting the set of all possible stable positions on the surface of the cluster for an additional

detecting atom, which is called the dynamic lattice (DL) of the current solution, and optimizing the

positions of the active atoms over the constructed dynamic lattice. After that, the discrete optimiza-

tion problem is solved by a discrete optimization method, and several high-quality local optimal

solutions obtained are relaxed by a continuous local optimization method like L-BFGS (Liu and

Nocedal, 1989). Thus, the DLS method can also be regarded as a dynamic continuous-discrete

algorithm that alternately performs continuous and discrete optimizations until the energy of the

cluster cannot be lowered.

The pseudo-code of the DLS method is given in Algorithm 2, where X denotes the current so-

lution and the set LM = {X1, X2, . . . , Xm} denotes the set of lattice minimum solutions (see Section

2.4.2 for the definition). Starting from an input cluster configuration, the DLS method is performed

iteratively until the energy can no longer be lowered. At each iteration, the construction of dy-

namic lattice (line 4), the lattice search procedure (the discrete optimization, line 5), and the local

relaxations of lattice minimum solutions (the continuous optimization, lines 6-8) are in order per-

formed to optimize the positions of the surface atoms. The main components of the DLS method

are described in the following subsections.

2.4.1. Dynamic Lattice Construction

The lattice construction procedure aims to find all possible stable positions on the surface of

the cluster for an additional atom. Specifically, these stable positions are determined via 2N ran-

dom detections with an additional detecting atom. For each detection, the detecting atom is first

randomly placed on the surface of the sphere with a radius of 0.7 × Rmax and a center located at
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the cluster center, and then the position of the detecting atom is locally optimized by minimizing

its potential energy, where Rmax is the maximum distance from an atom in the cluster to the cluster

center. The resulting position of the detecting atom is very stable for a single atom and called the

lattice site. All the stable positions found by random detections and the positions occupied by Nmov

highest-energy atoms in the cluster form a finite discrete set called the lattice DL, where Nmov is a

parameter. Note that the lattice DL is dynamic and must be reconstructed at each iteration of the

DLS method, hence it is called a dynamic lattice.

2.4.2. Lattice Search Procedure

When a dynamic lattice DL has been constructed for the current configuration, the DLS method

employs a lattice search procedure to find several high-quality candidate solutions based on the

constructed lattice. It can be found that the problem of selecting Nmov lattice sites from DL for

the active atoms, such that the energy of the resulting configuration is minimized, is a discrete

optimization problem. The size of the search space of this problem is very large and is equal to

CNmov
|DL| (=

Nmove!
|DL|!(|DL|−Nmov)! ), where |DL| and Nmov denote the size of dynamic lattice and the maximum

number of active (or movable) atoms in the current iteration, respectively.

The lattice search procedure adopts a multi-start strategy combined with a greedy local search

method, where Ntry independent local search is performed to find several high-quality candidate

solutions based on the lattice. For each local search, the initial cluster configuration is generated by

randomly distributing Nmove active atoms to distinct lattice sites of DL, while keeping the core of

the cluster unchanged, and then is improved by a greedy local search method that iteratively moves

the highest-energy active atom from its current position to the lowest-energy unoccupied lattice

site until the energy of configuration cannot be lowered, where the energy E(i) of a single atom i

in the cluster X is defined as E(i) = E(X) − E(X \ {i}). The solution obtained by the greedy local

search method is called a lattice minimum solution due to the fact that it is defined on the lattice

DL. Finally, the first m different lowest-energy lattice minimum solutions obtained via Ntry greedy

searches are returned as the result of the lattice search procedure.

As indicated in Algorithm 2, these m lattice minimum solutions are relaxed in the continuous

solution space by a continuous local optimization method (i.e., the L-BFGS method (Liu and No-

cedal, 1989)) because there may be a small deviation between a lattice minimum solution and its

local minimum solution in the continuous solution space. Thus, the search process of the algorithm
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can be significantly accelerated because the time-consuming continuous optimization procedure is

restricted to the lattice minimum solutions, instead of all lattice solutions.

2.5. Surface-based Perturbation Operator

Algorithm 3: Surface-based perturbation operator

1 Function Surface Perturbation()

Input: A local minimum configuration X of cluster, perturbation strength η

Output: Perturbed configuration of cluster Xp

2 Calculate the potential energy for each atom in X

3 Sort the atoms in a descending order according to their energies Ei (1 ≤ i ≤ N)

4 Distribute randomly the first η highest-energy atoms on the surface of the sphere with a

radius 0.7 × Rmax, located at the cluster center

Figure 1: A local minimum configuration of Ag110, where the first 55 highest-energy atoms are indicated in red.

Despite its strong search capability, the DLS method is still a local search approach and gets

often stuck in local minima during the search process especially for large clusters. To jump out

of local optimum traps reached by the DLS method, the IDLS algorithm employs a surface-based

perturbation operator to perturb the current solution, whose pseudo-code is given in Algorithm 3.

The surface-based perturbation operator works as follows. Given a local minimum cluster con-

figuration X, the atoms are first sorted in descending order of energy. Then, the first η highest-
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energy atoms are redistributed by placing them randomly on the cluster surface, where η is a pa-

rameter called the perturbation strength, which is dynamically adjusted in the search process of

IDLS. Specifically, these high-energy atoms are randomly distributed on the surface of a sphere

with a radius of 0.7 × Rmax, located at the cluster center, where Rmax is the maximum distance from

an atom in the cluster to the cluster center. Finally, the resulting configuration is locally improved

by the L-BFGS method and returned as the result of the perturbation operator. This perturbation

operator is designed based on the observation that the high-energy atoms are usually distributed

on the cluster surface and it is very promising to further improve the energy of the whole clus-

ter by optimizing their positions, where the energy E(i) of atom i in the cluster X is calculated as

E(i) = E(X)−E(X\{i}). For an intuitive impression, we provide in Fig. 1 a graphical representation

of a local minimum configuration. It can be seen that most of the high-energy atoms are distributed

on the surface of the cluster, while the low-energy atoms are located in the interior of the cluster.

In addition, the surface-based perturbation operator is also used to create the central vacancy for

the cluster configuration, since the highest-energy atom is usually located at the center of cluster

for large icosahedral configurations (Xiang et al., 2004; Chen et al., 2022). In this case, to create a

central vacancy, the perturbation operator moves only the highest-energy atom to a random position

on the surface of the cluster.

3. Computational Experiments and Assessments

In this section, we show computational results of the proposed algorithm and the new putative

global optimal configurations found to evaluate the performance of the algorithm.

3.1. Parameter Setting and Experimental Protocol

Table 1: Setting of important parameters
Parameters Section Description Values
β1 2.2 search depth of MBH 50
β2 2.2 search depth of the second phase of IDLS 20
T 2.2 temperature of IDLS 0.2
ηmin 2.2 minimum strength of perturbation 15
ηmax 2.2 maximum strength of perturbation N/4
∆η 2.2 incremental value of perturbation N/20
m 2.4 number of lattice minima in DLS [5, 15]

The proposed IDLS algorithm has several parameters whose descriptions and settings are given

in Table 1. The values of these parameters were empirically determined according to a preliminary
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experiment and were adopted as the default parameter settings. In particular, the value of parameter

m was set in the interval [5, 15] according to the size of the instances to be optimized.

The IDLS algorithm was written in C++1 and compiled using the g++ compiler and all the

computational experiments were carried out on a computer with an Intel E5-2670 processor (2.5

GHz and 2G RAM), running the Linux operating system. In addition, due to the stochastic behavior

of the IDLS algorithm, the program was independently run 100 times with different random seeds

for each instance in the range of 11 ≤ N ≤ 310 to evaluate its average performance.

3.2. Computational Results and Assessment

We show the computational results of the IDLS algorithm on the clusters with 11 ≤ N ≤ 310 to

evaluate its performance.

3.2.1. New putative global optimal configurations

For the 300 clusters widely studied in the literature with 11 ≤ N ≤ 310, the IDLS algorithm

improves the best-known results for 47 clusters and matches the best-known solutions for the re-

maining clusters, where the best-known solutions are given in the well-known Cambridge land-

scape database (https://www-wales.ch.cam.ac.uk/CCD.html) for most clusters studied. The

detailed computational results are summarized in Table 2 for the clusters for which the best-known

configurations are improved by the algorithm, where the first two columns give the sizes of the

clusters and the best-known potential energies in the literature, respectively. The detailed results

of our algorithm are given in the remaining columns, including the best objective value (or energy)

fbest over 100 independent runs, the average objective value fave, the worst objective value fworst, the

success rate S R to hit the best configuration, the standard deviation of the objective values obtained

(σ), and the average computation times in seconds to reach the final solution (time(s)) for each run

of the algorithm. To get an intuitive impression of the improved configurations of the clusters, we

provide their geometric structures in Figs. 2 and 3.

Based on the fact that a number of global optimization algorithms have been tested on the silver

clusters described by the many-body Gupta potential in the literature, one can observe from Table 2

that the proposed IDLS algorithm performs well and significantly outperforms the best-performing

1The source code of the IDLS algorithm will be publicly available at https://github.com/XiangjingLai/

IDLS with the publication of the paper.

15

https://www-wales.ch.cam.ac.uk/CCD.html
https://github.com/XiangjingLai/IDLS
https://github.com/XiangjingLai/IDLS


Table 2: Detailed computational results of the IDLS algorithm on the 47 clusters for which IDLS finds new best-known

solutions, where the improved results are indicated in bold in terms of fbest.
IDLS (This work)

N BKR fbest favg fworst SR σ time(s)
59 -61.3969 -61.4233 -61.3864 -61.3433 4/100 1.27E-02 39
81 -85.4755 -85.4757 -85.4460 -85.2449 26/100 6.46E-02 101
143 -153.8282 -153.8441 -153.8173 -153.6362 17/100 4.36E-02 271
145 -156.1216 -156.1500 -156.0772 -155.8140 28/100 8.46E-02 300
146 -157.2794 -157.3051 -157.2357 -156.9265 19/100 9.63E-02 331
161 -173.7981 -173.8057 -173.6969 -173.5026 6/100 9.28E-02 524
165 -178.2196 -178.2441 -178.1510 -177.8710 1/100 1.04E-01 594
171 -184.8773 -184.9341 -184.8298 -184.5157 42/100 1.22E-01 596
172 -186.0265 -186.0383 -185.9557 -185.5584 48/100 1.30E-01 706
173 -187.1408 -187.1961 -187.0612 -186.5938 40/100 1.58E-01 666
177 -191.5945 -191.6318 -191.5470 -191.0749 57/100 1.32E-01 616
178 -192.7141 -192.7412 -192.6801 -192.2470 66/100 1.06E-01 788
181 -196.0920 -196.1072 -196.0078 -195.4945 37/100 1.42E-01 704
188 -203.8856 -203.9006 -203.8122 -203.2480 12/100 1.25E-01 792
190 -206.1572 -206.1686 -206.0510 -205.4797 2/100 1.49E-01 782
191 -207.3267 -207.3418 -207.2173 -206.6674 16/100 1.42E-01 1107
212 -230.6868 -230.7031 -230.5885 -230.1074 62/100 1.74E-01 1069
232 -252.9059 -252.9247 -252.8163 -252.2572 20/100 1.43E-01 1361
233 -254.0027 -254.0824 -253.9682 -253.5545 56/100 1.71E-01 1235
246 -268.5944 -268.5968 -268.4327 -267.7523 6/100 1.61E-01 1086
247 -269.7218 -269.7303 -269.5786 -269.2512 2/100 1.43E-01 1107
253 -276.4377 -276.4466 -276.2741 -276.0306 1/100 1.37E-01 1874
258 -282.0286 -282.0865 -281.8876 -281.5755 1/100 1.52E-01 1823
259 -283.2293 -283.2447 -283.0371 -282.6584 6/100 1.67E-01 1895
264 -288.7842 -288.8403 -288.5931 -288.1908 21/100 2.01E-01 2077
265 -289.9460 -289.9617 -289.7077 -288.7817 9/100 2.22E-01 2263
267 -292.1491 -292.2126 -291.9765 -291.6266 25/100 2.01E-01 2067
271 -296.6616 -296.6772 -296.4780 -295.9834 36/100 1.96E-01 2379
274 -299.9834 -300.0426 -299.8262 -299.2316 2/100 2.23E-01 2076
275 -301.1064 -301.2008 -300.9597 -300.5339 7/100 1.94E-01 1821
281 -307.9020 -307.9176 -307.6739 -307.1343 20/100 2.26E-01 2366
283 -310.0834 -310.1677 -309.9410 -309.2098 29/100 2.17E-01 2314
284 -311.2239 -311.2341 -311.0619 -310.6411 26/100 1.99E-01 2164
285 -312.3485 -312.3598 -312.1914 -311.7308 36/100 1.98E-01 1510
287 -314.6171 -314.6327 -314.4424 -313.9549 48/100 2.15E-01 2051
290 -317.9395 -317.9981 -317.7889 -317.3870 1/100 1.90E-01 2026
291 -319.0605 -319.1562 -318.9046 -318.3657 5/100 2.19E-01 2102
295 -323.5894 -323.6016 -323.3715 -322.7771 28/100 2.33E-01 2409
296 -324.6877 -324.7521 -324.5576 -323.9586 43/100 2.26E-01 2486
297 -325.8575 -325.8729 -325.6753 -325.1263 40/100 2.32E-01 2496
299 -328.0388 -328.1226 -327.9496 -327.3412 53/100 2.16E-01 2654
300 -329.0878 -329.1896 -329.0379 -328.2891 24/100 1.84E-01 2696
301 -330.3027 -330.3155 -330.1752 -329.6641 25/100 1.53E-01 2726
303 -332.5727 -332.5884 -332.4283 -331.8492 53/100 2.03E-01 2345
305 -334.7777 -334.8400 -334.6716 -333.8563 34/100 2.17E-01 3091
306 -335.9034 -335.9378 -335.7728 -335.1372 2/100 1.89E-01 2718
307 -337.0167 -337.1113 -336.9251 -336.1000 19/100 2.32E-01 2342
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(a) 59 (b) 81 (c) 143 (d) 145 (e) 146

(f) 165 (g) 171 (h) 172 (i) 177 (j) 178

(k) 181 (l) 188 (m) 190 (n) 191 (o) 212

(p) 232 (q) 233 (r) 246 (s) 247 (t) 253

Figure 2: Improved configurations for several representative clusters with N ≤ 257.
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(a) 258 (b) 259 (c) 264 (d) 265 (e) 267

(f) 271 (g) 274 (h) 275 (i) 281 (j) 287

(k) 290 (l) 295 (m) 296 (n) 297 (o) 299

(p) 301 (q) 303 (r) 305 (s) 306 (t) 307

Figure 3: Improved configurations for several representative clusters with 258 ≤ N ≤ 310.
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algorithms in the literature by improving the best-known solution for a large number of clusters.

In particular, for the small clusters with N ≤ 150, which have been optimized by many global

optimization algorithms, the IDLS algorithm improves the best-known solutions for five clusters,

i.e., Ag59, Ag81, Ag143, Ag145, and Ag146. As shown in Fig. 2, for the smallest cluster Ag59, the new

improved solution has a tetrahedral configuration, which is significantly different from the putative

global optimal solution of other clusters. Moreover, the low success rate (S R = 4/100) of the

algorithm on this cluster implies that the tetrahedral configuration corresponds to a very narrow

funnel on the potential energy surface of the cluster and that it is difficult for the IDLS algorithm

to locate the new improved solution. For Ag81, the configuration of the improved solution belongs

to the category of face-centered cube (FCC) structures, which is very difficult to locate by the

previous optimization algorithms. In addition, it is worth noting that for Ag145 and Ag146, the

improved solutions have an icosahedral configuration with a central vacancy, i.e., the central atom

of the configuration is missing due to its high energy. To the best of our knowledge, this is the

first time to find that the putative global optimal configuration has a central vacancy for the small

clusters with N ≤ 150.

In terms of the robustness of the algorithm, one observes from Table 2 that the standard de-

viation of the objective values (i.e., the energies of the clusters) obtained for each cluster is very

small, which means that the IDLS algorithm is very robust and is able to obtain the similar results

in energy for all runs of the algorithm. Nevertheless, for several hard instances the success rate is

very low, which means that there are several competing funnels on the PES of the cluster and the

putative global minimum solution is located on a very narrow funnel. In terms of computational

time, the performance of our algorithm is acceptable and the maximum time of a run is less than

one hour for all instances.

In addition, Figs. 2 and 3 show that the vast majority of the new improved solutions have a

decahedral configuration, including 11 truncated decahedral configurations. This result implies

that the decahedral structures are still dominant configurations in the range of N ≤ 310, which is

consistent with the results of the previous studies (Yang et al., 2007; Shao et al., 2008; Huang et al.,

2011; Lai et al., 2011a).
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Figure 4: Finite difference ∆E and second finite difference ∆2E of the potential energies for the putative global mini-

mum structures.
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3.2.2. Magic numbers of clusters

To determine the magic numbers of Ag clusters, which corresponds to the cluster sizes for

which the ground-state configurations are particularly stable compared to their neighboring sizes,

we plot in Figure 4 the finite difference ∆E and the second finite difference ∆2E of the lowest

energies found in this study as a function of the cluster size N, where a valley in ∆E and a peak

∆2E mean that the corresponding cluster has a particularly stable ground-state configuration and

that the corresponding cluster size is a magic number. The finite difference ∆E of the potential

energies is given in subfigures (a) and (b) of Figure 4, and the second finite difference ∆2E is given

in subfigures (c) and (d). Specifically, the finite difference ∆E and the second finite difference ∆2E

are respectively defined as follows.

∆E = E(N) − EJ(N) (3)

∆2E = E(N + 1) + E(N − 1) + 2E(N) (4)

where EJ(N) = a + bN1/3 + cN2/3 + dN is a four-parameter fit of the lowest energies found in this

work.

Figure 4 shows that most magic numbers are the same with those reported in the previous

studies (Zhan et al., 2006; Huang et al., 2011; Yang et al., 2007), although the putative global

optimum configurations are improved for 47 clusters in the present work. For instance, N = 38,

55, 75, 192 are still a magic number based on the current computational results, which means that

the corresponding lowest-energy configurations are particularly stable compared to its neighboring

sizes. Moreover, the new computational results indicate that N = 146 is a magic number missed

in the previous studies and the new best configuration is an icosahedral one with a central vacancy.

Note that the neighboring size N = 147 was wrongly identified as a magic number in the previous

study (Huang et al., 2011).

3.2.3. Computation time and Success rate

To further investigate the performance of the IDLS algorithm, the average computation time

(i.e., the average elapsed time from the start of the algorithm to the last update of the best solution

found) and the success rate of the algorithm are systematically recorded and plotted as a function

of the size of the cluster (N) in Fig. 5, where subfigures (a) and (b) give the average computation

time and the success rate of our algorithm for each size, respectively.
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Figure 5: Average computation time of the IDLS algorithm for each run and success rate of the algorithm to hit the

current best solution.

Fig. 5 shows that there is a general tendency that the computation time of the algorithm in-

creases gradually as the size (N) of the cluster increases for the clusters in the range of N ≤ 200.

However, the computation time changes slightly for the clusters between N = 200 and 250, and

then increases sharply at N = 251. For the larger clusters, the computation time fluctuates slightly

as the size of cluster increases. The results of this experiment show that the larger clusters are

generally more time-consuming to optimize compared to the smaller clusters for the proposed al-

gorithm, and that the computation time varies slightly in several local ranges of cluster sizes. In

addition, Fig. 5 shows that there exists an unexpected decrease in the average computational time

for clusters within the size range 200 ≤ N ≤ 250, and this implies that for these clusters the IDLS

algorithm usually gets trapped in local (or global) minimum solutions located in a wide energy

funnel on the PES of the cluster, thus leading to a search stagnation.

In terms of success rate, we observe that for most of the clusters, the success rate is greater

than 0.3, which means that it is very likely that the global minimum solution has been found by the

proposed algorithm for these clusters. However, there are still some clusters distributed in different

size ranges whose success rates are smaller than 0.1, which means that these clusters are hard

instances for the proposed algorithm. In particular, there are two size intervals (i.e., [152, 166] and

[235, 253]) where the success rate for most clusters is very low. This indicates that there are still a

number of hard clusters for the proposed algorithm, although it significantly outperforms a number

22



of existing algorithms in terms of search capability.

4. Analysis and Discussions

We now analyze the effect of creating central vacancy on the searching ability of the algorithm,

and provide a landscape analysis of the potential energy surface of the cluster for several represen-

tative instances.

4.1. Importance of creating central vacancy

Several studies show that for many large clusters (Chen et al., 2022; Xiang et al., 2004), the

icosahedral configurations with central vacancy are the most stable structures. Thus, the third phase

of the algorithm (see Algorithm 1), which aims to create a central vacancy for the configurations, is

very key to increasing the robustness of the algorithm. To show the effectiveness of creating central

vacancy, we perform an additional experiment on two representative clusters for which the putative

optimal configuration is an icosahedral structure with a central vacancy, i.e., Ag145 and Ag146. In

this experiment, we first created a variant (denoted by IDLS-C) of the IDLS algorithm by disabling

its third phase while keeping other components unchanged.

Then, we ran the IDLS and IDLS-C algorithms 100 times on each representative cluster, re-

spectively. The experimental results of this experiment show that the success rates of the IDLS-C

algorithm to hit the putative optimal configurations are 0/100 for two clusters, while the success

rates of the IDLS algorithms are 28/100 and 19/100 respectively for the two representative clus-

ters. This experiment shows that the third phase of the IDLS algorithm plays an important role

in improving the robustness of the algorithm, and the creation of central vacancies is a necessary

operation in finding the optimal configurations with a central vacancy. This may explain why all

the previous algorithms failed to find the current best configurations for these two clusters.

4.2. Landscape Analysis of the PES for representative clusters

Many studies show that there exist a number of large funnels on the potential energy surface

(PES) of clusters (Wales and Doye, 1997; Leary, 2000), where each large funnel corresponds to

a category of structures, such as the tetrahedral structure (TE), the face-centered-cubic structure

(FCC), the decahedral(DE) structure, and the icosahedral (IC) structure, where each large funnel

consists of a large number of small funnels and each small funnel contains many local minima with
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(a) N=59(SR=4/100) (b) N=158(SR=1/100) (c) N=162(SR=1/100) (d) N=231(SR=1/100)

Figure 6: Best configurations found for several hard instances.

very similar geometry structures. According to the computational results in Section 3.2, the putative

optimal solutions found by the IDLS algorithm exhibit a decahedral structure for the majority of

clusters studied. However, for several hard instances, the putative optimal solutions have a face-

centered-cubic (FCC) or TE configuration. In Fig. 6, we give the putative optimal configurations of

four representative hard clusters for which the success rate of our algorithm is no more than 4/100.

We observe from the figure that these putative optimal solutions exhibit a FCC or TE configuration,

which is different from the dominant decahedral structures. According to the potential energy

surface theory (Wales and Doye, 1997; Cheng et al., 2005), the low success rate of the algorithm

on these clusters means that the putative global optimal solution locates in a very narrow and deep

funnel on the PES of the cluster and that it is very difficult for the IDLS algorithm to locate the

global minimum configuration of these clusters.

To further analyze the landscape of the PES of clusters and investigate why some clusters are

so difficult to optimize, we carried out another experiment based on six representative clusters,

where an unbiased two-phase local search method is used to sample the configuration spaces of

clusters. The two-phase local search method can be viewed as a high-level local search method

and consists of the monotonic basin-hopping method and a dynamic lattice search method. In this

experiment, the two-phase local search method was run 200 times for each cluster and the initial

configuration of cluster was randomly sampled for each run of the two-phase local search method.

For each cluster, 200 geometrical configurations obtained by the two-phase local search method

are divided into five categories according to their structures, including the tetrahedral structure

(TE), the face-centered-cubic structure (FCC), the decahedral(DE) structure, the icosahedral (IC)
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(b) N=158(FCC, SR=1/100)
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(c) N=162(FCC, SR=1/100)
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(d) N=165(FCC, SR=1/100)
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(e) N=178(DE, SR=66/100)

4.0%

11.5%

27.0%

52.5%

5.0%

TE FCC DE IC Disorder
Type

0

10

20

30

40

50

P
er

ce
n

ta
g

e 
(%

)

(f) N=231(FCC, SR=1/100)

Figure 7: The proportions of each category of structures over all 200 structures obtained by an unbiased two-phase

local search method for six representative clusters.
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structure, and the disordered structure. The proportions of each category of the structures over all

obtained structures are summarized in Fig. 7 for each cluster, together with the putative optimal

configuration of the cluster and the success rates of the IDLS algorithm, where a larger proportion

means a wider funnel on the PES of the cluster for the corresponding category of structures.

We observe from Fig. 7 that for all tested clusters, the proportion of the IC structures is signifi-

cantly larger than other categories of structures, which means that the funnel of the IC structures is

very wide for these clusters and it is not very easy for an unbiased optimization algorithm to enter

other categories of funnels. For the size N = 59, the putative global optimal solution has a TE

structure, whereas the proportion of the TE structures is very low (=2.5%) on the PES of the clus-

ter, which makes it very difficult for the unbiased algorithms to locate the putative global optimal

solution. As a result, the success rate of IDLS is only 4/100. Similarly, for N =158, 162, 165 and

231, the putative global optimal solution has a FCC structure, whereas the proportion of the FCC

structures is smaller than that of the IC and DE structures, which leads to a larger probability for

the unbiased optimization algorithms to enter the IC and DE funnels of the PES of clusters than

the FCC funnel and results in a very low success rate of the IDLS algorithm. On the contrary, for

the size N = 178, the putative global optimal solution has a DE structure and the IDLS algorithm

reaches a high success rate of 66/100. This phenomenon can be explained from the landscape of

the PES of the cluster. For this cluster, the funnel of the putative global optimal solution on the

PES has a large proportion of 19% that is larger than that of other funnels except for the IC funnel,

which makes the IDLS algorithm enter the putative global optimal funnel with a high probability.

4.3. Discussion on the difference between theoretical and experimental results

The global minima of the cluster potential function theoretically correspond to the ground-state

structures at the temperature of 0 K (Wales and Scheraga, 1999; Settem et al., 2023). To show

whether our theoretical results are basically consistent with the experimental results, we made a

rough comparison between the structures obtained by our IDLS algorithm and those synthesized

by previous researchers in the laboratory. Specifically, using the electron microscopy, Giorgio and

Urban (1988) studied the structures of small silver clusters in the experimental condition, and their

study shows that the icosahedral configurations are more difficult to form than other structures for

small clusters of about 1.0 nm (i.e., N ≤ 55), which is consistent with the results obtained by

the IDLS algorithm. In an electron diffraction study of clusters produced by inert-gas aggrega-
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tion, Reinhard et al. (1997) found the icosahedral, decahedral and FCC configurations by mean

of the high resolution electron microscopy for the silver clusters in the size range of [3nm, 14nm],

which is also consistent with the results of this work. Then, via the scanning transmission elec-

tron microscopy experiments, Loffreda et al. (2021) indicated that FCC is the predominant ordered

structure for the silver clusters in the size range of [302, 316], synthesized in vacuum. However,

our results show that the decahedral configurations are the predominant structures for these silvers,

which implies that the temperature may play a very important role for the cluster structures when

two categories of structures are highly competing in the potential energy. In addition, the study of

Vernieres et al. (2023) indicates that the air exposure will largely influence the structures of silver

clusters in the synthesizing experiments.

These findings show that the structural motifs obtained by our IDLS algorithm are basically

consistent with those synthesized in the laboratory especially for the small clusters. Nevertheless,

for some large clusters, the structures obtained in this work differ from those synthesized in the

laboratory due to the influences of the temperature or the air exposure. Thus, it is very important for

the experimental researchers to consider the temperature as well as other conditions in synthesizing

silver clusters in the laboratory.

5. Conclusions and Future Work

The structural optimization of metal clusters described by the many-body Gupta potential is

an important and challenging global optimization problem with many important applications in

physics and chemistry. In this study, we propose an unbiased global optimization algorithm, i.e.,

the iterated dynamic lattice search algorithm, for the structural optimization of atomic clusters

described by the many-body Gupta potential. The proposed algorithm integrates mainly a surface-

based perturbation operator, a dynamic lattice searching method, and a monotonic basin-hopping

method. The algorithm was evaluated on 300 popular silver clusters with 11 ≤ N ≤ 310 in the liter-

ature, showing an outstanding performance by reporting new best-known solutions for 47 clusters

and matching the best-known solutions for the remaining clusters.

The experimental results indicate that for the putative global minimum structure, the decahedral

configurations are still dominant for the silver clusters in the range of N ≤ 310, as shown by the

majority of the improved best solutions found by the proposed algorithm. Moreover, the landscape

analysis on the PES of the clusters shows that the decahedral and icosahedral funnels are much
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wider than other funnels for the studied clusters.

There are several research directions for future studies. First, the proposed algorithm can be

adapted to other atomic clusters with different empirical potentials. Second, it is very interesting

to design a hybrid evolutionary algorithm by integrating crossover and mutation operators and the

dynamic lattice search method. Third, the proposed algorithm can be applied to the structural

optimization of other metal clusters described by the many-body Gupta potential.
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