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Abstract

An equitable k-coloring of an undirected graph G = (V,E) is a partition of its
vertices into k disjoint independent sets, such that the cardinalities of any two in-
dependent sets differ by at most one. As a variant of the graph coloring problem
(GCP), the equitable coloring problem (ECP) concerns finding a minimum k for
which an equitable k-coloring exists. In this work, we propose a backtracking based
iterated tabu search (BITS) algorithm for solving the ECP approximately. BITS uses
a backtracking scheme to define different k-ECP instances, an iterated tabu search
approach to solve each particular k-ECP instance for a fixed k, and a binary search
approach to find a suitable initial value of k. We assess the algorithm’s performance
on a set of commonly used benchmarks. Computational results show that BITS is
very competitive in terms of solution quality and computing efficiency compared to
the state-of-the-art algorithm in the literature. Specifically, BITS obtains new upper
bounds for 21 benchmark instances, while matching the previous best upper bound
for the remaining instances. Finally, to better understand the proposed algorithm,
we study how its key ingredients impact its performance.
Keywords : Equitable coloring; tabu search; heuristics; graph coloring; combinatorial
optimization.

1 Introduction

Given an undirected graph G = (V,E) with vertex set V = {v1, v2, . . . , vn}
and edge set E ⊂ V × V , a k-coloring of G is a partition of its vertices into
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k disjoint independent sets {V1, V2, . . . , Vk} (also called color classes), i.e., any
two vertices of any Vi (i = 1, , . . . , k) are not linked by an edge. For a given
k, G is k-colorable if a k-coloring exists for G. The problem of finding a k-
coloring for a given number of k colors is called the graph k-coloring problem.
The classical graph coloring problem (GCP) is to determine the smallest k
(the chromatic number of G) such that G is k-colorable.

An equitable k-coloring of G (or k-eqcol) is a k-coloring {V1, V2, . . . , Vk} such
that the numbers of vertices in any two color classes differ by at most one
(i.e., ||Vi| − |Vj|| ≤ 1, ∀ i 6= j. This is called the equity constraint [25]). In
other words, an equitable k-coloring is a conflict-free k-coloring satisfying the
equity constraint. The equitable coloring problem (ECP) is to determine the
smallest number k of colors such that an equitable k-coloring of G exists [26].
This minimum k is called the equitable chromatic number of G and denoted
by χe(G).

Clearly the ECP is tightly related to the classical GCP. Like the GCP, the
ECP is NP-hard [12] and thus computationally challenging. In addition to its
theoretical significance, the ECP has a variety of applications, like garbage
collection [28], partitioning and load balancing [4], scheduling [8,18,26], etc.
For a review of possible applications of the ECP, the reader is referred to
recent papers like [2,24].

Due to its relevance, much effort has been devoted to the studies of the ECP
from a theoretical point of view. For example, Meyer suggested a conjecture
that χe(G) < ∆(G) for any connected graph except the complete graphs and
the odd circuits, where ∆(G) is the maximum vertex degree of G [26]. Lih
and Wu showed that χe(G) = χ(G) holds for any connected bipartite graph
G(X, Y ), where χ(G) is the chromatic number of G [22]. Lam et al. obtained
an explicit formula to calculate the equitable chromatic number of a com-
plete n-partite graph [21]. Bodlaender and Fomin proved that the ECP can be
solved in polynomial time for graphs with bounded treewidth [5]. Kostochka
and Nakprasit proved that a graph with maximum degree ∆(G) is equitably
k-colorable for every k ≥ ∆ + 1 if the average degree of vertices are at most
∆/5 [20]. Furmańczyk discussed the computational complexity of the ECP for
some special graphs [12]. Wu and Wang investigated the planar graphs with
large girth [29]. Chen and Lih investigated equitable colorings for trees [7]
and Chang studied equitable colorings for forests [6]. Nakprasit and Nakpr-
asit obtained some results on the ECP for planar graphs with some special
properties [27]. Yan and Wang investigated the ECP for Kronecker products
of the complete multipartite graphs and complete graphs [30].

From the computational point of view, several exact and heuristic algorithms
have been proposed in the literature for solving the ECP for arbitrary graphs.
Specifically, Furmanczyk and Kubale proposed two constructive heuristics
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(Naive and Subgraph) [11]. Bahiense et al. presented two effective branch-
and-cut algorithms [1,2]. Méndez-Díaz et al. investigated a polyhedral ap-
proach [23], a DSatur-based exact algorithm [25], and a tabu search heuristic
[24]. Kierstead et al. proposed a fast algorithm (O(n2)) to find an equitable
k-coloring where k = ∆(G) + 1 [19].

Given the NP-hard nature of the ECP, it is unlikely that an exact algorithm
will be found that is able to determine the equitable chromatic number of ar-
bitrary graphs in polynomial time. Consequently, as for any NP-hard problem,
heuristics constitute a very appealing and indispensable alternative which can
be used to approximate the equitable chromatic number of a graph. On the
other hand, the literature review shows that there are only limited studies on
heuristic algorithms for the ECP.

In this paper, we provide a method to solve the ECP approximately by means
of a backtracking based iterated tabu search (BITS) algorithm. BITS solves a
series of k-ECP, i.e., equitable k-coloring instances with different fixed k values.
For a given k-ECP (with a particular k), the purpose of the iterated tabu
search (ITS) is to seek a conflict-free equitable k-coloring. The backtracking
scheme is used to adjust k to an appropriate value. A technique based on
binary search is used to determine a good initial k value.

We perform a computational study testing our proposed BITS algorithm on
a large number of benchmark instances widely used in the literature. The
computational results show that our new algorithm is very competitive in
terms of both solution quality and computation efficiency compared to the
state-of-the-art heuristics. Specifically, we are able to find new upper bounds
of the equitable chromatic number for 21 benchmark instances, matching the
previous best upper bound for the remaining instances.

The rest of the paper is organized as follows. In Section 2, we describe the
components of the BITS algorithm, including the search space and evaluation
function, the initial solution generation procedure, the iterated tabu search
procedure, and the binary search procedure for determining an initial k. In
Section 3, we present the computational benchmark assessments and compare
our results with those of the state-of-the-art heuristic algorithms in the lit-
erature. Section 4 analyzes and discusses some important components of the
proposed algorithm. Finally, we provide concluding comments in Section 5.

2 Backtracking Based Iterated Tabu Search for the ECP

In this section, we present the general solution approach and the supporting
procedures that compose it.
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2.1 Solution Approach and General Procedure

Algorithm 1 Main Scheme of the Proposed BITS Algorithm for the ECP
1: Input: Graph G = (V,E), the cutoff time tmax, the depth of backtracking m, the

depth of tabu search α, the number of perturbations β.
2: Output: the best number of colors (k∗) and an equitable k∗-coloring (s∗).

/∗ Find an initial k (kr) and an equitable kr-coloring using the binary search ∗/
3: (kr, sr) ← Binary_Search(V,E,α) /∗ Determine an initial kr and sr, Section 2.3
∗/

4: k∗ ← kr, k ← kr, s∗ ← sr /∗ k∗ and s∗ keep the best results found ∗/
5: repeat

6: if k = k∗ −m or k = 2 then

7: k ← k∗− 1 /∗ backtrack to k∗− 1 once k = k∗−m or 2 ∗/
8: else

9: k ← k − 1
10: end if

/∗ solve the corresponding k-ECP using the ITS algorithm ∗/
11: s ← Iterated_Tabu_Search(k,G, α, β) /∗ Section 2.4 ∗/
12: if f(s) = 0 then

13: k∗ ← k, s∗ ← s
14: end if

15: until Time() ≥ tmax

16: return (k∗, s∗)

As a basis for determining the equitable chromatic number of a graph by find-
ing the smallest number k of colors such that an equitable k-coloring exists, we
employ the fact that, like the GCP [14,16,17], the ECP can be approximated
by solving a series of k-ECP problems with decreasing k values, where a k-ECP
problem aims at searching for a legal equitable k-coloring for a given fixed k
value. This approach is called k-fixed penalty approach in the context of the
GCP [14,16] and used in TabuEqCol [24] for the ECP. Our BITS algorithm,
however, adopts this general solution approach with a notable difference. Un-
like previous studies, where the search stops once a k-ECP cannot be solved
and returns k + 1 as the final solution, our BITS algorithm continues with
k − 1, k − 2... even if the k-ECP is not solved. As a result, BITS iteratively
tries to find an equitable k-coloring with k ∈ {k∗−1, k∗−2, . . . , k∗−m} where
k∗ is the current smallest number of colors admitting an equitable k∗-coloring
and m > 1 is a parameter. We provide arguments in favor of this approach in
Section 2.5.

Specifically, starting from an initial k determined with the method given in
Section 2.3, our BITS algorithm seeks to solve the k-ECP to find an equitable
k-coloring. This leads to one of two possible situations. First, if an equitable k-
coloring is found, then after recording k as k∗ (k∗ records the current smallest
number of colors admitting an equitable k∗-coloring), we set k to k − 1 and
solve the new k-ECP. Second, if no legal equitable k-coloring is found for the
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current k after a given amount of computational effort, we still set k to k − 1
and try to solve the new k-ECP. If no k-ECP is solved for m consecutive
k = k∗ − 1, k∗ − 2, ..., k∗ − m values (where the parameter m is called the
backtracking depth and fixed to 4 in this paper), we perform a backtracking
step by resetting k to k∗ − 1 and start a new round of search with k ∈
{k∗ − 1, k∗ − 2, . . . , k∗ − m}. Backtracking also occurs when k = 2 (which
is the smallest lower bound for χe(G)).

To solve each k-ECP, our BITS algorithm employs an iterated tabu search
(ITS) procedure (Section 2.4) which operates in a solution space where the
equity constraint is always satisfied and only the coloring constraint can be
violated (Section 2.2). ITS undertakes to find a conflict-free k-coloring where
the equity constraint is always maintained during the search.

The pseudo-code of the BITS algorithm is given in Algorithm 1, consisting of
two stages. In the first stage, a binary search method is employed to rapidly
determine an appropriate initial number of colors (kr) which admits an equi-
table kr-coloring (lines 3-4, see Section 2.3). In the second stage, the algorithm
enters a loop which primarily consists of three parts, the backtrack mechanism
for setting k (lines 6-10), the iterated tabu search procedure for solving the
associated k-ECP (line 11, see Section 2.4), and the procedure for updating
k∗ (lines 12-14). BITS terminates once a given timeout limit is reached (line
15) and returns the smallest number k∗ of colors admitting an equitable k∗-
coloring as the approximate equitable chromatic number.

2.2 Search Space and Evaluation Function

For a given k-ECP, the BITS algorithm searches a space Ωk composed of all
possible k-partitions (denoted by P = {V1, V2, . . . , Vk}) satisfying the equity
constraint, which are called k-eqpartitions in this work. Formally, Ωk can be
written as:

Ωk = {P :|| Vi | − | Vj ||≤ 1, i 6= j, 1 ≤ i, j ≤ k} (1)

For the ECP, the complete search space Ω explored by our BITS algorithm
can be written as:

Ω =
n
⋃

k=2

Ωk (2)

Notice that any candidate k-eqpartition of the search space satisfies the equity
constraint, but does not necessarily satisfy the coloring constraint, i.e., some
adjacent vertices may receive the same color.

To evaluate the quality of a candidate k-eqpartition in Ω, we adopt an evalu-
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ation function which counts the total number of conflicting edges induced by
the k-eqpartition. Specifically, letting s = {V1, V2, . . . , Vk} be a k-eqpartition
in Ω, the evaluation function f(s) used by our BITS algorithm is written as
[14,16]:

f(s) =
∑

{vi,vj}∈E

δ(i, j) (3)

δ(i, j) =

{

1, if ∃y ∈ {1, 2, . . . , k} such that vi ∈ Vy and vj ∈ Vy; (4)

0, otherwise; (5)

Therefore, a k-eqpartition s ∈ Ω with f(s) = 0 corresponds to an equitable
k-coloring satisfying both the equity and coloring constraints and is thus a
legal solution to the k-ECP. To locate such an equitable k-coloring, our ITS
procedure explores the search space of the given k-ECP by transitioning be-
tween various k-eqpartitions while minimizing the evaluation function with
the purpose of attaining a solution s with f(s) = 0.

2.3 Binary Search Method for Finding an Initial Value of k

Algorithm 2 Binary Search (V,E, α)

1: Input: Graph G = (V,E), the depth of tabu search α.
2: Output: the obtained kr and an equitable kr-coloring sr

3: UK ← |V |, LK ← 0
4: while UK > LK + 1 do

5: k ← ⌊(UK + LK)/2⌋
6: s ← Solution_Initialization(V ,E,k) /∗ Section 2.4.1 ∗/
7: s ← Tabu_Search(s,α) /∗ Section 2.4.2 ∗/
8: if f(s) = 0 then

9: sr ← s, kr ← k, UK ← k
10: else

11: LK ← k
12: end if

13: end while

14: return (kr, sr)

Clearly, it would be excessively time-consuming for BITS to solve all k-ECP
problems (2 ≤ k ≤ |V |). Hence, to speed up the search, we employ a binary
search method to determine an appropriate initial value of k.

Our binary search method (Algorithm 2) uses two variables (respectively de-
noted by UK and LK) to record the upper and lower bounds of k. Specifically,
we begin by setting UK = |V |, LK = 0 and k = ⌊(UK+LK)/2⌋ and then solve
the associated k-ECP by means of a short tabu search starting with a random
initial solution in Ωk. If an equitable k-coloring is obtained by the tabu search
procedure, we set UK to the current k, and set LK to the current k otherwise.
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The above process is repeated until the condition UK ≤ LK +1 holds. Finally,
UK is returned as the result of the binary search method.

2.4 Iterated Tabu Search Procedure for k-ECP

Algorithm 3 Iterated Tabu Search for k-ECP
1: Input: Graph G = (V,E), the number of colors k, the parameter β, the depth of

tabu search α
2: Output: The best solution s found during this search process
3: s ← Solution_Initialization(V ,E,k) /∗ Section 2.4.1 ∗/
4: s ← Tabu_Search(s,α) /∗ Section 2.4.2 ∗/
5: d← 0 /* d counts the consecutive perturbations where s is not updated */
6: repeat

7: s
′

← Perturbation_Operator(s) /∗ Section 2.4.3 ∗/
8: s

′′

← Tabu_Search(s
′

,α) /∗ Section 2.4.2 ∗/
9: if f(s

′′

) < f(s) then

10: s← s
′′

11: d← 0
12: else

13: d← d+ 1
14: end if

15: until d = β or f(s) = 0
16: return s

Our ITS algorithm starts with an initial solution (see Section 2.4.1) and then
applies a basic tabu search (TS0) procedure (in Section 2.4.2) to improve the
incumbent solution (lines 3-4). Then, ITS repeatedly applies a perturbation
operator to modify the incumbent solution (in Section 2.4.3) followed by an
improvement phase by TS0. The resulting solution is accepted as the new
incumbent solution as long as it is better than the incumbent solution in
terms of the evaluation function f (Eq. 3) (lines 5-15). Our ITS procedure
terminates if a conflict-free (and equitable) k-coloring is found or if the best
solution found so far cannot be improved after a number β of consecutive
perturbations.

2.4.1 Initialization Procedure for the k-ECP

The purpose of the initialization step (Algorithm 4) is to generate an initial
solution (i.e., a k-eqpartition) with as few conflicts as possible for the given k-
ECP problem. This is achieved as follows. First, we randomly pick k distinct
vertices from the set U of unassigned vertices (U is set to V initially) and
assign them respectively to k color classes. Then, the unassigned vertices are
assigned one by one to the current color class Vi in a greedy way, where Vi

denotes the ith color class, and the initial value of i is set to 1. More specifically,
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Algorithm 4 Solution Initialization for k-ECP
1: Input: Graph G = (V,E), the number k of colors used
2: Output: a k-eqpartition {V1, V2, . . . , Vk} satisfying the equity constraint
3: for each i ∈ [1, k] do

4: Vi ← ∅
5: end for

6: U ← V /∗ U is the set of unassigned vertices ∗/
7: for each i ∈ [1, k] do

8: Randomly pick a vertex v ∈ U
9: Vi ← Vi ∪ {v}, U ← U \ {v}

10: end for

11: i← 1
12: while U 6= ∅ do

13: v ← argmin{|Γi(v
′

)| : v
′

∈ U}
/∗ Γi(v) is the set of neighbors of v in Vi, ties are broken randomly ∗/

14: Vi ← Vi ∪ {v}, U ← U \ {v}
15: i← 1+ i mod k.
16: end while

for the current color class Vi, we choose an unassigned vertex v that has the
smallest number of neighbors in Vi and assign it to Vi, breaking the ties at
random. After that, we move to the next color class in a rotating fashion by
setting i← 1+ i mod k, and repeat the former operations.

2.4.2 Basic Tabu Search Procedure

Algorithm 5 Tabu Search(s0, α)

1: Input: Input solution s0, the neighborhood N , the depth of tabu search α
2: Output: The best solution sb found during the tabu search process
3: s← s0 /* s is the current solution */
4: sb ← s /* sb is the best solution found so far */
5: d← 0 /* d counts the consecutive iterations where sb is not updated */
6: repeat

7: Choose a best admissible neighboring solution s′ ∈ N(s)
/* s′ is admissible if it is not forbidden by the tabu list or better than sb */

8: s← s′

9: Update tabu list
10: if f(s) < f(sb) then

11: sb ← s,
12: d← 0
13: else

14: d← d+ 1
15: end if

16: until d = α or f(s) = 0
17: return sb

The basic tabu search procedure TS0 used in our ITS algorithm is based
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on the classic TabuCol algorithm for the GCP [17]. The goal of TS0 is to
find a legal k-coloring (i.e., a conflict-free k-eqpartition) starting from a given
initial conflicting k-coloring in the search space Ωk (see Section 2.2). Our TS0

procedure shares the same evaluation function and neighborhood structure
as TabuEqCol [24]. However, in contrast to TabuEqCol (and TabuCol), our
TS0 procedure employs a hybrid tabu list management strategy to control the
tabu tenures dynamically. For the sake of completeness, we describe our TS0

procedure as follows.

Given a neighborhood function N (see below), the evaluation function f (Sec-
tion 2.2), and a given initial solution s0 (Section 2.4.1), our TS0 iteratively
replaces the incumbent solution s by a neighboring solution s

′

(initially set to
s0) until a stopping condition is met, i.e., an equitable k-coloring is found or
the best solution found so far is not updated during α consecutive iterations
(α is called the depth of tabu search). At each iteration of TS0, the incumbent
solution s is replaced by a best admissible neighboring solution s

′

generated
by a move operator, and the associated move is recorded on the tabu list
to prevent the reverse move from being performed for the next tt iterations,
where tt is called the tabu tenure and is dynamically controlled by the tabu
list management strategy (see below). Here, a move is considered to be ad-
missible if it is not forbidden by the tabu list or if it leads to a solution better
than the best solution found so far. The pseudo-code of TS0 is described in
Algorithm 5, and its ingredients are described as follows.

Neighborhood Structures. Our tabu search procedure exploits the union of
two basic neighborhoods, i.e., the critical one-move neighborhood N1 and crit-
ical swap neighborhood N2. The neighborhood N1 can be described by a con-
strained OneMove operator. Given a conflicting k-coloring (or a k-eqpartition)
s = {V1, V2, . . . , Vk}, the constrained OneMove operator transfers a conflict-
ing vertex v from its current color class Vi to another color class Vj ensuring
that the equity constraint is always respected, i.e., |Vi| ≥ ⌊

n
k
⌋ and |Vj| ≤ ⌈

n
k
⌉.

Let < v, Vi, Vj > designate such a move and s ⊕ < v, Vi, Vj > be the resulting
neighboring solution when applying the move to s. Let C(s) be the set of
conflicting vertices in the current solution s, a vertex being conflicting if it
belongs to the same color class as at least one of its adjacent vertices. Then
the neighborhood N1 of s is composed of all possible solutions that can be
obtained by applying the constrained OneMove operator to s. i.e.,

N1(s) = {s ⊕ < v, Vi, Vj > : v ∈ Vi ∩ C(s), i 6= j, |Vi| > ⌊
n
k
⌋, |Vj| < ⌈

n
k
⌉}

where n is the number of vertices in the graph. In other words, N1(s) is the set
of k-eqpartitions which can be reached by transferring a conflict vertice of s to
another color class. Note that this neighborhood is empty and not applicable
if n = l × k holds, where l is a positive integer. Clearly N1 is bounded by
O(|C(s)| × k) in size.
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The neighborhood N2 is defined by the constrained Swap operator. Given two
vertices v and u which are located in two different color classes and either v
or u is a conflict vertex, Swap(v, u) exchanges their color classes to produce a
neighboring solution. Thus, the neighborhood N2 of a solution s is composed
of all possible neighboring solutions that can be obtained by applying the
constrained Swap operator to s, i.e.,

N2(s) = {s ⊕ Swap(v, u) : v ∈ Vi, u ∈ Vj, i 6= j, {v, u} ∩ C(s) 6= ∅}

N2(s) is thus the set of k-eqpartitions which can be reached from s by swapping
two vertices such that at least one of them is a conflict vertex. Clearly the size
of N2 is bounded by O(|C(s)| × n).

Our TS0 procedure explores the combined neighborhood N3(s) which is the
union of N1 and N2: N3(s) = N1(s) ∪N2(s).

Fast Neighborhood Evaluation Technique. To effectively calculate the
move value (∆f ) which identifies the change in the evaluation function f
(Equation 3), our TS0 procedure adopts a fast incremental evaluation tech-
nique first developed for the graph coloring problem [9,10,13]. Specifically, a
n × k matrix M is maintained in which the entry M [v][q] (1 ≤ v ≤ n, 1 ≤
q ≤ k) is the number of adjacent vertices to v which are colored in color q in
the current solution s = {V1, V2, . . . , Vk}, i.e., M [v][q] =

∑

{v,u}∈E δ1(q, P (u)),
where P (u) represents the color class of vertex u in s and the function δ1(x, y)
is defined as follows:

δ1(x, y) =

{

1, for x = y; (6)

0, otherwise; (7)

With this memory structure, each move value can be rapidly calculated. First,
when a OneMove move (i.e., < v, Vi, Vj >) is performed, its move value, ∆f (<
v, Vi, Vj >), can be calculated as ∆f (< v, Vi, Vj >) = M [v][Vj]−M [v][Vi], and
then the matrix M is accordingly updated as follows. For each neighbor u of
vertex v, M [u][Vi]←M [u][Vi]−1, and M [u][Vj ]←M [u][Vj ]+1. Clearly, updat-
ing M can be done in O(n). Second, if a Swap move (i.e., Swap(u, v)) is per-
formed, its move value ∆f (Swap(u, v)) can be calculated as ∆f (Swap(u, v)) =
(M [v][P (u)]−M [v][P (v)])+ (M [u][P (v)]−M [u][P (u)])−2δ2(v, u), where the
function δ2(v, u) is defined as

δ2(v, u) =

{

1, {v, u} ∈ E; (8)

0, otherwise; (9)

It should be noted that the Swap(u, v) move can be performed as a combined
move which consists of two consecutively performed OneMove moves, i.e.,
s ⊕ Swap(v, u) = (s ⊕ < v, P (v), P (u) >) ⊕ < u, P (u), P (v) >, thus matrix
M can be updated in O(n).
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Tabu List Management Strategy. The tabu list is used to impart vigor
to the search and prevent (or strongly discourage) the search from revisit-
ing previously encountered solutions. If a OneMove move (< v, Pi, Pj >) is
performed, i.e., vertex v is displaced from its current color class Vi to color
class Vj, then vertex v is forbidden to move back to Vi for the next tt (tabu
tenure) iterations. Similarly, if a Swap(v, u) move is performed, vertices v and
u are forbidden to join their respective color classes for the next tt iterations.
During the search process, we use a hybrid tabu list management strategy to
dynamically tune the tabu tenure tt, which integrates the following rules.

By the first rule, if the current iteration is x, the tabu tenure of a move is
determined as: tt(x) = C0 + rand(C1), where C0 and C1 are two constant
numbers which are empirically set to 5, and rand(C1) is a random number
between 0 to C1. This rule is used to generate small tabu tenures (tt ≤ 10),
thus favoring an intensified search of tabu search.

The second rule, first proposed in [9,13] and adapted in [24] consists of setting
tt(x) = α0 × |C(s)|+ rand(β), where C(s) is the set of conflicting vertices in
the current solution s, α0 and β are two parameters which are respectively set
to 0.9 and 5.

The third rule adapts the technique proposed in [15] where the tabu tenure
is adjusted by a periodic step function. Specifically, the tabu tenure func-
tion is defined, for each period, by a sequence of values (a1, a2, · · · , ap+1)
and a sequence of interval margins (x1, x2, · · · , xp+1) such that for each it-
eration x in [xi, xi+1 − 1], tt(x) = ai + rand(2). Here, p is fixed to 15,
(a)i=1,··· ,15 = Tmax

8
(1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1), where Tmax is a parame-

ter and represents the maximum tabu tenure. The interval margins are defined
by x1 = 1, xi+1 = xi + 3ai,(i ≤ 15).

To enhance the robustness of the tabu search algorithm, the three preceding
rules are applied in alternation and each rule is employed for γ (γ = 3× 104)
consecutive iterations.

2.4.3 Perturbation Operators of Iterated Tabu Search

During the TS0 procedure, if the best solution found so far cannot be improved
during α (i.e., the depth of tabu search) consecutive iterations, the search is
estimated to be trapped in a deep local optimum. To jump out of the local
optimum trap, we follow the strategy of the breakout local search method [3]
and apply both random perturbations and directed perturbations to change
the incumbent solution. These two perturbations can be described as follows.

Given a solution s to be perturbed, the directed perturbation iteratively per-
forms η1 (empirically set to 5 × 103) OneMove or Swap moves (see Section
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2.4.2 for these operators), and at each iteration it chooses a best unforbidden
move to perform, breaking ties randomly. First, if a OneMove move (denoted
by < v, Vi, Vj >) is chosen, i.e., vertex v is moved from the current color class
Vi to the new color class Vj, then vertex v is forbidden to move back to Vi for
the next tt moves. Second, if a Swap move (denoted by Swap(v, u)) is per-
formed, then vertices v and u are forbidden to move back to their respective
color class for the next tt moves. Here, tt is the tabu tenure and is dynamically
determined as tt = 2000+rand(1000), where rand(1000) represents a random
number between 0 and 1000. In addition, a forbidden move is always accepted
if it leads to a better solution than the best solution found so far.

The goal of the directed perturbation is twofold. In addition to leading the
search toward a new search region, the directed perturbation also serves as a
local optimization procedure for some special problem instances.

The random perturbation is composed of η2 (empirically set to 0.3× n) con-
secutively performed Swap moves that are randomly chosen from the set of
available moves, and for each swap move the colors of two vertices v and u
belonging to two different color classes are exchanged.

In our ITS algorithm, the random and directed perturbations are applied with
a probability of p ∈ [0, 1] and 1− p, respectively.

2.5 Motivation of the Backtracking Mechanism

As explained in Section 2.1, we approximate the equitable chromatic number
by searching for k within an interval [k∗ −m, k∗ − 1] where k∗ is the current
smallest number of colors admitting an equitable k∗-coloring. This strategy is
different from the commonly used technique for the graph coloring problem
where the search stops and returns k∗ = k + 1 as the approximate chromatic
number as soon as no k-coloring can be found. We justify our adopted strategy
as follows.

For the GCP, the (k − 1)-coloring problem is necessarily more difficult than
the k-coloring problem. Hence in this case it is suitable to stop the search for
a (k − 1)-coloring if no k-coloring can be found.

However, unlike the GCP, due to the equity constraint in the ECP, it is possible
that the (k − 1)-ECP is easier to solve than the k-ECP for some graphs and
some k values (This is experimentally confirmed as we show in Section 4.3).
Therefore, for the ECP, it is not appropriate to solve a series of k-ECP with
strictly decreasing k values, since such a search process can be blocked by a
very difficult k-ECP, but can be unblocked if we continue with (k − j)-ECP
(j > 1). For this reason, our BITS algorithm uses a backtracking mechanism
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to allow the search to iteratively consider several k-ECP problems with k ∈
{k∗ − 1, k∗ − 2, . . . , k∗ −m}. As we show in Sections 3 and 4.3, this strategy
proves to be useful for a number of problem instances.

3 Computational Results and Comparisons

In this section, we present computational results and comparisons to assess
the performance of the proposed BITS algorithm.

3.1 Benchmark Instances

We tested a set of 73 benchmark instances which are commonly used in the
literature. These instances, which were initially proposed for the conventional
graph coloring problems, are available at http://www.info.univ-angers.

fr/pub/porumbel/graphs/ and http://www.cs.hbg.psu.edu/txn131/graphcoloring.

html.

3.2 Parameter Settings and Experimental Protocol

Table 1
Settings of important parameters

Parameters Section Description Values
m 2.1 depth of backtracking 4
β 2.4 number of perturbations 30
α 2.4.2 depth of tabu search {102, 105}
Tmax 2.4.2 maximum tabu tenure of TS 80
γ 2.4.2 number of iterations for each tabu rule 3× 104

η1 2.4.3 strength of directed perturbation 5× 103

η2 2.4.3 strength of random perturbation 0.3× n
p 2.4.3 probability of choosing the random perturbation 0.7

First, Table 1 shows the parameters used in our algorithm as well as their
settings which are determined by preliminary experiment. Note that the tabu
search depth parameter α takes 102 for the tabu search procedure employed
in the binary search method introduced in Section 2.3, and 105 in other cases.

Our BITS algorithm was coded in C++ and compiled using the g++ com-
piler with the ‘-O2’ option 1 , and all experiments were carried out with an
Intel Xeon E5440 processor (2.83 GHz CPU and 2 Gb RAM), running the
Linux operating system. The user times of the DIMACS machine benchmark

1 The source code of our BITS algorithm will be available at http://www.info.

univ-angers.fr/pub/hao/ecp.html.
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procedure 2 on our machine are 0.23, 1.42 and 5.42 seconds for graphs r300.5,
r400.5, and r500.5, respectively.

Two experiments were carried out to assess and compare the performance of
the proposed BITS algorithm. In the first experiment, we followed [24] and ran
our BITS algorithm one time to solve each instance with a cutoff time of 3600
seconds. This allowed us to compare our results with those of [24]. Secondly,
to further assess the search capacity of the proposed algorithm under a longer
timeout limit, in the second experiment we used a cutoff time of 104 seconds
for the instances with n ≤ 500 and 2 × 104 seconds for larger instances with
n > 500, respectively. Note that such cutoff limits (and even larger values)
were typically used in the literature for testing graph coloring algorithms.
Moreover, given the random nature of our BITS algorithm, each instance was
independently solved 20 times in the second experiment.

3.3 Computational Results and Comparison

Table 2 reports the computational results achieved by the BITS algorithm
on the set of 73 benchmark instances 3 . The first two columns give the name
and size of each instance. Columns 3 and 4 indicate the best lower bound
(LB) and upper bound (UB) of χe reported in [24,25], which are yielded by
some very recent algorithms or CPLEX. Column 5 reports the best results
(kpre) obtained in [24] by means of a recent and highly effective tabu search
algorithm which is the current best performing heuristic for the ECP, with a
one hour cutoff time. The results of our first experiment with a one hour cutoff
time are given in column 6 (k1), and the results of the second experiment with
relaxed cutoff times are given in columns 7 to 10, including the best result
for each instance (i.e., the smallest number of colors achieved by the BITS
algorithm) over 20 independent runs (kbest), the average results (kavg), the
success rate (SR) to achieve kbest over 20 runs, and the average computing
time (in seconds) to obtain our best results (t(s)). A bold entry highlights an
improved result relative to the published best upper bound. An entry in italics
indicates that our upper bound matches the current best lower bounds and
consequently the optimality of the solution is proved. Entries with “-” mean
that the corresponding results are not available in the literature.

Table 2 discloses that the outcomes from our BITS algorithm are noteworthy
compared to the current best known results in the literature. First, BITS
improves the best known upper bound for 21 instances, while matching the
best known upper bound for the other instances that have been investigated

2 dmclique: ftp://dimacs.rutgers.edu/pub/dsj/clique.
3 The best results reported in this work is available at: http://www.info.

univ-angers.fr/pub/hao/ECP/ecpresults.zip
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Table 2
Computational results of the proposed BITS algorithm on the set of 73 benchmark
instances. Improved results are indicated in bold compared to the previous best
upper bound. The optimum results obtained in this work are indicated in italic.

BITS
Instance N LB

[24,25]
UB
[24,25]

kpre

[24]
k1 kbest kavg SR t(s)

DSJC125.1 125 5 5 5 5 5 5.0 20/20 0.96
DSJC125.5 125 9 18 18 17 17 17.5 10/20 5169.38
DSJC125.9 125 43 45 45 44 44 44 20/20 0.16
DSJC250.1 250 5 8 8 8 8 8.0 20/20 5.50
DSJC250.5 250 12 32 32 32 30 31.9 1/20 3265.63
DSJC250.9 250 63 83 83 72 72 72.0 20/20 1179.92
DSJC500.1 500 5 13 13 13 13 13.0 20/20 6.96
DSJC500.5 500 13 62 63 57 56 56.95 1/20 484.60
DSJC500.9 500 101 148 182 130 129 129.9 2/20 3556.53
DSJR500.1 500 12 12 12 12 12 12.0 20/20 0.58
DSJR500.5 500 120 131 133 126 126 126.3 14/20 3947.61
DSJC1000.1 1000 5 22 22 22 21 21.95 1/20 3605.49
DSJC1000.5 1000 15 112 112 112 103 105.1 3/20 18078.94
DSJC1000.9 1000 126 268 329 254 252 253.3 1/20 4064.65
R125.1 125 - - - 5 5 5.00 20/20 0.01
R125.5 125 - - - 36 36 36.00 20/20 0.39
R250.1 250 - - - 8 8 8.00 20/20 0.01
R250.5 250 - - - 67 66 66.65 7/20 6275.08
R1000.1 1000 - - - 20 20 20.00 20/20 3.09
R1000.5 1000 - - - 269 250 250.40 12/20 10723.29
le450_5a 450 5 5 - 5 5 5.00 20/20 45.86
le450_5b 450 5 5 7 5 5 5.00 20/20 74.43
le450_5c 450 - - - 5 5 5 20/20 1877.73
le450_5d 450 5 8 8 5 5 5.00 20/20 2231.59
le450_15a 450 15 15 - 15 15 15.00 20/20 4.44
le450_15b 450 15 15 15 15 15 15.00 20/20 4.16
le450_15c 450 - - - 15 15 15.1 18/20 410.35
le450_15d 450 15 16 16 15 15 15.70 6/20 629.83
le450_25a 450 25 25 - 25 25 25.00 20/20 0.72
le450_25b 450 25 25 25 25 25 25.00 20/20 0.78
le450_25c 450 - - - 26 26 26.00 20/20 16.50
le450_25d 450 25 27 27 26 26 26.00 20/20 14.08
wap01a 2368 41 46 46 43 42 42.60 8/20 4183.29
wap02a 2464 40 44 44 42 41 41.80 4/20 6829.03
wap03a 4730 40 50 50 46 45 45.05 19/20 11267.27
wap04a 5231 - - - 46 44 44.15 17/20 11345.30
wap05a 905 - - - 50 50 50.00 20/20 8.46
wap06a 947 - - - 42 41 41.70 6/20 6892.09
wap07a 1809 - - - 43 43 43.05 19/20 718.25
wap08a 1870 - - - 43 43 43.05 19/20 951.85
flat300_28_0 300 11 36 36 35 34 34.70 6/20 4407.62
flat1000_50_0 1000 - - - 112 101 102.80 1/20 9206.28
flat1000_60_0 1000 - - - 112 102 102.90 5/20 10201.53
flat1000_76_0 1000 14 112 112 112 102 103.40 3/20 13063.39
latin_square_10 900 90 130 130 129 115 120.00 1/20 17859.13
C2000.5 2000 - - - 202 201 201.65 7/20 4808.96
C2000.9 2000 - - - 504 502 502.45 11/20 7772.04
mulsol.i.1 197 49 49 50 49 49 49.00 20/20 14.82
mulsol.i.2 188 34 39 48 36 36 36.35 13/20 3633.61
fpsol2.i.1 496 65 65 78 65 65 65.00 20/20 830.30
fpsol2.i.2 451 47 47 60 47 47 47.00 20/20 976.07
fpsol2.i.3 425 55 55 79 55 55 55.00 20/20 729.47
inithx.i.1 864 54 54 66 54 54 54.00 20/20 1468.27
inithx.i.2 645 30 93 93 36 36 36.35 13/20 12412.83
inithx.i.3 621 - - - 38 37 37.45 11/20 9214.61
zeroin.i.1 211 49 49 51 49 49 49.00 20/20 1367.14
zeroin.i.2 211 36 36 51 36 36 36.00 20/20 96.99
zeroin.i.3 206 36 36 49 36 36 36.00 20/20 109.11
myciel6 95 7 7 7 7 7 7.00 20/20 0.00
myciel7 191 8 8 8 8 8 8.00 20/20 0.02
4-FullIns_3 114 7 7 - 7 7 7.00 20/20 0.00
4-FullIns_4 690 6 8 8 8 8 8.00 20/20 0.23
4-FullIns_5 4146 6 9 9 9 9 9.00 20/20 54.49
1-Insertions_6 607 3 7 7 7 7 7.00 20/20 0.34
2-Insertions_5 597 3 6 6 6 6 6.00 20/20 0.11
3-Insertions_5 1406 3 6 6 6 6 6.00 20/20 0.57
school1 385 15 15 15 15 15 15.00 20/20 1.30
school1_nsh 352 14 14 14 14 14 14.00 20/20 2.63
qg.order40 1600 40 40 40 40 40 40.00 20/20 4.73
qg.order60 3600 60 60 60 60 60 60.00 20/20 21.57
ash331GPIA 662 4 4 4 4 4 4.00 20/20 2.02
ash608GPIA 1216 3 4 4 4 4 4.00 20/20 0.50
ash958GPIA 1916 3 4 4 4 4 4.00 20/20 23.31
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in previous studies. Second, for 26 instances, our BITS algorithm attains the
optimum solutions, i.e., our upper bounds equal the best lower bounds. In
addition, our BITS algorithm obtains a success rate of at least 10/20 except
for 17 instances, which shows the robustness of the algorithm. Finally, the
average computing time is related to the hardness of the instances, and varies
between 0 and 2× 104 seconds.

Compared to the highly effective TabuEqCol algorithm of [24] which reports
the previously best known upper bounds for the 50 tested instances, our al-
gorithm under the same one hour cutoff time delivers a better result (upper
bound) (k1) for 26 instances, while achieving the same bounds for the remain-
ing 24 instances. TabuEqCol was run on a computer with an Intel i5 CPU
750@2.67Ghz, which is comparable to the computer used to run our BITS
algorithm (with an Intel Xeon E5440 CPU 2.83GHz).

4 Analysis and Discussions

In this section, we study several key ingredients of the BITS algorithm to get
some insight into its behavior.

4.1 Influence of the Tabu List Management Strategy

The effectiveness of the critical tabu search procedure depends on its tabu list
management strategy. To show the impact of our multiple tabu list strategy,
we carried out an additional experiment based on a set of 40 representative
instances by means of our BITS algorithm and its three variants, i.e., BITS1,
BITS2, and BITS3 which respectively employ the first, second, and third tabu
list management rule alone (Section 2.4.2 for details). In this experiment, each
algorithm was independently performed 20 times to solve each instance with
the same cutoff time limits given in Section 3.2.

The experimental results are summarized in Table 3. The first column indicates
the names of instances, and the second column shows the best results (k∗)
yielded in this experiment. The results of BITS and its three variants are
respectively listed in columns 3 to 14, including the best results in the number
of colors used (kbest), the success rate to reach kbest over 20 runs (SR), and
the difference between kbest and k∗ (∆ = kbest − k∗). The rows Equal and
Worse respectively indicate the number of instances for which the associated
algorithm attains an equal and worse result compared to k∗. The row Sum

denotes the sum of ∆ over the tested instances.
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Table 3
Influence of tabu list management strategies on the performance of the BITS al-
gorithm. The performances of the BITS algorithms with four different tabu list
management strategies are assessed on a set of 40 representative instances.

BITS1 BITS2 BITS3 BITS
Instance k∗ kbest SR ∆ kbest SR ∆ kbest SR ∆ kbest SR ∆

DSJC125.5 17 17 20/20 0 17 3/20 0 17 1/20 0 17 10/20 0
DSJC250.5 29 29 2/20 0 32 20/20 3 32 20/20 3 30 1/20 1
DSJC250.9 72 72 20/20 0 72 20/20 0 72 3/20 0 72 20/20 0
DSJC500.1 13 13 20/20 0 13 20/20 0 13 13/20 0 13 20/20 0
DSJC500.5 56 56 7/20 0 57 20/20 1 57 1/20 1 56 1/20 0
DSJC500.9 128 128 2/20 0 129 14/20 1 131 10/20 3 129 2/20 1
DSJR500.5 126 126 11/20 0 126 9/20 0 126 2/20 0 126 14/20 0
DSJC1000.1 21 21 20/20 0 21 5/20 0 22 4/20 1 21 1/20 0
DSJC1000.5 101 101 1/20 0 112 20/20 11 112 20/20 11 103 3/20 2
DSJC1000.9 252 252 5/20 0 253 7/20 1 254 1/20 2 252 1/20 0
R250.5 66 67 6/20 1 67 2/20 1 66 19/20 0 66 7/20 0
R1000.5 250 250 4/20 0 250 16/20 0 250 2/20 0 250 12/20 0
le450_15c 15 15 1/20 0 15 16/20 0 15 19/20 0 15 18/20 0
le450_15d 15 16 18/20 1 15 8/20 0 15 7/20 0 15 6/20 0
le450_25c 26 26 20/20 0 26 20/20 0 27 20/20 2 26 20/20 0
le450_25d 26 26 20/20 0 26 20/20 0 27 20/20 2 26 20/20 0
wap01a 42 43 20/20 1 42 2/20 0 42 11/20 0 42 8/20 0
wap02a 41 42 2/20 1 41 4/20 0 41 8/20 0 41 4/20 0
wap03a 45 49 8/20 4 45 15/20 0 45 20/20 0 45 19/20 0
wap04a 44 48 4/20 4 44 20/20 0 44 20/20 0 44 17/20 0
wap06a 41 41 4/20 0 41 9/20 0 41 5/20 0 41 6/20 0
wap07a 42 43 19/20 1 42 5/20 0 43 19/20 1 43 19/20 1
wap08a 42 43 4/20 1 42 7/20 0 42 1/20 0 43 19/20 1
flat300_28_0 34 34 16/20 0 35 20/20 1 35 4/20 1 34 6/20 0
flat1000_50_0 101 101 2/20 0 104 8/20 3 105 5/20 4 101 1/20 0
flat1000_60_0 101 101 1/20 0 104 1/20 3 106 3/20 5 102 5/20 1
flat1000_76_0 102 102 10/20 0 104 2/20 2 108 1/20 6 102 3/20 0
latin_square_10 113 113 1/20 0 129 12/20 16 130 20/20 17 115 1/20 2
C2000.5 201 201 19/20 0 202 20/20 1 203 1/20 2 201 7/20 0
C2000.9 502 503 1/20 1 503 20/20 1 504 6/20 2 502 11/20 0
mulsol.i.2 36 36 10/20 0 36 10/20 0 36 13/20 0 36 13/20 0
fpsol2.i.1 65 65 20/20 0 65 20/20 0 65 20/20 0 65 20/20 0
fpsol2.i.2 47 47 20/20 0 47 20/20 0 47 20/20 0 47 20/20 0
fpsol2.i.2 55 55 20/20 0 55 20/20 0 55 20/20 0 55 20/20 0
inithx.i.1 54 54 20/20 0 54 20/20 0 54 20/20 0 54 20/20 0
inithx.i.2 36 36 15/20 0 36 11/20 0 36 14/20 0 36 13/20 0
inithx.i.3 37 37 13/20 0 37 15/20 0 37 9/20 0 37 11/20 0
zeroin.i.1 49 49 20/20 0 49 20/20 0 49 20/20 0 49 20/20 0
zeroin.i.2 36 36 20/20 0 36 20/20 0 36 20/20 0 36 20/20 0
zeroin.i.3 36 36 20/20 0 36 20/20 0 36 20/20 0 36 20/20 0

#Equal 31 27 24 33
#Worse 9 13 16 7
Sum 15 45 63 9

Table 3 discloses that the multiple tabu list strategy leads to the best per-
formance among all 4 compared strategies. First, in terms of the number of
instances for which the associated algorithm yields a worse result compared
to k∗, BITS misses the current best known results (k∗) for only 7 instances,
whereas BITS1, BITS1, and BITS3 miss the current best known results for
9, 13, 16 instances, respectively. It is interesting to note that the best results
obtained in Section 3.3 are further improved in this experiment for 7 instances.
Second, concerning the sum of ∆ over all instances, the result of BITS is 9,
whereas the results of BITS1, BITS2, and BITS3 are 15, 45, 63 respectively.
On the other hand, when comparing the three single tabu list management
strategies, one finds that the first strategy (i.e., BITS1) performs the best,
and the third strategy (i.e., BITS3) performs the worst.
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Table 4
Influence of perturbation operators on the performance of the BITS algorithm. Note
that our BMTS algorithm is obtained by replacing its perturbation operators of the
BITS algorithm with the initialization procedure for k-ECP. Better results between
the BITS and BMTS algorithms are indicated in bold.

BITS BMTS
Instance N kbest kavg SR t(s) kbest kavg SR t(s)

DSJC125.5 125 17 17.50 10/20 5169.38 17 17.45 11/20 5511.65
DSJC250.5 250 30 31.90 1/20 3265.63 30 31.90 1/20 4318.98
DSJC250.9 250 72 72.00 20/20 1179.92 72 72.00 20/20 1884.94
DSJC500.1 500 13 13.00 20/20 6.96 13 13.00 20/20 7.41
DSJC500.5 500 56 56.95 1/20 484.60 56 56.95 1/20 1249.59
DSJC500.9 500 129 129.90 2/20 3556.53 129 130.00 2/20 5427.04
DSJR500.5 500 126 126.30 14/20 3947.61 126 126.50 10/20 2048.89
DSJC1000.1 1000 21 21.95 1/20 3605.49 21 21.85 3/20 2088.95
DSJC1000.5 1000 103 105.10 3/20 18078.94 102 106.00 1/20 18887.27
DSJC1000.9 1000 252 253.30 1/20 4064.65 252 253.20 2/20 4412.62
R250.5 250 66 66.65 7/20 6275.08 66 66.90 2/20 7315.66
R1000.5 1000 250 250.40 12/20 10723.29 268 271.05 1/20 17131.15
le450_15c 450 15 15.10 18/20 410.35 15 15.05 19/20 399.87
le450_15d 450 15 15.70 6/20 629.83 15 15.50 10/20 1143.19
le450_25c 450 26 26.00 20/20 16.50 26 26.00 20/20 14.77
le450_25d 450 26 26.00 20/20 14.08 26 26.00 20/20 16.85
wap01a 2368 42 42.60 8/20 4183.29 42 42.95 1/20 15801.24
wap02a 2464 41 41.80 4/20 6829.03 42 42.00 20/20 1621.23
wap03a 4730 45 45.05 19/20 11267.27 45 45.95 1/20 12994.88
wap04a 5231 44 44.15 17/20 11345.30 44 44.70 6/20 14063.33
wap06a 947 41 41.70 6/20 6892.09 42 42.00 20/20 78.90
wap07a 1809 43 43.05 19/20 718.25 43 43.00 20/20 1899.08
wap08a 1870 43 43.05 19/20 951.85 43 43.10 18/20 2538.18
flat300_28_0 300 34 34.70 6/20 4407.62 34 34.65 7/20 3644.83
flat1000_50_0 1000 101 102.80 1/20 9206.28 101 102.80 1/20 11486.31
flat1000_60_0 1000 102 102.90 5/20 10201.53 102 103.00 5/20 11549.44
flat1000_76_0 1000 102 103.40 3/20 13063.39 103 103.75 8/20 12468.99
latin_square_10 900 115 120.00 1/20 17859.13 116 121.55 1/20 18863.40
C2000.5 2000 201 201.65 7/20 4808.96 201 201.75 5/20 5577.63
C2000.9 2000 502 502.45 11/20 7772.04 502 502.70 6/20 10229.98
mulsol.i.2 188 36 36.35 13/20 3633.61 37 37.50 10/20 3340.18
fpsol2.i.1 496 65 65.00 20/20 830.30 84 85.90 3/20 5326.77
fpsol2.i.2 451 47 47.00 20/20 976.07 66 72.35 1/20 8753.76
fpsol2.i.3 425 55 55.00 20/20 729.47 79 83.55 1/20 9991.45
inithx.i.1 864 54 54.00 20/20 1468.27 68 70.95 1/20 12028.89
inithx.i.2 645 36 36.35 13/20 12412.83 56 58.15 6/20 13287.27
inithx.i.3 621 37 37.45 11/20 9214.61 58 60.10 4/20 9183.48
zeroin.i.1 211 49 49.05 20/20 1367.14 58 58.85 3/20 6531.84
zeroin.i.2 211 36 36.00 20/20 96.99 42 45.25 1/20 958.29
zeroin.i.3 206 36 36.00 20/20 109.11 45 45.05 19/20 1742.31

#Better 15 26 1 7
#Equal 24 7 24 7
#Worse 1 7 15 26

4.2 Effectiveness of Perturbation Operators

Perturbation is another important ingredient of the proposed BITS algorithm.
In order to show the effect of the perturbation operators on the performance
of the BITS algorithm, we compared BITS with a variant called BMTS where
instead of perturbing the incumbent solution, we generate a new solution by
the initialization procedure introduced in Section 2.4.1, while keeping the other
ingredients of BITS are unchanged. We ran both BITS and BMTS 20 times
on each of the 40 representative instances used in Section 4.1 and reported
the computational results in Table 4.

Table 4 shows that BITS substantially outperforms BMTS. First, in terms of
the best result kbest, BITS obtains a better result on 15 out of the 40 instances
compared to BMTS, while matching the results of BMTS for the other 24
instances. Second, BITS has a better average result (kavg) than BMTS on 26
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instances, while obtaining a worse result for only 7 instances. Concerning the
success rate in the case where both algorithms obtain the same best results
(kbest), BITS outperforms or matches BMTS in all but 6 instances. These
outcomes imply that the perturbation operators of the BITS algorithm play
an important role for its performance.

4.3 Importance of Backtracking Scheme

Table 5
Comparison of the BITS algorithms with and without the backtracking scheme on
some selected instances. Better results between the two algorithms are indicated in
bold.

BITS BITS−

Instance N kbest kavg SR t(s) kbest kavg SR t(s)

flat1000_76_0 1000 102 103.40 3/20 13063.39 112 112.00 20/20 21.15

latin_square_10 900 115 120.00 1/20 17859.13 123 128.45 1/20 19758.08

DSJC1000.5 1000 103 105.10 3/20 18078.94 112 112.00 20/20 23.92

le450_5c 450 5 5.00 20/20 1877.73 7 7.00 20/20 1.21

le450_5d 450 5 5.00 20/20 2231.59 7 7.00 20/20 0.93

To assess the merit of our BITS backtracking scheme to solve the k-ECP
instances with k ∈ [k∗ −m, k∗ − 1],m > 1, we remove this strategy and stop
the search once the current k-ECP instance (k = k∗ − 1) cannot be solved.
In other words, we effectively set m = 1 and call this variant BITS−. We
ran both algorithms 20 times on each of five selected benchmark instances to
highlight the fact that even if the backtracking mechanism is not needed in
all situations, it is indeed very useful for finding improved solutions for some
particularly difficult instances. The results of this experiment are summarized
in Table 5 with the same information as in the previous tables.

As shown in Table 5, the BITS algorithm significantly outperforms the BITS−

algorithm by obtaining much better results for the instances tested. These out-
comes clearly indicate that the popular strategy designed for the classic graph
coloring problem, i.e., solving a series of k-colorability problems with strictly
decreasing k values, is not appropriate for the ECP, and our backtracking
scheme helps the BITS algorithm to attain improved solutions for some diffi-
cult instances.

5 Conclusions

Our backtracking based iterated tabu search (BITS) approach to solve the
equitable coloring problem (ECP) achieves a high level of performance by
integrating several components: a backtracking scheme to define different k-
ECP instances, a tabu search procedure with a hybrid tabu list management
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strategy to solve each associated k-ECP instance, two perturbation operators
to jump out of local optima, and a binary search method to determine the
initial value of k.

The effectiveness of the BITS algorithm is demonstrated by a computational
study on a set of 73 benchmark instances, comparing our method with the
best existing heuristic algorithms in the literature. Among other features, our
algorithm finds improved upper bounds for 21 out of the 73 benchmark in-
stances.

Finally, we investigated several essential components to shed light on the
behavior of the BITS algorithm. Our tests disclose that the multiple tabu
list management strategy, the perturbation operators, and the backtracking
scheme all contribute to the algorithm’s performance.
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