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Abstract

The NP-hard capacitated clustering problem (CCP) is a general model with a num-
ber of relevant applications. This paper proposes a highly effective iterated variable
neighborhood search (IVNS) algorithm for solving the problem. IVNS combines an
extended variable neighborhood descent method and a randomized shake procedure
to explore effectively the search space. The computational results obtained on three
sets of 133 benchmarks reveal that the proposed algorithm competes favorably with
the state-of-the-art algorithms in the literature both in terms of solution quality
and computational efficiency. In particular, IVNS discovers an improved best known
result (new lower bounds) for 28 out of 83 most popular instances, while matching
the current best known results for the remaining 55 instances. Several essential com-
ponents of the proposed algorithm are investigated to understand their impacts on
the performance of algorithm.
Keywords: Capacitated clustering; grouping problem; variable neighborhood search;
heuristics.

1 Introduction1

Given a weighted undirect graph G = (V,E,C,w), where V = {v1, v2, . . . , vn}2

is the set of n nodes, E is the set of its edges, C = {cij : {vi, vj} ∈ E}3

represents the set of edge weights, and w = {wi ≥ 0 : vi ∈ V } is the set4

of node weights, the capacitated clustering problem (CCP) is to partition the5
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node set V into a fixed number p (p ≤ n is given) of disjoint clusters (or groups)6

such that the sum of node weights of each cluster lies in a given interval [L,U ]7

while maximizing the sum of the edge weights whose two associated endpoints8

locate in the same cluster. In some related literature like [9,23], an edge weight9

cij ∈ C is also called the benefit of the edge {vi, vj}, while L and U are called10

the lower and upper capacity limits of a cluster.11

Formally, the CCP can be expressed as the following quadratic program with12

binary variables Xig taking the value of 1 if node vi is in cluster g and 013

otherwise [9,23]:14

(CCP ) Maximize
p∑

g=1

n−1∑
i=1

n∑
j=i+1

cijXigXjg (1)

Subject to
p∑

g=1

Xig = 1, i = 1, 2, . . . , n (2)

L ≤
n∑

i=1

wiXig ≤ U, g = 1, 2, . . . , p (3)

Xig ∈ {0, 1}, i = 1, 2, . . . , n; g = 1, 2, . . . , p (4)

cij = 0,∀{vi, vj} /∈ E (5)

where the set of constraints (2) guarantees that each node is located in exactly15

one cluster (or group) and the set of constraints (3) forces the sum of node16

weights of each cluster to be at least L and at most U . The set of constraints17

(5) ensures that the benefit between nodes vi and vj is 0 if {vi, vj} /∈ E.18

The CCP is closely related to three other clustering problems: the graph par-19

titioning problem (GPP) [2–4,15,30], the maximally diverse grouping prob-20

lem (MDGP) [5,10,14,19,28,29,33], and the handover minimization problem21

(HMP) [23,26]. First, the GPP is a special case of the CCP when the lower22

and upper capacity limits of the clusters are respectively set to 0 and (1 +23

ϵ)⌈
∑n

i=1
wi

p
⌉, where ϵ (∈ [0, 1)) is a predetermined imbalance parameter. As24

such, the CCP is also known as the node capacitated graph partitioning prob-25

lem [11–13,27] or the min-cut clustering problem [20] in the literature. Second,26

the MDGP is also a special case of the CCP when the given graph is a com-27

plete graph and the nodes have a unit weight (wi = 1, i = 1, 2, . . . , n) [23].28

Additionally, as discussed in [23,26], the HMP can be viewed as a practical29

application of the CCP in the context of mobile networks.30

Given that the CCP generalizes the NP-hard MDPG, GPP, and HMP prob-31

lems, the CCP is at least as computationally difficult as these problems. More-32

over, any real-world applications that can be formulated by the MDPG, GPP,33

or HMP models can be cast as the CCP, such as creation of peer review groups34
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[7], parallel computing [18], assignment of students to groups [19], VLSI design35

[33], etc.36

Given the NP-hard nature of the CCP and its practical importance, a large37

number of studies have been proposed to investigate the problem and the three38

related clustering problems. Below, we highlight some most recent approaches39

on the CCP, while refereeing the reader to two recent papers [9,23] for a40

comprehensive review of existing studies in the literature.41

In 2011, Deng and Bard [9] proposed a greedy randomized adaptive search42

procedure with path relinking (GRASP+PR) by hybridizing a construction43

procedure of initial solution, a randomized variable neighborhood descent44

method as well as a path-relinking procedure. The reported computational45

results showed that the proposed GRASP+PR algorithm outperforms the ref-46

erence algorithms. In 2013, Morán-Mirabal et al. [26] proposed the follow-47

ing three heuristic algorithms for the HMP problem that is a special case of48

the CCP: a GRASP method (denoted by GQAP in their paper), an evolu-49

tionary path-relinking algorithm combined with GRASP (GevPR-HMP), and50

a population-based biased random-key genetic algorithm (BRKGA). Their51

study showed that GevPR-HMP achieved the best performance among the52

three proposed algorithms. In 2014, Lewis et al. [22] made a comparison be-53

tween the linear and nonlinear models for the CCP under the framework of54

exact methods, and showed that the quadratic model generally outperforms55

its equivalent linear alternatives.56

Recently (2015), Martínez-Gavara et al. [23] introduced several heuristic al-57

gorithms for the CCP, including a new GRASP method, a tabu search (TS)58

method, and a hybrid algorithm combining the proposed GRASP and tabu59

search methods (GRASP+TS). The authors also adapted a tabu search algo-60

rithm with strategic oscillation (TS_SO) originally designed for the MDGP61

to solve the CCP. Their study showed that the proposed GRASP+TS and62

TS algorithms significantly outperform their reference algorithms, including63

their GRASP method, Deng and Bard’s GRASP and TS_SO presented in64

[9], as well as the GevPR-HMP algorithm of [26]. Consequently, the TS and65

GRASP+TS algorithms proposed in [23] can be considered as the current best66

performing approaches for the CCP.67

In this paper, we are interested in solving the general CCP problem approx-68

imately and propose for this purpose an effective iterated variable neighbor-69

hood search algorithm (IVNS). The main contributions of the present work70

can be highlighted as follows:71

• The proposed IVNS algorithm introduces an extended variable neighbor-72

hood descent (EVND) method to ensure an intensified local optimization.73

Contrary to the standard variable neighborhood descent (VND) method74
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[24], our EVND method focuses on a more balanced exploitation between75

different neighborhoods, which provides the search with a reinforced diver-76

sification effect. Additionally, IVNS integrates two dedicated construction77

procedures to generate initial solutions and a randomized shake procedure78

to escape deep local optima (i.e., local optimum solutions which are difficult79

to attain and difficult to escape for a search algorithm).80

• When it is assessed on three sets of 133 benchmark instances of the lit-81

erature, the proposed IVNS algorithm achieves highly competitive perfor-82

mances both in terms of the solution quality and computational efficiency83

compared to the state-of-the-art results. On the two sets of 50 standard84

instances, IVNS outperforms the state-of-the-art CCP algorithms in the lit-85

erature. Moreover, for the 83 popular benchmark instances of the third set,86

IVNS improves the best known results (new lower bounds) in 28 cases and87

matches the best known results for the 55 remaining cases.88

The rest of the paper is organized as follows. In the next Section, our IVNS89

algorithm and its components are described in detail. Section 3 is dedicated90

to computational assessments based on the commonly used benchmarks and91

comparisons with the state-of-the-art algorithms in the literature. In Section92

4, several essential components of the proposed algorithm are investigated93

to shed light on how they affect the performance of the proposed algorithm.94

Concluding comments are summarized in the last section.95

2 Iterated Variable Neighborhood Search for the CCP96

Variable neighborhood search (VNS) [17,24] has been applied with success to97

many combinatorial optimization problems (see for instances [1,5,25,31,32]).98

In this work, we follow the general VNS framework and propose the iterated99

variable neighborhood search (IVNS) method for the CCP which integrates100

specially designed components to reach a suitable trade-off between inten-101

sification and diversification of the search process. Specifically, the proposed102

IVNS algorithm employs a randomized construction procedure to generate the103

initial solution, a new local optimization approach called the EVND method104

(extended variable neighborhood descent method) to discover local optima,105

and a shake procedure to perturb the incumbent solution. The proposed IVNS106

algorithm also employs a diversification stage to produce transition states be-107

tween high-quality local optimum solutions.108
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Algorithm 1: Main framework of IVNS method for CCP
Input: Instance I, parameter βmax, cutoff time tmax, η shake strength
Output: The best solution s∗ found during the whole search process

1 s← InitialSolution(I) /* section 2.3 */
2 s← EV ND(s) /* section 2.4.3 */
3 sb ← s, s∗ ← s
4 while Time() ≤ tmax do
5 β ← 0

/* Intensified search: iterated local optimization with
Shake and EVND */

6 while β < βmax ∧ Time() ≤ tmax do
7 s← Shake(sb, η) /* perturb sb before EVND improvement,

section 2.5 */
8 s← EV ND(s) /* local improvement, section 2.4.3 */
9 if f(s) > f(s∗) then

10 s∗ ← s /* update the best solution ever found */
11 end
12 if f(s) > f(sb) then
13 sb ← s, β ← 0 /* sb denotes the best solution obtained by

the current inner ‘while’ loop */
14 else
15 β ← β + 1
16 end
17 end

/* Diversification: additional Shake to escape deep local
optima */

18 sb ← Shake(sb, η) /* an additional shake of deep local optimum
sb before next round of iterated local optimization */

19 end
20 return s∗

2.1 General Procedure109

Our IVNS algorithm (Algorithm 1) starts from an initial feasible solution110

that is generated by a randomized construction procedure (Section 2.3) and is111

improved by the EVND method (lines 1 and 2, Section 2.4.3). Then it enters112

a ‘while’ loop in which an iterated local optimization (the inner ‘while’ loop,113

lines 5 to 17) and a diversification phase (the Shake call, line 18) are iteratively114

performed until a cutoff time tmax is reached.115

The inner ‘while’ loop aims to find, from a given solution (a local optimum),116

an improved local optimum by iterating the Shake procedure (line 7) followed117

by the EVND procedure (line 8). The starting solution is first shaken by mak-118
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ing η changes (η is called shake strength, see Section 2.5) which serves as the119

starting point of the extended variable neighborhood descent procedure (see120

Section 2.4.3). The outcome of each EVND application is used to update the121

best solution ever found (s∗, lines 9-11) and the best local optimum found dur-122

ing the current iterated local optimization phase (sb, lines 12-16). The counter123

β indicates the number of consecutive local optimization (Shake+EVND) it-124

erations during which sb is not updated (β is reset to 0 each time an improved125

local optimum sb is discovered). The inner ‘while’ loop exits when the cuttoff126

time is reached (in which case the whole algorithm terminates) or when β at-127

tains a fixed value βmax (a large βmax thus induces a more intensified search).128

In the later case, sb indicates a deep local optimum that the inner Shake call129

(line 7) is not sufficient to help EVND to escape. For this reason, we apply an130

additional Shake call (line 18) to modify sb before giving it to the next round131

of the inner ‘while’ loop.132

Note that with the second Shake call (line 18), the next inner ‘while’ loop133

starts the local optimization (EVND) with a doubly shaken starting solution,134

which diversifies the search strongly and helps escape deep local optima. More135

generally, the second Shake call may be replaced by other diversification tech-136

niques like random or customized restarts. In our case, we simply adopt the137

same Shake procedure used in the iterated local optimization phase. As shown138

in Section 3, this technique proves to be suitable and effective for the tested139

benchmarks. We also provide a study in Section 4.3 about the diversification140

effect of this second Shake application.141

2.2 Search Space, Evaluation Function and Solution Representation142

For a given CCP instance that is composed of a weighted graph G = (V,E,C,w),143

the number p of clusters, and the lower and upper limits L and U on the ca-144

pacity of clusters, the search space Ω explored by the IVNS algorithm contains145

all feasible solutions, i.e., all partitions of the nodes of V into p clusters such146

that the weight of each cluster lies between its lower and upper limits.147

Formally, let π : V → {1, ..., p} be a partition function of the n nodes of V to148

p clusters. For each cluster g ∈ {1, ..., p}, let πg = {v ∈ V : π(v) = g} (i.e.,149

πg is the set of nodes of cluster g). Then the search space Ω explored by our150

IVNS algorithm is given by:151

Ω = {π : ∀g ∈ {1, ..., p}, L ≤ |πg| ≤ U, |πg| =
∑

v∈πg
w(v)}.152

For any candidate partition s = {π1, π2, ..., πp} in Ω, its quality is evaluated153

by the objective function value f(s) of the CCP:154
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f(s) =
p∑

g=1

∑
vi,vj∈πg ,i<j

cij (6)

Given a candidate solution s = {π1, π2, ..., πp}, IVNS employs a n-dimensional155

vector x (element coordinate vector) to indicate the cluster of each node (or156

element). That is, if element i belongs to cluster πg, then x[i] = g (i ∈157

{1, . . . , n}). IVNS additionally uses a p-dimensional vector WC (cluster weight158

vector) to indicate the weight of each cluster of solution s, i.e., WC[g] =159 ∑
v∈πg

w(v) (∀g ∈ {1, . . . , p}). Moreover, to facilitate neighborhood operations160

during the search process, the algorithm maintains a n× p matrix γ in which161

the entry γ[v][g] represents the sum of edge weights between the node v and162

the nodes of cluster g in the candidate solution s, i.e., γ[v][g] =
∑

u∈πg
cvu.163

Consequently, any candidate solution s ∈ Ω can be conveniently indicated by164

the x and WC vectors, the γ matrix and its objective function value f , i.e., s165

= < x,WC, γ, f >.166

2.3 Initial Solution167

The proposed IVNS algorithm needs, for each run, an initial solution to start168

its search. In this work, we devise two randomized construction procedures169

for this purpose. The first procedure (Algorithm 2) operates in two stages. In170

the first stage, it iteratively performs a series of insertion operations until all171

clusters satisfy their lower capacity constraint. Specifically, for each insertion172

operation, a node v and a cluster g are randomly chosen from the set AN of173

unassigned nodes and the set AC of clusters whose lower bound constraint is174

not satisfied, then the node v is assigned to cluster g. In the second stage, the175

construction procedure performs again a series of insertion operations until all176

nodes are assigned. Each insertion operation consists of randomly picking an177

unassigned node v and a cluster g such that WC[g] + w(v) ≤ U , and then178

assigning v to g, where WC[g] and w(v) denote respectively the current weight179

of cluster g and the weight of node v.180

However, the preliminary experiments showed that it was often difficult to181

obtain a feasible solution by the above procedure when the upper capacity182

limit of clusters is very tight. As a result, we modify slightly the above proce-183

dure as follows to obtain a second construction procedure. For each insertion184

operation, instead of randomly picking a node from the set AN of unassigned185

nodes, we always choose the node v in AN such that v has the largest weight186

(break ties at random).187

Due to the random choices for insertion operations, the construction proce-188

dures are able to generate diversified initial solutions which allow the algorithm189
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Algorithm 2: Initial Solution Procedure
1 Function InitialSolution( )

Input: Instance I
Output: A feasible initial solution (denoted by < x[1 : n],WC[1 : p], γ, f >)

2 AN ← {1, 2, . . . , n} /* AN is the set of available nodes */
3 AC ← {1, 2, . . . , p} /* AC is the set of available clusters */
4 for g ← 1 to p do
5 WC[g] ← 0
6 end

/* WC[g] is the weight of cluster g for the current solution */
/* x represents the coordinate vector of current solution */

7 while AC ̸= ∅ do
8 v ← RandomNode(AN) /* randomly pick a node from AN */
9 g ← RandomCluster(AC) /* randomly pick a cluster from AC */

10 x[v] ← g
11 WC[g] ← WC[g] + w[v]
12 AN ← AN \ {v}
13 if WC[g] ≥ L then
14 AC ← AC \ {g}
15 end
16 end
17 AC ← {1, 2, . . . , p}
18 while AN ̸= ∅ do
19 Flag ← true
20 while Flag do
21 v ← RandomNode(AN) /* randomly pick a node from AN */
22 g ← RandomCluster(AC) /* randomly pick a cluster from AC

*/
23 if WC[g] + w[v] ≤ U then
24 Flag ← false
25 end
26 end
27 x[v] ← g
28 WC[g] ← WC[g] + w[v]
29 AN ← AN \ {v}
30 end
31 Compute γ and f for x /* Section 2.4.2 */
32 return <x,WC, γ, f>

to start each run in a different area of the search space.190

2.4 Local Optimization Method191

Our IVNS algorithm employs the EVND method as its local optimization192

procedure which extends the standard variable neighborhood descent (VND)193

method. The detail of the EVND method is described in the following subsec-194

tions.195
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2.4.1 Neighborhood Structures196

Our EVND procedure exploits systematically three neighborhoods, i.e., the197

insertion neighborhood N1, the swap neighborhood N2, and the 2-1 exchange198

neighborhood N3. Note that although these three neighborhoods have been199

proposed in previous studies [9,23], they have never been used together like200

we do in this work.201

The insertion neighborhood N1 is based on the OneMove operator. Give a so-202

lution (or a partition) s = {π1, π2, . . . , πp} in the search space Ω, the OneMove203

operator transfers a node v of s from its current cluster πi to another cluster204

πj such that |πi| − w(v) ≥ L and |πj| + w(v) ≤ U , where L and U denote205

respectively the lower and upper limits of capacity of clusters, w(v) repre-206

sents the weight of node v, and |πi| and |πj| denote respectively the weights207

of the clusters πi and πj in s. Let < v, πi, πj > designate such a move and208

s ⊕ < v, πi, πj > be the resulting neighboring solution produced by applying209

the move to s. Then the neighborhood N1 of s is composed of all possible210

neighboring solutions that can be obtained by applying the OneMove opera-211

tor to s, i.e.,212

N1(s) = {s ⊕ < v, πi, πj > : v ∈ πi, |πi| − w(v) ≥ L, |πj|+ w(v) ≤ U, i ̸= j}213

Clearly, the size of N1 is bounded by O(n× p).214

The neighborhood N2 is defined by the SwapMove operator. Given two nodes
v and u which are located in two different clusters of s, the SwapMove(v, u)
operator exchanges their clusters such that the resulting neighboring solution
is still feasible. Thus, the neighborhood N2 of s is composed of all feasible
neighboring solutions that can be obtained by applying SwapMove to s, i.e.,

N2(s) = {s ⊕ SwapMove(v, u) :v ∈ πi, u ∈ πj, L ≤ {|πi|+ w(u)− w(v),

|πj|+ w(v)− w(u)} ≤ U, i ̸= j}

The size of N2 is bounded by O(n2) and is usually larger than that of N1.215

The neighborhood N3 is based on the 2-1 exchange operator (Exchange(v, u, z)).
Given the current solution s = {π1, π2, . . . , πp} and three nodes v, u and z,
where v and u are located in the same cluster πi and z is located in another
cluster πj, Exchange(v, u, z) transfers the nodes v and u from their current
cluster πi to the cluster πj, and transfers simultaneously the node z from the
cluster πj to the cluster πi in such a way that the resulting solution is still
feasible. For the current solution s, the neighborhood N3 of s is composed
of all feasible neighboring solutions which can be obtained by applying the

9



Exchange(v, u, z) operator to s:

N3(s) = {s ⊕ Exchange(v, u, z) : v, u ∈ πi, z ∈ πj, L ≤ {|πi| − w(u)− w(v)+

w(z), |πj|+ w(v) + w(u)− w(z)} ≤ U, i ̸= j}

Since the Exchange(v, u, z) operator involves three nodes, the size of N3 is216

bounded by O(n3) and is usually much larger than that of N2 and N1.217

Additionally, it is worth noticing that these three neighborhoods (i.e., N1, N2,218

and N3) are functionally complementary. Actually, the OneMove, SwapMove,219

and Exchange(v, u, z) operators transfer at a time 1, 2, and 3 nodes, respec-220

tively. As a result, their combined use offers more opportunities for the local221

search procedure to disvover high-quality solutions.222

2.4.2 Fast Neighborhood Evaluation Technique223

Similar to the previous studies for the MDGP [5,21,28,29,31], our EVND pro-224

cedure employs an incremental evaluation technique to calculate rapidly the225

move value (i.e., the change of objective value) of each candidate move. As226

mentioned in Section 2.2, our procedure maintains a n× p matrix γ in which227

the entry γ[v][g] represents the sum of weights between the node v and the228

nodes of cluster g for the current solution, i.e., γ[v][g] =
∑

u∈πg
cvu. With the229

help of matrix γ, the evaluation function value f can be calculated as f(s) =230

1
2

∑n
i=1 γ[i][x[i]] for an initial candidate solution s = (x[1], x[2], . . . , x[n]). More-231

over, the matrix γ is frequently used in the neighborhood search operations232

(see Algorithms 4 to 6).233

Based on the current solution (or partition) s = {π1, π2, . . . , πp}, if a OneMove234

operation < v, πi, πj > is performed, the move value can be easily determined235

as ∆f (< v, πi, πj >) = γ[v][j] − γ[v][i], and then the matrix γ is accordingly236

updated. More specifically, the i-th and j-th columns of matrix γ are updated237

as follows: γ[u][i] = γ[u][i]− cvu, γ[u][j] = γ[u][j] + cvu, ∀u ∈ V, u ̸= v, where238

cvu is the edge weight between the nodes v and u. As such, the evaluation239

function value f can be rapidly updated as f ← f +∆f .240

When a SwapMove(v, u) operation is performed, its move value is calculated241

as ∆f (SwapMove(v, u)) = (γ[v][x[u]]− γ[v][x[v]]) + (γ[u][x[v]]− γ[u][x[u]])−242

2cvu, where x[v] and x[u] are the cluster of nodes v and u in the current243

solution s. As stated in Section 2.2, x = (x[1], x[2], . . . , x[n]) represents the244

coordinate vector of the incumbent solution s. Since a SwapMove(v, u) oper-245

ation is composed of two consecutively performed OneMove operations, i.e.,246

s ⊕ SwapMove(v, u) = (s ⊕ < v, x[v], x[u] >)⊕ < u, x[u], x[v] >, matrix γ is247

consecutively updated two times according to the OneMove move.248

When a Exchange(v, u, z) move is performed, the move value is calculated as249
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∆f (Exchange(v, u, z)) = (γ[v][x[z]] − γ[v][x[v]]) + (γ[u][x[z]] − γ[u][x[u]]) +250

(γ[z][x[v]] − γ[z][x[z]]) + 2(cvu − cvz − cuz). Since a Exchange(v, u, z) move251

is composed of three consecutively performed OneMove moves, i.e., s ⊕252

Exchange(v, u, z) = ((s⊕ < v, x[v], x[z] >)⊕ < u, x[u], x[z] >)⊕ < z, x[z], x[v] >,253

matrix γ is consecutively updated three times according to the OneMove254

move.255

Matrix γ is initialized at the beginning of each run of the EVND procedure256

with a time complexity of O(n2), and is updated after each move operation in257

O(n) for any considered move operator.258

2.4.3 Extended Variable Neighborhood Descent259

Algorithm 3: Extended Variable Neighborhood Descent (EVND) for CCP
1 Function EVND(s0)

Input: Solution s0
Output: The local optimum solution s

2 s← s0
3 repeat
4 repeat
5 s ← LSN1(s) /* Algorithm 4 */
6 (Flag, s) ← LSN2(s) /* Algorithm 5 */
7 until Flag = false
8 (Flag, s) ← LSN3(s) /* Algorithm 6 */
9 until Flag = false

10 return s

Let Nk (k = 1, 2, . . . , kmax) be a sequence of neighborhood structures (also260

called the neighborhood in this Section) with respect to a given optimization261

problem, the standard variable neighborhood descent (VND) method changes262

in a deterministic way the current neighborhood in order to find a high-263

quality local optimum solution with respect to all kmax neighborhoods [9,24].264

Specifically, the standard VND method starts with the first neighborhood N1265

(k = 1) and makes a complete exploitation of the neighborhood. Then, the266

VND method switches orderly to the next neighborhood Nk+1 (k ← k + 1)267

when the current neighborhood Nk (k = 1, 2, . . . , kmax − 1) is fully explored268

without finding an improving solution. Moreover, the search process switches269

immediately to the first neighborhood N1 as soon as an improving solution270

is detected in the current neighborhood Nk, i.e., k ← 1. Finally, the VND271

method stops if the search process reaches the last neighborhood Nkmax and272

no improving solution can be found in Nkmax , and the best solution found dur-273

ing the search process is returned as the result of the VND method. Clearly,274

the returned solution is a local optimum solution with respect to all kmax275

neighborhoods.276
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Algorithm 4: Local search with N1

1 Function LSN1(x,WC, γ, f)
Input: x[1 : n], WC[1 : p], γ, f
Output: The local optimum solution (denoted by < x,WC, γ, f > )
/* WC represents the weight vector of clusters */
/* x represents the coordinate vector of current solution */

2 Improve← true
3 while Improve = true do
4 Improve← false
5 for v ← 1 to n do
6 for g ← 1 to p do
7 if (x[v] ̸= g) ∧ (WC[x[v]]−w[v] ≥ L) ∧ (WC[g] + w[v] ≤ U) then
8 ∆f ← γ[v][g]− γ[v][x[v]]
9 if ∆f > 0 then

10 WC[x[v]]← WC[x[v]]− w[v]
11 WC[g]← WC[g] + w[v]
12 x[v]← g
13 f ← f +∆f

14 Update matrix γ /* Section 2.4.2 */
15 Improve← true
16 end
17 end
18 end
19 end
20 end
21 return < x,WC, γ, f >

Our EVND method described in Algorithm 3 extends the standard VND277

method in the sense that EVND employs a different condition to switch from278

the current neighborhood Nk (k > 1) to the first neighborhood N1. In the279

standard VND method, the search process switches back to the first neighbor-280

hood as soon as an improving solution is found in the current neighborhood281

Nk (even if more improving solutions can be further found in Nk). However,282

our EVND method switches to the first neighborhood N1 when one of the283

following two conditions is satisfied. First, the solution has been updated (or284

improved) m (m ≥ 1, a parameter called ‘the depth of improvement in neigh-285

borhood search’) times with the current neighborhood Nk. Second, the solu-286

tion has been updated (improved) at least one time with the neighborhood287

Nk and no improving solution can further be found in the neighborhood Nk.288

Clearly, the standard VND method is a special case of our EVND method289

when m = 1. Note that compared to the standard VND method, our EVND290

method imposes a stronger condition to move back to the first neighborhood.291

Such an extension for the standard VND method is based on two consid-292
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Algorithm 5: Local search with N2

1 Function LSN2(x,WC, γ, f)
Input: x[1 : n], WC[1 : p], γ, f , m
Output: The obtained solution (denoted by < x,WC, γ, f > )
/* WC represents the weight vector of clusters */
/* x represents the coordinate vector of current solution */

2 Improve← true, Flag ← false, counter ← 0
3 while Improve = true do
4 Improve← false
5 for v ← 1 to n− 1 do
6 for u← v + 1 to n do
7 if (x[v] ̸= x[u]) ∧ (L ≤ WC[x[v]] + (w[u]− w[v]) ≤ U) ∧

(L ≤ WC[x[u]] + (w[v]− w[u]) ≤ U) then
8 ∆f ← (γ[v][x[u]]− γ[v][x[v]]) + (γ[u][x[v]]− γ[u][x[u]])− 2cvu
9 if ∆f > 0 then

10 WC[x[v]]← WC[x[v]] + (w[u]− w[v])
11 WC[x[u]]←WC[x[u]] + (w[v]− w[u])
12 Swap(x, v, u)
13 f ← f +∆f

14 Update matrix γ /* Section 2.4.2 */
15 Flag ← ture
16 Improve← true
17 counter ← counter + 1
18 if counter ≥ m then
19 return < Flag, x,WC, γ, f >

/* Return the reached solution and stop the
function */

20 end
21 end
22 end
23 end
24 end
25 end
26 return < Flag, x,WC, γ, f >

erations. First, in the standard VND method, the first neighborhood N1 is293

explored more often than the other neighborhoods since we move back to294

N1 as soon as an improving solution is discovered in the current neighbor-295

hood Nk (k > 1). However, a more balanced exploitation of all the k neigh-296

borhoods constitutes another possibility and may help the search process297

to discover better solutions. Compared to the standard VND method, our298

EVND method promotes a more balanced exploitation of the neighborhoods299

Nk (k = 2, 3, . . . , kmax) relative to the first neighborhood N1. Second, the solu-300

tions returned by the neighborhoods Nk (k = 2, 3, . . . , kmax) generally have a301

larger distance from the local optimum solution produced most recently by the302

first neighborhood N1 with our EVND method than with the standard VND303

method. Thus, compared to the standard VND method, our EVND method304

creates some diversification effect during its intensified descent process with305

each neighborhood.306
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Algorithm 6: Local search with N3

1 Function LSN3(x,WC, γ, f)
Input: x[1 : n], WC[1 : p], γ, f , m
Output: The obtained solution (denoted by < x,WC, γ, f > )
/* WC represents the weight vector of clusters */
/* x represents the coordinate vector of current solution */

2 Improve← true, Flag ← false, counter ← 0
3 while Improve = true do
4 Improve← false
5 for v ← 1 to n− 1 do
6 for u← v + 1 to n do
7 for z ← 1 to n do
8 if (x[v] = x[u] ∧ x[v] ̸= x[z]) ∧

(L ≤ WC[x[v]] + (w[z]− w[u]− w[v]) ≤ U) ∧
(L ≤ WC[x[z]] + (w[v] + w[u]− w[z]) ≤ U) then

9 ∆f ← (γ[v][x[z]]− γ[v][x[v]]) + (γ[u][x[z]]− γ[u][x[u]]) +
(γ[z][x[v]]− γ[z][x[z]]) + 2(cvu − cvz − cuz)

10 if ∆f > 0 then
11 WC[x[v]]← WC[x[v]] + (w[z]− w[u]− w[v]),

WC[x[z]]←WC[x[z]] + (w[v] + w[u]− w[z])
12 swap← x[v], x[v]← x[z], x[u]← x[z], x[z]← swap
13 f ← f +∆f

14 Update matrix γ /* Section 2.4.2 */
15 Flag ← ture
16 Improve← true
17 counter ← counter + 1
18 if counter ≥ m then
19 return < Flag, x,WC, γ, f >

/* Return the reached solution and stop
the function */

20 end
21 end
22 end
23 end
24 end
25 end
26 end
27 return < Flag, x,WC, γ, f >

Our EVND method for the CCP exploits three complementary neighborhoods307

introduced in Section 2.4.1, i.e., N1, N2 and N3 and is described in Algorithms308

3 to 6, where the variables x, WC, γ and f have the same meanings as those309

in Section 2.2.310

From Algorithm 3, one can observe that our EVND procedure consists of311

two loops and each loop stops as long as the corresponding Flag variable312

receives the value false. Specifically, for the inner loop the Flag variable will313

get the value false when no improving neighbor exists in the neighborhood N2314

according to Algorithm 5. Similarly, for the outer loop the Flag variable will315

14



get the value false when no improving neighbor exists in the neighborhood N3316

according to Algorithm 6. Consequently, the EVND procedure always stops317

when no improving neighbor exists in the neighborhoods N2 and N3 for the318

incumbent solution.319

2.5 Shake Procedure320

Algorithm 7: Shake procedure
1 Function Shake(s0, η)

Input: Solution s0, strength of shake η
Output: The perturbed solution s, matrix γ, objective value f

2 s← s0
3 for l← 1 to η do
4 Randomly pick a neighboring solution s

′ ∈ N1(s) ∪N2(s)
5 s← s

′

6 end
7 Compute γ and f for s /* Section 2.4.2 */
8 return < s, γ, f >

When our IVNS algorithm reaches a local optimum solution, we apply a Shake321

procedure to the reached solution to jump out of the local optimum trap. The322

Shake procedure used by the IVNS algorithm consists of consecutively per-323

forming η randomly selected feasible OneMove or SwapMove moves, where η324

is a parameter called the shake strength. In other words, from the incumbent325

solution s0, we construct the N1(s) and N2(s) neighborhoods which include all326

(feasible) neighboring solutions of s (see Section 2.4.1) and then pick randomly327

a solution s
′ from the union of N1(s) and N2(s) to replace s0. We repeat this op-328

eration η times. It is clear that a large (respect. small) η value leads to a shaken329

solution which will be more (respect. less) distant from the input solution. In330

this work, the value of η is empirically set as η = min{15,max{5, 0.02n}},331

where n is the number of nodes in the graph. Note that it is possible to in-332

clude Exchange moves for the Shake operations. Meanwhile, for the reason of333

simplicity, we only apply OneMove and SwapMove moves, which proves to334

be sufficient for our purpose of diversification. The pseudo-code of our Shake335

procedure is given in Algorithm 7.336

3 Experimental Results and Comparisons337

In this section, we assess the performance of the proposed IVNS algorithm338

by showing computational results on well-known benchmark instances and by339

making a comparison with the state-of-the-art algorithms in the literature.340
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3.1 Benchmark Instances341

Our IVNS algorithm was assessed on three sets of 133 benchmark instances342

commonly used in the literature. These instances are available at http://343

www.optsicom.es/ccp/, and their details are described as follows.344

• RanReal Set (40 instances): This set was originally proposed in [14] for the345

MDGP and adapted to the CCP in [23] by generating the node weights with346

a uniform distribution U(0,10). This set is composed of 20 instances with347

n = 240, p = 12, L = 75, and U = 125, and 20 instances with n = 480,348

p = 20, L = 100, and U = 150. For all instances of this set, the edge weights349

cij are a real number which is uniformly and randomly generated in (0, 100).350

• DB Set (10 instances): This set was originally proposed by Deng and Bard351

[9] for the MDGP in the context of mail delivery, and adapted to the CCP352

in [23] by generating the node weights with a uniform distribution U(0,10).353

These 10 instances are characterized by the following features: n = 82,354

p = 8, L = 25, and U = 75.355

• MM Set (83 instances): These 83 synthetic instances were proposed by356

Morán-Mirabal et al. [26] for the handover minimization problem and were357

widely used in the literature. These instances have the following character-358

istics: n ∈ {20, 30, 40, 100, 200, 400}, p ∈ {5, 10, 15, 25, 50}, the edge weights359

cij are a real number, and the lower and upper capacity limits of clusters360

respectively are 0 and a real number depending on each instance.361

3.2 Parameter Settings and Experimental Protocol362

Table 1
Settings of parameters

Parameters Section Description Values

βmax 2.1 strength of intensification search 30

m 2.4.3 depth of improvement in neighborhood search 10

η 2.5 strength of shake min{15,max{5, 0.02n}}

In this Section, we show some basic information about our experiments, in-363

cluding the parameter settings of our algorithm, the reference algorithms, the364

experimental platform, and the termination criterion of algorithms.365

First, Table 1 shows the parameter setting of our IVNS algorithm which was366

achieved by a preliminary experiment. For this preliminary experiment, we367

used 20 RanReal instances with n = 240 which were also used in the sen-368

sibility analysis of parameters presented in Section 4.4. The computational369

results indicated that for m and βmax the default settings shown in Table 1370

are suitable for the algorithm (see Section 4.4). For η, it involves three vari-371

ables, so we manually tuned its value based on a principle that the strength of372
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shake procedure should be proportional to the size of instance but in an ap-373

propriate interval. The computational results on the preliminary experiment374

indicated that the default setting of η in Table 1 is able to reach an acceptable375

performance of the algorithm.376

Second, according to the previous surveys [23,26], the TS [23], GRASP+TS377

[23], and GevPR-HMP [26] algorithms can be considered as the state-of-the-378

art algorithms for the CCP. Hence, in the present study we use them as the379

main reference algorithms for our comparative study.380

Our IVNS algorithm was programmed in C++. To make a fair compari-381

son with the state-of-the-art algorithms, we also implemented faithfully the382

GRASP, TS, GRASP+TS algorithms of [23] which are three state-of-the-art383

algorithms in the literature 1 . For the GRASP, TS, GRASP+TS algorithms,384

we adopted the best parameter settings identified in the original paper [23].385

Moreover, all source codes were compiled using g++ compiler with the ‘-O3’386

flag, and the corresponding experiments were carried out on a computing plat-387

form with an Intel E5-2670 processor (2.80 GHz CPU and 2Gb RAM), running388

Linux. Following the DIMACS machine benchmark procedure, our machine re-389

quires respectively 0.19, 1.17, and 4.54 seconds for the graphs r300.5, r400.5,390

r500.5 2 .391

For the GRASP, TS, GRASP+TS, and IVNS algorithms, we used a cutoff392

time tmax = n (in seconds) as the unique stopping criterion where n is the393

number of nodes of the input graph.394

Finally, for the IVNS algorithm, the initial solution was generated by the395

second initialization procedure for the handover minimization instances due396

to their tight upper bounds on the capacity of clusters, and by Algorithm 2397

for the remaining instances. For GRASP, TS and GRASP+TS, the handover398

minimization instances are not used in the experiments, since their initial399

solution procedures can not guarantee to generate a feasible solution for a400

part of them due to the tight upper bounds on the capacity of clusters.401

3.3 Computational Results and Comparison on the general CCP Instances402

The first experiment aims to assess the performance of our IVNS algorithm on403

the first two sets of instances by comparing its results with those of the state-404

of-the-art algorithms in the literature. In this experiment, all the compared405

algorithms (GRASP, TS, GRASP+TS and IVNS) were respectively performed406

1 The source codes of these algorithms will be available at: http://www.info.

univ-angers.fr/pub/hao/ccp.html
2 dmclique, ftp://dimacs.rutgers.edu/pub/dsj/clique
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Table 2
Comparison between the IVNS algorithm and three state-of-the-art algorithms from
the literature (i.e., GRASP, TS, GRASP+TS in [25]) on the first two sets (RanReal
and DB) of CCP instances in terms of the best and average objective function
values over 20 independent runs. The best results among the compared algorithms
are indicated in bold.

fbest favg

Instance GRASP TS GRASP+TS IVNS GRASP TS GRSP+TS IVNS

Sparse82_01 1342.17 1336.82 1342.17 1342.17 1342.13 1315.21 1342.17 1342.17
Sparse82_02 1306.64 1303.17 1306.64 1306.64 1305.65 1281.57 1306.16 1306.64
Sparse82_03 1353.94 1353.94 1353.94 1353.94 1351.69 1335.89 1353.00 1353.94
Sparse82_04 1291.22 1291.22 1291.22 1291.22 1289.15 1276.85 1290.05 1291.22
Sparse82_05 1352.35 1352.35 1352.35 1352.35 1352.35 1328.15 1352.35 1352.35
Sparse82_06 1354.61 1354.61 1354.61 1354.61 1353.86 1329.86 1354.61 1354.61
Sparse82_07 1266.94 1266.94 1266.94 1266.94 1266.86 1227.01 1266.89 1266.94
Sparse82_08 1393.02 1391.53 1393.02 1393.02 1393.02 1362.54 1393.02 1393.02
Sparse82_09 1294.12 1294.12 1294.12 1294.12 1293.69 1280.97 1293.46 1294.12
Sparse82_10 1356.98 1356.98 1356.98 1356.98 1356.85 1330.79 1356.95 1356.98
RanReal240_01 192320.30 222871.98 223272.87 224893.92 191140.45 221547.29 222268.07 224785.27
RanReal240_02 185612.48 202356.36 202344.44 204608.66 183435.92 200582.86 200356.15 204415.88
RanReal240_03 179316.65 196422.35 196143.12 198885.19 176821.81 194348.91 194783.74 198626.93
RanReal240_04 197342.26 222298.86 223076.30 225627.16 194629.26 220521.18 221165.75 225227.11
RanReal240_05 175967.25 193358.53 194115.62 195440.94 174465.68 191234.34 192076.34 195228.86
RanReal240_06 192789.55 214840.96 215004.12 216736.00 188264.62 212626.52 213259.64 216474.84
RanReal240_07 191714.87 208223.05 208045.67 209273.70 190379.19 205808.95 206092.48 209004.05
RanReal240_08 185930.72 203595.13 203168.62 205246.82 181699.18 201102.55 201519.15 204958.19
RanReal240_09 189573.48 207711.19 207984.26 209059.28 186992.97 206540.74 206788.13 208789.79
RanReal240_10 176327.61 189597.87 190532.75 192977.28 174638.77 187534.34 188379.13 192788.59
RanReal240_11 184198.31 203109.91 203037.25 204722.75 182673.54 201113.86 201701.83 204523.95
RanReal240_12 181337.55 199710.82 199708.68 201052.53 180048.84 198365.85 198389.30 200904.16
RanReal240_13 180865.29 201238.18 200742.90 202335.99 179893.27 199590.02 198727.63 202139.55
RanReal240_14 194009.94 226813.94 226621.92 228844.44 191947.27 225362.61 225721.97 228512.11
RanReal240_15 173114.22 188896.07 188318.39 191170.98 171311.83 187410.50 187299.92 190914.31
RanReal240_16 182348.50 202475.44 202463.27 203999.02 180823.13 199999.63 200722.29 203834.68
RanReal240_17 181270.70 194155.13 193835.64 195242.31 179607.16 191978.36 191908.95 195114.49
RanReal240_18 174650.37 192772.21 193004.84 195069.62 173876.39 190428.51 190979.42 194853.70
RanReal240_19 179859.43 196739.04 196717.17 199200.03 177521.56 194916.62 195053.62 199019.23
RanReal240_20 191936.64 210399.94 210365.38 212264.10 190110.07 208970.68 208887.59 212046.92
RanReal480_01 463538.35 543259.55 544301.19 555057.10 460340.75 539074.11 539550.62 554331.89
RanReal480_02 446829.64 500646.59 502039.41 510418.44 443573.33 495273.27 497700.18 509519.84
RanReal480_03 434854.27 486379.91 487561.06 496641.22 433059.42 482624.38 483908.86 495847.80
RanReal480_04 455470.88 510971.67 513425.37 521984.68 450861.04 504054.37 507123.99 520891.75
RanReal480_05 415295.30 474548.74 473732.77 483228.99 413263.81 466932.68 469914.28 482595.19
RanReal480_06 461624.20 524191.64 524520.14 533762.18 458049.90 519002.55 520607.74 532888.64
RanReal480_07 461236.11 537464.01 537674.45 545157.68 456319.85 530513.86 532199.71 544530.14
RanReal480_08 460756.67 521894.07 523602.31 532308.09 458299.68 515438.23 518685.30 531417.94
RanReal480_09 466977.73 546057.32 546394.74 556478.39 462121.78 540459.20 541615.49 555098.72
RanReal480_10 447088.04 508294.13 508168.74 519456.96 441810.74 503161.12 504750.89 518612.02
RanReal480_11 451321.35 515296.61 515189.66 523450.04 448295.75 510410.05 509657.31 522814.96
RanReal480_12 434343.91 492469.23 493845.25 501596.63 433067.26 487442.12 488699.18 500580.84
RanReal480_13 467130.54 526936.22 524825.92 534638.19 461557.62 519201.37 521740.67 533763.20
RanReal480_14 428544.75 500100.04 508349.48 513777.84 426455.75 495859.32 499543.12 512975.73
RanReal480_15 446764.19 509377.07 509005.17 516941.11 443810.07 503159.99 503946.63 516017.98
RanReal480_16 465499.89 540493.75 540840.67 549371.23 462345.11 533502.50 535129.37 548276.15
RanReal480_17 460122.80 531353.71 529388.54 537483.76 458004.02 523459.84 524362.15 536655.06
RanReal480_18 456573.73 515692.20 518675.12 525813.39 452767.79 511193.51 512917.14 524650.86
RanReal480_19 454922.45 514503.74 512339.77 522158.86 449744.91 506858.76 508311.67 521180.84
RanReal480_20 443851.41 510045.22 509167.33 518288.03 440398.01 503995.42 505190.58 517261.92

#Best 10 7 10 50 2 0 4 50

p-value 2.54e-10 5.47e-11 2.54e-10 4.26e-12 1.54e-12 1.18e-11
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Table 3
Comparison between the IVNS algorithm and three state-of-the-art algorithms from
the literature (i.e., GRASP, TS, GRASP+TS [25]) on the first two sets (RanReal and
DB) of CCP instances in terms of the standard deviation and the average running
time to reach its final objective value. Each instance was independently solved 20
times by each algorithm respectively.

standard deviation (σ) timeavg(s)

Instance GRASP TS GRASP+TS IVNS GRASP TS GRASP+TS IVNS

Sparse82_01 0.16 23.24 0.00 0.00 14.01 9.31 15.15 0.13

Sparse82_02 0.93 19.99 0.97 0.00 30.82 7.53 29.27 0.82

Sparse82_03 1.24 14.90 1.63 0.00 41.60 2.38 38.78 0.21

Sparse82_04 1.32 12.97 1.04 0.00 30.60 6.36 36.99 4.27

Sparse82_05 0.00 30.33 0.00 0.00 4.97 8.02 5.11 0.07

Sparse82_06 1.39 25.63 0.00 0.00 24.43 4.03 26.04 0.08

Sparse82_07 0.18 22.46 0.10 0.00 32.74 4.75 28.10 0.39

Sparse82_08 0.00 29.24 0.00 0.00 1.00 9.31 0.74 0.03

Sparse82_09 0.40 13.01 0.22 0.00 28.54 5.67 16.31 0.58

Sparse82_10 0.16 24.48 0.07 0.00 29.41 2.08 37.81 0.59

RanReal240_01 864.05 1098.76 601.21 97.88 166.10 15.24 132.87 147.28

RanReal240_02 936.74 1140.64 1886.92 102.77 128.76 17.81 132.97 160.27

RanReal240_03 786.12 1192.60 875.04 170.83 123.40 7.19 125.43 146.88

RanReal240_04 1018.21 1302.30 1060.61 237.09 122.63 13.49 146.27 162.63

RanReal240_05 646.56 1255.73 894.36 91.62 113.10 8.38 129.66 161.77

RanReal240_06 1321.33 1251.75 959.32 169.61 128.25 15.04 139.80 165.88

RanReal240_07 592.59 1696.59 1324.09 120.82 114.48 27.88 143.93 120.41

RanReal240_08 1271.82 1184.11 1096.61 139.71 137.49 19.52 128.97 174.29

RanReal240_09 1127.57 1073.39 873.02 148.77 135.58 27.24 158.97 160.17

RanReal240_10 659.31 1160.27 1080.52 154.18 107.53 7.40 127.40 170.78

RanReal240_11 855.28 1127.48 1041.35 96.57 115.17 36.41 162.40 148.56

RanReal240_12 624.13 1347.08 961.73 126.79 128.65 34.82 151.19 169.33

RanReal240_13 531.24 1095.26 1191.67 155.41 102.67 38.44 131.83 150.75

RanReal240_14 1185.33 1086.76 672.46 170.71 112.17 10.11 124.59 141.27

RanReal240_15 780.67 1026.16 700.91 174.08 120.50 8.78 126.35 144.95

RanReal240_16 645.97 1341.25 1033.99 131.32 97.79 19.38 141.58 147.86

RanReal240_17 679.79 1280.03 936.77 109.08 120.85 25.01 142.44 146.03

RanReal240_18 458.00 1155.66 1050.83 126.17 141.20 7.55 130.71 163.49

RanReal240_19 924.99 1173.30 1357.67 109.79 113.09 8.71 125.27 176.31

RanReal240_20 829.60 908.52 816.33 130.92 99.00 24.49 146.64 149.66

RanReal480_01 1767.54 2915.75 2305.94 415.49 276.78 87.81 270.05 369.26

RanReal480_02 1541.69 3027.29 1982.60 569.71 212.88 50.36 276.25 416.40

RanReal480_03 909.49 2529.01 1999.88 426.86 281.57 55.11 274.68 415.80

RanReal480_04 1426.35 4323.08 2867.38 648.97 230.07 53.23 275.02 380.20

RanReal480_05 1094.52 3383.90 1886.34 497.25 310.87 33.56 271.51 338.96

RanReal480_06 1573.22 3178.92 2393.40 555.89 205.83 58.20 291.32 338.25

RanReal480_07 1926.89 2864.48 2451.06 413.13 198.46 63.44 291.77 388.74

RanReal480_08 1404.82 4291.62 2058.61 555.42 194.59 77.79 291.08 373.48

RanReal480_09 1994.95 3774.05 2163.84 514.64 231.09 78.00 282.38 388.08

RanReal480_10 1667.97 2799.90 2715.16 589.69 296.32 49.75 268.99 403.46

RanReal480_11 1488.69 2771.21 2220.12 402.37 243.62 98.13 277.81 382.52

RanReal480_12 1078.08 3170.40 2713.09 540.16 292.27 80.68 296.84 386.04

RanReal480_13 2379.98 3611.97 2431.74 423.89 264.67 66.61 289.75 420.59

RanReal480_14 1025.07 2482.93 2984.86 408.22 275.91 41.00 276.64 401.09

RanReal480_15 1358.30 3001.21 3149.15 408.07 241.74 86.60 296.67 375.96

RanReal480_16 1331.41 4488.81 2636.34 590.34 217.53 56.34 279.50 366.12

RanReal480_17 1306.58 3384.98 2538.33 402.38 274.19 56.09 286.52 389.54

RanReal480_18 1343.73 4530.39 2388.17 494.86 248.92 80.52 307.61 379.04

RanReal480_19 2115.36 2949.64 2357.29 550.77 248.76 49.19 282.87 405.61

RanReal480_20 1146.60 3505.30 2635.41 530.58 255.89 91.93 288.15 398.10

#Best 2 0 4 50

p-value 4.26e-12 1.54e-12 1.18e-11
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20 times on each instance, based on the experimental protocol of Section 3.2.407

The computational results are summarized in Tables 2 and 3.408

In Table 2, the first column identifies the instances, columns 2–4 show respec-409

tively the best objective values (fbest) obtained by the three reference algo-410

rithms (GRASP, TS, GRASP+TS), and column 5 reports the best objective411

values of our IVNS algorithm. Columns 6–9 show respectively the average ob-412

jective values for the four compared algorithms (favg). The best results among413

the algorithms in terms of the best and average objective values are indicated414

in bold. In Table 3, columns 2–5 show the standard deviation (σ) of the objec-415

tive values obtained over 20 runs for the compared algorithms, respectively,416

and columns 6–9 give the average running times (in seconds) of the algo-417

rithms to reach their respective objective values (timeavg). The row #Best of418

the tables indicates the number of instances for which the corresponding algo-419

rithm produces the best results among the compared algorithms. In addition,420

to verify whether there exists a significant difference between the reference421

algorithms and our IVNS algorithm on the best and average objective val-422

ues, as well as the standard deviation of objective values, the p-values from423

the non-parametric Friedman test are reported in the last row of the tables.424

Notice that a p-value smaller than 0.05 means that there exists a significant425

difference between two sets of results compared.426

One observes from Tables 2 and 3 that the proposed IVNS algorithm outper-427

forms the reference algorithms. First, IVNS obtained the best result on all428

50 instances in terms of the best objective value, whereas the GRASP, TS,429

GRASP+TS algorithms produced respectively the best result on 10, 7 and430

10 instances. Second, when comparing the average objective values, it can be431

found that the IVNS algorithm yielded the best result on all instances, whereas432

the GRASP, TS, and GRASP+TS algorithms respectively obtained the best433

results on only 2, 0, 4 instances. In addition, the small p-values (< 0.05) con-434

firm the significant differences between the results of IVNS and those of the435

compared reference algorithms.436

Finally, compared to the reference algorithms, the IVNS algorithm produced437

the smallest standard deviation (σ) on all tested instances, indicating that438

IVNS is the most robust algorithm among the compared algorithms, which is439

also confirmed by the associated small p-values.440

3.4 Computational Results and Comparison on the Handover Minimization441

Instances442

The second experiment aims to assess the performance of the IVNS algorithm443

on the set of 83 handover minimization instances with n ≤ 400, where for each444
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Table 4
Comparison between the IVNS algorithm and the three reference algorithms in [26]
on the set of handover minimization instances. Each instance was independently
solved 20 times by the IVNS algorithm, and the current best results are indicated in
bold. The results are given in the form of minimization to make a direct comparison
with the results from the literature.

Instance BKS GevPR-
HMP

GQAP BRKGA IVNS

fbest fbest fbest fbest favg fworst σ timeavg(s)

100_15_270001 19000 19174 19000 19000 19000 19000.00 19000 0.00 1.01
100_15_270002 22686 22686 22686 23288 22686 22686.00 22686 0.00 0.71
100_15_270003 14558 14558 14558 14616 14558 14558.00 14558 0.00 0.09
100_15_270004 19700 19762 19700 19882 19700 19700.00 19700 0.00 0.15
100_15_270005 22746 22892 22746 23092 22746 22746.00 22746 0.00 0.67
100_25_270001 36412 36412 36448 36752 36412 36412.00 36412 0.00 2.42
100_25_270002 38608 39144 38608 39256 38608 38608.00 38608 0.00 1.04
100_25_270003 32686 32966 32686 32708 32686 32686.00 32686 0.00 1.82
100_25_270004 35322 35678 35322 35954 35322 35322.00 35322 0.00 0.26
100_25_270005 36878 36906 36878 37100 36690 36690.00 36690 0.00 0.21
100_50_270001 60922 60922 61172 61554 60922 60922.00 60922 0.00 2.58
100_50_270002 62022 62046 62022 62524 62022 62022.00 62022 0.00 0.53
100_50_270003 54596 54618 54596 55192 54596 54596.00 54596 0.00 4.07
100_50_270004 57894 57894 57894 58208 57894 57894.00 57894 0.00 1.18
100_50_270005 61088 61088 61318 62784 61080 61082.80 61090 4.31 46.02
200_15_270001 81558 81558 82834 81558 81558 81558.00 81558 0.00 12.53
200_15_270002 89810 89810 90620 90506 89492 90502.80 91172 546.53 48.73
200_15_270003 79232 79232 80980 79548 79232 79277.60 80144 198.77 13.39
200_15_270004 78324 78324 80538 80026 78324 78485.50 79726 375.08 52.95
200_15_270005 95998 95998 98826 98830 95680 96137.10 96986 622.92 21.85
200_25_270001 133168 133168 138454 140492 133168 133168.00 133168 0.00 51.17
200_25_270002 136038 136038 140066 140690 133778 133859.80 133926 47.19 68.02
200_25_270003 139438 139438 144120 143724 136782 136795.50 136812 14.92 67.84
200_25_270004 128554 128554 134054 131786 128246 128246.00 128246 0.00 53.92
200_25_270005 148402 148402 154260 152934 147844 147844.00 147844 0.00 10.20
200_50_270001 219672 221550 223096 223098 215388 215531.20 215572 64.28 67.70
200_50_270002 216444 218254 219910 219834 212798 212864.60 212912 36.18 92.01
200_50_270003 221348 221500 222404 221110 214364 214413.90 214426 15.03 61.89
200_50_270004 211832 212044 212544 213170 206476 206509.80 206590 29.01 61.66
200_50_270005 231890 231890 236136 237156 229918 230050.70 230082 22.82 76.55
400_15_270001 370314 372694 456158 375650 369048 372055.40 385786 4442.20 187.66
400_15_270002 370274 370274 460232 383096 365878 369275.90 378508 4126.82 228.23
400_15_270003 358684 358684 448830 366314 352588 356988.80 365886 4140.92 135.41
400_15_270004 334430 334430 406834 346282 331888 339169.90 350388 6361.04 214.63
400_15_270005 361904 361904 457274 377094 360422 363890.10 383154 4970.80 200.30
400_25_270001 568830 570852 663908 579130 545118 546936.70 549318 1026.66 208.04
400_25_270002 543182 544568 658440 554840 528470 529087.80 530118 444.68 201.85
400_25_270003 548000 548000 667982 553162 524678 526220.60 530438 1695.07 215.17
400_25_270004 501750 501750 607672 516416 481568 482070.00 484566 722.65 174.58
400_25_270005 556044 556044 679848 585070 548100 549839.10 557482 2608.26 240.02
400_50_270001 851412 851412 951882 879438 824766 825581.20 826202 402.47 241.94
400_50_270002 845496 845496 949562 874226 823094 824239.00 825442 591.82 216.54
400_50_270003 819242 819242 919140 843242 801586 802672.90 804310 776.71 266.22
400_50_270004 774564 774564 878912 806690 760602 761370.40 763076 553.34 275.49
400_50_270005 854726 854726 940358 882060 828384 829335.50 830116 421.66 238.48
#Improve 0 0 0 0 28
#Match 17 9 11 2 17
#Total 45 45 45 45 45
p-value 1.21e-7 1.97e-9 5.51e-9 5.47e-11

instance the IVNS algorithm was independently run 20 times. The computa-445

tional results are summarized in Table 4 for the large instances with n ≥ 100.446

For very small instances with n ≤ 40, the computational results are reported447

in Appendix (Table 10) since they are very easy to be solved by the IVNS448

algorithm (see Appendix for the details). Notice that in the present section449

all results are given in the form of minimization to make a direct compar-450

ison between the results of the IVNS algorithm and those reported in the451
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literature, and that the results of the maximization form can be converted to452

the minimization form as follows: fmin = 2(
∑

i<j cij − fmax), where fmin and453

fmax respectively correspond to the results of minimization and maximization454

forms.455

Columns 1 and 2 of Table 4 respectively give the instance name and the456

best known solution (BKS) published in the literature. Columns 3–5 show the457

best results of three reference algorithms in [26]: a GRASP method (GQAP),458

a GRASP embedded within a population-based evolutionary path-relinking459

algorithm (GevPR-HMP), and a population-based biased random-key genetic460

algorithm (BRKGA). The results of these reference algorithms were directly461

extracted from [26], which correspond to the best outcomes (fbest) yielded by462

5 runs with a cutoff time of 24 hours based on a cluster running Intel X5650463

processors at 2.67 GHz or a cluster running Intel Xeon E5530 processors at464

2.4 GHz [26]. It is worth noting that the cutoff time of the three reference465

algorithms is much higher than ours (24 hours vs. n ≤ 400 seconds). Columns466

6–10 show the results of our IVNS algorithm, including the best objective value467

(fbest) over 20 runs, the average objective value (fagv), the worst objective value468

(fworst), the standard deviation of objective value (σ), and the average running469

time in seconds to reach its final objective value (timeavg). The rows Improve,470

Match denote the number of instances for which the associated algorithm471

improved or matched the best known results in the literature, and row Total472

shows the total number of instances. Note that the current best results are473

indicated in bold, and other symbols are the same as those in Table 2. Besides,474

it should be mentioned that this section focuses on the best results produced by475

the compared algorithms, since the compared algorithms were run on different476

computers and the cut-off times of the reference algorithms are much longer477

than that of our IVNS algorithm.478

Table 4 clearly discloses that the proposed IVNS algorithm outperforms the479

three reference algorithms designed for the handover minimization problem.480

First, the IVNS algorithm improved the best known results for 28 out of 45481

instances with n ≥ 100, while matching the best known results for the remain-482

ing instances. Second, compared to any of the three reference algorithms, our483

IVNS algorithm obtained the better or equal objective values for all instances,484

even if IVNS uses much shorter cutoff times than that of the reference algo-485

rithms (n ≤ 400 seconds vs. 24 hours). Third, even the worst objective value486

produced by the IVNS algorithm is better than the best known result reported487

in the literature for instances with n = 400, and the average computing time488

timeavg is smaller than 300 for each instance. Finally, one observes that all489

p-values are smaller than 0.05, implying there exits a significant difference490

between the results of the IVNS algorithm and those yielded by the reference491

algorithms. In summary, these outcomes indicate that the proposed IVNS al-492

gorithm is highly efficient for solving the handover minimization instances493

compared to the state-of-the-art algorithms in the literature [26].494
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4 Analysis and Discussions495

We now turn our attention to analyze some essential aspects of the proposed496

IVNS algorithm, including the local optimization procedure (i.e., the EVND497

method), the influence of the diversification stage on the performance of IVNS498

algorithm, and a sensitivity analysis of the key parameters. In this section,499

all experiments were carried out based on the set of RanReal instances (20500

instances with n = 240 and 20 instances with n = 480).501

4.1 Comparison Between the Standard and Extended VND Methods502

The IVNS algorithm employs the extended VND method (EVND) as its local503

optimization procedure. Since the EVND method is an extension of the stan-504

dard VND method, we carried out an experiment to compare both methods.505

In this experiment, both EVND and VND were respectively run 100 times506

on each instance. Specifically, for each run, both methods were performed507

with the same initial solution generated by the first construction procedure508

presented in Section 2.3.509

The computational results of this experiment are summarized in Table 5, in-510

cluding the average objective function value (favg) and the average running511

time (timeavg). In addition, the rows Better, Equal and Worse of the table de-512

note the number of instances for which the corresponding algorithm obtained513

a better, equal, and worse average objective value compared to another one.514

The p-values from the non-parametric Friedman test are given in the last row515

of the table.516

It can be observed from Table 5 that in terms of the average objective value,517

the EVND method achieves a better result than the standard VND method518

for 36 out of 40 instances, whereas both methods consumed a similar compu-519

tational time for most instances. These outcomes demonstrate the interest of520

the EVND method compared to the standard VND method.521

4.2 Importance of 2-1 Exchange Neighborhood N3522

The EVND method employs three complementary neighborhoods i.e., N1, N2523

and the 2-1 exchange neighborhood N3. While N1 and N2 are very popular524

and their effectiveness has been shown on a number of the clustering problems525

in the literature [5,6,9,28,29,31], N3 is not well studied and thus less under-526

stood. In this section, we assess the influence of N3 on the performance of the527

IVNS algorithm. The computational experiment was carried out as follows.528
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Table 5
Comparison between the standard VND method and the extended VND (EVND)
method on the set of 40 representative instances. Each instance was independently
solved 100 times by both algorithms respectively, and better results in the average
objective value (favg) between the compared algorithms are indicated in bold.

Instance favg timeavg
VND EVND VND EVND

RanReal240_01 220221.45 221035.18 0.12 0.12
RanReal240_02 199165.17 199461.37 0.09 0.10
RanReal240_03 193878.39 194087.07 0.09 0.10
RanReal240_04 219242.90 220280.46 0.08 0.11
RanReal240_05 190443.88 190569.72 0.08 0.10
RanReal240_06 211538.07 212198.32 0.09 0.10
RanReal240_07 203850.69 204429.68 0.10 0.13
RanReal240_08 200600.21 200710.54 0.13 0.12
RanReal240_09 204291.07 204961.02 0.08 0.10
RanReal240_10 186995.53 187202.99 0.09 0.11
RanReal240_11 199062.90 199574.51 0.09 0.11
RanReal240_12 196535.07 196618.48 0.08 0.11
RanReal240_13 197326.13 197585.12 0.10 0.11
RanReal240_14 224438.53 224784.93 0.12 0.12
RanReal240_15 185489.25 186227.47 0.08 0.10
RanReal240_16 198794.30 199277.26 0.10 0.11
RanReal240_17 189651.07 190188.43 0.07 0.10
RanReal240_18 189290.28 189691.65 0.10 0.10
RanReal240_19 193267.47 194274.68 0.08 0.10
RanReal240_20 207193.59 207692.77 0.08 0.10
RanReal480_01 541860.57 545446.40 0.88 0.87
RanReal480_02 497118.68 498148.99 1.01 0.95
RanReal480_03 483285.49 482184.26 0.99 0.99
RanReal480_04 507951.82 509674.81 0.76 0.90
RanReal480_05 469493.30 469172.22 0.86 0.91
RanReal480_06 516732.69 518796.77 0.96 0.95
RanReal480_07 528136.56 533541.23 0.99 0.93
RanReal480_08 516413.17 518435.89 0.81 0.83
RanReal480_09 543150.66 546057.68 0.88 0.98
RanReal480_10 507686.31 508665.48 0.77 0.86
RanReal480_11 511503.09 512682.60 0.96 0.94
RanReal480_12 487411.85 488100.45 1.04 1.08
RanReal480_13 517853.71 521632.82 0.87 0.88
RanReal480_14 500399.35 500139.40 1.01 0.94
RanReal480_15 501547.03 503165.49 0.88 0.83
RanReal480_16 536611.41 537921.48 1.00 0.86
RanReal480_17 526315.11 526884.43 0.92 0.95
RanReal480_18 508572.09 511441.64 0.88 0.85
RanReal480_19 509748.10 509208.68 0.70 0.84
RanReal480_20 502534.92 504453.71 0.93 0.87
#Better 4 36
#Equal 0 0
#Worse 36 4
p-value 4.20e-7 1.96e-2

We ran our IVNS and IVNS− methods 20 times to solve each instance, where529

IVNS− is a variant of IVNS in which N3 (corresponding to subroutine LSN3530

of Algorithm 6) is disabled while keeping the other algorithmic ingredients531

unchanged. The experimental results are summarized in Table 6, including532

the average objective value favg, the standard deviation of objective value (σ),533

and the average running time to reach its final objective value (timeavg), and534

other symbols are the same as those in the previous tables.535

Table 6 shows that without N3, the performance of IVNS deteriorates for all536

instances in terms of average objective value. Moreover, the average computing537

times indicate that N3 helps the IVNS algorithm to continue its search for a538
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Table 6
Comparison between the IVNS method and its a variant (IVNS−) in which the
neighborhood N3 is disabled on the set of 40 representative instances. Each instance
is respectively solved 20 times by both algorithms, and better results in the average
objective value between two algorithms are indicated in bold.

Instance favg σ timeavg
IVNS− IVNS IVNS− IVNS IVNS− IVNS

RanReal240_01 223891.05 224785.27 179.47 97.88 114.90 147.28
RanReal240_02 203789.58 204415.88 160.64 102.77 120.46 160.27
RanReal240_03 198236.57 198626.93 96.21 170.83 145.08 146.88
RanReal240_04 224617.33 225227.11 86.58 237.09 149.30 162.63
RanReal240_05 195181.62 195228.86 82.96 91.62 149.44 161.77
RanReal240_06 215491.95 216474.84 126.77 169.61 109.82 165.88
RanReal240_07 208889.10 209004.05 74.03 120.82 147.34 120.41
RanReal240_08 204207.83 204958.19 230.94 139.71 158.62 174.29
RanReal240_09 208562.04 208789.79 50.70 148.77 119.07 160.17
RanReal240_10 192253.79 192788.59 100.09 154.18 147.11 170.78
RanReal240_11 203776.92 204523.95 109.20 96.57 149.70 148.56
RanReal240_12 200251.35 200904.16 145.50 126.79 101.56 169.33
RanReal240_13 201581.76 202139.55 143.75 155.41 123.42 150.75
RanReal240_14 228332.63 228512.11 228.63 170.71 108.74 141.27
RanReal240_15 190130.92 190914.31 190.24 174.08 137.21 144.95
RanReal240_16 203072.49 203834.68 197.23 131.32 110.16 147.86
RanReal240_17 194564.42 195114.49 92.24 109.08 113.22 146.03
RanReal240_18 194370.83 194853.70 121.64 126.17 107.11 163.49
RanReal240_19 198496.90 199019.23 144.56 109.79 111.23 176.31
RanReal240_20 211418.56 212046.92 130.93 130.92 106.77 149.66
RanReal480_01 550160.70 554331.89 777.24 415.49 304.77 369.26
RanReal480_02 507893.39 509519.84 457.07 569.71 286.47 416.40
RanReal480_03 493226.43 495847.80 584.05 426.86 307.52 415.80
RanReal480_04 518088.82 520891.75 462.43 648.97 303.57 380.20
RanReal480_05 481778.58 482595.19 436.13 497.25 310.42 338.96
RanReal480_06 529846.53 532888.64 537.12 555.89 240.48 338.25
RanReal480_07 542575.23 544530.14 675.84 413.13 310.92 388.74
RanReal480_08 529264.25 531417.94 464.02 555.42 265.15 373.48
RanReal480_09 551329.66 555098.72 547.85 514.64 246.68 388.08
RanReal480_10 516929.26 518612.02 466.20 589.69 282.97 403.46
RanReal480_11 520357.01 522814.96 424.04 402.37 318.02 382.52
RanReal480_12 498472.55 500580.84 410.95 540.16 258.80 386.04
RanReal480_13 530678.39 533763.20 628.41 423.89 261.10 420.59
RanReal480_14 509895.03 512975.73 685.12 408.22 251.09 401.09
RanReal480_15 513947.87 516017.98 645.76 408.07 255.18 375.96
RanReal480_16 544921.69 548276.15 933.12 590.34 332.77 366.12
RanReal480_17 533634.44 536655.06 498.31 402.38 277.45 389.54
RanReal480_18 521497.91 524650.86 775.43 494.86 288.94 379.04
RanReal480_19 519184.62 521180.84 716.91 550.77 230.32 405.61
RanReal480_20 514755.82 517261.92 500.77 530.58 286.77 398.10
#Better 0 40
#Equal 0 0
#Worse 40 0
p-value 2.54e-10

longer time and thus to attain better solutions. This experiment demonstrates539

the usefulness of the 2-1 exchange neighborhood for the IVNS algorithm.540

4.3 Importance of the Diversification Mechanism541

The IVNS algorithm performs an intensified search stage with the iterated542

local optimization (lines 5–17 of Algorithm 1) and a diversified stage with543

the Shake procedure (line 18 of Algorithm 1). The diversified stage aims at544

producing transition states between two high-quality local optima, since these545

transition states are usually necessary to help the search process to move from546
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Table 7
Comparative results of the IVNS method with and without its diversified stage
(IVNS-D), on the set of 40 representative instances. Each instance was independently
solved 20 times by both algorithms respectively, and better results in terms of the
average objective value between two algorithms are indicated in bold.

Instance favg σ timeavg
IVNS-D IVNS IVNS-D IVNS IVNS-D IVNS

RanReal240_01 223986.99 224785.27 272.57 97.88 69.37 147.28
RanReal240_02 203614.45 204415.88 299.81 102.77 113.36 160.27
RanReal240_03 197731.77 198626.93 418.98 170.83 100.27 146.88
RanReal240_04 224424.68 225227.11 459.32 237.09 93.67 162.63
RanReal240_05 194298.12 195228.86 474.64 91.62 113.46 161.77
RanReal240_06 215609.74 216474.84 318.55 169.61 90.56 165.88
RanReal240_07 208341.50 209004.05 378.79 120.82 122.25 120.41
RanReal240_08 204211.41 204958.19 219.57 139.71 93.92 174.29
RanReal240_09 208092.99 208789.79 286.18 148.77 109.41 160.17
RanReal240_10 191828.97 192788.59 482.02 154.18 133.85 170.78
RanReal240_11 203921.95 204523.95 329.82 96.57 75.89 148.56
RanReal240_12 199971.56 200904.16 300.91 126.79 105.04 169.33
RanReal240_13 201224.78 202139.55 467.84 155.41 87.82 150.75
RanReal240_14 227825.89 228512.11 356.96 170.71 103.34 141.27
RanReal240_15 189814.49 190914.31 446.62 174.08 81.73 144.95
RanReal240_16 202951.20 203834.68 412.54 131.32 87.63 147.86
RanReal240_17 194328.55 195114.49 265.17 109.08 165.12 146.03
RanReal240_18 193915.24 194853.70 286.06 126.17 104.30 163.49
RanReal240_19 197900.00 199019.23 461.25 109.79 101.25 176.31
RanReal240_20 211284.31 212046.92 280.17 130.92 96.18 149.66
RanReal480_01 552979.67 554331.89 560.30 415.49 375.66 369.26
RanReal480_02 507974.23 509519.84 816.89 569.71 337.88 416.40
RanReal480_03 494000.83 495847.80 961.92 426.86 372.23 415.80
RanReal480_04 519475.06 520891.75 843.47 648.97 367.62 380.20
RanReal480_05 481098.07 482595.19 832.34 497.25 315.49 338.96
RanReal480_06 531667.60 532888.64 649.14 555.89 360.97 338.25
RanReal480_07 543160.19 544530.14 666.03 413.13 345.01 388.74
RanReal480_08 530127.30 531417.94 626.52 555.42 369.13 373.48
RanReal480_09 553832.78 555098.72 703.40 514.64 383.55 388.08
RanReal480_10 516798.04 518612.02 653.19 589.69 327.60 403.46
RanReal480_11 520835.32 522814.96 952.45 402.37 359.04 382.52
RanReal480_12 499078.98 500580.84 687.26 540.16 334.42 386.04
RanReal480_13 532308.08 533763.20 792.43 423.89 390.62 420.59
RanReal480_14 511808.09 512975.73 635.87 408.22 408.37 401.09
RanReal480_15 514720.84 516017.98 482.10 408.07 365.89 375.96
RanReal480_16 547296.05 548276.15 682.57 590.34 371.18 366.12
RanReal480_17 534975.71 536655.06 719.18 402.38 353.90 389.54
RanReal480_18 523253.63 524650.86 720.31 494.86 348.96 379.04
RanReal480_19 519700.55 521180.84 564.17 550.77 378.77 405.61
RanReal480_20 515947.56 517261.92 567.91 530.58 325.18 398.10
#Better 0 40
#Equal 0 0
#Worse 40 0
p-value 2.54e-10

a basin of attraction to another basin.547

In order to assess the impact of this diversified stage on the performance of548

the IVNS algorithm, we created a variant of the IVNS method (denoted by549

IVNS-D) by removing the Shake operation of line 18 of Algorithm 1 while550

keeping other components of IVNS unchanged. We ran IVNS-D and IVNS551

20 times to solve each instance. The experimental results are summarized in552

Table 7, where the symbols have the same meanings as those in the previous553

tables.554

Table 7 indicates that IVNS-D deteriorates the results of IVNS. First, IVNS-D555

performs worse than IVNS on all instances in terms of the average objective556
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value. Second, concerning the standard deviation (σ) of the objective value,557

IVNS obtained a better result for all instances. This experiment confirms558

the usefulness of the additional diversification stage introduced in line 18 of559

Algorithm 1.560

4.4 Sensitivity Analysis of Parameters561

Table 8
Sensitivity analysis of the parameter m. Each instance was independently
solved 20 times by the IVNS algorithm for each parameter value in the range
{4, 6, 8, 10, 12, 14, 16, 18}, and the average objective values (favg) over 20 runs are
respectively reported.

favg

Instance/m 4 6 8 10 12 14 16 18
RanReal240_01 224747.89 224743.77 224750.51 224736.19 224734.17 224784.25 224725.39 224718.09
RanReal240_02 204400.52 204403.15 204425.39 204459.24 204400.94 204418.82 204448.37 204449.36
RanReal240_03 198657.99 198717.34 198685.34 198691.63 198679.41 198658.77 198661.33 198685.05
RanReal240_04 225204.66 225140.01 225146.45 225190.13 225152.00 225194.58 225242.84 225239.61
RanReal240_05 195275.00 195287.90 195237.80 195259.40 195256.56 195199.85 195246.73 195246.16
RanReal240_06 216533.35 216475.23 216454.28 216497.78 216513.23 216465.82 216515.60 216491.18
RanReal240_07 209098.93 209062.00 209060.14 209043.44 209092.56 209024.46 209021.64 209029.07
RanReal240_08 204914.37 204947.69 204883.38 204950.99 204938.25 204962.13 204943.61 204930.28
RanReal240_09 208826.26 208832.55 208883.41 208833.99 208799.52 208794.97 208822.74 208745.94
RanReal240_10 192736.25 192755.01 192815.78 192698.13 192811.66 192776.03 192640.29 192796.48
RanReal240_11 204478.83 204444.22 204464.45 204448.14 204470.10 204495.97 204478.49 204454.86
RanReal240_12 200921.94 200878.36 200830.81 200867.36 200808.50 200783.89 200887.89 200824.69
RanReal240_13 202094.54 202050.52 202042.04 202105.03 201987.09 202076.88 202094.15 202098.55
RanReal240_14 228474.87 228487.74 228483.37 228478.88 228531.74 228528.80 228525.70 228557.20
RanReal240_15 190924.82 190924.06 190907.09 190958.90 190939.27 190933.87 190944.36 190913.93
RanReal240_16 203763.28 203789.09 203798.46 203856.97 203816.01 203850.67 203746.08 203801.18
RanReal240_17 195115.48 195125.04 195150.36 195147.21 195078.97 195106.20 195132.90 195141.27
RanReal240_18 194947.69 194852.90 194893.01 194756.48 194875.62 194852.77 194866.09 194836.40
RanReal240_19 198962.52 199040.68 198966.06 198984.75 198934.98 199008.06 198988.46 198974.27
RanReal240_20 212074.56 212092.28 212056.10 212032.47 211998.49 212046.46 212001.59 212105.61
Average 205607.69 205602.48 205596.71 205599.85 205590.95 205598.16 205596.71 205601.96

Table 9
Sensitivity analysis of the parameter βmax. Each instance was independently
solved 20 times by the IVNS algorithm for each parameter value in the range
{5, 10, 15, 20, 25, 30, 35, 40}, and the average objective values (favg) over 20 runs
are respectively reported.

favg

Instance/βmax 5 10 15 20 25 30 35 40
RanReal240_01 224676.47 224758.30 224738.12 224753.19 224749.78 224769.53 224739.29 224675.94
RanReal240_02 204384.58 204428.48 204454.16 204422.07 204403.51 204425.57 204381.89 204378.07
RanReal240_03 198621.22 198612.88 198694.68 198622.62 198700.29 198600.93 198693.71 198489.30
RanReal240_04 225111.94 225215.51 225217.08 225262.81 225203.17 225225.99 225039.70 225189.87
RanReal240_05 195202.16 195260.55 195222.28 195278.64 195256.13 195158.88 195199.11 195273.42
RanReal240_06 216421.63 216540.77 216524.29 216511.22 216500.76 216531.96 216491.43 216397.47
RanReal240_07 208954.86 209051.89 209053.73 209066.47 209030.62 209042.97 209025.39 208978.27
RanReal240_08 204957.91 204935.06 204950.87 204998.23 204918.30 204968.93 204864.60 204754.79
RanReal240_09 208775.98 208872.97 208803.31 208762.89 208814.66 208793.45 208786.65 208819.28
RanReal240_10 192729.71 192761.86 192767.85 192774.27 192787.08 192666.16 192647.02 192789.16
RanReal240_11 204457.23 204464.00 204483.40 204492.54 204490.35 204487.99 204463.07 204385.61
RanReal240_12 200897.62 200913.55 200930.03 200918.37 200868.58 200824.06 200865.56 200857.78
RanReal240_13 202110.38 202121.17 202114.62 202100.76 202097.89 202124.86 202087.71 202049.26
RanReal240_14 228454.78 228514.51 228484.05 228516.60 228536.93 228490.37 228494.82 228413.24
RanReal240_15 190869.97 190940.52 190895.56 190944.22 190966.06 190940.83 190868.54 190804.69
RanReal240_16 203702.06 203824.85 203821.77 203859.91 203778.12 203774.10 203819.94 203790.17
RanReal240_17 195096.28 195211.71 195161.74 195155.80 195166.45 195159.81 195051.22 194973.69
RanReal240_18 194861.25 194879.05 194882.91 194900.61 194900.42 194861.18 194881.60 194746.11
RanReal240_19 199005.21 199037.12 199047.45 198990.69 198983.59 199071.70 198893.53 198805.32
RanReal240_20 211997.53 212060.94 212059.02 212049.21 212060.15 212052.58 211986.43 211926.56
Average 205564.44 205620.28 205615.35 205619.06 205610.64 205598.59 205564.06 205524.90

Our IVNS algorithm employs two main parameters, i.e., m and βmax. Pa-562
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rameter m is employed in the EVND procedure (Section 2.4.3) to control the563

exploitation balance between the different neighborhoods, a larger value of564

m leading to a more balanced neighborhood exploitation. Parameter βmax is565

used to control the strength of intensification search, a larger value of βmax566

implying a stronger intensification for the IVNS algorithm. In this section we567

show a sensitivity analysis of these two key parameters, which also helps to568

find an appropriate value for each of them.569

In this study, we carried out two additional experiments based on 20 RanReal570

instances with n = 240. In the first experiment, we varied the value of m571

within the range {4, 6, 8, 10, 12, 14, 16, 18} and ran the algorithm 20 times for572

each value of m and each instance, while keeping other parameters with their573

default values as shown in Table 1. The computational results are summarized574

in Table 8, where the second row indicates the values of m, the first column575

gives the names of instances, the other columns show the average objective576

function values over 20 independent runs (favg) for each value of m and each577

instance, and the last row shows the average results over all instances. Simi-578

larly, we varied in the second experiment the value of βmax within the range579

{5, 10, 15, 20, 25, 30, 35, 40}. The computational results are summarized in Ta-580

ble 9, where the second row gives the values of βmax, and the other entries581

have the same meanings as those in Table 8.582

First, we observe from Table 8 that the performance of the IVNS algorithm is583

not sensitive to the setting of parameter m. Specifically, for most instances the584

different values of m leaded to very similar results in terms of favg. Indeed, the585

relative difference between the results yielded by the different parameter values586

across the 20 instances is very small (≤ (205607.69−205590.95)
205607.69

×100% = 0.0081%).587

Hence, the default value of m was set to 10 in this work. As for βmax, Table 9588

shows that for most instances the tested values leaded also to similar results in589

terms of favg, with a very small relative difference between the results yielded590

by the different βmax values (≤ (205620.28−205524.90)
205620.28

× 100% = 0.046%). These591

outcomes indicate that the IVNS algorithm is not sensitive to the setting of592

parameter βmax. Consequently, to ensure that a lasting intensified search effect593

when a long computational time is allowed, the default value of βmax was set594

to 30 in this study.595

5 Conclusions596

The capacitated clustering problem (CCP) is a general and useful model for597

a number of applications. It also generalizes three well-known NP-hard prob-598

lems: the maximally diverse grouping problem, the graph partitioning prob-599

lem, and the handover minimization problem. In this paper, we proposed the600

iterated variable neighborhood search (IVNS) algorithm for solving the CCP.601
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The proposed algorithm organically combines an extended variable neighbor-602

hood descent (EVND) method for intensification and a shake procedure for603

diversification.604

The proposed algorithm was assessed on the 133 instances commonly used605

in the literature, and the computational results indicated that our IVNS al-606

gorithm significantly outperforms the state-of-the-art CCP algorithms both607

in terms of solution quality and computational efficiency. In particular, the608

proposed algorithm improved the best known results (new lower bounds) for609

28 out of 83 handover minimization instances, while matching the best known610

results for the 55 remaining instances.611

The investigations of several essential components of the proposed algorithm612

shed light on the following points. First, for the CCP, the EVND method usu-613

ally outperforms the standard variable neighborhood descent method in terms614

of the local search ability, and the 2-1 exchange neighborhood N3 reinforces615

the intensified search capacity of the EVND method. Second, the diversifica-616

tion stage is essential for the proposed algorithm to reach a suitable trade-off617

between the diversification and intensification of the search process.618

Based on this work, we advance some research perspectives for further im-619

provements. First, within the IVNS algorithm, diversification is ensured by the620

shake procedure as well as the shake strength. Since different degrees of diver-621

sification may be needed at different search stages, it would be interesting to622

investigate adaptive techniques able to adjust dynamically the shake strength.623

Moreover, to escape deep local optima, it would also be useful to study other624

diversification methods like random or adaptive restarts. Second, using the625

presented EVND method as a local optimization procedure, it may be possi-626

ble to devise more efficient hybrid evolutionary algorithms for the CCP. Third,627

the IVNS algorithm only visits feasible solutions. Meanwhile, previous studies628

like [8,16] showed that tunneling through feasible and infeasible regions can629

improve the performance of the search process. It would be relevant to study630

dedicated methods able to explore infeasible regions in a controlled manner.631

Finally, given that the basic idea of the proposed IVNS algorithm, i.e., in-632

tegrating organically the EVND method with multiple neighborhoods and a633

diversified shake procedure, is independent of the CCP, it would be interesting634

to examine its applicability to other grouping or clustering problems.635
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Table 10
Appendix: Computational results of IVNS on the small handover minimization
instances. The results are given in the form of minimization to make a direct com-
parison with the best known results in the literature.

IVNS
Instance BKS fbest favg fworst σ timeavg(s)
20_5_270001 540 540 540.00 540 0.00 0.00
20_5_270002 54 54 54.00 54 0.00 0.00
20_5_270003 816 816 816.00 816 0.00 0.00
20_5_270004 126 126 126.00 126 0.00 0.00
20_5_270005 372 372 372.00 372 0.00 0.00
20_10_270001 2148 2148 2148.00 2148 0.00 0.00
20_10_270002 1426 1426 1426.00 1426 0.00 0.00
20_10_270003 2458 2458 2458.00 2458 0.00 0.00
20_10_270004 1570 1570 1570.00 1570 0.00 0.00
30_5_270001 772 772 772.00 772 0.00 0.00
30_5_270002 136 136 136.00 136 0.00 0.00
30_5_270003 920 920 920.00 920 0.00 0.00
30_5_270004 52 52 52.00 52 0.00 0.00
30_5_270005 410 410 410.00 410 0.00 0.00
30_10_270001 3276 3276 3276.00 3276 0.00 0.00
30_10_270002 1404 1404 1404.00 1404 0.00 0.00
30_10_270003 2214 2214 2214.00 2214 0.00 0.00
30_10_270004 2150 2150 2150.00 2150 0.00 0.00
30_10_270005 2540 2540 2540.00 2540 0.00 0.00
30_15_270001 6178 6178 6178.00 6178 0.00 0.00
30_15_270002 4042 4042 4042.00 4042 0.00 0.00
30_15_270003 4126 4126 4126.00 4126 0.00 0.00
30_15_270004 3920 3920 3920.00 3920 0.00 0.00
40_5_270001 610 610 610.00 610 0.00 0.00
40_5_270002 136 136 136.00 136 0.00 0.00
40_5_270003 234 234 234.00 234 0.00 0.00
40_5_270004 232 232 232.00 232 0.00 0.02
40_5_270005 774 774 774.00 774 0.00 0.00
40_10_270001 4544 4544 4544.00 4544 0.00 0.00
40_10_270002 2068 2068 2068.00 2068 0.00 0.00
40_10_270003 2090 2090 2090.00 2090 0.00 0.00
40_10_270004 1650 1650 1650.00 1650 0.00 0.01
40_10_270005 4316 4316 4316.00 4316 0.00 0.00
40_15_270001 8646 8646 8646.00 8646 0.00 0.01
40_15_270002 4586 4586 4586.00 4586 0.00 0.03
40_15_270003 5396 5396 5396.00 5396 0.00 0.01
40_15_270004 4800 4800 4800.00 4800 0.00 0.00
40_15_270005 6272 6272 6272.00 6272 0.00 0.00
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