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Abstract. In this paper, we present a practical case of the multiob-
jective knapsack problem which concerns the elaboration of the optimal
action plan in the social and medico-social sector. We provide a descrip-
tion and a formal model of the problem as well as some preliminary
computational results. We perform an empirical analysis of the behav-
ior of three metaheuristic approaches: a fast and elitist multiobjective
genetic algorithm (NSGA-II), a Pareto Local Search (PLS) algorithm
and an Indicator-Based Multi-Objective Local Search (IBMOLS).

1 Introduction

During the last decades, combinatorial optimization has received great interest
and takes an important and even strategic place in industrial settings. Multi-
objective metaheuristics have proven their efficiency for solving many practical
problems, which usually consist in handling simultaneously several conflicting
objectives [2].

The aim of this paper is to present a practical problem, proposed by the
company “GePI” which works in the social and medico-social domain. This study
is unique in the sector because even if this sector is increasingly computerized
these last years, it remains among the sectors where optimization is not yet used
as a tool for decision support.

The problem considered in this paper consists in elaborating action plans in
order to improve the overall management of the considered structure. The aim
is to choose a subset of actions among many possible actions while optimizing
several objectives. Each action has a realization cost and can influence other
objectives (positively or negatively). The global cost of the solution should not
exceed a predefined budget. Our problem is a multiobjective knapsack prob-
lem [5,8], which is well known in the literature. The action plan represents the
knapsack and the selected actions represent the items to put in the knapsack
respecting the budget constraint.

The considered problem can include more than one thousand possible actions
and involve up to eight objectives. Here, we are interested in providing efficient
techniques in terms of solutions quality and response time.
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In the following, a description and a formal model of the problem are first
introduced. Then, the ways of generating problem instances is provided. Next,
we present the first results using three metaheuristic algorithms: PLS (Pareto
Local Search) [7,9], IBMOLS (Indicator-Based Multi-Objective Local Search)
[1] and NSGA-II [4]. Finally, we end with a conclusion and the future work.

2 Problem Modeling and Description

This project is a part of “MSQualité” software developed by the company GePI
which is dedicated specifically to the social and medico-social sector that includes
34000 different structures (rest houses, accommodation and rehabilitation cen-
ters, work-based support centers, etc.) [10]. Even if the use of computer resources
has made considerable progress in recent years in this sector, they are basically
employed for the daily management of the structures. In particular, optimiza-
tion tools are completely absent. In this context of lack of advanced models
and tools, GePI has decided to set up this project to develop a multiobjective
decision support system to assist managers in their action plan elaboration.

We can define an action plan p as a subset of actions selected among a set
of feasible actions A, in order to maximize or minimize a set F of conflicting
objectives. p can be represented by a vector p = (a1, a2, ..., an) with n equal to
the size of A. ai = 1 if the action ai is selected and ai = 0 otherwise. The set of
the possible action plans (solutions) is denoted by P. The origins of the actions
are either issued from action plans already made in the structure itself or other
similar structures, or are decided by the managers for continuous improvements.

The objectives can be of varied nature, namely qualitative (such as “improve
resident’s quality of life”) or quantitative (such as “increase the resident’s auton-
omy”). In both cases, each objective is represented by an objective function fj

which associates to every action ai ∈A its impact on the objective j.
An action ai ∈ A can have a positive or a negative impact on an objective

fj ∈ F . This impact is evaluated by the function fj(ai) = vij which assigns to
any action ai an integer value vij ∈ [−100,+100] that represents the contribution
of the action ai to the achievement of the objective j (vij > 0) or the degradation
of the action ai for the objective j (vij < 0). vij=0 when the action ai has no
effect on the objective j. Thus, we can associate to each action ai an objective
vector v=(f1(ai), f2(ai), ..., fm(ai)) with m equal to the number of objectives to
optimize. We define m in the interval [2,8] because in practice, the projects can
have up to eight objectives (otherwise the project management and evaluation1

will be difficult).
Considering an action plan p = (a1, a2, ..., an) ∈ {0, 1}n, the impact that p∗

has on an objective j is obtained by:

1 In social and medico-social structures, a project is defined for a period of five years.
At the sixth year, the evaluation of the project is carried out and the attainment of
each objective is measured. Therefore, the more there are objectives, the more the
evaluation is difficult.
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fj(p) =
n∑

i=1

aifj(ai) (1)

Thus, an objective vector z = (f1(p), f2(p), ..., fm(p)) is associated to each solu-
tion p ∈ P . A constraint cj is added for every objective j determining the minimal
threshold accepted for fj . In the following, we consider that all the objectives
must be improved:

fj(p) ≥ cj ≥ 0 (2)

An additional constraint concerns the realization cost of the solution which
should not exceed some budget β fixed by the decision maker. Indeed, each action
ai has a realization cost ωi which can take negative values since there may be
actions with negative cost when it is about selling of objects or services. Actions
with no cost are also to be taken into account. The global cost of a solution p
corresponds to the following cost sum of the actions of p:

⎧
⎨

⎩
W (p) =

n∑
i=1

aiωi

W (p) ≤ β
(3)

So, the optimization goal aims to find p∗ ∈ arg max
p∈P

F (p) verifying:

⎧
⎪⎪⎨

⎪⎪⎩

p∗ ∈ {0, 1}n

∀j ∈ {1,m}, fj(p∗) ≥ cj
n∑

i=1

aiωi ≤ β
(4)

Since we deals with a multiobjective case, p∗ is not unique. Instead, we obtain
a set of non-dominated solutions (in Pareto optimality sens). The aim is to
approximate the Pareto front effectively.

3 Instance Generation

Based on the above model, we have randomly generated a number of instances
with different sizes (actions) {50,100,250,500,750,1000} and different number of
objectives m ∈ {2, ..., 8}. We have also generated several partially structured
instances which are more representative of real cases. To be as close as possible
to the real problem, for each objective function, an action has a chance of 50 %
to be neutral, 40 % to have a positive impact and 10 % to have a negative impact.
Moreover, the cost of 40 % of the actions is set to 0. The non-null action values
are uniformly taken from the interval [0,100] (positively or negatively). The non-
null action costs are uniformly taken in the interval [-10000,10000].
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4 Preliminary Results

We have tested, on random instances, three metaheuristic algorithms: NSGA-II,
IBMOLS and PLS. For NSGA-II, we have used a population of size 100, a
mutation probability of 1/n (where n is the number of the actions). The initial
population is generated randomly while verifying that the cost of the individuals
do not exceed the budget β. For IBMOLS, we have used the iterative version
with a population of size 10 (the initial population is generated in the same way
as NSGA-II) and the epsilon indicator as realized in [1] and in [12]. The fitness
of each individual in the population is evaluated, with respect to the rest of the
population, using the following formula:

Iε(P\{x}, x) =
∑

z∈P\{x}
− exp−Iε(z,x)/k (5)

where k > 0 represents the scaling factor [1] (k is set to 0.01 in our experiments).
NSGA-II is compared with IBMOLS and shows to be inferior to IBMOLS

on the large size problems. Indeed, both algorithms use a bounded population
and the same selection strategy: one random neighbor of each individual of the
current population is selected to be a member of the child population in NSGA-II
or to integrate the current population in IBMOLS.

PLS [7] is used with an archive of unbounded size and an initial population
of one individual. The neighborhood generation is the same as for PLS and
IBMOLS. The ith neighbor of the solution p = (a1, a2, ..., an) is obtained by
flipping the value of ai and only the neighbors verifying the constraint β are
accepted. The budget constraint β is fixed to one million e for the three methods.

For the quality assessment, we have performed 30 runs of each method to
solve each instance. For IBMOLS and NSGA-II, a run time of n2∗m milliseconds
is used for each run (where n is the number of actions and m is the number of
objectives). But for PLS, the run time is limited to one hour because the size of
the archive and the response time increase exponentially with the instance size,
making PLS inefficient for large size problems. Our experiments are realized on
an Intel core i5-2400 CPU machine with 2 x 3.10 Ghz and 16 Gb of RAM. Then,
we have evaluated our outputs using the R and ε indicators and computed their
average values over the 30 runs for each algorithm and each tested instance.
For the statistical analysis, we have used the Mann-Whitney test. In our experi-
ments, we say that algorithm A outperforms algorithm B if the Mann-Whitney
test provides a confidence level greater than 95 %. To calculate the indicator
values and the Mann-Whitney test, we have used the performance assessment
package (PISA) [6] which is available at: http://www.tik.ee.ethz.ch/sop/pisa/?
page=assessment.php.

Table 1 shows a comparison of NSGA-II and IBMOLS in terms of the mean
values obtained for R and ε indicators over 30 runs, using 30 instances with
different sizes. The first column presents the instance size “m n” where m and n
are the number of objectives and actions respectively. The values in bold mean
that the corresponding algorithm is at least 95 % statistically better than the
other one for the considered instance and indicator.

A
u

th
o

r 
P

ro
o

f

http://www.tik.ee.ethz.ch/sop/pisa/?page=assessment.php
http://www.tik.ee.ethz.ch/sop/pisa/?page=assessment.php


A Practical Case of the Multiobjective Knapsack Problem 5

Table 1. Comparison of mean values of Iε and IR of IBMOLS and NSGA-II

Instance Iε IR

NSGA-II IBMOLS NSGA-II IBMOLS

2 50 0.520 0.135 0.160 0.030

2 100 0.520 0.135 0.160 0.030

2 150 0.491 0.200 0.159 0.055

2 250 0.521 0.283 0.174 0.074

2 500 0.558 0.358 0.191 0.097

2 1000 0.567 0.306 0.191 0.072

3 50 0.415 0.229 0.112 0.044

3 100 0.412 0.368 0.119 0.096

3 150 0.461 0.386 0.122 0.108

3 250 0.442 0.411 0.108 0.109

3 500 0.451 0.482 0.121 0.143

3 1000 0.480 0.654 0.119 0.086

4 50 0.401 0.398 0.094 0.086

4 100 0.351 0.438 0.083 0.108

4 150 0.451 0.450 0.099 0.133

4 250 0.405 0.537 0.100 0.189

2 500 0.347 0.594 0.089 0.230

4 1000 0.396 0.709 0.085 0.278

5 50 0.364 0.292 0.073 0.047

5 100 0.375 0.459 0.081 0.111

5 150 0.396 0.556 0.092 0.165

5 250 0.316 0.650 0.077 0.246

5 500 0.374 0.700 0.086 0.285

5 1000 0.307 0.788 0.084 0.353

6 50 0.381 0.350 0.091 0.085

6 100 0.267 0.385 0.046 0.084

5 150 0.291 0.564 0.066 0.204

6 250 0.219 0.664 0.042 0.278

6 500 0.336 0.748 0.104 0.368

6 1000 0.199 0.846 0.058 0.459

From Table 1 we can conclude that on the whole NSGA-II is more efficient
on the small instances (instances with 50 actions or no more than 3 objectives)
but IBMOLS performs better than NSGA-II as soon as we exceed 4 objectives.
It still remains that the diversity of the compromise solutions is reduced with
IBMOLS and should be improved.
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5 Conclusion

In this paper, we presented an application of the multiobjective knapsack prob-
lem encountered in the structures of the social and medico-social sector. A formal
model of the problem has been provided. The efficiency of IBMOLS and its supe-
riority to NSGA-II on a large size problems has been shown. However, the epsilon
indicator of IBMOLS does not always maintain naturally the diversity of the
population in the objective space. It should be interesting to consider a modified
version of IBMOLS or to evaluate the effectiveness of other quality indicators.
In [3], the hypervolume contribution indicator has shown a high performance
level and outperforms the Iε indicator on different multiobjective combinatorial
problems. However, it cannot be applied to the present problem since when the
number of objective function is greater than three, the high computational cost
of the hypervolume contribution calculation tends to drastically reduce the con-
vergence speed of the algorithm. An interesting idea should be to consider the
R2 indicator [11], which can be a good trade-off between a reduced computation
cost and an efficient indicator.
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