
Iterated dynamic thresholding search for

packing equal circles into a circular container

Xiangjing Lai a, Jin-Kao Hao b,∗, Dong Yue a , Zhipeng Lü c ,

Zhang-Hua Fu d,e

aInstitute of Advanced Technology, Nanjing University of Posts and

Telecommunications, Nanjing 210023, China

bLERIA, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers, France

cSMART, School of Computer Science and Technology,

Huazhong University of Science and Technology, 430074 Wuhan, P.R.China

dInstitute of Robotics and Intelligent Manufacturing, The Chinese University of

Hong Kong, Shenzhen 518172, China

eShenzhen Institute of Arti�cial Intelligence and Robotics for Society, Shenzhen

518172, China

European Journal of Operational Research, August 2021

https://doi.org/10.1016/j.ejor.2021.08.044

Abstract

Packing equal circles in a circle is a classic global optimization problem that has a
rich research history and a number of relevant applications. The problem is compu-
tationally challenging due to the fact that the number of possible packing con�gu-
rations grows exponentially with the number of circles. In this work, we propose a
highly e�ective iterated dynamic thresholding search algorithm for solving this di�-
cult problem. The algorithm integrates several features including a two-phase local
optimization method, a dynamic thresholding search and a container adjustment
procedure. Computational experiments on popular benchmark instances with up to
N = 320 circles show that the algorithm outperforms signi�cantly the state-of-the-
art algorithms. In particular, it improves the best-known results for 136 instances,
while matching the best-known results for other 175 instances.
Keywords: Packing, thresholding search, global optimization, heuristics.

∗ Corresponding author.
Email addresses: laixiangjing@gmail.com (Xiangjing Lai),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao), medongy@vip.163.com (Dong Yue),
zhipeng.lui@gmail.com (Zhipeng Lü), fuzhanghua@cuhk.edu.cn (Zhang-Hua
Fu).

Preprint submitted to Elsevier 4 September 2021

1 Introduction

Given N unitary circles {c1, c2, . . . , cN} with (xi, yi) being the center of circle
ci, the Packing Equal Circles in a Circle (PECC) problem involves packing the
N circles into a circular container c0 such that no two circles overlap and no
circle exceeds the container, while the radius R of the container is minimized.
Formally, the PECC problem can be modeled as a nonlinear constrained op-
timization problem as follows:

Minimize R (1)

Subject to
√

(xi − xj)2 + (yi − yj)2 ≥ 2, 1 ≤ i 6= j ≤ N (2)√
x2i + y2i + 1 ≤ R, i = 1, 2, . . . , N (3)

where R is the radius of the container with a center at the origin of the
two-dimensional Cartesian coordinate system, (xi, yi) and (xj, yj) represent
respectively the centers of circles ci and cj, the constraints (2) guarantee that
any two circles do not overlap, and the constraints (3) ensure that none of the
N circles exceeds the container.

The PECC problem has a number of industrial applications, such as circular
cutting, �ber optic cable manufacturing, container loading, cylinder packing
and facility and dashboard layout [7]. On the other hand, the problem is
known to be NP-hard [11,23] and thus solving the problem is computationally
challenging.

In addition, the PECC problem is a natural and remarkable test system for
evaluating various general-purpose global optimization techniques due to the
following features [27]. First, in spite of its simplicity in form, the number of
its local optimum solutions is huge even for medium-sized instances, which
increases exponentially as N increases [21]. Second, a solution of the problem
has a visual and intuitive graphical representation on a 2-dimensional plane,
which facilitates the interpretation of the solution. Third, the absence of par-
ticular structural features of the problem makes it very suitable to act as a
benchmark for testing general global optimization algorithms.

Since 1967 [28], a large number of studies and algorithms have been reported
in the literature for solving the PECC problem. In the early stage of research
history, many e�orts were devoted to �nding the optimum solution for small
instances. For example, in 1968 and 1969, Graham and Pirl proved the op-
timality of solutions for N ≤ 7 and N ≤ 10, respectively [18,45]. In 1994,
Melissen proved the optimal solution for N = 11 [42], while the optimality for
N = 19 was provided by Fodor in 1999 [15]. Nevertheless, for large instances,
no method is known to be able to solve the problem optimally.

2

Thus, most of later studies were devoted to designing e�ective heuristic algo-
rithms that are based on the non-convex continuous optimization model and
can be summarized as follows. In 1998, Graham et al. proposed a billiards sim-
ulation method to solve the PECC problem and published for the �rst time
the putative global optimum solutions for up to N = 65 [19]. In 2002, Akiyama
et al. investigated a greedy heuristic algorithm and improved the best-known
results for a number of instances with N ≤ 100 [3]. In 2005, Mladenovi¢ et al.
presented a reformulation descent algorithm, where two di�erent formulations
of the PECC problem are alternately used to avoid search stagnations [43].
In 2009, Grosso et al. developed two basin-hopping algorithms and improved
the best-known results for 20 instances with N ≤ 100 [21]. In the same year,
Liu et al. proposed an energy landscape paving algorithm and reported com-
petitive results for some instances with N ≤ 100 [31]. In 2010, Birgin and
Gentil investigated the resolution of non-linear equations systems through the
Newton-Raphson method and improved the accuracy of previous results at-
tained by continuous optimization approaches [5]. In 2011, Huang and Ye
designed a highly e�cient quasi-physical global optimization algorithm and
further improved the best-known results for 63 instances with N ≤ 200 [27].
In the same year, López and Beasley developed a heuristic algorithm based
on the formulation space search method for the problem of packing equal cir-
cles into a variety of containers [36], including the circular container. They
showed that their algorithm outperforms the earlier formulation space search
method [43]. In 2018, Chen et al. designed a greedy heuristic by means of a
greedy corner-occupying placement strategy, and presented competitive results
for small instances with N ≤ 100 [8]. In the same year, He et al. developed a
quasi-physical quasi-human algorithm, and improved 66 best-known results for
instances with N ≤ 320 [23]. Recently, Stoyan et al. studied several optimiza-
tion strategies for a number of circle and sphere packing problems, including
PECC, and their computational results show that the adopted optimization
strategies are very e�cient [49]. In particular, they reported improved results
for several large-scale PECC instances with up to 5000 circles.

Additionally, from the well-known Packomania website maintained by Specht
[47], we observe that researchers launched an interesting competition on the
PECC problem. In this contest, people are invited to solve the PECC problem
by their own algorithms and then provide the improved solutions with respect
to the best-known result, regardless of the computational resource used. From
the continually updated history of the website for the best-known results, we
observe that in the range of 101 ≤ N ≤ 200, Huang et al [27] and Cantrell
report the best-known results for most instances. For a majority of instances
of N > 201, the best-known results are hold by Specht and Cantrell [47].
For N > 1000, the best results are provided by the IIPP-random/lattice-
IPOPT algorithm [49] that uses lattice packings as the initial solution of the
algorithm for 17 large scale instances with up to 5000 circles. In view of the
updating history of the Packomania website and the newest results reported

3

in [23], the quasi-physical quasi-human algorithm in [23], the quasi-physical
global optimization in [27], the IIPP-random/lattice-IPOPT algorithm [49],
and Cantrell's unpublished algorithm [47] can be regarded to represent the
current state-of-the-art for solving the PECC problem.

In addition to the previous review, there are a large number of studies dedi-
cated to several variants of the PECC problem, including mainly the problem
of packing equal circles into a variety of containers, the problem of packing
unequal circles into a regular container, and the sphere packing problems in
the 3-dimensional space. For these variants, numerous algorithms have been
proposed in the literature, which can be mainly divided into the following cate-
gories. The �rst category of algorithms are heuristics based on the non-convex
continuous optimization model, such as the quasi-physical quasi-human algo-
rithm [54], monotonic basin-hopping algorithm [2], population basin-hopping
algorithm [1], simulated annealing algorithms [56,44], tabu search algorithm
[16], greedy vacancy search algorithm [26], local search-based methods [24,25],
formulation space search methods [37,38], hybrid heuristic algorithms [6,55],
jump algorithm [51,52], and popular Packmol approach which is a package for
building initial con�gurations for molecular dynamics simulations [41]. The
second category of algorithms are based on the ideas of discrete optimiza-
tion [53]. For instance, Lü and Huang proposed a stochastic growth algorithm
called PERM in which the circles are packed one by one into the container [39].
Based on the constructed grids, Galiev et al. investigated several integer linear
programming models for the approximate solution of the problem of packing
equal circles into a given domain [17], where the centers of circles can locate
only at the grid points. Using valid inequalities and di�erent grids, Litvinchev
et al. studied some integer linear programming-based heuristics [32,33]. The
third category of algorithms include a deterministic global optimization ap-
proach [34] and deterministic method for high density packing of equal circles
in rectangles with variable aspect ratio [46]. In addition, there exist several
other optimization algorithms for circle packing problems, such as an interval
analysis-based optimization algorithm [40] and heuristic algorithms based on
the phi-function technique [20,49,50].

Our literature review indicates that the PECC problem remains a hot research
topic due to its computational challenge and relevant applications. According
to the update history of the Packomania website [47], the best-known re-
sults were continually improved by new algorithms, which implies that there
is still room for improvement. In this work, we aim to further advance the
state-of-the-art of solving the PECC problem. Speci�cally, we design a new
heuristic algorithm for e�ectively solving large PECC instances with N > 100.
The algorithm combines a fast two-phase local optimization method to �nd
high quality local optimum solutions, an original dynamic thresholding search
method to explore the search space and a dedicated penalty-based container
adjustment procedure to reinforce the search intensi�cation. Computational

4

experiments on popular benchmark instances with up to N = 320 circles show
that the algorithm outperforms signi�cantly the state-of-the-art algorithms.
In particular, it improves the best-known results (new upper bounds) for 136
instances with N > 100, while matching the best-known results for other
175 instances. In addition to these results, the underlying ideas behind the
two-phase local optimization and the dynamic thresholding search are of gen-
eral interest and could be used in other search algorithms for solving more
optimization problems.

The rest of paper is organized as follows. In Section 2, the general idea of
the proposed algorithm is provided. In Section 3, the proposed algorithm is
described in detail. In Section 4, computational results on benchmark instances
and comparisons are provided. In Section 5, the impacts of several important
ingredients of the algorithm are analyzed. Conclusions are drawn in the last
section with discussion of research perspectives.

2 General Approach for Solving the PECC Problem

The PECC problem is a nonlinear constrained optimization problem that is
di�cult to solve directly. To cope with this di�culty, we convert the problem
into a series of constraint satisfaction problems which are solved by means of
the penalty function approach.

2.1 Reformulation of the PECC Problem with Fixed-radius Containers

The adopted approach reformulates the PECC problem as a series of constraint
satisfaction problems where each problem has a �xed-radius container whose
goal is to pack the circles in the given container.

De�nition 1: Given N unitary circles {c1, . . . , cN} with (xi, yi) being the cen-
ter of circle ci, and a circular container c0 of radius R (R >

√
N), the Packing

Equal Circles in a Circle problem with a Fixed-Radius container (PECC-FR)
is to �nd a packing con�guration that satis�es the constraints that 1) no two

circles ci and cj overlap (i.e.,
√

(xi − xj)2 + (yi − yj)2 ≥ 2, 1 ≤ i 6= j ≤ N),

and 2) none of the N circles exceeds the container (i.e.,
√
x2i + y2i + 1 ≤ R for

any circle ci).

For a given container of radius R, we use PECC-FR[R] to denote the particular
PECC-FR problem.

To deal with PECC-FR[R], we convert it to an unconstrained nonlinear opti-

5

mization problem de�ned on the 2N -dimensional Euclidean space <2N , where
a candidate solution is represented by the coordinate vectorX = (x1, y1, . . . , xN , yN)
indicating the centers of N circles ci = (xi, yi) (i = 1, 2, . . . , N).

To assess the quality of a candidate solutionX (i.e., a packing con�guration) of
PECC-FR[R], we follow the general penalty function approach (see examples
in [26,27,41,48]) and de�ne the penalty-based objective function ER(X) as
follows.

ER(X) =
N−1∑
i=1

N∑
j=i+1

O2
ij +

N∑
i=1

O2
0i (4)

where
Oij = max{0, 2−

√
(xi − xj)2 + (yi − yj)2} (5)

O0i = max{0,
√
x2i + y2i + 1−R} (6)

In other words, Oij quanti�es the overlap between two circles and O0i quan-
ti�es the overlap between any circle and the container. As the result, ER(X)
measures the degree of constraint violation of the candidate packing con�gu-
ration X. ER(X) = 0 (true if ER(X) < 10−25 in this work) indicates that X
is a feasible solution to PECC-FR[R]; otherwise, X violates non-overlapping
constraints and is thus an infeasible or con�icting solution. Given two packing
con�gurations A and B, A is better than B if and only if ER(A) < ER(B).

Fig. 1 shows a con�icting packing con�guration with the two types of overlaps.

Fig. 1. An illustrative example for a con�icting packing con�guration with overlaps.

2.2 Solving the PECC Problem based on Constraint Satisfaction

With the above formulation, we approximate the PECC problem by solving a
series of PECC-FR problems with the following procedure.

6

(1) Set the container radius R to an initial value;
(2) Solve the associated PECC-FR[R] problem by minimizing the penalty-

based objective function ER(X) with an unconstrained nonlinear opti-
mization method;

(3) Adjust the solution X and radius R of container from step (2) by a
container adjustment method to obtain a feasible packing con�guration
(X,R) such that R is locally minimized;

(4) Update Rmin by the adjusted R (i.e., Rmin ← R) if R < Rmin, where
Rmin is the smallest container radius found so far permitting a feasible
solution;

(5) Go to step (2) with R = Rmin −∆R, where ∆R is a reduction factor.
(6) Repeat steps (2)�(5) until a stopping condition is met and then returns

the last feasible solution found.

The last obtained Rmin, for which a feasible solution for the PECC-FR[Rmin]
problem is found, de�nes an upper bound of the optimal solution of the given
PECC problem.

3 The Proposed Algorithm

The proposed Iterated Dynamic Thresholding Search (IDTS) algorithm for
the PECC problem follows the general procedure outlined in Section 2.2. Its
main framework and components are presented in this section.

3.1 Framework of Iterated Dynamic Thresholding Search

The IDTS algorithm employs an initialization procedure to obtain a starting
container radius as small as possible, a dynamic thresholding search (DTS)
procedure to solve the PECC-FR problem described in Section 2.1, and a con-
tainer adjustment procedure to further optimize locally the container radius.

As shown in Algorithm 1, IDTS can be viewed as a two-stage search algorithm.
At the �rst stage (lines 2�3), an initialization procedure is used to obtain
a feasible packing con�guration X with a small container radius R, and X
and R are recorded as the current best solution (X∗, Rmin). The initialization
procedure is based on the popular monotonic basin-hopping (MBH) algorithm
and is described in Section 3.3.

At the second stage (lines 6�14), the search iterates an improvement process
to �nd new feasible packing con�gurations with reduced container radiuses.
At each iteration, the current container radius R is set to Rmin −∆R, where

7

Algorithm 1: Framework of iterated dynamic thresholding search

Input: Number of circles to be packed (N), maximum time limit (tmax),
shrinkage factor (θ < 1)

Output: The best packing found (X∗) and its container radius (Rmin)
1 /* First Stage of the Search */
2 (X,R)← Initialization(N) /* Algorithm 2, generate a feasible

packing X and obtain an initial sufficiently small radius R
*/

3 X∗ ← X, Rmin ← R /* (X∗, Rmin) records the best packing found

*/

4 /* Second Stage of the Search */
5 ∆R ← 0.1
6 while time() ≤ tmax do
7 ∆R ← max{θ ∗∆R, 10−4} /* Reduce gradually ∆R ensuring

that ∆R ≥ 10−4 */

8 R← Rmin −∆R /* Reduce the radius of container by ∆R,

Step(5) of Section 2.2 */

9 X ← DynamicThresholdSearch(R) /* Algorithm 3, find the

best packing configuration for the fixed radius container

R, Step(2) of Section 2.2 */

10 (X,R)← AdjustContainerRadius(X,R) /* Algorithm 4, Step(3)

of Section 2.2 */

11 if R < Rmin then
12 Rmin ← R, X∗ ← X /* Step(4) of Section 2.2 */

13 end

14 end
15 return (X∗, Rmin)

∆R is a parameter whose value is adaptively tuned by multiplying a factor
θ ∈ (0, 1). Then, the dynamic thresholding search method (see Section 3.4) is
used to solve the corresponding PECC-FR[R] problem, i.e, to seek a minimum-
overlapping packing con�guration with the container radius R by minimizing
the objective function ER de�ned in Section 2.1. Subsequently, the obtained
packing con�guration and the container radius are slightly adjusted by the
container adjustment procedure (line 10) to obtain a feasible packing con�g-
uration in which the container radius is locally minimized. The current best
solution (X∗, Rmin) is updated each time a feasible packing with a smaller R
is discovered (lines 11�13). The second stage of the algorithm stops when a
time limit (tmax) is reached.

Both search stages above rely on a lower level local optimization procedure
which is presented in the next subsection. The other search components are
described in the rest of this section.

8

3.2 Local optimization

Given an input solution X, the purpose of the local optimization procedure
is to reach its nearest local optimum solution with respect to the objective
function ER(X) de�ned in Section 2.1. Speci�cally, the local optimization
procedure is based on the popular LBFGS algorithm [30] (a limited memory
quasi-newton method) that adopts an e�cient line search approach proposed
in [22]. To ensure a high computational e�ciency, the search of local optimiza-
tion is divided into two phases.

The �rst phase runs LBFGS to optimize ER(X) with a relaxed stopping con-
dition of ||g||∞ < 10−2 with ||g||∞ = max{|g1|, |g2|, . . . , |g2N |} being the maxi-
mum norm of the gradient g of ER(X). Due to the relaxed stopping condition,
the �rst phase is typically very fast and terminates with an approximate local
optimum solution where the neighbors of circles generally don't change any
more. To further improve the solution, the second phase runs LBFGS with
a high precision stopping condition of ||g||∞ < 10−13 and only considers the
pairwise overlaps between the neighboring circles and the overlaps between
the circles and the container. Here, two circles ci and cj are considered to be
neighboring if the distance between their centers D(ci, cj) is less than dcut,
which is a parameter and can be set according to the demand. In fact, it is
generally adequate to set dcut to be slightly larger than 2.0 (i.e., the diameter
of unit circles). Nevertheless, for the sake of conservation, dcut is by default
set to 4.0 in this work. Fig. 2 gives an illustrative example for the overlaps
between the circle ci and other circles that should be considered in the sec-
ond phase. As such, the evaluations of ER(X) and its gradient g of the second
phase are much faster than the �rst phase. This enables the local optimization
procedure to perform a high number of iterations with the given time limit.
Our experiment indicates this two-phase approach signi�cantly speeds up the
local optimization process especially for large-scale instances.

The basic idea of the two-phase strategy is to speed up the search process
via the use of the adjacency relationship between circles. The �rst phase aims
to construct the adjacency relationship between circles by a short local opti-
mization with a small number of iterations. Based on the generated adjacency
relationship, the second phase aims to reach a local minimum solution with
a high precision as fast as possible. It is worth noting that other techniques
(e.g., the popular and general Voronoi diagram) can be used to construct the
adjacency relationship between circles. In our case, we used the distances be-
tween the circles to construct the adjacency relationship, which ensures the
simplicity and e�ciency of the approach.

9

4

d
cut =

ic

jcjiO

Fig. 2. For the circle ci, the overlaps needed to be considered in the second phase of
local optimization are indicated by the red line segments, where Oij indicates the
overlap between ci and cj , and dcut is set to 4. Two circles ci and cj are mutually
considered as neighbors if the distance between their centers D(ci, cj) is less than
dcut.

3.3 Initialization Procedure

The initialization procedure of the IDTS algorithm aims to obtain rapidly a
starting solution with a container radius as small as possible, which is used to
seed the second stage of dynamic thresholding search.

As shown in Algorithm 2, a random packing with the container radius R0 =√
N
0.85

is �rst generated by distributing uniformly and randomly the centers

(xi, yi) of the N circles in the container (line 3) and then the correspond-
ing PECC-FR[R0] is solved by the popular MBH algorithm [21,29] (line 4),
where 0.85 is an estimated packing density for the initial solution generated
and is inspired by the best-known results from the Packomania website [47].
Subsequently, the container radius R is adjusted by the container adjustment
procedure (Section 3.5) to reach a feasible packing con�guration, while R is
locally minimized (line 5).

The employed MBH method works as follows. Starting from an input solution
X0, it performs a number of iterations to improve the current solution X with
respect to the objective function ER(·). At each iteration, the best solution Xb

found so far is slightly modi�ed by a Perturbation operator and then improved
by the two-phase local optimization procedure described in Section 3.2. The

10

Algorithm 2: Initialization

1 Function Initialization()
Input: The number of circles to be packed (N)
Output: A feasible packing X with its radius R

2 R0 ←
√

N
0.85

/* The first estimated container radius */

3 X ← RandomPacking(R0) /* Generate a random packing by

distributing uniformly randomly the centers of circles in

the container with radius R0 */

4 X ←MBH(X,R0) /* Solving the PECC-FR[R0] problem by

minimizing the objective function ER */

5 (X,R)← AdjustContainerRadius(X,R0) /* Algorithm 4, adjust

the container radius to obtain a feasible packing */

6 return (X,R)

improved solution is accepted as the current solution if it is better than Xb;
otherwise it is discarded. The MBH algorithm stops and returns the best
solution found Xb if it has not been updated after α consecutive iterations,
where α is a parameter whose default value is set to 100 in this work. To
perturb a solution, we shift randomly each coordinate xi (or yi) of X in a
given interval to generate a new solution X

′
, i.e., xi ← xi + r (1 ≤ i ≤ 2N),

where r is a random number in [−0.8, 0.8].

3.4 Dynamic Thresholding Search

The main search component of the proposed IDTS algorithm concerns the
dynamic thresholding search procedure, which seeks a high-quality packing
con�guration for the PECC-FR problem with a given container radius R.
This DTS procedure follows the general Threshold Accepting heuristic [13]
and is described in Algorithm 3.

Starting from a con�icting solution X (lines 2�4), DTS performs a number of
iterations to �nd improved solutions in terms of the objective function ER(·)
(lines 6�25). At each iteration, the current solution X is �rst perturbed by
the perturbation operator (i.e., the random perturbation, Section 3.3) and
then improved by the two-phase local optimization procedure of Section 3.2
(TPLocalOptimization(), lines 7�8). Subsequently, an accepting criterion is
applied to determine whether the newly obtained solution Xnew is accepted as
the current solution (lines 10�15). Speci�cally,Xnew is accepted if the objective
variation between Xnew and X (i.e., ∆E = ER(Xnew)−ER(X)) is smaller than
a threshold (ThE); otherwise, Xnew is discarded. Moreover, the threshold ThE
is adaptively adjusted to maintain an acceptance rate of 1

2
for the new solutions

(lines 16�20). Speci�cally, ThE is decreased by multiplying a factor µ ∈ (0, 1)

11

Algorithm 3: Dynamic-thresholding search for the PECC problem with
a �xed radius R of container

1 Function DynamicThresholdSearch
Input: Maximum of iterations MaxIter, �xed container radius R, and

shrinkage factor µ (µ < 1.0)
Output: The best solution found (X∗, R)

2 X ← RandomPacking(R) /* Generate a random packing in the

container with radius R */

3 X ← TPLocalOptimization(X) /* Minimize function ER(·) from X
*/

4 X∗ ← X
5 Iter ← 0, ThE ← 10−4, Naccept ← 0, Nreject ← 0 /* Initialization */

6 while (Iter ≤ MaxIter) ∧ (ER(X∗) > 10−25) do
7 Xnew ← Perturbation(X)
8 Xnew ← TPLocalOptimization(Xnew) /* Minimize function ER(·)

from Xnew using two-phase local optimization method */

9 ∆E ← ER(Xnew)− ER(X)
10 if (∆E < ThE) ∧ (∆E 6= 0) then
11 X ← Xnew

12 Naccept ← Naccept + 1

13 else
14 Nreject ← Nreject + 1
15 end
16 if Naccept > Nreject then
17 ThE ← µ ∗ ThE /* Decrease the threshold value ThE */

18 else
19 ThE ← 1

µ
∗ ThE /* Increase the threshold value ThE */

20 end
21 if ER(X) < ER(X∗) then
22 X∗ ← X /* Save the best solution found */

23 end
24 Iter ← Iter + 1

25 end
26 return (X∗, R)

if the number of acceptances (Naccept) becomes larger than the number of
rejections (Nreject), and is increased by dividing µ otherwise. Finally, the DTS
procedure stops when the maximum number of iterations (MaxIter) has been
reached or a feasible solution X (i.e., ER(X) < 10−25) is found, and the best
solution found (X∗, R) is returned as the result of the DTS procedure.

It is worth noting that the DTS procedure is of general-purpose and does not
require any problem-speci�c knowledge except the objective function. As such,
it can be applied to other unconstrained optimization problems. Moreover, it

12

provides an original way of adjusting adaptively its threshold based on the
current acceptance rate, instead of the objective function which was commonly
used in the literature.

3.5 Container Adjustment Procedure

Algorithm 4: Container adjustment procedure

1 Function AdjustContainerRadius
Input: Input solution s0 = (X0, R0), maximum of iterations Q (= 10)
Output: The local optimum packing s = (X,R)

2 X ← X0, R← R0, ρ← 106

3 for i← 1 to Q do
4 (X,R) ← LocalOptimization(X,R) /* Using the LBFGS method

to minimize Uρ(X,R) */

5 ρ← 10 ∗ ρ
6 end
7 return (X,R)

Given a feasible or infeasible packing con�guration (X,R), the container ad-
justment procedure aims to adjust the container radius R and the coordinate
vector X of the N circles such that the resulting packing con�guration is feasi-
ble while the radius R is locally minimized. To do this, starting from the given
packing con�guration (X,R), we solve locally the initial constrained PECC
problem de�ned by Eqs. (1)�(3) in Section 1.

Due to the computational di�culty of solving directly the constrained opti-
mization problem by means of a local optimization method, we employ in this
study the popular sequential unconstrained minimization technique (SUMT)
[14] to handle this constrained problem. First, the PECC problem is converted
into a series of unconstrained minimization problems that can be described as

Minimize Uρ(X,R) = R2 + ρ ∗ E(X,R) (7)

where ρ is a penalty factor and each value of ρ de�nes an unconstrained
minimization problem, R is a variable representing the container radius. The
penalty term E(X,R) with 2N + 1 variables is de�ned as follows:

E(X,R) =
N−1∑
i=1

N∑
j=i+1

O2
ij +

N∑
i=1

O2
0i (8)

where Oij and O0i represent respectively the overlap between two circles ci
and cj and the overlap between a circle ci and the exterior of the container

13

c0. Then, we solve consecutively a series of unconstrained optimization prob-
lems (de�ned by Eq. (7)) with the increasing ρ values by an unconstrained
optimization method, starting from an input solution and an initial ρ value.

The pseudo-code of the container adjustment procedure is given in Algorithm
4. Starting from the input packing con�guration (X0, R0) and initial ρ value
(empirically set to 106 in this work), the procedure performs Q iterations (Q =
10 in this work) to reach a feasible packing con�guration. At each iteration,
the powerful LBFGS method [30] is used to optimize the function Uρ(X,R)
with 2N + 1 variables, and then the value of ρ is increased as ρ← 10 ∗ ρ and
the resulting packing con�guration (X,R) is used as the input solution of next
iteration. According to Eq. (7), the term E(X,R) is penalized more with a
large ρ value than with a small ρ value. As such, as the value of ρ increases
to a very large number, the search is forced to converge to a feasible solution
(X,R) (i.e., E(X,R) = 0) with its container radius R locally minimized.

It is worth noting that we employ R2 in equation (7) instead of R for the
following reasons. First, f(R) = R2 is a monotone increasing function with
respect to the variable R in the range of R ≥ 0, thus the minimization of
function f(R) = R2 is equivalent to that of f(R) = R. Second, f(R) =
R2 is more smooth than the function f(R) = R, which is bene�cial to the
optimization with the LBFGS method.

3.6 Discussion on the Innovations of the Proposed Algorithm

Compared with the existing circle packing algorithms in the literature, the
proposed IDTS algorithm includes mainly two original features concerning its
two-phase local optimization and dynamic thresholding search.

First, IDTS is the �rst PECC algorithm adopting a two-phase local opti-
mization approach. In fact, unlike other acceleration techniques such as those
proposed in [4,23], the proposed local optimization method is composed of two
LBFGS procedures, where the �rst aims to generate a local minimum solution
with a low precision and obtain the adjacency relation between the circles,
and the second aims to obtain a local minimum solution with a high precision
based on the adjacency relation generated by the �rst LBFGS application.
This two-phase optimization approach has the main advantage of accelerating
the search without sacri�cing solution quality. Second, the dynamic threshold-
ing search is applied for the �rst time to the PECC problem. This key search
component utilizes an original technique to dynamically adjust the threshold-
ing value at each iteration based on the current acceptance rate of the new
solutions.

As we show in the next section, the IDTS algorithm integrating these features

14

performs very well on the tested PECC instances. Moreover, given that the
ideas of the two-phase local optimization and the dynamic thresholding search
are very general, they can be adapted to a number of other geometry optimiza-
tion problems, such as unequal circles packing and structural optimization of
atomic clusters [12,29,35].

4 Computational Experiments and Assessments

In this section, we evaluate the performance of the IDTS algorithm on a large
number of benchmark instances commonly used in the literature and make
comparisons with state-of-the-art results in the literature.

4.1 Parameter Settings and Experimental Protocol

Table 1
Settings of parameters
Parameters Section Description Values

θ 3.1 coe�cient used to adjust the radius of container 0.7
µ 3.4 coe�cient used to tune the threshold value ThE 0.75
MaxIter 3.4 maximum number of iterations of DTS procedure 103

The proposed IDTS algorithm employs three main parameters whose descrip-
tions and default values are given in Table 1, which were empirically deter-
mined via a preliminary experiment. This setting can be considered as the
default setting of the algorithm and was consistently used to conduct all com-
putational experiments in Section 4. A sensibility analysis of these parameters
is presented in Section 5.1.

The IDTS algorithm was implemented in the C++ language and complied
using the g++ compiler with the -O3 option. The computational experiments
with IDTS were executed on a computer with an Intel E5-2670 processor
(2.5 GHz and 2G RAM), running the Linux operating system. To assess the
performance of the algorithm, we employed 320 popular instances with N ≤
320. Due to its stochastic feature, the IDTS algorithm was independently
performed 20 times with di�erent random seeds (CPU time stamps) to solve
each instance. The stopping condition for each run is a maximum time limit
tmax: 2 hours for the instances with N ≤ 100, 8 hours for 101 ≤ N ≤ 200,
and 12 hours for 201 ≤ N ≤ 320. These cuto� limits are comparable with
those used by the state-of-the-art algorithms in the literature. For example,
in [27], tmax was set to 4 hours for the instances with N ≤ 100, and 8 hours
for 101 ≤ N ≤ 200. In [23], tmax was set to 4 hours for N ≤ 100, and 3 days
for N ≥ 101.

15

4.2 Comparative Study on the Well-studied Instances with 66 ≤ N ≤ 100

(a) N = 55 (b) N = 79

(c) N = 91 (d) N = 96

Fig. 3. Best con�gurations found by IDTS with a high symmetry for 4 representative
instances in the range of 1 ≤ N ≤ 100. The circles are colored by several colors
according to the numbers of their neighbors, where two circles ci and cj are mutually
considered as neighbors if and only if the distance D(ci, cj) between their centers
satis�es D(ci, cj) < 2.0 + 10−10.

The �rst experiment focuses on the most studied (small) instances with N ≤
100 and shows a comparison with two best performing reference algorithms:
the quasi-physical global optimization (QPGO) algorithm [27] and the quasi-
physical quasi-human (QPQH) algorithm [23]. The results of the proposed
IDTS algorithm on the 35 instances with 66 ≤ N ≤ 100 are summarized in
Table 2, together with the results of the reference algorithms. The instances
withN ≤ 65 are ignored, since they are very easy for the compared algorithms.

Columns 1 and 2 of Table 2 give respectively the number N of circles and
the best-known result R∗ (i.e., the known smallest container radius) reported

16

Table 2
Comparison between the IDTS algorithm and two state-of-the-art algorithms in the
literature on 35 representative instances with 66 ≤ N ≤ 100.

QPGO [27] QPQH [23] IDTS (this work)
N R∗ [23,47] SR time(s) SR time(s) SR time(s)

66 9.096279427 10/10 720 10/10 2404 20/20 20
67 9.168971882 10/10 1500 10/10 7492 20/20 51
68 9.229773747 10/10 720 10/10 3252 20/20 24
69 9.269761267 10/10 <60 10/10 713 20/20 19
70 9.345653194 10/10 1500 10/10 1752 20/20 180
71 9.415796897 10/10 660 10/10 916 20/20 254
72 9.473890857 10/10 120 10/10 113 20/20 11
73 9.540346152 10/10 2520 2/20 5571 20/20 226
74 9.589232764 10/10 <60 6/20 5343 20/20 292
75 9.672029632 10/10 2220 8/20 6671 20/20 112
76 9.729596802 10/10 180 10/10 464 20/20 22
77 9.798911925 10/10 840 10/10 147 20/20 18
78 9.857709900 10/10 1320 3/10 4276 20/20 63
79 9.905063468 10/10 240 10/10 5464 20/20 100
80 9.968151813 10/10 3900 5/10 5145 20/20 165
81 10.010864241 10/10 120 7/10 5446 20/20 53
82 10.050824224 10/10 600 0/10 - 20/20 78
83 10.116857875 10/10 960 7/10 4821 20/20 316
84 10.149530867 10/10 420 8/10 5364 20/20 87
85 10.163111466 10/10 1140 10/10 377 20/20 41
86 10.298701053 10/10 <60 2/10 5867 20/20 318
87 10.363208505 10/10 <60 10/10 1148 20/20 445
88 10.432337693 10/10 1560 10/10 4866 20/20 43
89 10.500491815 6/10 3600 5/10 7751 20/20 449
90 10.546069178 10/10 600 10/10 588 20/20 45
91 10.566772234 10/10 <60 10/10 40 20/20 11
92 10.684645848 5/10 6720 4/10 4992 20/20 409
93 10.733352600 5/10 5880 3/10 6092 20/20 175
94 10.778032160 10/10 180 8/10 5552 20/20 135
95 10.840205022 7/10 7020 5/10 6056 20/20 110
96 10.883202760 2/10 7860 4/10 5824 20/20 2349
97 10.938590110 1/10 10680 1/10 11540 20/20 350
98 10.979383128 10/10 1800 9/10 2593 20/20 79
99 11.033141151 5/10 2640 9/10 3445 20/20 124
100 11.082149724 1/10 4560 0/10 - 20/20 172

#Better 0 4 0 0
#Equal 27 0 14 0
#Worse 8 31 21 35

in the literature or shown on the Packomania website [47]. The remaining
columns present the results of the three compared algorithms, respectively,
including the success rate (SR) (i.e., the number of runs reaching the best-
known result over the total number of runs) and the average computation time
in seconds (time(s)) needed to reach the best-known result 1 . Note that QPGO
was performed on a computer with an Intel Xeon processor and 32 Gb RAM
and QPQH was performed on the Ali cloud platform (http://www.aliyun.com)
with 8 Gb RAM. Since the compared algorithms were run on di�erent comput-
ing platforms, timing information is shown only for indicative purposes. The
symbol `-' means that the corresponding algorithm failed to reach the best-
known result. The last rows `#Better', `#Equal', `#Worse' show the numbers

1 The best packing con�gurations found in this work is available at http://www.
info.univ-angers.fr/pub/hao/circlepacking.html and https://github.com/

XiangjingLai/circle-packing.

17

of instances for which the corresponding reference algorithm obtained a bet-
ter, equal, worse result compared to the proposed IDTS algorithm for each
performance indicator. Finally, it is worth noting that the two reference algo-
rithms used the best-known result R∗ prior to their work to seed their search,
while the proposed IDTS algorithm started its search from scratch.

Table 2 shows that the proposed algorithm performs very well for these small
instances with N ≤ 100. Speci�cally, IDTS has a success rate of 100% for each
tested instance with much shorter computation times. This is in sharp contrast
with the reference algorithms whose success rates typically decrease with the
increase of the problem size while requiring considerably more computation
times to attain the best-known results.

For an intuitive presentation of the computational results, Fig. 3 shows the
best packing con�gurations found by IDTS for four representative instances,
disclosing some clear regular patterns (e.g., symmetry) for these instances.

4.3 Computational Results for the Larger Instances

The second experiment aims to assess the proposed IDTS algorithm on large
instances with N ≥ 101 and up to N = 320 by making a comparison with the
best-known results (R∗, the known smallest container radius) reported in the
literature or shown on the Packomania website [47]. The results of the IDTS
algorithm are summarized in Tables 3�6, respectively for 101 ≤ N ≤ 150,
150 ≤ N ≤ 200, 201 ≤ N ≤ 260 and 261 ≤ N ≤ 320.

The �rst column of each table gives the value of N of the instance, and the
second column shows the current best-known result R∗, which is compiled
from the best results on the Packomania website [47] and the improved results
in a recent paper [23]. The third and fourth columns give respectively the
results of the Packomania website (R1) and the improved results by QPQH
[23] (R2), while `-' means the corresponding result is not available. The results
of the IDTS algorithm are reported in the last �ve columns, including the best
result obtained over 20 independent runs (Rbest), the average result (Ravg), the
di�erence between Rbest and R

∗ (i.e., Rbest−R∗, so a negative value indicates
an improved new best result), the success rate (SR) of hitting the best result
Rbest, and the average computation time for the algorithm to hit its best
solution (time(s)). The rows `#Improve', `#Equal', `#Worse' at the bottom
of tables show the numbers of instances for which the IDTS algorithm obtained
an improved, equal, and worse result compared to the best-known result. In
addition, to verify whether there exists a signi�cant di�erence between our
results and the best-known results R∗ both in terms of Rbest and Ravg, the
last row of tables indicates the p-values from the Wilcoxon signed-rank tests,

18

Table 3
Computational results and comparison on the 50 instances with 101 ≤ N ≤ 150.
The improved results are indicated in bold compared to the best-known results R∗

both in terms of Rbest and Ravg, and the worse results are indicated in italic.
IDTS (this work)

N R∗ [23,47] R1 [47] R2 [23] Rbest Ravg Rbest − R∗ SR time(s)

101 11.146933575 11.146933575 - 11.146933575 11.146933575 0.0 20/20 410

102 11.196863473 11.196863473 - 11.196863473 11.196863473 0.0 20/20 108

103 11.265143566 11.265143566 - 11.265143566 11.265143566 0.0 20/20 170

104 11.317658566 11.317658566 - 11.317658566 11.317658566 0.0 20/20 1698

105 11.362659613 11.362659613 - 11.362659613 11.362659613 0.0 20/20 100

106 11.421834366 11.421834366 - 11.421834366 11.421834366 0.0 20/20 466

107 11.472051837 11.472051837 - 11.472051837 11.472051837 0.0 20/20 770

108 11.524016134 11.524016134 - 11.524016134 11.524016134 0.0 20/20 411

109 11.562119071 11.562119071 - 11.562119071 11.562119071 0.0 20/20 2458

110 11.616861550 11.616861550 - 11.616861550 11.616861550 0.0 20/20 831

111 11.662811184 11.662811184 - 11.662811185 11.662811185 0.0 20/20 371

112 11.705274526 11.705274526 - 11.705274526 11.705274526 0.0 20/20 715

113 11.747528122 11.747528122 - 11.747528123 11.747528123 0.0 20/20 157

114 11.795173364 11.795173364 - 11.795173364 11.795173364 0.0 20/20 678

115 11.839474009 11.839474009 - 11.839474009 11.839474009 0.0 20/20 70

116 11.896704500 11.896704500 - 11.896704500 11.896704500 0.0 20/20 557

117 11.943475536 11.943475536 - 11.943475536 11.943475536 0.0 20/20 490

118 11.985551046 11.985551046 - 11.985551046 11.985551046 0.0 20/20 357

119 12.042334444 12.042334444 - 12.042334444 12.042334444 0.0 20/20 512

120 12.085212460 12.085212460 - 12.085212460 12.085212460 0.0 20/20 832

121 12.124803082 12.124803082 - 12.124803082 12.124803082 0.0 20/20 11

122 12.204374812 12.204374812 - 12.204374812 12.204374812 0.0 20/20 65

123 12.276399909 12.276399909 - 12.276399909 12.276399909 0.0 20/20 61

124 12.321708315 12.321708315 - 12.321708315 12.321708315 0.0 20/20 9244

125 12.368225321 12.368225321 - 12.368225321 12.368225321 0.0 20/20 98

126 12.417144417 12.417463956 12.417144417 12.417144392 12.417144392 -2.52E-08 20/20 1609

127 12.461549515 12.461549515 - 12.461549515 12.461549515 0.0 20/20 2772

128 12.502222199 12.502310071 12.502222199 12.502222199 12.502222199 0.0 20/20 1830

129 12.553717819 12.553717819 - 12.553717819 12.553717819 0.0 20/20 2432

130 12.601774612 12.602318937 12.601774612 12.600339970 12.600339970 -1.43E-03 20/20 3870

131 12.649620461 12.649620461 - 12.649620462 12.649620462 0.0 20/20 980

132 12.687436791 12.687436791 - 12.687436791 12.687436791 0.0 20/20 132

133 12.735273089 12.735273089 - 12.735273089 12.735273089 0.0 20/20 1152

134 12.771446240 12.771446240 - 12.771446240 12.771446240 0.0 20/20 413

135 12.814254771 12.814254771 - 12.814254772 12.814254772 0.0 20/20 1076

136 12.865759551 12.865759551 - 12.865759551 12.865759551 0.0 20/20 2874

137 12.914711247 12.914725417 12.914711247 12.914469900 12.914469900 -2.41E-04 20/20 4888

138 12.961304417 12.962702608 12.961304417 12.961304311 12.961304311 -1.06E-07 20/20 1360

139 13.008987241 13.008987241 - 13.008987241 13.008987241 0.0 20/20 1941

140 13.060696617 13.061097215 13.060696617 13.059777506 13.059841914 -9.19E-04 4/20 15842

141 13.107255295 13.107255295 - 13.107255295 13.107255295 0.0 20/20 1328

142 13.146411626 13.146411626 - 13.146411626 13.146411626 0.0 20/20 314

143 13.197400825 13.197400825 - 13.197400825 13.197400825 0.0 20/20 288

144 13.247789225 13.247789225 - 13.247789225 13.247789225 0.0 20/20 3478

145 13.276668630 13.276668630 - 13.276668630 13.277790851 0.0 6/20 20834

146 13.331233768 13.331233768 - 13.331233768 13.331264325 0.0 3/20 7548

147 13.357112495 13.357112495 - 13.357112495 13.357112495 0.0 20/20 914

148 13.386939355 13.386939355 - 13.386939355 13.386939355 0.0 20/20 608

149 13.435548518 13.435548518 - 13.435548518 13.435548518 0.0 20/20 650

150 13.460806371 13.460806371 - 13.460806371 13.460806371 0.0 20/20 1289

#Improve 5 5

#Equal 45 43

#Worse 0 2

p-value 1.35E-1 6.55E-1

19

Table 4
Computational results and comparison on the 50 instances with 151 ≤ N ≤ 200.
The improved results are indicated in bold compared to the best-known results R∗

both in terms of Rbest and Ravg, and the worse results are indicated in italic.
IDTS (this work)

N R∗ [23,47] R1 [47] R2 [23] Rbest Ravg Rbest − R∗ SR time(s)

151 13.476191508 13.476191508 - 13.476191508 13.476191508 0.0 20/20 527

152 13.531758483 13.531758483 - 13.531748487 13.531748487 -1.00E-05 20/20 7563

153 13.591536687 13.591536687 - 13.591536687 13.591536687 0.0 20/20 5774

154 13.637418860 13.637418860 - 13.636897671 13.636897671 -5.21E-04 20/20 1208

155 13.673708640 13.673708640 - 13.673708640 13.673710758 0.0 7/20 10609

156 13.718404613 13.719600040 13.718404613 13.7163630490 13.716830585 -2.04E-03 1/20 16652

157 13.772991900 13.772991900 - 13.772991900 13.772991900 0.0 20/20 7172

158 13.823225917 13.823225917 - 13.823225917 13.823225917 0.0 20/20 6504

159 13.864193589 13.864193589 - 13.864193368 13.864193368 -2.21E-07 20/20 574

160 13.920451761 13.920538614 13.920451761 13.919646942 13.919810338 -8.05E-04 6/20 14582

161 13.969400270 13.969400270 - 13.969400270 13.969400270 0.0 20/20 884

162 14.011328518 14.011328518 - 14.010172332 14.010217255 -1.16E-03 3/20 14160

163 14.067635971 14.069620216 14.067635971 14.065203711 14.065216603 -2.43E-03 5/20 12722

164 14.110700047 14.110700047 - 14.109601373 14.109601373 -1.10E-03 20/20 6189

165 14.144339292 14.144339292 - 14.144339292 14.144406918 0.0 19/20 11525

166 14.185678420 14.185678420 - 14.185678420 14.185678420 0.0 20/20 3739

167 14.220394493 14.220394493 - 14.219046588 14.219046588 -1.35E-03 20/20 4820

168 14.259535536 14.259535536 - 14.257706915 14.257710173 -1.83E-03 17/20 11126

169 14.295358228 14.295358228 - 14.295358228 14.295358228 0.0 20/20 2837

170 14.331549723 14.331549723 - 14.331150274 14.331150274 -3.99E-04 20/20 1187

171 14.367661448 14.367661448 - 14.367661448 14.367661448 0.0 20/20 2223

172 14.416776084 14.416776084 - 14.416776084 14.416776084 0.0 20/20 9646

173 14.451341436 14.451341436 - 14.451341436 14.451341436 0.0 20/20 1798

174 14.492848839 14.492848839 - 14.492848839 14.492848839 0.0 20/20 2137

175 14.536540602 14.536540602 - 14.536426508 14.536426508 -1.14E-04 20/20 1176

176 14.574135655 14.574135655 - 14.574135655 14.574135655 0.0 20/20 189

177 14.614803186 14.617194155 14.614803186 14.614518392 14.614521438 -2.85E-04 10/20 13471

178 14.655927628 14.658814224 14.655927628 14.655927628 14.655927628 0.0 20/20 2053

179 14.699982808 14.702293364 14.699982808 14.699851252 14.699851252 -1.32E-04 20/20 2901

180 14.739035484 14.742878035 14.739035484 14.739034879 14.739034879 -6.05E-07 20/20 3806

181 14.780829657 14.780829657 - 14.780829657 14.780829657 0.0 20/20 6091

182 14.818930631 14.818930631 - 14.818930631 14.823505353 0.0 8/20 9953

183 14.865788757 14.869399060 14.865788757 14.865670837 14.865670837 -1.18E-04 20/20 2051

184 14.905472585 14.905472585 - 14.905418305 14.907479359 -5.43E-05 1/20 9094

185 14.938144835 14.938144835 - 14.938144835 14.939607732 0.0 2/20 18103

186 14.961185685 14.961185685 - 14.961185685 14.961419453 0.0 18/20 15077

187 14.989269701 14.989269701 - 14.989106751 14.990022721 -1.63E-04 9/20 20789

188 15.028750763 15.028782735 15.028750763 15.028750689 15.028752282 -7.41E-08 19/20 9983

189 15.069680565 15.069680565 - 15.069099372 15.069404626 -5.81E-04 10/20 12266

190 15.103601504 15.103601504 - 15.103601504 415.103601504 0.0 20/20 7537

191 15.142357530 15.142357530 - 15.142357503 15.142357505 -2.65E-08 3/20 4865

192 15.169435212 15.169435212 - 15.169435212 15.169435212 0.0 20/20 634

193 15.199374495 15.199374495 - 15.199374495 15.199379498 0.0 4/20 13820

194 15.241428667 15.249753585 15.241428667 15.241428657 15.241428657 -1.00E-08 20/20 2541

195 15.287172168 15.287172168 - 15.287172168 15.287684736 0.0 1/20 13215

196 15.323079829 15.323079829 - 15.322999997 15.323021340 -7.98E-05 17/20 12829

197 15.368518430 15.368975295 15.368518430 15.367497382 15.367599851 -1.02E-03 1/20 5607

198 15.390410683 15.391207855 15.390410683 15.389903201 15.389903201 -5.07E-04 18/20 10319

199 15.402260415 15.402260415 - 15.402260415 15.402260415 0.0 20/20 224

200 15.463274879 15.463274879 - 15.463274879 15.463274879 0.0 20/20 1632

#Improve 25 22

#Equal 25 18

#Worse 0 10

p-value 9.34E-6 1.66E-1

20

where a p-value less than 0.05 means that there exists a statistically signi�cant
di�erence between the compared results.

(a) N = 180 (b) N = 206

(c) N = 217 (d) N = 235

(e) N = 237 (f) N = 241

Fig. 4. Packing con�gurations with a high symmetry for some selected instances in
the range of 101 ≤ N ≤ 320.

21

Table 5
Computational results and comparison on the 60 instances with 201 ≤ N ≤ 260.
The improved results are indicated in bold compared to the best-known results R∗

both in terms of Rbest and Ravg, and the worse results are indicated in italic.
IDTS (this work)

N R∗ [23,47] R1 [47] R2 [23] Rbest Ravg Rbest − R∗ SR time(s)

201 15.520419047 15.520419047 - 15.520225293 15.520225293 -1.94E-04 20/20 8240

202 15.569845914 15.569845914 - 15.568028837 15.568090487 -1.82E-03 9/20 23342

203 15.612567145 15.612567145 - 15.611235518 15.611235518 -1.33E-03 20/20 9479

204 15.644738394 15.652649998 15.644738394 15.642484085 15.642522181 -2.25E-03 1/20 18445

205 15.695538521 15.709043666 15.695538521 15.690988269 15.691079511 -4.55E-03 5/20 22144

206 15.736799931 15.736799931 - 15.734557511 15.736968076 -2.24E-03 1/20 22321

207 15.770190573 15.770271664 15.770190573 15.770190569 15.773476577 -3.80E-09 3/20 21559

208 15.811985301 15.811985301 - 15.811764086 15.811852669 -2.21E-04 12/20 20214

209 15.844267752 15.844267752 - 15.839871358 15.840916273 -4.40E-03 3/20 30942

210 15.879201277 15.879201277 - 15.878779424 15.878800075 -4.22E-04 18/20 9303

211 15.902512487 15.902512487 - 15.902512487 15.902512487 0.0 20/20 6491

212 15.937421635 15.937421635 - 15.935369099 15.935369099 -2.05E-03 20/20 5263

213 15.969855988 15.970256294 15.969855988 15.969855941 15.969855941 -4.70E-08 20/20 3536

214 16.018386421 16.018763220 16.018386421 16.017995815 16.017995815 -3.91E-04 20/20 18952

215 16.050828504 16.050828504 - 16.049306210 16.050205425 -1.52E-03 3/20 26274

216 16.087017095 16.087407652 16.087017095 16.085154499 16.085298637 -1.86E-03 8/20 21517

217 16.118237367 16.119370348 16.118237367 16.116693296 16.117369938 -1.54E-03 6/20 21763

218 16.151019810 16.151019810 - 16.149552938 16.149653633 -1.47E-03 12/20 24221

219 16.169155113 16.169155113 - 16.169155098 16.171217331 -1.49E-08 1/20 26209

220 16.225373549 16.225373549 - 16.224094825 16.224134520 -1.28E-03 18/20 13400

221 16.261873763 16.261873985 16.261873763 16.258834346 16.259426290 -3.04E-03 1/20 26332

222 16.299162417 16.299696226 16.299162417 16.298789347 16.298897565 -3.73E-04 1/20 23040

223 16.337822305 16.337822305 - 16.337166598 16.337327474 -6.56E-04 3/20 19201

224 16.369591221 16.371899241 16.369591221 16.368831685 16.369065419 -7.60E-04 1/20 20358

225 16.408410528 16.409054279 16.408410528 16.403603782 16.403983211 -4.81E-03 8/20 19930

226 16.449824611 16.450019502 16.449824611 16.448318718 16.448320646 -1.51E-03 18/20 18076

227 16.489753739 16.494400009 16.489753739 16.488369922 16.488433032 -1.38E-03 10/20 23388

228 16.527071189 16.527340870 16.527071189 16.524998071 16.525000425 -2.07E-03 14/20 21565

229 16.564350195 16.566377981 16.564350195 16.562664605 16.562714547 -1.69E-03 7/20 22247

230 16.596246697 16.596430072 16.596246697 16.592564989 16.594176903 -3.68E-03 3/20 26229

231 16.631031907 16.640078327 16.631031907 16.629060933 16.629325490 -1.97E-03 1/20 25846

232 16.669457196 16.669457196 - 16.664704645 16.668814250 -4.75E-03 1/20 23617

233 16.694829942 16.694829942 - 16.696155400 16.700043062 1.33E-03 1/20 27503

234 16.706335883 16.706335883 - 16.706344401 16.712776770 8.52E-06 1/20 31503

235 16.712575786 16.712575786 - 16.712575786 16.728429055 0.0 1/20 33291

236 16.774738750 16.774738750 - 16.774392488 16.774678757 -3.46E-04 2/20 26494

237 16.802145503 16.802145503 - 16.801582860 16.802332489 -5.63E-04 1/20 18079

238 16.827113437 16.827113437 - 16.826908995 16.826910824 -2.04E-04 19/20 14576

239 16.863843301 16.863843301 - 16.863505622 16.863507770 -3.38E-04 18/20 12708

240 16.897165895 16.897165895 - 16.894472076 16.894472076 -2.69E-03 20/20 7648

241 16.915064584 16.915064584 - 16.915064584 16.915349265 0.0 1/20 17897

242 16.961287246 16.962132986 16.961287246 16.960708659 16.960708660 -5.79E-04 9/20 17587

243 17.001947599 17.004065250 17.001947599 17.000247953 17.000248010 -1.70E-03 10/20 12620

244 17.039559451 17.039719464 17.039559451 17.034806378 17.034896401 -4.75E-03 4/20 25380

245 17.078003394 17.079365818 17.078003394 17.074689206 17.074689206 -3.31E-03 20/20 5873

246 17.113112319 17.113998222 17.113112319 17.107922480 17.107922480 -5.19E-03 20/20 5679

247 17.132526683 17.141082424 17.132526683 17.132068945 17.132378242 -4.58E-04 12/20 21726

248 17.182444113 17.184447103 17.182444113 17.182167927 17.182167998 -2.76E-04 18/20 17176

249 17.220431735 17.220431735 - 17.219002124 17.219002124 -1.43E-03 20/20 5728

250 17.262962239 17.262962239 - 17.261954907 17.262287793 -1.01E-03 1/20 21907

251 17.297607156 17.305245616 17.297607156 17.295389898 17.295601630 -2.22E-03 1/20 22029

252 17.326883903 17.331245569 17.326883903 17.325195900 17.325608574 -1.69E-03 2/20 21310

253 17.345956323 17.345956323 - 17.346089752 17.346171694 1.33E-04 1/20 17275

254 17.400641308 17.400734609 17.400641308 17.393763187 17.394169348 -6.88E-03 1/20 25791

255 17.454058463 17.454200693 17.454058463 17.444011350 17.444080914 -1.00E-02 16/20 20552

256 17.493101490 17.494310641 17.493101490 17.486251304 17.487129555 -6.85E-03 3/20 24549

257 17.523849714 17.523849714 - 17.517964918 17.519827002 -5.88E-03 1/20 27861

258 17.547085193 17.547880529 17.547085193 17.538235776 17.539101690 -8.85E-03 3/20 33153

259 17.580456185 17.580456185 - 17.573954655 17.575365809 -6.50E-03 1/20 30320

260 17.604955193 17.604955193 - 17.600835484 17.600906404 -4.12E-03 6/20 25377

#Improve 54 51

#Equal 3 1

#Worse 3 8

p-value 2.61E-10 4.78E-6

22

Table 6
Computational results and comparison on the 60 instances with 261 ≤ N ≤ 320.
The improved results are indicated in bold compared to the best-known results R∗

both in terms of Rbest and Ravg, and the worse results are indicated in italic.
IDTS (this work)

N R∗ [23,47] R1 [47] R2 [23] Rbest Ravg Rbest − R∗ SR time(s)

261 17.634766878 17.634862233 17.634766878 17.627240672 17.628625372 -7.53E-03 1/20 28424

262 17.662924961 17.662924961 - 17.657906787 17.661282499 -5.02E-03 1/20 27050

263 17.693359550 17.693359550 - 17.688613836 17.689565543 -4.75E-03 1/20 24287

264 17.701373926 17.701373926 - 17.701373926 17.705237062 0.0 12/20 23728

265 17.741538902 17.741538902 - 17.741224763 17.741706383 -3.14E-04 7/20 30347

266 17.778852591 17.778852591 - 17.776086768 17.777217033 -2.77E-03 1/20 24801

267 17.797657056 17.797657056 - 17.797361304 17.797538147 -2.96E-04 1/20 25569

268 17.832086714 17.832086714 - 17.832068508 17.832093428 -1.82E-05 1/20 22276

269 17.863552746 17.863552746 - 17.862579267 17.862674626 -9.73E-04 10/20 25078

270 17.887265668 17.887265668 - 17.887265668 17.890234807 0.0 1/20 27231

271 17.930192221 17.930192221 - 17.929693883 17.929914822 -4.98E-04 3/20 23896

272 17.961933270 17.961933270 - 17.959189722 17.959347069 -2.74E-03 6/20 22175

273 17.996459047 17.996459047 - 17.995299347 17.995315566 -1.16E-03 15/20 24635

274 18.034743806 18.034743806 - 18.033698365 18.033832315 -1.05E-03 1/20 19498

275 18.064257143 18.064257143 - 18.062653689 18.062808429 -1.60E-03 4/20 25389

276 18.106737167 18.106737167 - 18.103416474 18.103756760 -3.32E-03 3/20 24124

277 18.139629995 18.142486517 18.139629995 18.136079464 18.136758887 -3.55E-03 1/20 22376

278 18.187675017 18.189804499 18.187675017 18.180555975 18.180925160 -7.12E-03 1/20 26926

279 18.221572693 18.224068629 18.221572693 18.217568448 18.218195726 -4.00E-03 1/20 29421

280 18.247226743 18.247226743 - 18.245927474 18.246904727 -1.30E-03 1/20 30016

281 18.281539686 18.284504843 18.281539686 18.280408576 18.280832129 -1.13E-03 1/20 28344

282 18.309334921 18.315754346 18.309334921 18.308789945 18.310816728 -5.45E-04 1/20 22753

283 18.340942447 18.340942447 - 18.340236575 18.341407581 -7.06E-04 1/20 31114

284 18.359456641 18.359456641 - 18.361020810 18.366038322 1.56E-03 1/20 34313

285 18.414548614 18.414548614 - 18.402678595 18.405461625 -1.19E-02 1/20 25875

286 18.434157792 18.434315259 18.434157792 18.429241763 18.431535841 -4.92E-03 1/20 30801

287 18.468823749 18.468823749 - 18.468212077 18.468883851 -6.12E-04 1/20 23803

288 18.494844941 18.494844941 - 18.494381728 18.496038151 -4.63E-04 1/20 28802

289 18.511602090 18.511602090 - 18.511810011 18.513773621 2.08E-04 1/20 28047

290 18.549375070 18.549375070 - 18.548707587 18.549023499 -6.67E-04 2/20 19030

291 18.567351454 18.567351454 - 18.566314463 18.567300968 -1.04E-03 2/20 27074

292 18.597179792 18.597179792 - 18.594501090 18.595234278 -2.68E-03 1/20 29822

293 18.623366700 18.623366700 - 18.623599730 18.624720565 2.33E-04 1/20 20991

294 18.646248051 18.646248051 - 18.644849697 18.645597816 -1.40E-03 1/20 28715

295 18.655217522 18.655217522 - 18.655996666 18.658527712 7.79E-04 1/20 24794

296 18.703338597 18.704963368 18.703338597 18.702750006 18.703029204 -5.89E-04 1/20 24419

297 18.731053485 18.731053485 - 18.729781499 18.730183831 -1.27E-03 2/20 30727

298 18.759535176 18.759535176 - 18.759344750 18.759574994 -1.90E-04 4/20 23969

299 18.786282897 18.786282897 - 18.785427812 18.785802880 -8.55E-04 3/20 27798

300 18.813583364 18.813583364 - 18.813153706 18.813180138 -4.30E-04 6/20 21553

301 18.843675327 18.843979274 18.843675327 18.843463507 18.843586628 -2.12E-04 4/20 24968

302 18.892376640 18.895682962 18.892376640 18.891782255 18.892069366 -5.94E-04 1/20 26223

303 18.935589502 18.936286113 18.935589502 18.929749153 18.930127041 -5.84E-03 1/20 25122

304 18.972060389 18.973327183 18.972060389 18.964441751 18.964787942 -7.62E-03 1/20 24562

305 19.008914111 19.010908936 19.008914111 19.001754565 19.002296693 -7.16E-03 1/20 26941

306 19.033069424 19.033069424 - 19.030389407 19.031089900 -2.68E-03 1/20 20928

307 19.063881602 19.063881602 - 19.060160922 19.061046757 -3.72E-03 1/20 22978

308 19.120984457 19.121680199 19.120984457 19.104991437 19.108690710 -1.60E-02 1/20 23202

309 19.146749239 19.146749239 - 19.142573165 19.144543174 -4.18E-03 1/20 32491

310 19.184859463 19.184859463 - 19.178928265 19.181213383 -5.93E-03 1/20 28042

311 19.211386405 19.211386405 - 19.212365036 19.214696924 9.79E-04 1/20 20635

312 19.234773095 19.234773095 - 19.233585653 19.236023545 -1.19E-03 1/20 31080

313 19.259264009 19.259264009 - 19.257103014 19.259829708 -2.16E-03 1/20 28332

314 19.288083255 19.288083255 - 19.286195141 19.286677783 -1.89E-03 2/20 31615

315 19.302300677 19.302300677 - 19.302288067 19.303378383 -1.26E-05 2/20 24985

316 19.335029425 19.335029425 - 19.334041754 19.335453673 -9.88E-04 2/20 30840

317 19.375211471 19.375211471 - 19.367595672 19.368188858 -7.62E-03 1/20 20441

318 19.396538989 19.407004242 19.396538989 19.391566091 19.392633602 -4.97E-03 2/20 30334

319 19.432246442 19.432992566 19.432246442 19.424277830 19.425905156 -7.97E-03 6/20 24676

320 19.451309906 19.456230764 19.451309906 19.451649630 19.453763706 3.40E-04 1/20 24894

#Improve 52 40

#Equal 2 0

#Worse 6 20

p-value 3.39E-9 2.09E-3

23

(a) N = 280 (b) N = 286

(c) N = 287 (d) N = 298

(e) N = 301 (f) N = 308

Fig. 5. Best packing con�gurations found in this work for some representative in-
stances in the range of 101 ≤ N ≤ 320.

From these results, we can make the following observations.

24

100 105 110 115 120 125 130 135 140 145 150

N

0.81

0.812

0.814

0.816

0.818

0.82

0.822

0.824

0.826

0.828

pa
ck

in
g

de
ns

ity

103

121

123

135
145

packing density p

(a) N = 101− 150

150 155 160 165 170 175 180 185 190 195 200

N

0.822

0.824

0.826

0.828

0.83

0.832

0.834

0.836

0.838

0.84

pa
ck

in
g

de
ns

ity

154

164

172 183

187

193

197

packing density p

(b) N = 151− 200

200 210 220 230 240 250 260

N

0.83

0.832

0.834

0.836

0.838

0.84

0.842

0.844

pa
ck

in
g

de
ns

ity

206

219

232

235

241
247

253

256

packing density p

(c) N = 201− 260

260 270 280 290 300 310 320

N

0.839

0.84

0.841

0.842

0.843

0.844

0.845

0.846

0.847

0.848

pa
ck

in
g

de
ns

ity 270

279

284

285

295 301

305

310

315

packing density p

(d) N = 261− 320

Fig. 6. Packing density plots for the current best known solutions.

Table 7
Summary of computational results

N #Instance #Improve #Equal #Worse

101-150 50 5 45 0

151-200 50 25 25 0

201-260 60 54 3 3

261-320 60 52 2 6

Total 220 136 75 9

(1) For the 50 instances with 101 ≤ N ≤ 150 (Table 3), IDTS improved and
matched the best-known results for 5 and 45 instances, respectively. The
algorithm obtained its best results (Rbest) with a perfect success rate of
100% except for 3 instances.

(2) For the 50 instances with 151 ≤ N ≤ 200 (Table 4), IDTS improved the
best-known results for half of these instances while matching the best-
known results for the other instances. The small p-value (9.43e-6) means
that the di�erence between the best results of the IDTS algorithm and
the best-known results is signi�cant. On the other hand, the algorithm
reached a perfect success rate of 100% for 29 instances. For 12 instances,
the success rate for the algorithm to hit its best results drops to less than

25

10/20, indicating the increasing di�culty of these instances. In addition,
it is worth noting that even the average result Ravg of the IDTS algo-
rithm is better than the best-known result R∗ for 22 out of 50 instances,
implying a strong searching ability of the algorithm.

(3) For the 120 largest instances with 201 ≤ N ≤ 320 (Tables 5 and 6),
IDTS improved the best-known results for 106 instances, matched the
best-known result for 5 instances, and missed the best-known result only
for 9 instances. Moreover, the average result of the IDTS algorithm (Ravg)
is better than the best-known result (R∗) for 91 out 120 instances. The
small p-values show that both in terms of Rbest and Ravg there exist a
signi�cant di�erence between the results of the IDTS algorithm and the
best-known results. Moreover, for these largest instances, the success rate
for the algorithm to hit its best results continues to decrease, con�rming
that they are the most di�cult to solve among all tested instances.

Table 7 summarizes the results achieved by the IDTS algorithm on the 4 sets
of instances, where the �rst column indicates the range of instances, the second
column gives the number of instances in the associated set, and the last three
columns show the numbers of instances for which the IDTS algorithm obtained
an improved, equal, worse result compared with the best-known result R∗. The
last row shows the total number of instances for each column. We observe from
Table 7 that the proposed IDTS algorithm improved 136 best-known results
for the 220 instances with 101 ≤ N ≤ 320, matched the best-known result
for 75 instances, and missed the best-known result only for 9 instances. These
results demonstrate the high competitiveness of the proposed IDTS algorithm
compared with the state-of-the-art methods.

For an intuitive presentation of the computational results, we illustrate the
best packing con�gurations found for some representative instances in the
range of 101 ≤ N ≤ 320 in Fig. 4 (with clear regular patterns) and Fig. 5
(with less clear regular patterns).

Furthermore, to observe the packing density of the neighboring instances in
size (i.e., the number of circles N), we plotted in Fig. 6 the evolution of
packing density of the current best known con�gurations as a function of
the instance size (N) for the 4 sets of instances. The packing density p of a
feasible packing con�guration is calculated as p = Nπr2

πR2 , where R represents
the container radius and r is the radius of packed circle (r = 1 for unit circles).
One observes from Fig. 6 that there exit a number of instances for which the
best-known solution has a particularly high or low packing density compared
with the neighboring instances in size.

Finally, to have an idea about the capacity of our approach for dealing with
very large instances (N > 1000), we tested IDTS on 17 instances with N =
1077−1080, 1090−1092, 1094, 1096, 1099, 1100, 1200, 1300, 1500, 3000, 4000, 5000.

26

Interestingly, compared to the best-known results for these instances at the
Packomania website [47], which were achieved by the IIPP-random/lattice-
IPOPT algorithm [49] under unknown conditions, IDTS can improve 7 best-
known results (N = 1080, 1094, 1096, 1099, 1100, 1200, 1300). Meanwhile, we
recognize that IDTS requires a very high computation time (2 to 5.7 days) to
converge to its best solutions for these instances. In [49], it is indicated that
the lattice-based initialization is critical for their IIPP-random/lattice-IPOPT
algorithm. Thus, as a research perspective, it would be interesting to inves-
tigate this idea as well as other local optimization methods within our IDTS
approach to accelerate the algorithm.

5 Analysis

In this section, we analyze several important elements of the proposed algo-
rithm including the two-phase local optimization method (Section 3.2) and the
sensitivity of the settings of parameters on the performance of the algorithm.

5.1 Sensitivity Analysis of Parameters

The proposed algorithm employs three main parameters (θ, MaxIter and µ).
This section discusses their in�uences on the algorithm.

5.1.1 Sensitivity Analysis of Parameters θ and MaxIter

The scaling factor θ of ∆R (line 7 of Algorithm 1) and the maximum number
of iterations (MaxIter) for each run of the dynamic thresholding search pro-
cedure are two important parameters of the IDTS algorithm. To show their
sensitivity on the algorithm, we carried out two additional experiments on
four representative instances with N = 162, 185, 191 and 193.

The �rst experiment aims to analyze the sensitivity of parameter θ. For this,
we varied θ in the range of {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and per-
formed the IDTS algorithm 20 times with each θ value to solve each instance.
The results are summarized in Fig. 7 using the popular box and whisker plots,
where the X-axis indicates the values of parameter θ and the Y-axis indicates
the gap between the obtained objective value R and the current best-known
result R∗. Fig. 7 shows that all tested settings of θ lead to very similar results
for the 20 runs and tested instances, which means that the algorithm is not
sensitive to the setting of θ.

The second experiment aims to investigate the sensitivity of parameterMaxIter.

27

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1

2

3

R
-R

*

10-4 N=162

(a) N = 162

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1

2

3

4

5

6

7

R
-R

*

10-3 N=185

(b) N = 185

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.5

1

1.5

2

2.5

R
-R

*

10-8 N=191

(c) N = 191

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

2

4

6

8

10

12

14

16

R
-R

*

10-6 N=193

(d) N = 193

Fig. 7. In�uence of parameter θ on the performance of the algorithm for 4 represen-
tative instances.

Like in the previous experiment, we varied the value of MaxIter in the range
of [500, 1500] by an interval of 100, and then performed the IDTS algorithm
20 times with eachMaxIter value to solve each instance. The results are sum-
marized in Fig. 8, where the X-axis indicates the values of MaxIter and the
Y-axis indicates the gap between the objective value R and the current best-
known result R∗. One observes from Fig. 8 that most MaxIter values lead
to very similar results for the tested instances, which means that the IDTS
algorithm is not sensitive to the setting of parameter MaxIter.

5.1.2 Sensitivity Analysis of Parameter µ

The dynamic thresholding search procedure described in Algorithm 3 is one
main component of the proposed IDTS algorithm. It employs a key parameter
µ to dynamically adjust the threshold to determine whether a new solution
should be accepted as the current solution or not. To check the in�uence of
this parameter, we tested the IDTS algorithm on 15 selected di�cult instances

28

500 600 700 800 900 1000 1100 1200 1300 1400 1500

MaxIter

0

1

2

3

R
-R

*

10-4 N=162

(a) N = 162

500 600 700 800 900 1000 1100 1200 1300 1400 1500

MaxIter

0

1

2

3

4

5

6

R
-R

*

10-3 N=185

(b) N = 185

500 600 700 800 900 1000 1100 1200 1300 1400 1500

MaxIter

0

0.5

1

1.5

2

2.5

R
-R

*

10-8 N=191

(c) N = 191

500 600 700 800 900 1000 1100 1200 1300 1400 1500

MaxIter

-2

0

2

4

6

8

10

12

14

16

R
-R

*

10-6 N=193

(d) N = 193

Fig. 8. In�uence of parameter MaxIter on the performance of the algorithm for 4
representative instances.

with 101 ≤ N ≤ 200, by varying µ in the range {0.75, 0.8, 0.85, 0.9, 0.95, 0.98}.
Experimental results are summarized in Table 8, where the �rst column gives
the number of circles in the instance (N) and columns 2�7 show respectively
the average results (Ravg) of the algorithm over 20 runs for each tested µ
value. The rows Avg. and #Best indicate respectively the average value for
each column and the numbers of instances for which the corresponding µ value
leads to the best result in terms of Ravg among all the tested values.

Table 8 shows that the algorithm is statistically sensitive to the setting of
this parameter. Speci�cally, the algorithm with µ = 0.75 obtained the best
performance in terms of Ravg for 8 out of the tested 15 instances, a much higher
number than with the other 5 µ values. On the other hand, the e�ectiveness of
the parameter setting depends also on the instance to be solved. For example,
for N = 146 and 156, the algorithm with µ = 0.98 leads to the best result,
but for N = 140 and 193, µ = 0.8 is the most appropriate. As a result, the
default value of µ is set to 0.75 in this work, given that this setting generated
the global best results both in terms of Avg. and #Best.

29

Table 8
In�uence of the parameter µ on the average results (Ravg) for 15 selected di�cult
instances in the range of 101 ≤ N ≤ 200, where the best results obtained among
the tested parameter values are indicated in bold.

Ravg

N/µ 0.75 0.8 0.85 0.90 0.95 0.98

140 13.059841914 13.059817453 13.059823270 13.059869899 13.059888973 13.059835537

145 13.277790851 13.279272357 13.279111852 13.331265740 13.279055403 13.278586300

146 13.331264325 13.331264474 13.331270819 13.279138230 13.331277731 13.331261815

155 13.673710758 13.673711182 13.673711394 13.673713813 13.673713389 13.673713813

156 13.716830585 13.716872226 13.716815459 13.716939820 13.716864271 13.716725394

160 13.919810338 13.919881950 13.919825081 13.919900855 13.919864987 13.919819064

162 14.010217255 14.010262026 14.010301040 14.010339043 14.010382355 14.010458278

163 14.065216603 14.065224398 14.065240188 14.065243626 14.065249862 14.065378644

182 14.823505353 14.823788704 14.822847381 14.823913472 14.822465558 14.822936227

185 14.939607732 14.941075551 14.939665117 14.940375880 14.940583282 14.940206054

187 14.990022721 14.990192813 14.989746864 14.989629606 14.989615934 14.989776456

191 15.142357505 15.142360122 15.142357509 15.142357573 15.142357526 15.142357509

193 15.199379498 15.199379252 15.199382766 15.199380312 15.199382248 15.199383836

195 15.287684736 15.287625886 15.287717064 15.287688537 15.287611777 15.287697020

198 15.389903201 15.389903201 15.389903201 15.389903201 15.389903288 15.389903245

Avg. 14.321809558 14.322042106 14.321847933 14.321977307 14.321881105 14.321869279

#Best 8 3 2 1 2 2

In addition, it is worth mentioning that we tested several dynamic strategies to
adjust the value of µ. However, no signi�cant improvement was observed with
these strategies, which indicates a good robustness of the adopted strategy.

5.2 E�ectiveness of the Two-phase Local Optimization

The two-phase local optimization procedure described in Section 3.2 is one
of the basic components of the proposed algorithm. It runs the LBFGS al-
gorithm in two phases instead of one single phase. To verify whether such a
two-phase approach is more e�cient than the popular one-phase approach,
we carried out an experiment based on 96 PECC-FR instances with N ∈
{50, 60, . . . , 990, 1000}, where for each N the container radius R was set to the
best result published at the well-known Packomania website [47]. In this ex-
periment, the two-phase local optimization method and the standard LBFGS
method were respectively performed 100 times to solve each instance, and
at each time the initial solution was generated by uniformly and randomly
distributing the centers (xi, yi) (i = 1, 2, . . . , N) of N circles in the given con-
tainer. Moreover, to make a fair comparison, two local optimization methods
employed the same stopping condition which is ||g||∞ < 10−13. The experi-
mental results are summarized in Fig. 9, where the X-axis denotes the number
of circles (N) and the Y-axis denotes the average run times needed.

30

0 100 200 300 400 500 600 700 800 900 1000

N

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 c
om

pu
tin

g
tim

e
(in

 s
ec

on
ds

)

Single local optimization
Two-phase local optimization

Fig. 9. Comparison between the standard one-phase local optimization method and
the two-phase local optimization method used in the proposed algorithm.

One observes from Fig. 9 that the two-phase method is much more e�cient
compared to the popular one-phase method. For the one-phase method (i.e.,
the standard LBFGS method), the run time increases almost quadratically
with the number of circles (N). However, for the two-phase method, the time
increases almost linearly as N increases. As a result, the two-phase local opti-
mization method is much more faster than the one-phase method on the large
instances. For example, for the instance with N = 1000, these two methods
consumed respectively 3 and 19 seconds for one run. This observation implies
that at the later stage of local optimizations the search process can be sped up
signi�cantly if the computational complexity for evaluating the objective func-
tion ER(X) is reduced by considering only the overlaps between neighboring
circles especially for the large instances. Indeed, the two-phase local optimiza-
tion procedure greatly contributed to the excellent performance reported in
the last section especially on large instances.

6 Conclusions and Future Work

We presented an e�ective search algorithm for the packing equal circles in a cir-
cle problem, which is computationally challenging in terms of global optimiza-
tion and relevant in terms of important applications. The proposed iterated
dynamic thresholding search algorithm originally integrates three main com-
plementary components (i.e., two-phase local optimization, dynamic thresh-
olding search and container adjustment). The excellent performance of the
algorithm was demonstrated on well-known benchmark instances with up to

31

320 circles. Indeed, the algorithm updated 136 best-known results (improved
upper bounds) and matched the best-known results for other 175 instances.
Given that the studied problem has a number of practical applications, the
code of our algorithm, which we make publicly available, can be used to solve
some of these applications where the run time is not a strong constraint.

On the other hand, the proposed algorithm can be further improved from
the following directions. First, the popular penalty function method used in
the container adjustment procedure leads to results of low precision for some
instances. To deal with this limitation, other approaches such as the aug-
mented Langerian multiplier method can be applied for container adjustment
to improve the precision of the results. Second, to further improve the search
capacity, the dynamic thresholding search proposed in this study can serve as
the key intensi�cation component of a population-based hybrid evolutionary
method in combination with a suitable crossover operator. Third, this work
demonstrates that even though the best-known results are already of very high
quality, it is still possible to make improvements. However, this is at the price
of high computational e�orts. Therefore, it would be of great interest to im-
prove the computation e�ciency of the method. For instance, lattice packing
can be used for solution initialization (e.g., [49]) and block-coordinate descent
methods can serve as the local optimization method of the IDTS algorithm.
Such fast methods would be useful to deal with very-large and super-large in-
stances (e.g., N > 500), and contribute to better solve practical applications
where the run time is a critical constraint.

Finally, the underlying ideas of the two-phase optimization strategy and the
dynamic thresholding search method are of general nature. As such, they can
be applied to other related problems such as equal circle packing on a sphere
[9], equal sphere packing in a regular container [4], and covering a convex
polygon region by equal circles [10].

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions
which helped us to improve the paper. This work was partially supported
by the National Natural Science Foundation of China (Grant No. 61703213),
six talent peaks project in Jiangsu Province (Grant No. RJFW-011), and
Shenzhen Science and Technology Innovation Commission under Grant Nos.
JCYJ20180508162601910 and 2019-INT003.

32

References

[1] Addis B., Locatelli M., Schoen F., 2008, E�ciently packing unequal disks in a
circle. Operations Research Letters, 36, 37�42.

[2] Addis B., Locatelli M., Schoen F., 2008, Disk packing in a square: A new global
optimization approach. INFORMS Journal on Computing, 20(4), 516�524

[3] Akiyama J., Mochizuki R., Mutoh N., Nakamura G., 2002, Maximin distance
for n points in a unit square or a unit circle. In: Akiyama, J., Kano, M. (Eds.),
Japanese Conference on Discrete and Computational Geometry, JCDCG 2002,
Tokyo, Japan, pp 9�13.

[4] Birgin E.G., Sobral F.N.C., 2008, Minimizing the object dimensions in circle and
sphere packing problems. Computers & Operations Research, 35, 2357�2375.

[5] Birgin E.G., Gentil J.M., 2010, New and improved results for packing identical
unitary radius circles within triangles, rectangles and strips. Computers &

Operations Research, 37, 1318�1327.

[6] Boll D.W., Donovan J., Graham R.L., Lubachevsky B.D., 2000, Improving dense
packings of equal disks in a square. The Electronic Journal of Combinatorics, 7,
R46.

[7] Castillo I., Kampas F.K., Pintér J.D., 2008, Solving circle packing problems
by global optimization: Numerical results and industrial applications. European
Journal of Operational Research, 191, 786�802.

[8] Chen M., Tang X.Y., Song T., Zeng Z.Z., Peng X.C, Liu S.Y., 2018, Greedy
heuristic algorithm for packing equal circles into a circular container. Computers
& Industrial Engineering, 119, 114�120.

[9] Clare B.W., Kepert D.L., 1991, The optimal packing of circles on a sphere.
Journal of Mathematical Chemistry, 6, 325�349.

[10] Das G.K., Das S., Nandy S.C., Sinha B.P., 2006, E�cient algorithm for placing
a given number of base stations to cover a convex region. Journal of Parallel and
Distributed Computing, 66, 1353�1359.

[11] Demaine E.D., Fekete S.P., Lang R.J., 2010, Circle packing for origami design
is hard. CoRR, arXiv:1008.1224.

[12] Doye J.P.K., Leary R.H., Locatelli M., Schoen F., 2004, Global optimization
of Morse clusters by potential energy transformations. INFORMS Journal on

Computing, 16(4), 371�379.

[13] Dueck, G., Scheuer, T., 1990, Threshold accepting: a general purpose
optimization algorithm appearing superior to simulated annealing. Journal of
Computational Physics, 90, 161�175.

[14] Fiacco A.V., GP McCormick G.P., 1964, Computational algorithm for the
sequential unconstrained minimization technique for nonlinear programming.
Management Science, 10, 601�617.

33

[15] Fodor F., 1999, The densest packing of 19 congruent circles in a circle.
Geometriae Dedicata, 74, 139�145.

[16] Fu Z.H., Huang W.Q., Lü Z.P., 2013, Iterated tabu search for the circular open
dimension problem. European Journal of Operational Research, 225(2), 236�243.

[17] Galiev S.I., Lisa�na M.S., 2013, Linear models for the approximate solution of
the problem of packing equal circles into a given domain. European Journal of

Operational Research, 230, 505�514.

[18] Graham R.L., 1968. Sets of points with given minimum separation (solution to
problem El921).American Mathematical Monthly, 75, 192�193.

[19] Graham R.L., Lubachevsky B.D., Nurmela K.J., Östergard P.R.J., 1998, Dense
packings of congruent circles in a circle. Discrete Mathematics, 181, 139�154.

[20] Grebennik I.V., Kovalenko A.A., Romanova T.E., Urniaieva I.A., Shekhovtsov
S.B., 2018, Combinatorial con�gurations in balance layout optimization problems,
Cybernetics and Systems Analysis, 54, 221�231.

[21] Grosso A., Jamali A.R.M.J.U., Locatelli M., Schoen F., 2010, Solving the
problem of packing equal and unequal circles in a circular container. Journal of
Global Optimization, 47, 63�81.

[22] Hager W.W., Zhang H.C, 2005, A new conjugate gradient method with
guaranteed descent and an e�cient line search, SIAM Journal on Optimization,
16, 170�192.

[23] He K., Ye H., Wang Z.L., Liu J.F., 2018, An e�cient quasi-physical quasi-human
algorithm for packing equal circles in a circular container. Computers & Operations

Research, 92, 26�36.

[24] Hi� M., M' Hallah R., 2007, A dynamic adaptive local search algorithm for the
circular packing problem. European Journal of Operational Research, 183, 1280�
1294.

[25] Hi� M., Yousef L., 2019, A local search-based method for sphere packing
problems. European Journal of Operational Research, 274, 482�500.

[26] Huang W.Q., Ye T., 2010, Greedy vacancy search algorithm for packing equal
circles in a square. Operations Research Letters, 38, 378�382.

[27] Huang W.Q., Ye T., 2011, Global optimization method for �nding dense packing
of equal circle in a circle. European Journal of Operational Research, 210, 474�481.

[28] Kravitz S., 1967, Packing cylinders into cylindrical containers. Mathematics

Magazine, 40, 65�71.

[29] Leary R., 2000, Global optimization on funneling landscapes. Journal of Global
Optimization, 18, 367�383

[30] Liu D.C., Nocedal J., 1989, On the limited memory BFGS method for large
scale optimization. Mathematical Programming, 45, 503�528.

34

[31] Liu J.F., Xue S.J., Liu Z.X., Xu D.H., 2009, An improved energy landscape
paving algorithm for the problem of packing circles into a larger containing circle.
Computers & Industrial Engineering, 57, 1144�1149.

[32] Litvinchev I., Ozuna E. L., 2014, Approximate packing circles in a rectangular
container: valid inequalities and nesting. Journal of Applied Research and

Technology, 12,716�723.

[33] Litvinchev I., Infante L., Espinosa E.L.Q., 2016, Using valid inequalities and
di�erent grids in LP-based heuristic for packing circular objects, Lecture Notes in
Computer Science, 9622, 681-690

[34] Locatelli M., Raber U., 2002, Packing equal circles in a square: a deterministic
global optimization approach. Discrete Applied Mathematics, 122, 139�166.

[35] Locatelli M., Schoen F., 2002, Fast global optimization of di�cult Lennard-Jones
clusters. Computational Optimization and Applications, 21, 55�70.

[36] López C.O., Beasley J.E., 2011, A heuristic for the circle packing problem with
a variety of containers. European Journal of Operational Research, 214, 512�525.

[37] López C.O., Beasley J.E., 2013, Packing unequal circles using formulation space
search. Computers & Operations Research, 40, 1276�1288.

[38] López C.O., Beasley J.E., 2016, A formulation space search heuristic for packing
unequal circles in a �xed size circular container. European Journal of Operational

Research, 251, 64�73.

[39] Lü Z.P., Huang W.Q., 2008, PERM for solving circle packing problem.
Computers & Operations Research, 35(5), 1742�1755.

[40] Markót M.C., Csendes T., 2005, A new veri�ed optimization technique for the
"packing circles in a unit square" problems. SIAM Journal on Optimization, 16(1),
193�219.

[41] Martínez L., Andrade R., Birgin E.G., Martínez J.M., 2009, Packmol: A package
for building initial con�gurations for molecular dynamics simulations. Journal of
Computational Chemistry, 30(13):2157�2164.

[42] Melissen H., 1994, Densest packings of eleven congruent circles in a circle.
Geometriae Dedicata, 50, 15�25.

[43] Mladenovi¢ N., Plastria K., Uro²evi¢ D., 2005, Reformulation descent applied
to circle packing problems. Computers & Operations Research, 32, 2419�2434.

[44] Müller A., Schneider J.J., Schömer E., 2009, Packing a multidisperse system of
hard disks in a circular environment. Physical Review E, 79, 021102.

[45] Pirl U., 1969, Der Mindestabstand von n in der Einheitskreisscheibe gelegenen
Punkten. Mathematische Nachrichten, 40(1�3), 111-124.

[46] Specht E., 2013, High density packings of equal circles in rectangles with variable
aspect ratio. Computers & Operations Research, 40, 58�69.

35

[47] Specht E., November 2020 (Accessed), Packomania website: http://www.

packomania.com.

[48] Stetsyuk P.I., Romanova T.E., Scheithauer G., 2016, On the global minimum
in a balanced circular packing problem. Optimization Letters, 10, 1347�1360.

[49] Stoyan Y., Yaskov G., Romanova T., Litvinchev I., Yakovlev S., Cantú J.M.V.,
2020, Optimized packing multidimensional hyperspheres: a uni�ed approach,
Mathematical Biosciences and Engineering, 76(6): 6601�6630.

[50] Stoyan Y., Zlotnik M., Chugay A., 2012, Solving an optimization packing
problem of circles and non-convex polygons with rotations into a multiply
connected region. Journal of the Operational Research Society, 63: 379�391.

[51] Stoyan Y., Yaskov G., 2014, Packing unequal circles into a strip of minimal
length with a jump algorithm. Optimization Letters, 8: 949�970.

[52] Stoyan Y., Scheithauer G., Yaskov G.N., 2016, Packing unequal spheres into
various containers. Cybernetics and Systems Analysis, 52: 419�426.

[53] Toledo F.M.B., Carravilla M.A., Ribeiro C., Oliveira J.F., Gomes A.M.,
2013, The dotted-board model: a new MIP model for nesting irregular shapes.
International Journal of Production Economics, 45(2), 478�487.

[54] Wang H.Q., Huang W.Q., Zhang Q., Xu D.M., 2002, An improved algorithm for
the packing of unequal circles within a larger containing circle. European Journal

of Operational Research, 141, 440�453.

[55] Zeng Z.Z., Yu X.G., He K., Huang W.Q., Fu Z.H., 2016, Iterated tabu search and
variable neighborhood descent for packing unequal circles into a circular container.
European Journal of Operational Research, 250, 615�627.

[56] Zhang D.F., Deng A., 2005, An e�cient hybrid algorithm for the problem
of packing the circles into a larger containing circle. Computers & Operations

Research, 32(8), 1941�1951.

36

