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Abstract

The 0–1 multidimensional knapsack problem is a well-known NP-hard combina-
torial optimization problem with numerous applications. In this work, we present
an effective two-phase tabu-evolutionary algorithm for solving this computation-
ally challenging problem. The proposed algorithm integrates two solution-based
tabu search methods into the evolutionary framework that applies a hyperplane-
constrained crossover operator to generate offspring solutions, a dynamic method
to determine search zones of interest, and a diversity-based population updating
rule to maintain a healthy population. We show the competitiveness of the proposed
algorithm by presenting computational results on the 281 benchmark instances com-
monly used in the literature. In particular, in a computational comparison with the
best algorithms in the literature on multiple data sets, we show that our method on
average matches more than twice the number of best known solutions to the harder
problems than any other method and in addition yields improved best solutions
(new lower bounds) for 4 difficult instances. We investigate two key ingredients of
the algorithm to understand their impact on the performance of the algorithm.
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1 Introduction

Given a set V = {1, 2, . . . , n} of n items and m resources with a capacity
limit bi for each resource i, each item j has a profit pj and consumes a given
quantity of each resource rij. Then the 0–1 multidimensional knapsack problem
(MKP) is to select a subset of items such that the resource consumed by the
selected items does not exceed the capacity limit for each resource (knapsack
constraints), while maximizing the total profit of the selected items.

Formally, the MKP can be formulated as the following general 0–1 linear
program with multiple constraints.

Maximize f(s) =
n
∑

j=1

pjxj (1)

s.t.
n
∑

j=1

rijxj ≤ bi, ∀i ∈ {1, 2, . . . ,m} (2)

xj ∈ {0, 1}, ∀j ∈ {1, 2, . . . , n} (3)

where the decision variables xj (j ∈ {1, 2, . . . , n}) indicate whether the as-
sociated items are selected, i.e., xj = 1 if the item j is selected, and xj = 0
otherwise. Constraints (2) ensure that the m knapsack constraints are satisfied
while equation (1) maximizes the total profit of the selected items.

The MKP is a well-known constrained combinatorial optimization problem
that has numerous applications, including cutting stock [16], loading problem
[38], resources allocation in distributed computing [14], among others. The
MKP is known to be NP-hard [13] and thus computationally challenging.

Due to its practical importance and NP-hard character, much effort has been
dedicated to the MKP, and in the past several decades, a large number of exact
and heuristic algorithms have been proposed for solving it. In [12], a compre-
hensive review of the studies till 2004 is provided. Here, we focus mainly on
some of the most representative work. The best known exact algorithms in-
clude several branch & bound algorithms [15,38,41], the hybrid exact algorithm
that combines resolution search, branch & bound and depth first search [6],
the CORAL algorithm that combines branch & bound and variable fixation
[32]. At present, the most efficient exact algorithms are able to produce the
optimal solutions for instances of small and moderate size, primarily with the
number of variables and constraints limited to n ≤ 250 and m ≤ 10. However,
they may fail on larger instances, e.g., when n ≥ 500 and m ≥ 30. Indeed, even
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the best hybrid exact algorithms like those proposed in [6,32] have trouble to
solve some instances with n = 250 and m = 30.

In addition to exact solution approaches, a variety of heuristic algorithms are
available in the literature, which can mainly be divided into two categories,
namely single-solution based local search algorithms and population-based op-
timization algorithms. Examples of successful local search algorithms include
tabu search [23,25,40], simulated annealing [11] and kernel search [2]. Repre-
sentative population-based methods include genetic and memetic algorithms
[10,37], hybrid binary particle swarm optimization [5,9,24,30], ant colony op-
timization [1], tabu search-based PSO algorithm [28], and path relinking [3].
Other fashionable algorithms include harmony search [29,42,47], binary differ-
ential evolution algorithm [4], fruit fly algorithm [33] and binary artificial bee
colony algorithm [34], etc. However, these latter methods only perform well
on small instances with n ≤ 100 and are rarely competitive on large instances,
especially with n ≥ 500.

Given the NP-hard feature of the MKP, there is a continuing need for more
powerful and effective methods to better solve the problem. In this work, we
introduce a two-phase tabu evolutionary algorithm (TPTEA) that particularly
relies on two solution-based tabu search procedures to explore different search
spaces. Solution-based tabu search [7,8,43,45] is an interesting search approach
that nevertheless has received much less attention than the popular attribute-
based tabu search approach [22]. According to some recent studies like [43],
solution-based tabu search algorithms may be particularly efficient for solving
some binary optimization problems like the minimum difference dispersion
problem. In this work, we investigate the solution-based tabu search approach
in combination with the popular hybrid evolutionary framework.

The main contributions of this work can be summarized as follows.

• We investigate for the first time solution-based tabu search for solving the
MKP and design two dedicated solution-based tabu search procedures to
explore different search spaces. We integrate these tabu search procedures
within a population-based evolutionary framework to obtain a two-phase
search algorithm that is able to ensure an effective intensification and di-
versification within the search space.
• We develop a self-adapting mechanism to locate interesting search regions

(represented by specific hyperplanes) which are examined thoroughly by the
algorithm.
• We provide computational results on the 281 commonly used benchmark

instances and compare our outcomes with those of state-of-the-art MKP
algorithms in the literature. In particular, we obtain improved best known
results (new lower bounds) for 4 hard benchmark instances. To our knowl-
edge, the last updates of lower bounds for the MKP instances occurred in
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2012 [32].

The remainder of the paper is organized as follows. In the next section, we
describe our proposed algorithm and its key components. Computational re-
sults and comparisons are presented in Section 3. In Section 4, two essential
strategies of the algorithm are analyzed to shed light on how they affect the
performance of the algorithm. Finally, we draw conclusions and provide per-
spectives for future studies.

2 Two-phase hybrid tabu-evolutionary algorithm for the MKP

To describe the two-phase tabu-evolutionary algorithm for the MKP (TPTEA),
we first introduce the different search spaces explored by the algorithm and
then explain the procedures for handling them.

2.1 Solution representation and search space

Given a MKP instance with a set V = {1, 2, . . . , n} of n items, any candidate
solution s can be represented by a n-dimensional binary vector (x1, x2, . . . , xn)
such that xj = 1 if the item j is selected, and xj = 0 otherwise. In this work,
we employ additionally two vectors S and NS to indicate respectively the sets
of selected items and unselected items in a solution. Thus, any solution s in the
search space can also be represented by s =< S,NS >. This representation is
convenient for describing the swap operator used by the tabu search procedures
of Section 2.4.

Let Ω be the set of all n-dimensional binary vectors, i.e.,

Ω = {x : x ∈ {0, 1}n} (4)

Clearly, Ω contains both feasible solutions and infeasible solutions, which de-
fines the largest possible search space for the given instance.

The feasible search space ΩF ⊂ Ω can be written as

ΩF = {x ∈ {0, 1}n :
n
∑

j=1

rijxj ≤ bi, 1 ≤ i ≤ m} (5)

Finally, given a candidate solution s = (x1, x2, . . . , xn) in Ω, let
∑n

j=1 xj = k
be a k-dimensional hyperplane constraint that restricts the components xj of
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the solution to have exactly k variables taking the value of 1, we define Ω[k]

to be a subspace of Ω satisfying the hyperplane-constraint i.e.,

Ω[k] = {x ∈ {0, 1}
n :

n
∑

j=1

xj = k} (6)

Ω[k] will be called the k-dimensional hyperplane space or simply a hyperplane.

Note that the space Ω can be decomposed into a series of hyperplanes Ω[k]

(k = 1, 2, . . . , n), i.e.,

Ω = ∪n
k=1Ω[k] (7)

As we explain in the following sections, the proposed two-phase algorithm
explores the feasible space ΩF during its first search phase and the limited
subspaces of Ω identified by a small number of (promising) hyperplanes Ω[k]

during the second phase. Proposals to explore solution spaces by reference
to such hyperplanes were also introduced in [18] where they constitute an
instance of more general "exploiting inequalities".

2.2 General procedure

Our algorithm is composed of two search phases that explore different search
spaces described in Section 2.1. The first phase examines only feasible solutions
of ΩF to determine promising search regions. For this purpose, it applies a first
tabu search procedure (Section 2.4.1) to generate a population POP of np
high-quality feasible solutions with possibly different hyperplane dimensions
(np is set to 15 in this work). Among those solutions, the best solution s∗

is identified and the number k∗ of the selected items in s∗ is used to define
the most promising hyperplane Ω[k∗] that serves as the starting region around
which a thorough examination is performed during TPTEA’s second phase.

The second phase explores subspaces of Ω identified by a limited number of
hyperplanes Ω[k] for k ∈ [k∗−∆k, k

∗+∆k] where k∗ comes from the first phase
and ∆k is a small integer (set to 1 in this work). This phase is achieved by
a combined strategy that uses a specific crossover operator (Section 2.5) to
generate new solutions and a second tabu search procedure (Section 2.4.2) to
improve each newly generated solution. During the search, the best solution s∗

and its k∗ value are updated, implying that the search will dynamically visit
different hyperplanes of interest. To perform a detailed examination of each
particular hyperplane Ω[k], the second tabu search procedure considers both
feasible and infeasible solutions in Ω[k].
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Algorithm 1: Main frame of the two-phase hybrid evolutionary algorithm for
the MKP

1 Function TPTEA()
Input: Instance I, time limit tmax
Output: The best solution s∗ found

2 begin
/* First phase: generate np high-quality solutions and
identify a promising hyperplane k∗. Only feasible solutions
are considered */

3 s∗ ← InitialSolution(I) /* Sections 2.3 */
4 POP ← ∅
5 for i← 1 to np do
6 si ← InitialSolution(I)
7 (si, k)← TabuSearch_1(si) /* Section 2.4.1 */
8 POP ← POP

⋃

{si}
9 if f(si) > f(s∗) then

10 s∗ ← si
11 k∗ ← k
12 end
13 end

/* Second phase: search around the hyperplane k∗ identified
during the first phase (k∗ can be updated). Both feasible and
infeasible solutions are considered */

14 while time() ≤ tmax do
15 Pick randomly two solutions si and sj from the population POP
16 for k ← (k∗ −∆k) to (k∗ +∆k) do
17 soff ← Crossover(si, sj, k) /* Section 2.5 */
18 s← TabuSearch_2(soff ) /* Section 2.4.2 */
19 PoolUpdating(soff , POP ) /* Section 2.6 */
20 if f(soff ) > f(s∗) then
21 s∗ ← soff /* Update the best solution found */
22 k∗ ← k
23 end
24 end
25 end
26 return s∗

27 end

The general scheme of the proposed TPTEA algorithm is shown in Algorithm
1. The first phase (lines 3–13) of TPTEA uses the first tabu search procedure
(TabuSearch_1) to obtain a high-quality initial population. Each of these np
(feasible) solutions is first generated by a randomized construction procedure
(Section 2.3) and then improved by TabuSearch_1 that only explores feasible
solutions in the search space Ω. At the end of the first phase, the best solution
s∗ and the associated k∗ are identified and passed to the second phase.

The second phase is defined by the "while" loop (lines 14–25) and explores
a number of hyperplanes Ω[k] (k ∈ [k∗ − ∆k, k

∗ + ∆k]). At each "while"
iteration, the algorithm first randomly selects two parent solutions si and
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sj from the population and then performs a series of operations for each
k ∈ [k∗ −∆k, k

∗ +∆k]. Specifically, for each k considered, the algorithm first
applies a crossover operator to the parent solutions si and sj to generate an
offspring solution soff on the hyperplane Ω[k]. Then the algorithm improves
soff by the second tabu search procedure (TabuSearch_2) that limits its
search to the given hyperplane Ω[k] and examines both feasible and infeasible
solutions having exactly k selected items. During the search, each time an
improved best solution s∗ is found, the updated k∗ identifies a new promising
hyperplane which is examined during the subsequent iterations of the second
phase. The "while" loop is repeated until the timeout limit (tmax) is reached.
Finally, the best solution s∗ found is returned as the result of the algorithm.

2.3 Preprocessing procedure of instances and generation of initial solutions

For each instance of the MKP, the items are preprocessed and renumbered as
follows. First, for each item j, we compute a surrogate constraint evaluation
ratio σj [36] as follows.

σj =
pj

∑m
i=1

rij
bi

, ∀j ∈ {1, 2, . . . , n} (8)

This ratio, following the form proposed in [17], utilizes the simple surrogate
constraint normalization that divides each constraint through by its constant
(right hand side) term. Then, all items are sorted and renumbered in a non-
decreasing order according to their surrogate constraint ratios. Finally, the
vectors (p1, p2, . . . , pn), (b1, b2, . . . , bm) and rij (i = 1, 2, . . . ,m, j = 1, 2, . . . , n)
are adjusted according to the new order of the items. The new numbering of
items will be used in the whole algorithm. (More advanced forms of surrogate
constraints that can be used to form such ratios are introduced in [18] and
[21].)

For the generation of initial solutions of the population, we use a randomized
procedure to generate np feasible solutions to form the initial population.
To obtain a feasible initial solution, the initialization procedure performs a
number of iterations. At each iteration, an item is randomly picked from the
set of unchecked items (at the beginning, all items are marked unchecked),
then the item is considered as being selected if adding it to the solution does
not violate any knapsack constraint. Otherwise, the item is dropped. The
initialization procedure stops as soon as all items have been checked.
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2.4 Solution-based tabu search methods

The proposed algorithm employs two solution-based tabu search procedures as
its main optimization components. The first one works on the feasible search
space ΩF using the objective function as its evaluation function, while the
second one works on a given subspace Ω[k] using a penalty-based augmented
objective function as its evaluation function. In the next two subsections, we
present the two tabu search procedures.

2.4.1 Tabu search method exploring the feasible search space

Algorithm 2: Tabu search procedure exploring feasible search space

1 Function TabuSearch_1()
Input: Initial solution s, objective function f , hash vectors H1, H2, H3 with

a length of LH, hash functions h1, h2, h3, the maximum number of
iterations IterMax

Output: The best solution s∗ found
2 begin

/* Initialization of hash vectors */
3 for i← 0 to LH − 1 do
4 H1[i]← 0; H2[i]← 0; H3[i]← 0;
5 end
6 s∗ ← s
7 iter ← 0

/* Main search procedure */
8 while iter ≤ IterMax do

9 Find a best neighbor solution s
′

in terms of objective function f from
the current neighborhood N1(s)

⋃

N2(s) such that
H1(h1(s

′

)) ∧H2(h2(s
′

) ∧H3(h3(s
′

)) = 0 /* N1(s) and N2(s) are
defined in Eqs. (9) and (10) */

10 s← s
′

/* Update the incumbent solution */
11 if f(s) > f(s∗) then
12 s∗ ← s
13 end

/* Update the hash vectors (i.e., tabu lists) with s */
14 H1[h1(s)]← 1; H2[h2(s)]← 1; H3[h3(s)]← 1
15 iter ← iter + 1
16 end
17 return s∗

18 end

The first tabu search procedure TabuSearch_1 (Algorithm 2), which is used
by TPTEA during its first search phase, employs the objective function (Eq.
(1)) as its evaluation function, and only explores the feasible space ΩF . This
procedure starts from the initialization of the tabu lists (i.e., three hash vectors
H1, H2, and H3, see below) and a feasible initial solution, and then performs
a number of iterations to improve the initial solution (lines 8–16). At each
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iteration, a best non-tabu neighbor solution is chosen from the neighborhood
to become the new incumbent solution, followed by the updates of the tabu
lists (line 14).

For the tabu search methods, the neighborhood structures and the tabu strat-
egy are two most essential components which must be considered with care.
Our tabu search method uses two basic neighborhoods: the restricted one-flip
neighborhood N1(s) and the restricted swap neighborhood N2(s).

The restricted one-flip neighborhood N1 is defined by the one-flip operator
(Flip). Specifically, given a solution s = (x1, x2, . . . , xn), an one-flip move
Flip(q) changes the value of a variable xq to its complementary value 1− xq.
Given a solution s = (x1, x2, . . . , xn), the neighborhood N1(s) is composed of
all the feasible solutions that can be obtained by applying the one-flip operator
to s. Formally, the N1(s) can be written as follows.

N1(s) = {s
⊕

Flip(q) :
n
∑

j=1

rijxj + riq(1− xq) ≤ bi, 1 ≤ q ≤ n, 1 ≤ i ≤ m}

(9)

In addition, as explained in Section 2.1, a solution s = (x1, x2, . . . , xn) can
equivalently be represented by < S,NS >, where S represents the set of the
selected items and NS represents the set of the unselected items. With this
representation of solutions, the restricted swap neighborhood N2 can be de-
fined by the swap operator Swap(v, u). Given a solution < S,NS >, the swap
operator Swap(v, u) exchanges the values of variables xv and xu to generate
a neighboring solution, where v ∈ S and u ∈ NS. Clearly, the swap operator
will lead to a neighborhood whose size is bounded by O(|S| × |NS|) that is
very large for large-scale instances. To speed up the tabu search method, we
apply the successive filter candidate list strategy of [22] to two high-quality
subsets X ⊂ S and Y ⊂ NS. Specifically, to define the set X, the variables in
S are first sorted in an ascending order according to their surrogate constraint
ratios σ in Eq. (8) (see Section 2.3), and then the first Min{|S|, θ × n} vari-
ables are selected to form X, where θ is a parameter that is used to control
the size of sets X and Y . Similarly, to construct the set Y , the variables in NS
are sorted in a descending order according to their surrogate constraint ratios,
and the first Min{|NS|, θ×n} variables are selected to form Y . Formally, the
restricted swap neighborhood N2(s) can be written as follows.

N2(s) = {s
⊕

Swap(v, u) : v ∈ X, u ∈ Y ;
n
∑

j=1

rijxj+riu−riv ≤ bi, 1 ≤ i ≤ m}

(10)
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Clearly, the size of N2(s) is bounded by θ2n2.

As to the tabu strategy, unlike the popular attribute-based approaches, the
proposed tabu search method adopts the solution-based tabu strategy that
relies on the three hash vectors as well as the associated hash functions to
rapidly determine the tabu status of neighbor solutions. To illustrate our tabu
strategy, we give in Figure 1 an example of determining the tabu status of
candidate solutions, where three hash vectors H1, H2, and H3 with a length of
LH are given, and each position of these vectors represents a binary variable
that takes the value of 0 or 1. In addition, each hash vector Ht (t = 1, 2, 3)
is associated with a hash function ht which maps a candidate solution in the
search space Ω to an index of Ht (i.e., ht : x ∈ Ω→ {0, 1, 2, . . . , LH − 1}).

(a) An example of a tabu solution

(b) An example of a non-tabu solution

Fig. 1. Two illustrative examples for determining the tabu status of the given can-
didate solution using three hash functions as well as the associated hash vectors.

Using these hash vectors and the associated hash functions, the tabu status
of a candidate solution s can be rapidly determined by the following rule.
If all Ht[ht(s)] (t = 1, 2, 3) take 1, then s is determined as a tabu solution.
Otherwise, s is determined as a non-tabu solution, as illustrated in Figure 1.
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The choice of the hash functions is another important issue for hash-based
tabu search methods. Generally, the hash functions should follow the prin-
ciple that the hash values of candidate solutions can be easily calculated.
Following previous studies [7,43,45], we use the following hash functions. Let
s = (x1, x2, . . . , xn) denote a candidate solution where xi ∈ {0, 1}, the hash
functions ht (t = 1, 2, 3) are defined as

ht(s) = (
n
∑

i=1

⌊iγt⌋ × xi) mod LH (11)

where γt is a parameter that is used to define the hash function and takes
different values for the different hash functions (see Table 1 for its setting),
and LH is the length of the hash vectors that is set to 107 in this work.

ht(s⊕M) =











ht(s)− ⌊v
γt⌋, for M = Flip(v) ∧ xv = 1; (12)

ht(s) + ⌊u
γt⌋, for M = Flip(u) ∧ xu = 0; (13)

ht(s) + (⌊uγt⌋ − ⌊vγt⌋), for M = swap(v, u); (14)

Moreover, for a given solution s = (x1, x2, . . . , xn), the hash value of a neighbor
solution s⊕M can be easily calculated in O(1) according to Eq. (12–14), where
M denotes a Flip or Swap move.

2.4.2 Tabu search method exploring a given subspace Ω[k]

The second tabu search procedure TabuSearch_2 (Algorithm 3) works on a
given hyperplane Ω[k] that contains all feasible and infeasible solutions s =
(x1, x2, . . . , xn) with

∑n
j=1 xj = k. Similar to the first tabu search procedure,

TabuSearch_2 starts from the initialization of the hash vectors (lines 3–5),
and then performs a number of iterations to improve the starting solution
(lines 8–16). At each iteration, the method first scans the current neighborhood
and then selects a best eligible solution in terms of its evaluation function (see
below) to replace the current solution. The best feasible solution found, s∗,
is updated each time a better feasible solution s is encountered (lines 11–13).
Subsequently, the hash vectors are updated accordingly using the new solution
(line 14). The method stops when a maximum number of iterations is reached,
and the best feasible solution found during the search process is returned as
the results of the second tabu search procedure.

TabuSearch_2 uses the same tabu strategy as the first tabu search proce-
dure, while the other components including the neighborhood and evaluation
function are described as follows. To ensure an efficient examination of the
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Algorithm 3: Tabu search procedure exploring a hyperplane Ω[k]

1 Function TabuSearch_2()
Input: Initial solution s, evaluation function F (s), penalty function V (s),

hash vectors H1, H2, H3 with a length of LH, hash functions h1, h2,
h3, the maximum number of iterations IterMax

Output: The best feasible solution s∗ found
2 begin

/* Initialization of hash vectors */
3 for i← 0 to LH − 1 do
4 H1[i]← 0; H2[i]← 0; H3[i]← 0;
5 end
6 s∗ ← s
7 iter ← 0

/* Main search procedure */
8 while iter ≤ IterMax do

9 Find a best neighbor solution s
′

in terms of the evaluation function F
from the current neighborhood N3(s) such that
H1(h1(s

′

)) ∧H2(h2(s
′

) ∧H3(h3(s
′

)) = 0 /* N3(s) is defined in
Eq. (15) */

10 s← s
′

/* Update the incumbent solution */
11 if F (s) > F (s∗) ∧ V (s) = 0 then
12 s∗ ← s
13 end

/* Update the hash vectors (i.e., tabu lists) with s */
14 H1[h1(s)]← 1; H2[h2(s)]← 1; H3[h3(s)]← 1
15 iter ← iter + 1
16 end
17 return s∗

18 end

solutions on the fixed hyperplane Ω[k], TabuSearch_2 uses a reduced swap
neighborhood N3 that is defined as

N3(s) = {s
⊕

Swap(v, u) : v ∈ X, u ∈ Y ; f(s
⊕

Swap(v, u)) > f(s∗)}
(15)

where s∗ represents the best feasible solution found so far in the current tabu
search process, and the subsets X and Y are the same as in Eq.(10). Note
that the strategy of reducing the size of N3 is similar to that used in [39], and
this strategy allows the search process to focus on the improving solutions,
and significantly decreases the number of neighbor solutions to be examined.

Since TabuSearch_2 visits both feasible and infeasible solutions of Ω[k], it
employs an augmented evaluation function F that integrates a penalty com-
ponent V to evaluate the candidate solutions. The penalty V (s), which is
used to assess the degree of constraint violation of a candidate solution s =
(x1, x2, . . . , xn), is defined as follows.
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V (s) =
m
∑

i=1

Max{0,
n
∑

j=1

rijxj − bi} (16)

As such, a smaller V (s) value indicates less constraint violation and a solution
with V (s) = 0 represents a feasible solution.

The augmented evaluation function F (s) combines the objective function f(s)
in Eq.(1) and the penalty function V (s) as follows.

F (s) =
n
∑

j=1

pjxj + λ
m
∑

i=1

Max{0,
n
∑

j=1

rijxj − bi} (17)

where λ is a scaling factor that is set to −102 in this work. Given two solutions
s1 and s2 in Ω[k], s1 is considered to be better than s2 if F (s1) > F (s2).

2.5 Hyperplane-constrained crossover operator

In evolutionary algorithms, the crossover operator is another important in-
gredient [26]. In the TPTEA algorithm, we adopt a hyperplane-constrained
crossover operator (Algorithm 4), which combines two solutions to produce
a new solution in Ω[k]. Our crossover operator is adapted from the popu-
lar uniform crossover operator and ensures that the new solution belongs
to Ω[k] (i.e., containing exactly k selected items). Specifically, the crossover
operator works as follows. Given two parent solutions sa = (xa

1, x
a
2, . . . , x

a
n)

and sb = (xb
1, x

b
2, . . . , x

b
n) as well as a positive integer k, the component xoff

i

(i = 1, 2, . . . , n) of the offspring solution soff takes randomly the value of xa
i

or xb
i with equal probability. Then we consider the following three situations.

First, if
∑n

j=1 x
off
j = k, the offspring solution contains exactly k selected items

(i.e., soff ∈ Ω[k]) and we are done. Second, if
∑n

j=1 x
off
j < k, then we change

the values of the last k −
∑n

j=1 x
off
j variables taking the value of 0 to 1. Sec-

ond, if
∑n

j=1 x
off
j > k, we change the values of the first

∑n
j=1 x

off
j −k variables

taking 1 to 0. It is worth noting that a variable with a small index has a weak
surrogate constraint ratio, as shown in Section 2.3. We observe a possible vari-
ation of the foregoing procedure. As noted in [20], uniform crossover produces
solution combinations that are a special instance of combinations provided ear-
lier by the evolutionary scatter search approach [19] and scatter search also
includes the possibility of other weightings which give rise to a probabilistic
determination of values assigned to offspring. Similarly, our present approach
can be generalized to utilize such probabilistic determinations of values as-
signed to variables before applying the surrogate constraint ratio indexing to
compel exactly k variables to be 1.

13



Algorithm 4: The hyperplane crossover operator

1 Function Crossover()
Input: Two selected solutions sa = (xa

1, x
a
2, . . . , x

a
n) and sb = (xb

1, x
b
2, . . . , x

b
n),

the number of variables taking 1 (k)

Output: A offspring solution soff = (xoff
1 , xoff

2 , . . . , xoff
n ) in the Ω[k]

2 for i← 1 to n do
3 r ← rand(0, 1) /* rand(0, 1) is a random number in (0, 1) */
4 if r < 0.5 then

5 xoff
i ← xa

i

6 end
7 else

8 xoff
i ← xb

i

9 end
10 end
11 counter ← the number of variables taking 1 in soff
12 if counter > k then
13 for i← 1 to n do

14 if xoff
i = 1 then

15 xoff
i ← 0

16 counter ← counter − 1
17 if counter = k then
18 break
19 end
20 end
21 end
22 end
23 if counter < k then
24 for i← n to 1 do

25 if xoff
i = 0 then

26 xoff
i ← 1

27 counter ← counter + 1
28 if counter = k then
29 break
30 end
31 end
32 end
33 end

34 return soff = (xoff
1 , xoff

2 , . . . , xoff
n )

2.6 Diversity-based population updating rule

To ensure a healthy diversity of the population POP , we employ in this work
a diversity-based population updating rule [31,35,46] that takes into account
the quality of solutions and the population diversity. For this purpose, we first
introduce two definitions.

Definition 1 (Distance between a solution and its population). Given a so-
lution si and the population POP = {s1, s2, . . . , snp}, the distance D(si) be-

14



Algorithm 5: Pseudo-code of pool updating method

1 Function PoolUpdating()
Input: Population POP = {s1, s2, . . . , snp}, offspring soff
Output: Updated population POP

2 begin
3 POP ← POP ∪ {soff}
4 for i← 1 to np+ 1 do
5 Calculate Score(si) of si according to Eq. (19)
6 end
7 sworst ← argmin{Score(si)|i = 1, 2, . . . , np+ 1}
8 POP ← POP \ {sworst}
9 end

tween si and POP is defined as follows:

D(si) = Min{distance(si, sj) : sj ∈ POP, sj 6= si} (18)

where distance(si, sj) represents the Hamming distance between si and sj.

Definition 2 (Goodness score of a solution in the population). The goodness
score Score(si) of a solution si is defined by its objective function value as
well as its distance to the population as follows:

Score(si) = β ×
f(si)− fmin

fmax − fmin

+ (1− β)×
D(si)−Dmin

Dmax −Dmin

(19)

where fmax and fmin denote respectively the maximum and minimum objective
values of the solutions in the population, Dmax and Dmin are respectively the
maximum and minimum distances between a solution to the population, and
β is a parameter that is empirically set to 0.7 in this work.

The population updating rule works as follows (Algorithm 5). When an off-
spring solution soff is generated by the crossover operator and improved by
the tabu search method in Algorithm 3, soff is first added into the population
(line 3), and then the goodness score of each individual in the population is
calculated according to Eq.(19) (line 5). Finally, the worst individual in terms
of the goodness score is deleted from the population (lines 7–8).

3 Experimental results and comparisons

We now assess the proposed algorithm by performing extensive computational
experiments on the benchmark instances commonly used in the literature and
making comparisons with several state-of-the-art algorithms.
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3.1 Benchmark instances

We tested the TPTEA algorithm on the 281 popular benchmark instances
whose main characteristics are described as follows.

• OR-Library instances: These instances were generated by Chu and Beasley
in [10] and are available at http://people.brunel.ac.uk/~mastjjb/jeb/
orlib/mknapinfo.html. For these instances, the number of variables n is
set to 100, 250 and 500, and the number of constraints m is set to 5, 10, and
30. For each (n,m) combination, 30 instances were generated. Specifically,
rij (1 ≤ i ≤ m, 1 ≤ j ≤ n) are integers uniformly and randomly generated
in [0, 1000], bi = α ×

∑n
j=1 rij (1 ≤ i ≤ m), where α is called the tightness

ratio and set to 0.25, 0.5, and 0.75 for the first 10 instances, the next 10
instances and the remaining 10 instances, respectively. The pj values are set
as follows: pj =

∑m
i=1 rij/m + 500qj (1 ≤ j ≤ n), where qj is a real number

generated uniformly and randomly in [0, 1] [10]. It is worth noting that the
optimum solution has been proven in previous work for most instances of
this set [6,32,39,40].
• MK_GK instances: This set contains 11 instances with m ∈ {15, 25, 50, 100}

and n ∈ {100, 200, 500, 1000, 1500, 2500}, which were proposed by Glover
and Kochenberger. We make these instances available at http://www.info.
univ-angers.fr/pub/hao/mkp.html, since they are no more accessible on
the initial website http://hces.bus.olemiss.edu/tools.html [39].

3.2 Parameter settings and experimental protocol

Table 1
Settings of important parameters

Parameters Section Description Values

IterMax 2.4 maximum number of iterations for the tabu search methods {5× 103, 5× 104}

θ 2.4.1 parameter used in constructing the reduced neighborhoods {0.1×rand(0, 1)+0.15, 0.15,
0.35}

β 2.6 parameter used in the population updating rule 0.7

∆k 2.2 parameter used to determine the proper hyperplane 1

γ1 2.4.1 parameter used in the hash function 1.3

γ2 2.4.1 parameter used in the hash function 1.8

γ3 2.4.1 parameter used in the hash function 2.0

The proposed TPTEA algorithm requires several parameters, whose values
are empirically set (see Table 1). The parameter IterMax that defines the
maximum number of iterations of the tabu search methods is set according to
the size of instances as well as the type of the tabu search methods. Specifically,
for the first tabu search method IterMax is to set to 5 × 103 for all the
instances. For the second tabu search method and the instances with n ≥ 1000,
IterMax is also set to 5 × 103, while it is set to 5 × 104 for the remaining
instances. For the parameter θ that is used to control the size of neighborhoods,
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its values are respectively 0.35, 0.15+0.1×rand(0, 1) and 0.15 for the instances
with n ≤ 250, n = 500 and n ≥ 1000, respectively. For the parameters ∆k and
β, their values are respectively set to 1 and 0.7 according to the sensitivity
analysis shown in Section 4.

TPTEA was programmed in C and compiled using the g++ compiler with
the -O3 option. The computational experiments were performed on a com-
puter with an Intel E5-2670 processor (2.5 GHz and 2G RAM), running the
Linux operating system. For the DIMACS machine benchmark procedure 1 ,
the processor requires respectively 0.19, 1.17, and 4.54 seconds to solve the
graphs r300.5, r400.5, r500.5. Following recent studies like [24] and due to
the stochastic character of the proposed algorithm, our algorithm was run 30
times for each instance. The timeout limit tmax was set to 0.02 hours, 1 hour,
2 hours, and 3 hours for the instances with n ≤ 150, 200 ≤ n ≤ 250, n = 500,
and n ≥ 1000, respectively.

To evaluate the performance of the proposed algorithm, eight state-of-the-art
heuristic algorithms in the literature are used as the main reference algo-
rithms, including the popular genetic algorithm (GA) [10] (as a base refer-
ence), the filter-and-fan heuristic (F&F) [27], two self-adaptive check and re-
pair operator-based particle swarm optimization algorithms (SACRO-BPSO)
[9], the hybrid quantum particle swarm optimization algorithm (QPSO∗) [24],
the tabu search-based PSO algorithm (TEPSOq) [28], the critical event tabu
search method (TS_GK) [23], and the hybrid method using linear program-
ming and tabu search (LP+TS) [39]. These reference algorithms are among
the best performing heuristic algorithms currently available in the literature.

3.3 Computational results and comparisons

Our results on the 281 benchmark instances according to the above experi-
mental protocol are summarized in Tables 2–11. In Tables 2–10, the first two
columns show, for each instance, the name and the best known result (or the
optimal result when it is known). The results obtained by our TPTEA algo-
rithm are reported in the last four columns, including the best objective value
(fbest) over 30 independent runs, the average objective value (favg), the stan-
dard deviation (Std.) of objective values, and the average CPU time (tavg(s))
in seconds to reach its final objective value. The other columns show the best
known results (fbest) produced by the reference algorithms in the literature.
The best objective values obtained by the compared algorithms are indicated
in bold if they match or improve the best known results reported in the liter-
ature.

1 dmclique, ftp://dimacs.rutgers.edu/pub/dsj/clique
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Table 2
Computational results and comparisons on the small instances with n = 100 and
m = 5.

Problem GA F&F SACRO-
BPSO(1)

SACRO-
BPSO(2)

QPSO∗ TPTEA (this work)

Instance Optimum fbest fbest fbest fbest fbest fbest favg Std. tavg(s)

5.100.0 24381 24381 24381 24343 24343 24381 24381 24381.00 0.0 0.6
5.100.1 24274 24274 24274 24274 24274 24274 24274 24274.00 0.0 0.4
5.100.2 23551 23551 23551 23538 23538 23551 23551 23551.00 0.0 0.4
5.100.3 23534 23534 23534 23527 23527 23534 23534 23534.00 0.0 1.5
5.100.4 23991 23991 23991 23991 23966 23991 23991 23991.00 0.0 0.8
5.100.5 24613 24613 24613 24601 24601 24613 24613 24613.00 0.0 0.4
5.100.6 25591 25591 25591 25591 25591 25591 25591 25591.00 0.0 0.4
5.100.7 23410 23410 23410 23410 23410 23410 23410 23410.00 0.0 0.3
5.100.8 24216 24216 24216 24204 24216 24216 24216 24216.00 0.0 1.7
5.100.9 24411 24411 24411 24399 24411 24411 24411 24411.00 0.0 0.5
5.100.10 42757 42757 42757 42705 42705 42757 42757 42757.00 0.0 1.1
5.100.11 42545 42545 42545 42494 42471 42545 42545 42545.00 0.0 9.3
5.100.12 41968 41968 41968 41959 41959 41968 41968 41968.00 0.0 0.9
5.100.13 45090 45090 45090 45090 45090 45090 45090 45090.00 0.0 10.8
5.100.14 42218 42218 42218 42218 42218 42218 42218 42218.00 0.0 0.5
5.100.15 42927 42927 42927 42927 42927 42927 42927 42927.00 0.0 0.5
5.100.16 42009 42009 42009 42009 42009 42009 42009 42009.00 0.0 0.4
5.100.17 45020 45020 45020 45010 45020 45020 45020 45020.00 0.0 0.5
5.100.18 43441 43441 43441 43441 43381 43441 43441 43441.00 0.0 1.7
5.100.19 44554 44554 44554 44554 44529 44554 44554 44554.00 0.0 2.7
5.100.20 59822 59822 59822 59822 59822 59822 59822 59822.00 0.0 0.3
5.100.21 62081 62081 62081 62081 62081 62081 62081 62081.00 0.0 0.6
5.100.22 59802 59802 59802 59802 59754 59802 59802 59802.00 0.0 0.3
5.100.23 60479 60479 60479 60478 60478 60479 60479 60479.00 0.0 0.3
5.100.24 61091 61091 61091 61055 61079 61091 61091 61091.00 0.0 0.4
5.100.25 58959 58959 58959 58959 58937 58959 58959 58959.00 0.0 0.4
5.100.26 61538 61538 61538 61538 61538 61538 61538 61538.00 0.0 0.3
5.100.27 61520 61520 61520 61489 61520 61520 61520 61520.00 0.0 0.3
5.100.28 59453 59453 59453 59453 59453 59453 59453 59453.00 0.0 0.3
5.100.29 59965 59965 59965 59960 59960 59965 59965 59965.00 0.0 0.6

Avg. 42640.4 42640.4 42640.4 42630.7 42626.9 42640.4 42640.4 42640.4 0.0 1.3

#Best 30 30 16 16 30 30
p-value 1.0 1.0 1.0 1.80e-4 1.10e-4 1.0

Table 3
Computational results and comparisons on the small instances with n = 100 and
m = 10.

Problem GA F&F SACRO-
BPSO(1)

SACRO-
BPSO(2)

QPSO∗ TPTEA (this work)

Instance Optimum fbest fbest fbest fbest fbest fbest favg Std. tavg(s)

10.100.0 23064 23064 23064 23064 23064 23064 23064 23064.00 0.0 1.5
10.100.1 22801 22801 22801 22739 22750 22801 22801 22801.00 0.0 1.4
10.100.2 22131 22131 22131 22131 22131 22131 22131 22131.00 0.0 1.1
10.100.3 22772 22772 22772 22772 22717 22772 22772 22772.00 0.0 19.7
10.100.4 22751 22751 22751 22751 22751 22751 22751 22751.00 0.0 0.4
10.100.5 22777 22777 22739 22725 22716 22777 22777 22777.00 0.0 5.9
10.100.6 21875 21875 21875 21875 21875 21875 21875 21875.00 0.0 0.5
10.100.7 22635 22635 22635 22551 22542 22635 22635 22635.00 0.0 5.0
10.100.8 22511 22511 22511 22511 22438 22511 22511 22511.00 0.0 0.5
10.100.9 22702 22702 22702 22702 22702 22702 22702 22702.00 0.0 0.5
10.100.10 41395 41395 41395 41395 41388 41395 41395 41395.00 0.0 16.6
10.100.11 42344 42344 42344 42344 42344 42344 42344 42344.00 0.0 0.9
10.100.12 42401 42401 42401 42350 42350 42401 42401 42401.00 0.0 13.1
10.100.13 45624 45624 45624 45585 45511 45624 45624 45624.00 0.0 21.5
10.100.14 41884 41884 41884 41799 41833 41884 41884 41884.00 0.0 6.5
10.100.15 42995 42995 42995 42995 42995 42995 42995 42995.00 0.0 0.6
10.100.16 43574 43559 43574 43497 43517 43553 43574 43574.00 0.0 16.2
10.100.17 42970 42970 42970 42970 42970 42970 42970 42970.00 0.0 15.3
10.100.18 42212 42212 42212 42212 42212 42212 42212 42212.00 0.0 0.5
10.100.19 41207 41207 41207 41123 41134 41207 41207 41207.00 0.0 18.8
10.100.20 57375 57375 57375 57375 57375 57375 57375 57375.00 0.0 0.4
10.100.21 58978 58978 58978 58922 58978 58978 58978 58978.00 0.0 1.0
10.100.22 58391 58391 58391 58391 58391 58391 58391 58391.00 0.0 0.5
10.100.23 61966 61966 61966 61966 61966 61966 61966 61966.00 0.0 1.7
10.100.24 60803 60803 60803 60803 60803 60803 60803 60803.00 0.0 0.5
10.100.25 61437 61437 61437 61368 61368 61437 61437 61437.00 0.0 5.7
10.100.26 56377 56377 56377 56377 56377 56377 56377 56377.00 0.0 7.9
10.100.27 59391 59391 59391 59332 59391 59391 59391 59391.00 0.0 0.4
10.100.28 60205 60205 60205 60205 60205 60205 60205 60205.00 0.0 0.6
10.100.29 60633 60633 60633 60629 60629 60633 60633 60633.00 0.0 0.5

Avg. 41606.0 41605.5 41604.8 41582.0 41580.8 41605.3 41606.0 41606.0 0.0 5.5

#Best 29 29 18 17 29 30
p-value 1.0 0.32 0.32 5.30e-4 3.10e-4 0.32
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Table 4
Computational results and comparisons on the small instances with n = 100 and
m = 30.

Problem GA F&F QPSO∗ TPTEA (this work)
Instance Optimum fbest fbest fbest fbest favg Std. tavg(s)

30.100.0 21946 21946 21946 21946 21946 21946.00 0.0 7.5
30.100.1 21716 21716 21716 21716 21716 21716.00 0.0 17.7
30.100.2 20754 20754 20754 20754 20754 20754.00 0.0 10.4
30.100.3 21464 21464 21464 21464 21464 21464.00 0.0 12.9
30.100.4 21844 21814 21844 21844 21844 21844.00 0.0 15.6
30.100.5 22176 22176 22176 22176 22176 22176.00 0.0 0.7
30.100.6 21799 21799 21799 21772 21799 21799.00 0.0 19.5
30.100.7 21397 21397 21397 21397 21397 21397.00 0.0 15.8
30.100.8 22525 22493 22493 22525 22525 22525.00 0.0 15.0
30.100.9 20983 20983 20983 20983 20983 20983.00 0.0 0.8
30.100.10 40767 40767 40767 40767 40767 40767.00 0.0 22.5
30.100.11 41308 41304 41304 41308 41308 41308.00 0.0 19.2
30.100.12 41630 41560 41630 41630 41630 41630.00 0.0 28.5
30.100.13 41041 41041 41041 41041 41041 41041.00 0.0 22.1
30.100.14 40889 40872 40889 40872 40889 40889.00 0.0 21.6
30.100.15 41058 41058 41058 41058 41058 41058.00 0.0 0.9
30.100.16 41062 41062 41062 41062 41062 41062.00 0.0 11.3
30.100.17 42719 42719 42719 42719 42719 42719.00 0.0 19.4
30.100.18 42230 42230 42230 42230 42230 42230.00 0.0 1.2
30.100.19 41700 41700 41700 41700 41700 41700.00 0.0 14.3
30.100.20 57494 57494 57494 57494 57494 57494.00 0.0 0.6
30.100.21 60027 60027 60027 60027 60027 60027.00 0.0 1.4
30.100.22 58052 58025 58052 58052 58052 58052.00 0.0 18.2
30.100.23 60776 60776 60776 60776 60776 60776.00 0.0 4.5
30.100.24 58884 58884 58884 58884 58884 58884.00 0.0 4.9
30.100.25 60011 60011 60011 60011 60011 60011.00 0.0 2.3
30.100.26 58132 58132 58104 58132 58132 58132.00 0.0 0.7
30.100.27 59064 59064 59064 59064 59064 59064.00 0.0 0.7
30.100.28 58975 58975 58975 58975 58975 58975.00 0.0 19.6
30.100.29 60603 60603 60603 60593 60603 60603.00 0.0 2.3

Avg. 40767.5 40761.5 40765.4 40765.7 40767.5 40767.5 0.0 11.1

#Best 25 27 27 30
p-value 1.0 1.43e-2 8.0e-2 8.0e-2

Table 5
Computational results and comparisons on the instances with n = 250 and m = 5.

Problem GA F&F QPSO∗ TPTEA (this work)
Instance Optimum fbest fbest fbest fbest favg Std. tavg(s)

5.250.0 59312 59312 59312 59312 59312 59312.00 0.00 67
5.250.1 61472 61472 61468 61472 61472 61472.00 0.00 252
5.250.2 62130 62130 62130 62130 62130 62130.00 0.00 83
5.250.3 59463 59446 59436 59427 59463 59462.33 2.49 1017
5.250.4 58951 58951 58951 58951 58951 58951.00 0.00 99
5.250.5 60077 60056 60062 60077 60077 60069.50 7.50 742
5.250.6 60414 60414 60414 60414 60414 60414.00 0.00 97
5.250.7 61472 61472 61454 61472 61472 61472.00 0.00 153
5.250.8 61885 61885 61885 61885 61885 61885.00 0.00 85
5.250.9 58959 58959 58959 58959 58959 58959.00 0.00 79
5.250.10 109109 109109 109109 109066 109109 109109.00 0.00 289
5.250.11 109841 109841 109841 109841 109841 109841.00 0.00 118
5.250.12 108508 108489 108508 108508 108508 108508.00 0.00 107
5.250.13 109383 109383 109383 109356 109383 109383.00 0.00 145
5.250.14 110720 110720 110720 110720 110720 110720.00 0.00 611
5.250.15 110256 110256 110256 110256 110256 110256.00 0.00 258
5.250.16 109040 109016 109040 109040 109040 109040.00 0.00 115
5.250.17 109042 109037 109016 109042 109042 109042.00 0.00 103
5.250.18 109971 109957 109957 109971 109971 109971.00 0.00 212
5.250.19 107058 107038 107058 107058 107058 107058.00 0.00 211
5.250.20 149665 149659 149659 149665 149665 149665.00 0.00 250
5.250.21 155944 155940 155944 155944 155944 155943.87 0.72 61
5.250.22 149334 149316 149334 149334 149334 149334.00 0.00 119
5.250.23 152130 152130 152130 152130 152130 152130.00 0.00 56
5.250.24 150353 150353 150353 150353 150353 150353.00 0.00 58
5.250.25 150045 150045 150045 150045 150045 150045.00 0.00 42
5.250.26 148607 148607 148607 148607 148607 148607.00 0.00 36
5.250.27 149782 149772 149782 149772 149782 149782.00 0.00 52
5.250.28 155075 155075 155075 155057 155075 155075.00 0.00 42
5.250.29 154668 154662 154668 154668 154668 154668.00 0.00 118

Avg. 107088.9 107083.4 107085.2 107084.4 107088.9 107088.6 0.4 189.2

#Best 18 23 25 30
p-value 1.0 5.32e-4 8.15e-3 2.53e-2
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Table 6
Computational results and comparisons on the instances with n = 250 and m = 10.

Problem GA F&F TEPSOq QPSO∗ TPTEA (this work)
Instance Optimum fbest fbest fbest fbest fbest favg Std. tavg(s)

10.250.0 59187 59187 59164 59187 59182 59187 59187.00 0.00 195
10.250.1 58781 58662 58693 58781 58781 58781 58743.13 35.42 715
10.250.2 58097 58094 58094 58097 58097 58097 58097.00 0.00 190
10.250.3 61000 61000 60972 60662 61000 61000 60998.57 4.55 839
10.250.4 58092 58092 58092 58092 58092 58092 58090.57 5.36 822
10.250.5 58824 58803 58824 58549 58824 58824 58822.60 5.24 462
10.250.6 58704 58607 58632 58350 58606 58704 58704.00 0.00 385
10.250.7 58936 58917 58917 57902 58902 58936 58932.10 2.47 733
10.250.8 59387 59384 59381 59387 59372 59387 59387.00 0.00 102
10.250.9 59208 59193 59208 59208 59208 59208 59208.00 0.00 327
10.250.10 110913 110863 110889 110913 110857 110913 110913.00 0.00 371
10.250.11 108717 108659 108702 108713 108687 108717 108717.00 0.00 529
10.250.12 108932 108932 108922 108491 108891 108932 108932.00 0.00 77
10.250.13 110086 110037 110059 110086 110086 110086 110086.00 0.00 1071
10.250.14 108485 108423 108485 108225 108485 108485 108485.00 0.00 129
10.250.15 110845 110841 110841 110257 110845 110845 110843.67 1.89 1064
10.250.16 106077 106075 106075 106077 106047 106077 106075.73 0.96 239
10.250.17 106686 106686 106685 106455 106686 106686 106686.00 0.00 563
10.250.18 109829 109825 109822 109225 109788 109829 109827.40 1.96 845
10.250.19 106723 106723 106723 106723 106723 106723 106723.00 0.00 81
10.250.20 151809 151790 151790 151194 151779 151809 151809.00 0.00 177
10.250.21 148772 148772 148772 148772 148772 148772 148772.00 0.00 25
10.250.22 151909 151900 151909 151858 151909 151909 151909.00 0.00 86
10.250.23 151324 151275 151281 151324 151281 151324 151324.00 0.00 629
10.250.24 151966 151948 151966 151372 151966 151966 151961.80 7.61 414
10.250.25 152109 152109 152109 152007 152109 152109 152109.00 0.00 51
10.250.26 153131 153131 153131 153046 153131 153131 153131.00 0.00 36
10.250.27 153578 153520 153533 153578 153529 153578 153578.00 0.00 96
10.250.28 149160 149155 149160 149160 149160 149160 149160.00 0.00 59
10.250.29 149704 149704 149688 149637 149646 149704 149704.00 0.00 56

Avg. 106365.7 106343.6 106350.6 106177.6 106348.0 106365.7 106363.9 2.2 379.0

#Best 10 11 14 17 30
p-value 1.0 7.74e-6 1.31e-5 6.33e-5 3.12e-4

Table 7
Computational results and comparisons on the instances with n = 250 and m = 30.

Problem GA F&F QPSO∗ TPTEA (this work)
Instance Best

Known
fbest fbest fbest fbest favg Std. tavg(s)

30.250.0 56842 56693 56796 56796 56824 56824.00 0.00 131
30.250.1 58520 58318 58333 58302 58520 58520.00 0.00 216
30.250.2 56614 56553 56553 56614 56614 56614.00 0.00 216
30.250.3 56930 56863 56930 56930 56930 56930.00 0.00 91
30.250.4 56629 56629 56629 56629 56629 56629.00 0.00 74
30.250.5 57205 57119 57149 57146 57205 57205.00 0.00 374
30.250.6 56357 56292 56263 56303 56357 56333.40 26.79 1155
30.250.7 56457 56403 56457 56392 56457 56457.00 0.00 103
30.250.8 57447 57442 57373 57447 57474 57458.90 15.21 971
30.250.9 56447 56447 56447 56447 56447 56447.00 0.00 99
30.250.10 107770 107689 107735 107703 107770 107763.10 8.60 1034
30.250.11 108392 108338 108338 108338 108392 108387.23 6.26 438
30.250.12 106442 106385 106415 106442 106442 106439.60 3.67 587
30.250.13 106876 106796 106832 106851 106876 106876.00 0.00 205
30.250.14 107414 107396 107414 107382 107414 107414.00 0.00 230
30.250.15 107271 107246 107271 107271 107271 107271.00 0.00 294
30.250.16 106372 106308 106277 106248 106372 106371.77 1.26 682
30.250.17 104032 103993 104003 103988 104032 104019.00 8.03 497
30.250.18 106856 106835 106835 106856 106856 106852.50 7.83 322
30.250.19 105780 105751 105742 105751 105780 105779.17 4.49 441
30.250.20 150163 150083 150138 150096 150163 150163.00 0.00 457
30.250.21 149958 149907 149958 149958 149958 149958.00 0.00 101
30.250.22 153007 152993 153007 153007 153007 153007.00 0.00 131
30.250.23 153234 153169 153182 153234 153234 153234.00 0.00 84
30.250.24 150287 150287 150287 150287 150287 150287.00 0.00 51
30.250.25 148574 148544 148549 148544 148574 148574.00 0.00 77
30.250.26 147477 147471 147455 147471 147477 147477.00 0.00 79
30.250.27 152912 152841 152841 152835 152912 152912.00 0.00 71
30.250.28 149570 149568 149570 149570 149570 149570.00 0.00 61
30.250.29 149668 149572 149587 149668 149668 149668.00 0.00 742

Avg. 104716.8 104664.4 104678.9 104683.5 104717.1 104714.7 2.7 333.8

#Best 3 9 12 29
p-value 5.60e-1 1.03e-7 7.74e-6 3.73e-5
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Table 8
Computational results and comparisons on the large instances with n = 500 and
m = 5. The entries marked by "*" imply that the corresponding results are not
available.

Problem GA F&F SACRO-
BPSO(2)

LP+TS QPSO∗ TPTEA (this work)

Instance Optimum fbest fbest fbest fbest fbest fbest favg Std. tavg(s)

5.500.0 120148 120130 120134 120009 120134 120130 120148 120126.90 9.53 3753
5.500.1 117879 117837 117864 117699 117864 117844 117879 117850.83 11.96 3876
5.500.2 121131 121109 121131 120923 121112 121131 121131 121112.23 6.74 3148
5.500.3 120804 120798 120794 120563 120804 120752 120804 120786.40 10.32 2918
5.500.4 122319 122319 122319 122054 122319 122319 122319 122319.00 0.00 1936
5.500.5 122024 122007 122024 121901 122024 122024 122024 122008.83 10.14 4421
5.500.6 119127 119113 119109 118846 119127 119094 119127 119120.50 4.79 3419
5.500.7 120568 120568 120568 120376 120568 120536 120568 120548.10 10.40 2739
5.500.8 121586 121575 121575 121185 121575 121586 121575 121559.17 9.00 2719
5.500.9 120717 120699 120707 120453 120707 120685 120717 120695.00 8.52 3353
5.500.10 218428 218422 218428 218269 218428 218428 218428 218411.27 11.61 4100
5.500.11 221202 221191 221202 221007 221191 221202 221191 221184.90 4.24 3560
5.500.12 217542 217534 217534 217398 217534 217528 217542 217525.90 6.62 3836
5.500.13 223560 223558 223558 223450 223558 223560 223560 223558.87 0.99 2139
5.500.14 218966 218962 218966 * 218966 218965 218966 218966.00 0.00 171
5.500.15 220530 220514 220530 220428 220530 220527 220530 220528.07 2.10 3183
5.500.16 219989 219987 219989 219734 219989 219943 219989 219985.90 4.58 2799
5.500.17 218215 218194 218215 218096 218194 218215 218215 218200.37 4.78 3700
5.500.18 216976 216976 216976 216851 216976 216976 216976 216976.00 0.00 608
5.500.19 219719 219693 219719 219549 219704 219719 219719 219715.60 3.61 2633
5.500.20 295828 295828 295828 295309 295828 295828 295828 295828.00 0.00 552
5.500.21 308086 308077 308079 307808 308083 308086 308086 308081.87 2.23 3225
5.500.22 299796 299796 299796 299393 299796 299788 299796 299796.00 0.00 638
5.500.23 306480 306476 306476 305992 306478 306480 306480 306478.47 1.69 2626
5.500.24 300342 300342 300342 299947 300342 300342 300342 300340.67 2.89 3454
5.500.25 302571 302560 302571 302156 302561 302560 302571 302565.40 4.29 2157
5.500.26 301339 301322 301329 300854 301329 301322 301339 301330.67 3.73 590
5.500.27 306454 306430 306430 306069 306454 306422 306454 306454.00 0.00 1707
5.500.28 302828 302814 302814 302447 302822 302828 302828 302820.70 8.05 2852
5.500.29 299910 299904 299904 299558 299904 299910 299910 299901.80 3.66 3492

Avg. 214168.8 214157.8 214163.7 * 214163.4 214157.7 214168.1 214159.2 4.9 2676.9

#Best 6 16 0 14 15 28
p-value 1.57e-1 2.73e-6 1.34e-3 * 1.83e-4 2.70e-3

In Tables 2–10, the row Avg. shows the average value of each quality indicator.
The highest Avg. value of fbest among the compared algorithms is also high-
lighted in bold. The row #Best indicates the number of instances for which
the associated algorithm obtains the best results in terms of fbest among the
compared algorithms. Moreover, to check whether there exists a significant
difference between the results of our TPTEA algorithm and those obtained by
the reference algorithms in terms of fbest, we reported the p-values from the
non-parametric Friedman test in the last row of tables where a p-value smaller
than 0.05 implies a significant difference between the compared results.

It should be noted that the present comparative study mainly focuses on the
solution quality rather than the computational time, since it is difficult to
make a fair comparison of computing times due to the fact that the compared
algorithms were run on different computing platforms and used different pro-
gramming languages as well as compilers. Thus, the computational times are
included in the tables just for indicative purposes.

Our results on the 90 small instances with n = 100 are reported in Tables
2–4 together with the results of five state-of-the-art MKP algorithms, includ-
ing the genetic algorithm (GA) [10], the filter-and-fan heuristic (F&F) [27],
two particle swarm optimization algorithms (SACRO-BPSO(1) and SACRO-
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Table 9
Computational results and comparisons on the large instances with n = 500 and
m = 10.

Problem GA F&F TEPSOq LP+TS QPSO∗ TPTEA (this work)
Instance Optimum fbest fbest fbest fbest fbest fbest favg Std. tavg(s)

10.500.0 117821 117726 117734 117811 117779 117744 117801 117736.17 20.87 3665
10.500.1 119249 119139 119181 119232 119190 119177 119200 119137.47 26.48 3355
10.500.2 119215 119159 119194 118997 119194 119215 119159 119108.27 20.13 4470
10.500.3 118829 118802 118784 117999 118813 118775 118829 118793.93 16.73 3150
10.500.4 116530 116434 116471 115828 116462 116502 116456 116405.17 19.27 3582
10.500.5 119504 119454 119442 119410 119504 119402 119483 119441.80 20.50 3647
10.500.6 119827 119749 119764 119063 119782 119827 119775 119739.70 16.40 3790
10.500.7 118344 118288 118309 118329 118307 118309 118323 118258.27 23.63 4229
10.500.8 117815 117779 117781 117025 117781 117721 117801 117705.97 28.53 3169
10.500.9 119251 119125 119183 117815 119186 119251 119196 119161.90 18.67 3339
10.500.10 217377 217318 217318 217377 217343 217308 217351 217313.67 15.31 3984
10.500.11 219077 219022 219036 219068 219036 219077 219059 219022.70 15.56 3598
10.500.12 217847 217772 217797 217847 217797 217797 217847 217786.73 16.25 4010
10.500.13 216868 216802 216843 216257 216836 216868 216868 216836.33 18.66 3404
10.500.14 213873 213809 213811 213796 213859 213795 213814 213780.27 13.61 4095
10.500.15 215086 215013 215021 215086 215034 215086 215086 215049.57 14.45 3622
10.500.16 217940 217896 217880 217825 217903 217868 217926 217884.80 17.07 4281
10.500.17 219990 219949 219969 219825 219965 219949 219984 219947.37 18.07 3908
10.500.18 214382 214332 214346 214368 214341 214382 214363 214327.43 15.24 3999
10.500.19 220899 220833 220849 220168 220865 220827 220887 220864.43 16.89 3212
10.500.20 304387 304344 304344 304387 304351 304344 304387 304364.47 10.35 3025
10.500.21 302379 302332 302345 302196 302333 302341 302379 302364.47 10.05 2884
10.500.22 302417 302354 302408 302416 302408 302417 302416 302398.13 10.22 3498
10.500.23 300784 300743 300743 300645 300757 300784 300784 300758.80 6.73 967
10.500.24 304374 304344 304357 304001 304344 304340 304374 304361.13 6.21 3509
10.500.25 301836 301730 301742 299774 301754 301836 301796 301740.43 14.11 3809
10.500.26 304952 304949 304911 304841 304949 304952 304952 304952.00 0.00 3133
10.500.27 296478 296437 296447 295875 296441 296437 296478 296455.53 6.61 3139
10.500.28 301359 301313 301331 300964 301331 301293 301359 301349.27 11.82 3187
10.500.29 307089 307014 307078 306010 307078 307002 307089 307088.23 3.20 2352

Avg. 212859.3 212798.7 212814.0 212474.5 212824.1 212820.9 212840.7 212804.5 15.1 3467.0

#Best 0 0 1 1 11 12
p-value 2.21e-5 7.24e-8 2.07e-6 6.04e-3 2.61e-4 4.99e-2

Table 10
Computational results and comparisons on the large instances with n = 500 and
m = 30.

Problem GA F&F TEPSOq LP+TS QPSO∗ TPTEA (this work)
Instance Best

Known
fbest fbest fbest fbest fbest fbest favg Std. tavg(s)

30.500.0 116056 115868 115903 116055 115950 115991 115968 115897.20 23.80 3969
30.500.1 114810 114667 114718 114810 114810 114684 114769 114733.00 20.01 3549
30.500.2 116741 116661 116583 115998 116683 116712 116708 116619.10 29.95 4413
30.500.3 115354 115237 115198 115268 115301 115354 115313 115251.60 25.19 3499
30.500.4 116525 116353 116474 116525 116435 116435 116455 116364.80 32.83 3436
30.500.5 115741 115604 115734 115626 115694 115594 115734 115674.00 22.98 3848
30.500.6 114181 113952 113996 114122 114003 113987 114085 114037.10 38.04 4785
30.500.7 114348 114199 114266 114305 114213 114184 114278 114164.40 33.17 4110
30.500.8 115419 115247 115419 115287 115288 115419 115288 115221.43 26.06 4043
30.500.9 117116 116947 117011 117101 117055 116909 117112 116984.37 35.94 3779
30.500.10 218104 217995 218068 218073 218068 218068 218104 218069.60 9.28 3163
30.500.11 214648 214534 214626 214645 214562 214626 214645 214544.93 35.69 3796
30.500.12 215978 215854 215836 215918 215903 215839 215946 215898.80 17.46 4008
30.500.13 217910 217836 217862 217836 217910 217816 217910 217831.33 30.80 3259
30.500.14 215689 215596 215592 213625 215596 215544 215689 215602.07 24.60 3945
30.500.15 215919 215762 215784 215086 215842 215753 215840 215766.23 26.09 3558
30.500.16 215907 215772 215824 214999 215838 215789 215907 215857.23 19.46 3177
30.500.17 216542 216336 216418 216425 216419 216387 216542 216459.73 25.80 3643
30.500.18 217340 217290 217225 216368 217305 217217 217340 217304.30 11.59 3461
30.500.19 214739 214624 214663 214168 214671 214739 214739 214671.30 30.71 3418
30.500.20 301675 301627 301643 301601 301643 301643 301675 301641.63 11.43 2849
30.500.21 300055 299985 299982 300002 300055 299965 300055 300035.73 19.46 3863
30.500.22 305087 304995 305062 304416 305028 305038 305087 305080.47 7.80 3785
30.500.23 302032 301935 301982 301645 302004 301982 302015 301983.60 19.13 3200
30.500.24 304462 304404 304413 304001 304411 304346 304462 304427.53 11.95 3102
30.500.25 297012 296894 296918 296774 296961 296892 296999 296964.97 17.11 3743
30.500.26 303364 303233 303320 303329 303328 303287 303364 303335.60 13.11 2828
30.500.27 307007 306944 306908 306940 306999 306915 306999 306972.50 15.25 3922
30.500.28 303199 303057 303109 303158 303080 303169 303199 303168.53 13.57 3283
30.500.29 300572 300460 300471 300129 300532 300449 300596 300530.23 16.91 3937

Avg. 211451.1 211328.9 211366.9 211141.2 211386.2 211357.8 211427.4 211369.8 22.2 3645.7

#Best 0 1 2 3 3 14
p-value 2.75e-4 4.32e-8 3.44e-6 4.18e-4 1.60e-5 9.64e-5
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Table 11
Computational results and comparisons on the 11 MK_GK instances. The current
best known results are indicated in bold, and the improved results are underlined.

Problem TS_GK F&F LP+TS QPSO∗ TPTEA (this work)
Instance n m fbest fbest fbest fbest fbest favg Std. tavg(s)

mk_gk01 100 15 3766 3766 3766 3766 3766 3766.00 0.00 12.39
mk_gk02 100 25 3958 3958 3958 3958 3958 3958.00 0.00 7.14
mk_gk03 150 25 5650 5650 5656 5656 5656 5652.43 1.94 98.84
mk_gk04 150 50 5764 5764 5767 5767 5767 5766.27 0.68 109.46
mk_gk05 200 25 7557 7557 7560 7560 7561 7560.00 0.82 820.41
mk_gk06 200 50 7672 7671 7677 7677 7680 7674.17 1.13 875.12
mk_gk07 500 25 19215 19217 19220 19220 19215 19213.73 0.68 2596.11
mk_gk08 500 50 18801 18802 18806 18806 18797 18794.07 1.29 2967.29
mk_gk09 1500 25 58085 58085 58087 58087 58082 58079.03 1.14 5294.44
mk_gk10 1500 50 57292 57292 57295 57292 57277 57272.97 1.89 5509.31
mk_gk11 2500 100 95231 95234 95237 95234 95181 95175.47 4.33 6978.26

BPSO(2)) [9], and the hybrid quantum particle swarm optimization algorithm
(QPSO*) [24]. Note that the absence of a reference in these tables means that
its results are not available.

The results show that our algorithm reaches, in 0.3 to 29 seconds, the optimum
solutions with a success rate of 100% for all the instances without exception,
showing a good robustness of the algorithm. In terms of #Best, our algorithm
outperforms the reference algorithms for the instances with m = 10 and 30. In
addition, the p-values indicate that there does not exist a significant difference
between our algorithm and GA, F&F, and QPSO* in terms of fbest, but our
algorithm significantly outperforms SACRO-BPSO(1) and SACRO-BPSO(2).

The results on the 90 moderate size instances with n = 250 and m = 5, 10, 30
in Tables 5 – 7 show that the proposed algorithm performs very well. Specif-
ically, for the 30 instances with m = 5 (Tables 5), our TPTEA algorithm
consistently reaches the optimum solutions for all the instances with a success
rate of 100% while the GA, F&F, QPSO* algorithms attain the optimum solu-
tions only for 18, 23, and 25 instances, respectively. For the 30 instances with
m = 10 (Table 6), our algorithm reaches the optimum solutions for all the
instances with a small standard deviation, while the four reference algorithms
report the optimum solutions only for 10, 11, 14, and 17 instances, respec-
tively. For the 30 instances with many constraints (i.e., m = 30, Table 7), our
algorithm matches the best known results for 28 instances, and misses the best
known results only for one instance. Interestingly, our algorithm discovers an
improved best known result for one hard instance (30.250.08). The reference
algorithms GA, F&F, QPSO* match the best known results only for 3, 9, 12
instances. Finally, the small p-values (<0.05) in Tables 5 – 7 indicate that
there exists a significant difference between our algorithm and the reference
algorithms in terms of fbest for these moderate size instances with n = 250.

The results on the 90 large instances with n = 500, m = 5, 10, 30 are summa-
rized in Tables 8 – 10. Table 8 shows that our algorithm is also very efficient
for the large instances with a small number of constraints. Specifically, the
TPTEA algorithm matches the optimum solutions for 28 out of 30 instances
with a small standard deviation of the objective values, while the five refer-
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ence algorithms obtain the optimum solutions only for 6, 16, 0, 14 and 15
instances, respectively. Moreover, the small p-values show that the differences
between our results and those obtained by the reference algorithms are signifi-
cant in terms of fbest. Tables 9 – 10 indicate that like the reference algorithms,
the performance of our algorithm decreases as the number of constraints m
increases. For the instances with m = 10 and 30, our algorithm obtains the
best known objective values only for 12 and 14 instances, respectively. Still
this performance is remarkable compared to the five reference algorithms. In-
deed, for the 30 instances with m = 10, the five reference algorithm yield the
optimum solutions only for 0, 0, 1, 1, and 11 instances, respectively. For the
30 instances with m = 30, the reference algorithms report the best known
results only for 0, 1, 2, 3, and 3 instances, respectively. The small p-values
also confirm the dominance of our algorithm in terms of fbest. Finally, for the
instance 30.500.29, our algorithm improves the best known objective value,
thus yielding a new lower bound for this instance.

Our results on 11 instances proposed by Glover and Kochenberger are reported
in Table 11 together with the results of four reference algorithms. We observe
that our algorithm matches the best known results for 4 instances and ad-
ditionally improves the best known results for 2 other instances (new lower
bounds). However, our algorithm fails to reach the best known result for 5 very
large instances, indicating that there is room for improvement. Table 11 also
shows that TPTEA is very time-consuming especially for the large instances
in comparison with reference algorithms like QPSO* according to the results
reported in [24]. Nevertheless, compared to the tabu search-based methods,
our computational times are acceptable. For example, for the LP+TS algo-
rithm [39], up to 3 days were needed to obtain the reported results for the
instances with n ≥ 1000.

In summary, these results mean that our TPTEA algorithm is very competitive
compared to the state-of-the-art MKP algorithms in the literature. For all test
sets of medium to large size problems except one, which represent 180 out of
191 problems, our method obtains on average more than twice the number
of best known results as the best of the other methods tested, and on the
remaining 11 problems we obtain two new best solutions.

4 Analysis and discussions

In this section, we analyze two key algorithmic components of the algorithm
to understand their impacts on the performance of the algorithm, including
the reduced swap neighborhood and the parameter ∆k used to control the
number of the hyperplanes to be searched.
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4.1 Importance of the reduced swap neighborhood
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Fig. 2. Influence of the size of the reduced neighborhood for the tabu search method

The solution-based tabu search method (Section 3) that works on a fixed hy-
perplane Ω[k] is an important ingredient of the proposed TPTEA algorithm,
and its computational efficiency depends largely on the size of the neighbor-
hood used. We show an analysis of the neighborhood size on the performance
of the algorithm via an additional experiment. We conducted the experiment
based on two selected instances, i.e., mk_gk11 and 30.500.29. According to
the definitions of the neighborhoods N2 and N3 (see Section 2.4.1), their sizes
are closely related to the parameter θ, and a larger value of θ leads generally
to a larger neighborhood. Hence, in this experiment, for each selected instance
and each value of θ in the range of {0.05, 0.10, 0.15, 0.20, 0.25, 0.30.0.35}, the
tabu search procedure was independently run 10 times on the hyperplane Ω[k],
where the maximum number of iterations IterMax is set to 5 × 103 and k
is set according to the best known solution. The average results over 10 runs
are recorded both in terms of run times and the gaps between f(s∗) and the
minimum objective value fmin among the initial solutions for the tested θ val-
ues. The evolutions of the run time and (f(s∗) − fmin) as a function of the
iterations are plotted in Fig. 2.

From Fig. 2 ((a) and (b)), one observes that the tabu search method with
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a small value of θ performs generally better than those with a large value
of θ. Nevertheless, a value that is too small can lead to a bad behavior of
the algorithm. For example, for the instance 30.500.29, the algorithm with
θ = 0.05 performs the worst, as shown in Fig. 2(c). In the general case, the
tabu search algorithm with θ = 0.15 performs well for the large instances with
n ≥ 500. On the other hand, Fig.2 ((b) and (d)) show that for each tested
value of θ the run time increases linearly with the increase of the number of
iterations, and that the algorithm is more time-consuming using a large value
of θ than a small θ value, which is consistent with the principle that a larger
θ value corresponds to a larger neighborhood.

In summary, for the solution-based tabu search method working on the hy-
perplane Ω[k], a small value of θ that corresponds to a small and high-quality
swap neighborhood is very desirable for reaching a high performance of the
algorithm. Nevertheless, it is important to avoid making θ too small since this
will restrict the search region of the algorithm too much, causing the search
to miss high-quality solutions. In general, a medium value of θ will lead to a
good tradeoff between the computing speed and solution quality.

4.2 Sensitivity analysis of the parameter ∆k

Table 12
Influence of the parameter ∆k on the performance of algorithm. The best results are
indicated in bold in terms of the best and average objective values.

∆k = 0 ∆k = 1 ∆k = 2 ∆k = 3

Instance fbest favg fbest favg fbest favg fbest favg

5.500.0 120143 120110.90 120148 120126.20 120129 120120.50 120141 120119.40

5.500.1 117879 117847.10 117864 117851.20 117864 117853.50 117864 117845.20

5.500.2 121115 121105.80 121131 121115.70 121131 121113.70 121123 121111.30

5.500.3 120804 120790.20 120804 120788.50 120804 120785.30 120804 120782.10

5.500.4 122319 122299.40 122319 122319.00 122319 122319.00 122319 122317.50

10.500.0 117777 117739.00 117781 117742.90 117779 117740.00 117778 117739.80

10.500.1 119161 119111.40 119194 119160.60 119161 119140.00 119163 119142.40

10.500.2 119168 119133.40 119158 119124.50 119157 119117.70 119158 119112.90

10.500.3 118813 118801.00 118814 118811.00 118813 118806.80 118813 118800.00

10.500.4 116470 116407.60 116451 116402.10 116427 116395.70 116471 116406.10

30.500.0 115906 115831.80 115952 115920.00 115964 115918.70 115945 115892.30

30.500.1 114769 114750.40 114780 114734.10 114769 114728.80 114769 114710.00

30.500.2 116716 116618.50 116716 116634.20 116666 116613.50 116634 116602.10

30.500.3 115277 115226.50 115301 115259.10 115272 115254.00 115252 115233.90

30.500.4 116448 116362.80 116453 116410.60 116480 116397.30 116432 116375.90

Avg. 118184.33 118142.39 118191.07118159.98 118182.33 118153.63 118177.73 118146.06

In the TPTEA algorithm, a self-adapting mechanism is used to determine the
most promising hyperplane to be searched. Specifically, at each iteration of
the algorithm, 2∆k+1 offspring solutions that lie at different hyperplanes Ω[k]

(k ∈ [k∗−∆k, k
∗+∆k]) are generated by the hyperplane-constrained crossover
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operator, where k∗ is the number of variables equal to 1 in the best solution
s∗ found so far. Clearly, a larger value of ∆k means that more hyperplanes
will be searched at each iteration of the algorithm. To assess the impact of
the parameter ∆k and to find an appropriate value for it, we carried out
another experiment based on 15 selected instances. In this experiment, for each
instance and each value of ∆k in {0, 1, 2, 3}, the algorithm was independently
run 10 times according to the experimental protocol in section 3.2. The results
are summarized in Table 12, where row 1 and column 1 indicate the setting
of ∆k and the instance names, and fbest and favg show respectively the best
and average objective values over 10 runs. The last row of the table gives the
average results over all tested instances.

Table 12 shows that the performance of the algorithm is sensitive to the value
of ∆ and ∆k = 1 leads to the best performance among all the tested set-
tings. Specifically, the last row of the table shows that the setting of ∆k = 1
leads to the best results both in terms of the best and average objective val-
ues. Moreover, a larger value like ∆k = 3 will deteriorate the performance
of the algorithm, since the algorithm with a larger ∆k value requires more
computational effort at each iteration.

5 Conclusions and future work

In this paper, we presented an effective hybrid evolutionary algorithm for solv-
ing the NP-hard 0–1 multidimensional knapsack problem. The proposed algo-
rithm integrates a number of original features, including two solution-based
tabu search methods exploring different search spaces, a reduced swap neigh-
borhood, a hyperplane-constrained crossover operator, and a self-adapting
mechanism to select the proper hyperplane to be examined by the optimization
procedure.

The computational results on the 281 instances commonly used in literature
showed that the proposed algorithm performs competitively in comparison
with stat-of-the-art algorithms in the literature. Specifically, the algorithm
reproduces the best known results for the vast majority of instances tested,
and establishes new best known solutions (improved lower bounds) for 4 hard
instances.

The impacts of two essential ingredients of the algorithm are analyzed, in-
cluding the size of neighborhood of tabu search method and the self-adapting
mechanism to determine the hyperplane. It was shown that both components
play a key role for the performance of the algorithm.

There are several possible directions to further improve the present work.
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First, compared to the state-of-the-art algorithms in the literature, the pro-
posed algorithm is time-consuming for solving some large instances. To speed
up the search process of its underlying tabu search procedures, the neighbor-
hoods can be further refined by self-adaptively controlling the fitness values
of candidate solutions, similarly to the construction of neighborhood N3. Sec-
ond, to better explore different hyperplanes, the present tabu search methods
can be combined with other local search methods. Third, more advanced sur-
rogate constraint ratios can be used to modify solutions where the crossover
fails to yield offspring with k variables equal to 1, and our uniform crossover
operator for combining solutions can be replaced with a scatter design that
allows probabilistic choices instead of random choices for assigning values to
variables. Fourth, employing an approach that extends the framework under-
lying scatter search, the path-relinking method can be employed to generate
new solutions from existing solutions. Finally, given that the proposed solving
framework is quite general, it would be reasonable to apply the approach to
other related binary optimization problems (e.g., allocation problems, general
assignment problem, balanced loading problems, maximum diversity prob-
lems).
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