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Abstract In this paper, we present an in-depth analysis of neighborhood rela-
tions for local search algorithms. Using a curriculum-based course timetabling
problem as a case study, we investigate the search capability of four neighbor-
hoods based on three evaluation criteria: percentage of improving neighbors,
improvement strength and search steps. This analysis shows clear correlations
of the search performance of a neighborhood with these criteria and provides
useful insights on the very nature of the neighborhood. This study helps un-
derstand why a neighborhood performs better than another one and why and
how some neighborhoods can be favorably combined to increase their search
power. This study reduces the existing gap between reporting experimental
assessments of local search-based algorithms and understanding their behav-
iors.
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1 Introduction

Neighborhood search or local search is known to be a highly effective meta-
heuristic framework for solving a large number of constraint satisfaction and
optimization problems (Hoos and Stützle (2004)). For a given neighborhood
and starting from an initial solution, local search attempts to improve pro-
gressively the present solution by exploring its neighborhoods. In this way, the
current solution is iteratively replaced by one of its neighbors (often improv-
ing) until a specific stop criterion is satisfied.

One of the most important features of local search is thus the definition
of its neighborhood. In general, good neighborhoods offer a high search capa-
bility and consequently lead to good results largely independent of the initial
solution while the search performance induced by weak neighborhoods is often
highly correlated to the initial solution (Papadimitriou and Steiglitz (1998)).
Moreover, the behavior of local search depends strongly on the characteris-
tics of its neighborhood. For instance, some neighborhoods allow the search
to obtain solution improvements in a quick and important manner, but the
improvement occurs only for a limited number of iterations. On the contrary,
other neighborhoods only enable small improvements, but for a long time.

In addition, if two or more neighborhoods present complementary char-
acteristics, it is then possible and interesting to create more powerful com-
bined neighborhoods. The advantage of such an approach was demonstrated
using a tabu search strategic oscillation design in Glover et al (1984), and
additional variants of strategic oscillation for transitioning among alternative
neighborhoods are discussed in Glover (1996). More recently, the metaheuris-
tic approach called Variable Neighborhood Search in Mlandenovic and Hansen
(1997) has effectively used a transition scheme that always returns to the sim-
plest neighborhood when improvement occurs, while the transition scheme
that cycles through higher levels before returning to the simplest (also studied
in Glover et al (1984)) was examined in Di Gaspero and Schaerf (2006) and
elaborated more fully in the metaheuristic context in Goëfon et al (2008).

However, one finds few studies in the literature concerning a number of im-
portant and basic questions (Johnson (2002)): why does one particular neigh-
borhood lead to better computational results than another one? what are the
main characteristics of a good neighborhood? When would a combination of
two or more neighborhoods be preferred to a single neighborhood and in which
manner?

Without claiming to answer all these important questions, we present in
this work an experimental analysis of neighborhoods. For this purpose, we
introduce three evaluation criteria to characterize the search capability of a
neighborhood: percentage of improving neighbors, improvement strength and
search steps. As a case study, we consider the so called curriculum-based course
timetabling problem (CB–CTT), which is the topic of the Second International
Timetabling Competition1 (see McCollum (2007); McCollum et al (2008)).

1 Track 3: curriculum based course timetabling, http://www.cs.qub.ac.uk/itc2007/.
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In particular, we investigate three existing neighborhoods (with three moves
called SimpleMove, SimpleSwap, KempeMove) from the literature as well as a
newly proposed neighborhood (with a move called KempeSwap). The analysis
shows that the computational results are strongly correlated with the values
and trends of the above evaluation criteria. Furthermore, the analysis sheds
light on why and how some neighborhoods can be used in a combined manner.

The remaining part of this paper is organized as follows. Section 2 gives
the description of the CB–CTT problem of ITC–2007. Following that, four
distinct neighborhoods are described in Section 3. Section 4 is dedicated to the
computational experimentations based on Steepest Descent (SD) method and
the corresponding neighborhood analysis. In Section 5, we investigate whether
the conclusions drawn in Section 4 could be expected on more advanced local
search methods. Eventually in section 6, conclusions are drawn.

2 Curriculum-Based Course Timetabling

The CB-CTT problem consists of a set of n courses C = {c1, c2, . . . , cn} to
be scheduled in a set of p periods T = {t1, t2, . . . , tp} and a set of m rooms
R = {r1, r2, . . . , rm}. Each course ci is composed of li same lectures to be
scheduled. In the CB–CTT problem, the set of lectures of n courses must
be assigned into the p periods and m rooms subject to a given set of hard
constraints and soft constraints. Note that conflicts between courses for the
CB-CTT problem are set according to the curricula published by the univer-
sity, which is quite different from the post enrollment-based course timetabling
where the course timetable is scheduled on the basis of the students’ enrollment
data (McCollum et al (2008)). Hard constraints must be strictly satisfied un-
der any circumstances, while soft constraints are not necessarily satisfied but
their violations should be desirably minimized. A timetabling assignment that
satisfies all the following four hard constraints H1-H4 is called a feasible assign-
ment. Then, the objective of the CB-CTT problem is to minimize the number
of soft constraint violations in a feasible solution. The four hard constraints
H1-H4 and four soft constraints S1-S4 are:

• H1. Lectures: All lectures of a course must be scheduled to a distinct
period and a room.

• H2. Room Occupancy: Any two lectures cannot be assigned in the same
period and the same room.

• H3. Conflicts: Lectures of courses in the same curriculum or taught by
the same teacher cannot be scheduled in the same period, i.e., any period
cannot have an overlapping of students or teachers.

• H4. Availability: If the teacher of a course is not available at a given
period, then no lectures of the course can be assigned to that period.

In addition, a feasible timetable satisfying the above hard constraints incurs
a penalty cost for the violations of the following four soft constraints.
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• S1: Room Capacity: For each lecture, the number of students attending
the course should not be greater than the capacity of the room hosting the
lecture.

• S2: Room Stability: All lectures of a course should be scheduled in the
same room. If this is impossible, the number of occupied rooms should be
as few as possible.

• S3: Minimum Working Days: The lectures of a course should be spread
into the given minimum number of days.

• S4: Curriculum Compactness: For a given curriculum a violation is
counted if there is one lecture not adjacent to any other lecture belonging
to the same curriculum within the same day, which means the agenda of
students should be as compact as possible.

We choose a direct solution representation for simplicity reasons. A candi-
date solution is represented by a p×m matrix X where xi,j corresponds to the
course label assigned at period ti and room rj . If there is no course assigned
to period ti and room rj , then xi,j takes the value “-1”. For the mathematical
formulation of the CB–CTT problem, please refer to Lü and Hao (2010) for
more details.

3 Neighborhoods and Algorithms

3.1 Initial Solution and Search Space

Starting from an empty timetable, our initial feasible solution is generated in
a constructive way by means of a fast greedy procedure. This feasible solution
is obtained by sequentially selecting one appropriate lecture of a course each
time and assigning the lecture to a period and a room. In our initial solution
generator, we also take into account the soft constraints by introducing a
weighted cost function. We simply mention that for all the 21 competition
instances, this greedy heuristic can easily obtain feasible solutions. The main
ideas of this greedy heuristic are given in Lü and Hao (2010).

When a feasible assignment is reached, i.e. satisfying all the hard con-
straints, the local search procedure is used to reduce the number of soft con-
straint penalties without breaking any hard constraint. Therefore, the search
space of our local search algorithm is limited to the feasible timetables, com-
posed of the set X of assignment matrices for which the four hard constraints
H1-H4 hold.

3.2 Neighborhoods

In a local search procedure, applying a move mv to a candidate solution X
leads to a new solution denoted by X

⊕
mv. Let M(X) be the set of all possible

moves which can be applied to X and does not create any infeasibility, then
the neighborhood of X is defined by: N(X) = {X ′ ∈ X |X ′ = X

⊕
mv,mv ∈
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M(X)}. For the CB–CTT problem, we consider four distinct moves denoted
by SimpleMove, SimpleSwap, KempeMove and KempeSwap, leading to four
neighborhoods denoted by N1, N2, N3 and N4, where only the moves producing
those neighbors that do not incur any violation of the hard constraints are
accepted. Let us mention that N4 is a new neighborhood while other three ones
have been proposed for solving other timetabling problems in the literature
(Burke and Newall (2004); Burke et al (2006); Chiarandini et al (2006); Lewis
(2008); Schaerf (1999)).

Neighborhood N1: A move of type SimpleMove consists simply in moving
one lecture of course xi,j at period ti and room rj to a free position (period
ti′ and room rj′) where i′ ̸= i or j′ ̸= j. After this move, xi′,j′ = xi,j and
xi,j = −1. xi,j = −1 means that there is no any lecture scheduled at period
ti and room rj . The size of neighborhood N1 is bounded by O(l · (p · m − l))
where l =

∑n
i=1 li because there are l lectures and the total number of free

positions is bounded by O(p ·m− l). Note that if the total number of lectures l
is equal to that of the available positions (m · p), the size of this neighborhood
is zero.

Neighborhood N2: A SimpleSwap move consists in exchanging the host-
ing periods and rooms assigned to two lectures of different courses. Applying
the SimpleSwap move to two different courses xi,j and xi′,j′ for the solution X
consists in assigning the value of xi,j to xi′,j′ and inversely the value of xi′,j′

to xi,j . Since there are l lectures, the size of N2 is bounded by O(l2).
Neighborhood N3: A move of type KempeMove is defined by Kempe

chain interchanges. For the CB–CTT problem, a candidate solution X can be
considered as a graph G where nodes are lectures and edges connect lectures
with students or teacher in common. Note that an edge exists between any
two lectures belonging to a same course. A Kempe chain is defined as a set of
lectures that form a connected component in the subset of lectures that belong
to two distinct periods. Let K be a Kempe chain with respect to two periods
ti and tj and Li (Lj) be the set of lectures in period ti (tj), a Kempe chain
interchange produces an assignment by replacing Li with (Li\K) ∪ (Lj ∩ K)
and Lj with (Lj\K)∪ (Li ∩K) (Chiarandini et al (2006)). Notice that in each
KempeMove, at least three lectures are involved, i.e., |K| ≥ 3.

Once lectures have been scheduled to a period, the room assignment can
be solved by an exact bipartite matching algorithm (Rossi-Doria et al (2002);
Sedgewick (1988)). Since KempeMove can be considered as moving one lecture
and afterward several other related lectures in the Kempe chain being moved,
the size of N3 is bounded by O(l · p).

For example, Figure 1 depicts a subset of lectures deduced by two periods
ti and tj with each room having one lecture. In this small example, there are
four Kempe chains: K1 = {c1}, K2 = {c5, c11}, K3 = {c2, c3, c7, c8, c10} and
K4 = {c4, c6, c9, c12}. However, only K4 can produce a feasible KempeMove
since other three are forbidden. For K1 and K2, the number of involved lec-
tures are less than 3. For K3, it is not able to lead to a feasible solution, since
interchanging {c2, c3} and {c7, c8, c10} makes the number of lectures in period
ti greater than the total number of the available rooms. We call this restric-
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tion the so called room allocation violation. Indeed, the asymmetry property of
lecture numbers largely restricts the number of acceptable candidate solutions
for this neighborhood and constitutes its weakness. Compared with Kempe-
Move move, the next neighborhood is much more flexible and will avoid this
limitation.

Neighborhood N4: In the KempeMove (i.e. N3), only one connected
component of a subset of lectures is considered concerning two distinct pe-
riods. We introduce now a new move called KempeSwap which consists in
interchanging the lectures of two distinct Kempe chains. Formally, let K1

and K2 be two Kempe chains in the subgraph with respect to two peri-
ods ti and tj , a KempeSwap produces an assignment by replacing Li with
(Li\(K1∪K2))∪(Lj∩(K1∪K2)) and Lj with (Lj\(K1∪K2))∪(Li∩(K1∪K2)).
It is noteworthy to notice that our double Kempe chains interchange can be
considered as a generalization of the single Kempe chain interchange known
in the literature (Casey and Thompson (2003); Chiarandini et al (2006); Côté
et al (2005); Merlot et al (2003)).

For instance, in Figure 1, interchanging lectures {c1, c2, c3} and {c7, c8, c10}
is a move of KempeSwap which concerns two distinct connected components
K1 and K3. Feasible KempeSwap moves also include interchanging K2 and
K4. Note that the room allocation procedure after period interchange is the
same as KempeMove. For each move of N4, at least three lectures are involved
too, i.e., |K1|+ |K2| ≥ 3. Since KempeSwap can be considered as an extended
version of SimpleSwap (i.e., swapping two lectures), the size of neighborhood
N4 is bounded by O(l2).

Fig. 1 Kempe chain illustrations
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As mentioned above, except for neighborhood N4, the other three neigh-
borhoods have been proposed in the previous literature (Chiarandini et al
(2006)). However, we will show in the following sections (Sections 4 and 5)
that our newly proposed neighborhood N4 is more powerful and explain why
this is the case.

3.3 Neighborhood Combinations

In order to increase the search capability of single neighborhoods, it has be-
come a popular practice to combine two or more different neighborhoods,
especially when those neighborhoods have complementary characteristics. In
fact, there are many ways for combining different neighborhoods. In this pa-
per we focus on two of them: neighborhood union and token-ring search (see
Di Gaspero and Schaerf (2006); Glover et al (1984)).

In neighborhood union, at each iteration the neighborhood structure in-
cludes all the moves of two different neighborhoods. If we consider two different
neighborhoods Na and Nb, then the neighborhood union of these two neigh-
borhoods can be represented as Na∪Nb.

In token-ring search, different neighborhoods are consecutively used on the
local optimum of the previous neighborhood until no improvement is possible.
More precisely, we start one local search procedure with one neighborhood.
When the search ends with its best local optimum, we restart the local search
from this local optimum, but with the other neighborhood. This process is
repeated until no improvement is possible (Di Gaspero and Schaerf (2006);
Glover et al (1984)). The token-ring search of two neighborhoods can be de-
noted as Na→Nb (starting from Na) or Nb→Na (starting from Nb).

If there are more than two neighborhoods and we want to combine them in
a more meaningful way, it is possible to produce more complex neighborhood
combinations. For example, neighborhood combination (Na∪Nb)→Nc denotes
that neighborhood union of Na and Nb is combined with neighborhood Nc in
a token-ring way and the search starts from Na∪Nb.

3.4 Local Search Algorithms

In this paper, a study of the behaviors of different neighborhoods and their
combinations is conducted. For this purpose, we employ a steepest descent
(SD) algorithm in Papadimitriou and Steiglitz (1998). This choice can be jus-
tified by the fact that the SD algorithm is completely parameter free, and
thus it allows a direct comparison of different neighborhoods without bias.
Notice that SD is also the basic search strategy commonly used in several
advanced metaheuristics, such as Tabu Search in Glover and Laguna (1997),
Variable Neighborhood Search in Hansen and Mladenovi (2001); Mlandenovic
and Hansen (1997), Iterated Local Search in Lourenco et al (2003) and so on.

From a feasible timetable X ∈ X , the SD algorithm repeatedly replaces
the current solution X by a best improving solution in its neighborhood until
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no improving neighbor exists. The reason for not using a First Improvement
strategy (FI) lies in the fact that the SD algorithm generally obtains slightly
better results than the FI algorithm according to our experience. Moreover, in
our implementations, the computational cost for an SD move is practically the
same as for an FI move. This is possible thanks to an incremental evaluation
of neighborhood moves, enabling the fast identification of the move. The main
idea of this incremental evaluation technique is to maintain in a special data
structure the move value for each possible move of the current solution. Each
time a move is carried out, the elements of this data structure affected by the
move are updated accordingly.

In addition, in order to further verify whether similar conclusions can be
expected with more advanced local search-based metaheuristics, we implement
three other metaheuristic algorithms: Tabu Search (TS), Iterated Local Search
(ILS) and Adaptive Tabu Search (ATS). The details of these algorithms are
described in Section 5.

4 Experimental Results and Analysis

In this section, we first test the SD algorithm on a set of 14 competition
instances for the four neighborhoods N1∼N4 (Section 3.2) and their various
combinations (Section 3.3). Based on the computational results, we carried out
our experiments to analyze the search capability of single neighborhoods and
their combinations in terms of three criteria: percentage of improving neigh-
bors, improvement strength and search steps. Following that, some concluding
remarks are presented.

4.1 Computational Results Based on SD Algorithm

In order to assess the practical performance of the four neighborhoods and
their different combinations, we apply the SD algorithm with each of the
four neighborhoods to solve the 14 competition instances. The main features
of these instances are listed in Table 1. The last two columns denoted by
occupancy and conflicts represent the percentage of occupancy of rooms
(denoted by l/(p · m)) and the density of the conflict matrix (denoted by
2 · ne/l · (l − 1) where ne represents the total number of edges connecting two
conflicting lectures), respectively.

The average soft costs for neighborhoods N1∼N4 over 50 independent runs
are given in Table 2 and the average CPU time are given in brackets (best
results for each instance are indicated in bold). Note that these results are
all rounded up. From Table 2, it is easily observed that neighborhood N4

outperforms all the others in terms of solution quality. When comparing the
three neighborhoods N1, N2 and N3 with each other, one finds that the average
soft costs of N1 are the best and those of N2 are the worst. We performed a
95% confidence t-test for each pair of neighborhoods to compare the results
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Table 1 Features of the 14 competition instances

Instances n m p l occupancy conflicts
comp01 30 6 30 160 88.89% 13.2%
comp02 82 16 25 283 70.75% 7.97%
comp03 76 12 25 251 62.75% 8.17%
comp04 79 18 25 286 63.56% 5.42%
comp05 54 9 36 152 46.91% 21.7%
comp06 108 18 25 361 80.22% 5.24%
comp07 131 20 25 434 86.80% 4.48%
comp08 86 18 25 324 72.00% 4.52%
comp09 76 18 25 279 62.00% 6.64%
comp10 115 18 25 370 82.22% 5.3%
comp11 30 5 45 162 72.00% 13.8%
comp12 88 11 36 218 55.05% 13.9%
comp13 82 19 25 308 64.84% 5.16%
comp14 85 17 25 275 64.71% 6.87%

Table 2 Average soft costs for N1 to N4 obtained by the SD algorithm over 50 independent
runs

f̄
Instances N1 N2 N3 N4
comp01 42 (0.04) 33 (0.05) 49 (0.03) 24 (0.12)
comp02 194 (0.39) 228 (0.17) 204 (0.37) 143 (1.42)
comp03 217 (0.37) 248 (0.20) 245 (0.28) 193 (1.09)
comp04 153 (0.71) 199 (0.37) 194 (0.61) 132 (3.45)
comp05 1016 (0.25) 995 (0.17) 847 (0.81) 684 (0.38)
comp06 207 (0.70) 260 (0.36) 255 (0.65) 158 (4.56)
comp07 203 (1.07) 247 (0.63) 230 (1.27) 140 (8.23)
comp08 154 (0.70) 205 (0.28) 185 (0.63) 139 (3.22)
comp09 238 (0.43) 273 (0.19) 244 (0.43) 193 (2.01)
comp10 195 (0.82) 250 (0.44) 249 (0.88) 145 (5.12)
comp11 16 (0.07) 16 (0.06) 25 (0.03) 9 (0.11)
comp12 807 (0.47) 874 (0.31) 885 (1.61) 746 (0.54)
comp13 197 (0.68) 233 (0.38) 224 (0.65) 151 (3.68)
comp14 180 (0.46) 213 (0.23) 206 (0.34) 151 (1.23)

of Table 2. Except some rare cases, the observed differences are statistically
significant and the dominance of N4 is confirmed. We can confirm that the
search capability of these four neighborhoods with respect to solution quality
can be ranked as follows: N4 > N1 ≈ N3 > N2.

When it comes to the average CPU time, it is clear that N4 costs more than
others. This can be explained by the fact that neighborhood N4 involves much
more neighborhood moves than N3 and the neighborhood move evaluation is
more time-consuming than N1 and N2.

Figure 2 shows the comparisons of the normalized average costs for the SD
algorithm over 50 independent runs. For each instance, the normalized average
soft cost g is represented as g = (f − fmin)/(fmax − fmin), where f is the
original average soft cost while fmax and fmin respectively denote the worst
and the best average soft costs obtained by the four neighborhoods. According
to its definition, the value of the normalized soft cost g lies in the interval [0,1].
It is obvious that the modified cost function for the best neighborhood is equal
to 0 while for the worst it is equal to 1. Figure 2 discloses that the SD algorithm
with N4 performs much better than N1∼N3 in terms of the average cost.
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We now consider the performance of several combined neighborhoods. In
fact, the number of possible combinations to be considered is extremely large
and thus we attempt to limit the combinations to be examined by using the
results mentioned above. According to the definitions of neighborhood struc-
tures, it is obvious that N1 and N2 are basic neighborhoods and N3 and N4 are
advanced ones. From the computational results above, one observes that N3

is worse than N1 in terms of solution quality yet requires a CPU time similar
to that of N1. This fact convinces us that N3 is a poor neighborhood. On the
other hand, N4 is a good neighborhood in terms of solution quality. There-
fore, we focus on the different combinations of N4 with others, especially N1.
According to the above analysis and our experience, we consider the follow-
ing typical neighborhood combinations: N1∪N2, N3∪N4, N1∪N4, N1∪N3∪N4,
N1→N4, N2→N4 and (N1∪N2)→N4.

We run the SD algorithm with these neighborhood combinations on the
set of 14 competition instances. Table 3 shows the average soft costs over 50
independent runs for different neighborhood combinations. One finds that for
the four ways of neighborhood union, N1∪N4 and N1∪N3∪N4 produce much
better results than N1∪N2 and N3∪N4. However, in N1∪N3∪N4, the introduc-
tion of N3 does not contribute much to the neighborhood union N1∪N4, i.e.,
there is only 1.8% improvement in terms of the average solution quality. This
further implies that N3 is not a value-added neighborhood for this problem.

With respect to the token-ring search combinations, one observes that
N1→N4 performs much better than N2→N4, even better than (N1∪N2)→N4.
Therefore, one of the most promising ways for token ring search of the four
neighborhoods is probably N1→N4.

We now directly compare the elite neighborhood union (N1∪N4) and token-
ring search (N1→N4). For this purpose, we performed a 95% confidence t-test
to compare these two elite neighborhood combinations and found that for

Fig. 2 Average solution quality comparisons for the SD algorithm over 50 runs
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Table 3 Average soft costs for various neighborhood combinations

average soft costs
Instance N1∪N2 N3∪N4 N1∪N4 N1∪N3∪N4 N1→N4 N2→N4 (N1∪N2)→N4
comp01 31 (0.1) 23 (0.1) 19 (0.2) 18 (0.2) 24 (0.1) 20 (0.1) 19 (0.1)
comp02 186 (0.4) 143 (1.8) 136 (2.2) 135 (2.5) 132 (1.5) 140 (2.1) 122 (1.6)
comp03 210 (0.4) 187 (1.2) 177 (1.8) 172 (2.2) 173 (1.0) 184 (1.1) 170 (1.0)
comp04 152 (0.7) 131 (3.5) 116 (6.5) 109 (7.4) 103 (2.7) 121 (2.9) 105 (3.1)
comp05 871 (0.4) 627 (0.4) 591 (0.5) 547 (0.6) 574 (0.8) 609 (0.6) 580 (0.8)
comp06 197 (0.8) 162 (4.7) 151 (8.9) 150 (8.9) 139 (3.3) 155 (4.4) 141 (3.1)
comp07 190 (1.2) 141 (8.4) 123 (16) 114 (17) 113 (5.2) 126 (7.1) 114 (5.0)
comp08 154 (0.7) 129 (3.4) 112 (7.3) 113 (7.7) 103 (2.9) 119 (3.4) 105 (2.5)
comp09 231 (0.5) 189 (2.1) 182 (3.0) 183 (3.5) 176 (1.8) 189 (1.9) 177 (1.8)
comp10 186 (0.9) 147 (5.3) 128 (8.8) 128 (9.5) 118 (3.3) 130 (4.7) 127 (3.0)
comp11 11 (0.1) 11 (0.1) 6 (0.2) 6 (0.2) 9 (0.1) 8 (0.1) 7 (0.1)
comp12 774 (0.5) 743 (0.5) 684 (0.8) 663 (0.9) 639 (1.1) 685 (1.1) 668 (1.1)
comp13 186 (0.8) 151 (3.9) 135 (7.5) 137 (7.8) 131 (2.7) 145 (3.6) 131 (2.7)
comp14 175 (0.5) 156 (1.3) 132 (2.6) 139 (2.6) 125 (1.5) 148 (1.4) 121 (1.6)

11 out of the 14 instances (except for comp02, comp11 and comp13 ), the
computational results obtained by N1→N4 are significantly better than the
ones with N1∪N4.

Finally, we have tested several other token-ring combinations using N3 as
a source or destination, such as N1→N3, N3→N4 and N2→N3. We observed
without surprise that these token-ring combinations produce worse results
than those using N4. This can be explained by the fact that N4 has a domi-
nant performance over N3 as already demonstrated in several aforementioned
experiments.

4.2 Neighborhood Analysis

The above computational results show that the proposed neighborhood N4

performs much better than other three in terms of solution quality. As for the
various combinations of different neighborhoods, it is clear that the token-ring
combination of the two neighborhoods N1 and N4 produces lower soft costs
than other combinations. In this section, we attempt to explain what causes
the effectiveness of a single neighborhood and a certain combination of dif-
ferent neighborhoods. For this purpose, we introduce three evaluation criteria
to characterize the search capacity of different neighborhoods: percentage of
improving neighbors, improvement strength and search steps.

4.2.1 Evaluation Criteria and Experimental Protocol

For a candidate solution X, a given neighborhood function N : X→2X and a
neighborhood solution X ′ ∈ N(X), define ∆f = f(X ′) − f(X), these criteria
are then defined as follows.

– Improving neighbors I(X): the set of the improving neighbors in the neigh-
borhood N(X), i.e. I(X) = {X ′ ∈ N(X)|∆f < 0}. Therefore, the percent-
age of improving neighbors is defined as |I(X)|/|N(X)| × 100.
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– Improvement strength ∆f∗: the cost variation between the current solution
X and a best improving neighbor, i.e., ∆f∗ = max{|∆f | : ∆f ∈ I(X)}.

– Search steps: the search steps of N is defined as the number of iterations
that the SD algorithm can run to reach a local optimum.

We argue that good neighborhoods should have one or more of these fea-
tures: high percentage of improving neighbors (for more improvement possi-
bilities), strong improvement strength (for important improvements) and long
search steps (for long term improvements).

To calculate the values of each criterion, 50 independent runs of the SD
algorithm with a given neighborhood are carried out for solving each problem
instance. For each run, data corresponding to the above evaluation criteria are
calculated; I(X) and ∆f∗ values are collected at each iteration while search
steps is simply the iteration number when SD stops. All the reported results
correspond to the average of these 50 independent runs.

4.2.2 Search Capability of Different Neighborhoods

Fig. 3 Percentage of improving neighbors evolving with iterations for N1 to N4

The first experiment aims to evaluate and compare the performance of the
four neighborhoods N1∼N4 (see Section 3.2) using the above three criteria.
The results are based on the largest instance comp07 (very similar results
are observed for other instances). Figure 3 shows the percentage of improving
neighbors for N1 to N4, evolving with the local search iterations.

Figure 3 shows that N1 and N2 have quite similar evolving trends in terms
of the percentage of improving neighbors, so do N3 and N4. At the beginning
of the local search, the percentage of improving neighbors is above 70% for N3

and N4, while it is only approximately 2.2% for N1 and 0.5% for N2. In other
words, N3 and N4 offer many more opportunities to find improving neighbors
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during the first iterations of the search (first 10 iterations for this particular
instance).

On the other hand, compared with N2 and N3 respectively, there exist long
tails for the percentage of improving neighbors for N1 and N4, meaning that
they allow the descent algorithm to run a large number of iterations. This
property is another important sign for good neighborhoods. It should be clear
now that N4 has not only the largest percentage of improving neighbors but
also the greatest number of iterations, while N1 continues for many iterations
but with very small percentage of improving neighbors and N3 has large per-
centage of improving neighbors at the very beginning of the search but its
number of iterations is rather small. N2 performs very poorly for both two
criteria.

We then evaluate the four neighborhoods using the improvement strength
criterion (∆f∗). Figure 4 shows how ∆f∗ of each neighborhood evolves with
the local search iterations. Once again, one observes that at the beginning
of the search, the improvement strength of N4 is much stronger than others,
which matches well with the trend of the percentage of improving neighbors.

In order to have a better understanding of the performance of these four
neighborhoods on the three given criteria, we illustrate in Table 4 the per-
formance level for each neighborhood-criterion pair. One observes that N4

performs well on all the three criteria, while N1 and N3 only performs well on
one criterion. As expected, N2 performs very poorly on all the criteria, which
explains the computational results reported in Table 2.

Considering these observations, the following conclusions can be formu-
lated.

1. Neighborhood N4 offers a higher percentage of improving neighbors, and
greater improvement strength than the other three neighborhoods during

Fig. 4 Improvement strength ∆f∗ evolving with iterations for N1 to N4
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Table 4 Performance level of different neighborhoods on the given criteria

Criteria N1 N2 N3 N4
Improv. Neighbors poor poor good good

Search Steps good poor poor good
Improv. Strength poor poor poor good

the local search iterations. As a result, and at least during the first itera-
tions, N4 provides a quick and effective solution process.

2. Neighborhood N1 offers improving neighbors (with weaker improvement
strengths) for a larger number of iterations than N2 and N3. Consequently,
local search can continue for a longer time with N1.

3. Although neighborhood N3 offers a larger percentage of improving neigh-
bors during the first iterations, its improvements quickly disappear, limit-
ing its search capability.

4. Neighborhood N2 performs quite poorly on all the three criteria and thus
is not a good neighborhood.

4.2.3 Combinations of Multi-Neighborhoods

In this section, we turn our attention to neighborhood combinations and aim
at analyzing their computational results reported in Table 3 in terms of the
three proposed criteria. According to the results in Table 3, one observes that
the neighborhood union of the two elite neighborhoods N1 and N4 (N1∪N4)
obtains much better results than N1∪N2 and N3∪N4. On the other hand, the
token-ring search of these two neighborhood (N1→N4) performs much better
than N2→N4, even comparable with (N1∪N2)→N4. These results prompt us
to focus on investigating in this section the two representative neighborhood
combinations: N1∪N4 and N1→N4.

Moreover, one finds that N1∪N4 produces slightly better results than N4,
while N1→N4 obtains much better results than not only N4 but also N1∪N4.
In this section, we attempt to show evidence for these phenomena in terms of
the three evaluation criteria.

Fig. 5 percentage of improving neighbors and improvement strength for N1∪N4 and N4
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At first, we investigate why the the neighborhood union N1∪N4 performs
only slightly better than N4. To answer this question, we observe the influence
of the advanced neighborhood N4 over the combined neighborhood N1∪N4.
Figure 5 shows the percentage of improving neighbors (left) and improvement
strength (right) for neighborhoods N1∪N4 and N4, evolving with local search
iterations. One finds that both the percentage of improving neighbors and
the improvement strength with N1∪N4 and N4 evolve in quite similar ways,
showing that N4 plays a dominating role in this union neighborhood. This is
why N4 and N1∪N4 lead to very similar results.

Fig. 6 percentage of improving neighbors and improvement strength for N1→N4

As for the token-ring search of N1 and N4 (N1→N4), one observes that
N1→N4 performs much better than N1∪N4. Figure 6 shows the percentage of
improving neighbors (left) and improvement strength (right) for neighborhood
N1→N4. First, it is important to notice that in this case, the local optimum
obtained with neighborhood N1 can be further improved with neighborhood
N4 for a relatively large number of iterations. Moreover, we can see from Fig-
ure 6 that at the beginning of the search for N4 in N1→N4, the percentage
of improving neighbors is approximately 74% and the improvement strength
is rather strong. That is to say, the local minimum of N1 is typically not a
local minimum of N4 and thus the solution quality can be further improved.
This phenomenon constitutes an important explanation for the excellent per-
formance of N1→N4.

We should mention that it is possible and interesting to combine the two
neighborhoods N1 and N4 in another token-ring way: starting the search from
the advanced neighborhood N4 (N4→N1). Although we did not report the
results of this combination in this paper, we confirm that N4→N1 does pro-
duce quite similar results to N1→N4 in terms of solution quality. This can be
explained by the fact that the two neighborhoods N1 and N4 are alternately
and repeatedly used until no improvement is possible.

To summarize, the analysis of this last subsection confirms that:

1. Neighborhood union is not an appropriate way for combining N1 and N4

because of the dominance of N4 in the neighborhood N1∪N4.
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2. Token-ring search is a better strategy for combining N1 and N4 due to
their complementary characteristics.

5 Extensions to More Advanced Metaheuristics

5.1 Advanced Metaheuristics

In the above section, we carried out a series of computational experimentations
and a detailed analysis to show and explain the performance of the four neigh-
borhoods and their different combinations in the SD algorithm. One may won-
der whether we can expect the same results with other advanced metaheuris-
tics. In this section, we try to answer this important question. For this purpose,
we implemented three metaheuristic algorithms: Tabu Search (TS) (Glover
and Laguna (1997)), Iterated Local Search (ILS) (Lourenco et al (2003)) and
Adaptive Tabu Search (ATS) (Lü and Hao (2010)). A brief overview of these
three algorithms is given below.

The TS algorithm is a simple version of TS with a self adaptive tabu list.
Within TS, a tabu list is introduced to forbid the previously visited solutions to
be revisited. In our TS algorithm, when moving one lecture from one position
(period-room pair) to another (using N1 or N2), or from one period to another
(using N3 or N4), this lecture is declared tabu and cannot be moved back to
the previous position (for N1 or N2) or period (for N3 or N4) for a certain
number of iterations. In our experiments, TS is applied to a token-ring search of
two neighborhoods. Algorithm 1 gives a brief description of our TS algorithm
based on a token-ring search of neighborhoods Na and Nb. Each TS phase
stops when its best solution cannot be improved within a given number θ of
moves that we call the depth of TS. If there is only one neighborhood, we can
just omit line 6 in Algorithm 1. Interested readers are referred to Lü and Hao
(2010) for more details.

Algorithm 1 Tabu Search Algorithm: TS(X0,θ)
1: Input: X0 ← the feasible initial solution; θ ← the depth of TS
2: Output: X∗ ← the best feasible solution found so far
3: X∗←X0

4: repeat

5: X
′←TSNa (X0) based on neighborhood Na with depth of TS equal to θ

6: X
′←TSNb

(X
′
) based on neighborhood Nb with depth of TS equal to θ

7: if X
′

is better than X∗ then
8: X∗←X

′

9: end if
10: X0←X

′

11: until (stop condition is met)

Our ILS algorithm takes the SD algorithm as the local search procedure
and uses a Critical Element-Guided Perturbation (CEGP) operator to jump
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out of the local optima trap. The operator consists of identifying critical lec-
tures by scoring all lectures according to their contribution to the total soft
constraints and then adaptively perturbing the solution using the highly scored
lectures. Algorithm 2 is a brief description of our CEGP-based ILS algorithm
and interested readers are referred to Lü and Hao (2009) for more details.

Algorithm 2 Iterated Local Search Algorithm: ILS(X0)
1: Input: X0 ← the feasible initial solution
2: Output: X∗ ← the best feasible solution found so far
3: X′ ← SD(X0)

4: X∗ = X
′

5: repeat
6: Score all lectures of X′ according to their contribution to the total soft constraints
7: Randomly select a certain number η (perturbation strength) of highly scored lectures

to be perturbed

8: X
′′ ← Critical Element-Guided Perturbation Operator(X′)

9: X∗′ ← SD(X
′′
)

10: if X∗′ is better than X∗ then
11: X∗ = X∗′

12: end if
13: X′ ← Acceptance Criterion(X∗′ ,X∗)
14: until stop condition met

Our ATS algorithm is a dynamic combination of the above TS and ILS
algorithms. Specifically, the ATS algorithm is a reinforced ILS algorithm that
replaces the SD algorithm by the above TS algorithm. Two additional adaptive
procedures are also used to control the depth of TS and the perturbation
strength of ILS. Interested readers are referred to Lü and Hao (2010) for
complete details of this ATS algorithm.

To make the comparison as fair as possible, all these three algorithms
follow the same stop conditions, i.e., the ITC–2007 competition timeout. On
our computer with 3.4GHz CPU and 2G Memory, this corresponds to 390
seconds.

5.2 Computational Results Using Advanced Metaheuristics

In what follows, we focus on the computational results of the algorithms TS,
ILS and ATS on the 14 competition instances. We first compare the aver-
age soft costs for different neighborhoods and neighborhood combinations.
We consider here the four neighborhoods N1∼N4 and the two representative
combined neighborhoods N1∪N4 and N1→N4.

Figures 7 to 9 show the comparisons of the average costs respectively for
TS, ILS and ATS algorithms over 50 independent runs. In order to clearly
distinguish among different neighborhoods and their combinations, we use
again the normalized soft cost function to present these three graphs.
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From Figures 7 to 9, one observes that these advanced metaheuristic al-
gorithms with N4 perform much better than N1∼N3 in terms of the average
cost, which coincides with the results obtained by the SD algorithm. In order
to confirm this conclusion, we performed a 95% confidence t-test to compare
N4 with N1∼N3 respectively on TS, ILS and ATS algorithms and found that
for at least 11 out of the 14 instances, the computational results obtained
by N4 are statistically better than the ones obtained by any of other three
neighborhoods in any of the three algorithms.

However, one exception is that N3 is even worse than N2 for all the three
metaheuristic algorithms, which further indicates that the single Kempe chain
neighborhood N3 is not a good one for this specific problem. We argue that

Fig. 7 Average solution quality comparisons for the TS algorithm over 50 runs

Fig. 8 Average solution quality comparisons for the ILS algorithm over 50 runs
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Fig. 9 Average solution quality comparisons for the ATS algorithm over 50 runs

the poor performance of N3 might be caused by the room allocation violation
restriction previously mentioned in Section 3.2.

For neighborhood combinations, the token-ring search of two complemen-
tary neighborhoods N1 and N4 (N1→N4) produces much better results than
both the single neighborhoods N1∼N4 and the neighborhood union N1∪N4,
which perfectly coincides with the results obtained by the SD algorithm. Al-
though the results of other five neighborhood combinations (N1∪N2, N3∪N4,
N1∪N3∪N4, N2→N4 and (N1∪N2)→N4) are not reported here, their results
are consistent with those for the SD algorithm.

We now turn our attention to the best costs that the three advanced meta-
heuristic algorithms can obtain. To compute the above results, Table 5 presents
the best costs obtained by these three algorithms with neighborhoods N1, N4,
N1∪N4 and N1→N4 over 50 independent runs. The reasons for discarding N2

and N3 are due to their relatively poor performance and the space limit. It
should be noticed that the trends of the best costs are perfectly coincident with
the average costs mentioned above for all the considered single neighborhoods
and neighborhood combinations.

In order to show the performance of the proposed neighborhood N4 com-
pared with other reference algorithms, we listed in Table 5 (the last column)
the best costs obtained by the winner of the ITC–2007 (Müller (2008)). The al-
gorithm in Müller (2008) uses the same stopping condition as we do. However,
one still finds that for the 14 competition instances, ATS with neighborhood
N1→N4 reaches better (respectively worse) results than the winning algorithm
in Müller (2008) for 5 (respectively 6) instances, with matching results for the
remaining 3 instances. Note that our algorithm ATS with a neighborhood
combination (N1∪N2)→(N3∪N4) ranks in second place for the track 3 of the
ITC–2007 2.

2 This result is available at: http://www.cs.qub.ac.uk/itc2007/winner/finalorder.htm
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Table 5 Best results obtained by TS, ILS and ATS algorithms with N1, N4, N1∪N4 and
N1→N4

TS ILS ATS best in
Instance N1 N4 N1∪N4N1→N4 N1 N4 N1∪N4N1→N4 N1 N4 N1∪N4N1→N4 Müller

(2008)
comp01 8 5 5 5 6 5 5 5 6 5 5 5 5
comp02 123 65 63 55 111 55 54 48 96 52 52 40 43
comp03 145 108 102 92 124 81 80 76 114 79 80 71 72
comp04 89 59 55 47 82 55 52 42 55 51 44 39 35
comp05 431 362 354 320 416 355 346 305 401 345 336 298 298
comp06 136 82 76 58 129 70 68 54 87 67 67 47 41
comp07 133 58 50 35 124 54 50 26 69 44 36 21 14
comp08 98 69 69 53 89 65 59 48 67 60 56 43 39
comp09 167 142 130 110 147 121 119 106 135 115 109 101 103
comp10 110 62 50 28 98 45 40 24 57 35 31 18 9
comp11 0 0 0 0 0 0 0 0 0 0 0 0 0
comp12 446 378 368 332 429 390 385 324 396 380 374 320 331
comp13 120 91 84 71 105 98 90 69 95 90 78 65 66
comp14 96 68 67 57 86 64 61 53 63 58 59 55 53

6 Conclusions

Understanding, explaining and predicting the performance of a neighborhood
used by a local search algorithm is an important and difficult topic (Schuur-
mans and Southey (2001)). In this paper, we present an attempt to analyze
the intrinsic characteristics of four neighborhoods and their combinations for
a real world application, i.e. the curriculum-based course timetabling problem.
To this end, we introduce three evaluation criteria to characterize the search
capability of a neighborhood: percentage of improving neighbors, improvement
strength and search steps. The experimental analysis based on these criteria
and a steepest descent allow us to understand to some extent the relative ad-
vantages and weaknesses of the four studied neighborhoods and identify the
possibilities of combining them.

In particular, the analysis provides useful indications as to why the new
neighborhood N4 induced by the KempeSwap move is more powerful than the
other existing neighborhoods. This analysis also discloses the complementary
characteristics of SimpleMove and KempeSwap, giving a foundation for a
meaningful combination of the two respective neighborhoods (N1 and N4).
Concerning neighborhood combinations, the analysis explains why it is more
advantageous to use N1 and N4 in a token-ring search (N1→N4) than in a
neighborhood union (N1∪N4).

To further evaluate the impact of this study on practical problem solv-
ing with advanced metaheuristics, we carried out a series of experiments us-
ing three algorithms: Tabu Search, Iterate Local Search and Adaptive Tabu
Search. Results confirm the advantage of KempeSwap-based neighborhood
over other single neighborhoods on the one hand and the superiority of the
token-ring combination of N1 and N4 over all other single and combined neigh-
borhoods on the other hand. Moreover, using (N1→N4) within the Adaptive
Tabu Search algorithm has led to very competitive results on the 14 instances
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of the ITC–2007 competition compared with the winning algorithm of the
competition.

To conclude, while the evaluation criteria introduced in this paper alone
cannot fully explain or predict the performance of local search for a given
neighborhood, They constitute useful indicators of good neighborhoods. It
should be clear that the approach reported here is general, consequently it can
be applied to other problems for neighborhood analysis and new neighborhood
designs.

Finally, we observe that the neighborhood concept deserves to be looked
upon in a more general way than it is customarily viewed in the metaheuristic
area, by adopting the perspective from tabu search whereby moves that are
made during constructive and destructive processes deserve likewise to be con-
ceived as offering types of neighborhoods to be exploited (Glover et al (1984);
Glover (1996)). This is relevant not only for customary multi-start methods,
but also for the application of strategic oscillation approaches that intervene
in various stages of iterated construction or destruction to refine and upgrade
the structures produced at these stages (Glover (1995, 1996)). Questions wor-
thy of investigation concern how best to integrate multiple neighborhoods in
this setting as well, and the measures and procedures we have introduced here
can be adapted in a natural manner for application in such contexts.
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