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Abstract—The Bandwidth Coloring Problem (BCP) and the
Bandwidth MultiColoring Problem (BMCP) are two important
generalizations of the classical vertex coloring problem. This
paper presents Learning-based Hybrid Search (LHS) for BCP
and BMCP. LHS combines a construction phase to progressively
build feasible (partial) colorings and a local search phase to re-
establish feasibility when an illegal partial solution is encoun-
tered. The construction phase relies on a learning-based guiding
function to determine the next vertex for color assignment while
the local search phase uses a tabu search repair procedure to
resolve coloring conflicts. Experiments on a set of 33 well-known
benchmarks for BCP and a set of 33 benchmarks for BMCP
demonstrate that the proposed LHS approach can match the
best known solution for most benchmarks. In particular, LHS
finds an improved best solution for 14 instances.

Index Terms—Bandwidth coloring, learning-based heuristics,
tabu search, combinatorial optimization.

I. INTRODUCTION

Given an undirected graph G = (V, E) with vertex set V =
{v1,...,vn}, edge set E C V x V and edge weight d(3, j)
for each edge {v;,v;} € E (d(i, ) can also be considered as
a distance between two adjacent vertices v; and v;), a legal
bandwidth coloring is a function ¢ : V' — {1,2,...,k} such
that the absolute difference between c(v;) and ¢(v;) of an edge
{vi,v;} € E is at least d(1, j), i.e.,

lc(vi) = c(v;)| = d(i,5), V{vi,v;} € E (D

The Bandwidth Coloring Problem (BCP, also known as the
restricted T-coloring problem [13], [22]) is to find a legal
bandwidth coloring of G with £ minimum. The problem of k-
BCP corresponds to BCP with k being fixed where one seeks
a legal bandwidth coloring with k colors. It is easy to see that
the classic NP-hard vertex graph coloring problem [11] is a
special case of BCP when d(i,7) = 1 for each edge of the
graph.

BCP can be generalized as the Bandwidth MultiColoring
Problem (BMCP, also called the restricted set T-coloring
problem [13], [22]) where each vertex v; receives a subset
S() c {1,2,...,k} of p(i) different colors. A legal band-
width multicoloring must satisfy two distance constraints: the
absolute difference between any member of S(i) and S(j) is
at least d(¢,j) for each edge {v;,v;} € E and the absolute
difference between two distinct values in S(%) is at least d (4, 7)
for each vertex (d(i,4) is the color separation distance for
vertex v;), 1.e.,

|z =yl = d(i,j), {vi,v;} € E, Vo € 5(i),y € 5(j)
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BMCP is to find a legal bandwidth multicoloring of G with
k minimum.

BCP and BMCP are notable for their applicability to a
number of important applications in particular in the area of
frequency assignment in mobile networks [1], [2], [3], [10],
[13], [14], [23], [24], [25], [26]. However, from a computa-
tional point of view, both BCP and BMCP are comparable to
the well-known NP-hard vertex graph coloring problem [11]
since in their simplest form, they reduce to the vertex graph
coloring problem.

Over the past decades, much effort has been devoted to
BCP and BMCP, including COLORO02/03/04, a series of com-
putational challenges dedicated to solution methods for graph
coloring and its generalizations [5]. Given the computational
complexity of these problems, a number of heuristic and
metaheuristic algorithms have been proposed in the literature
such as simulated annealing [6], tabu search algorithms [7],
[18], evolutionary approach [19], [20] and hybrid algorithms
[21]. More methods can be found in the 2008 special issue of
Discrete Applied Mathematics [17] dedicated to computational
methods for graph coloring and its generalizations.

In this work, we propose a new and highly effective heuristic
approach, called Learning-based Hybrid Search (LHS) for
BCP and BMCP. LHS is based on the cooperation of an
informed construction procedure and a local search repair
procedure and integrates several distinguishing features. The
main contributions of the work can be summarized as follows.

o From the algorithm perspective, the proposed LHS ap-

proach establishes an original cooperative framework
between an informed construction approach and a local
search approach. The construction procedure progres-
sively builds feasible (partial) solutions while relying
on 1) a dynamic learning-based guiding function to
determine the order of vertices to be colored and 2)
a forward checking technique to reduce the available
colors of the considered vertex. In particular, the guiding
function takes into account both static information of
the problem instance under consideration and dynamic
information learned during the construction and the repair
processes. When the construction procedure runs into
a dead-end (i.e., the partial solution under construction
can not be extended any more without violating some
problem constraints), the search switches to the repair
procedure to try to unlock the dead-end situation in order
to switch back to the coloring construction process. The
local search repair procedure is based on the tabu search
metaheuristic reinforced by a simple perturbation strat-
egy. To our knowledge, this is the first hybrid algorithm
of this kind proposed for BCP and BMCP. Moreover, the



underlying cooperative framework could be useful and
adapted to other search problems.

o From the computational perspective, we evaluate the
LHS approach on two sets of 66 commonly used BCP
and BMCP benchmark instances in the literature. The
computational results show that our LHS algorithm can
achieve the best-known result for most of these bench-
mark instances established by several existing algorithms.
Moreover, LHS finds an improved best solution for 14
instances (2 BCP instances and 12 BMCP instances). To
our knowledge, no existing algorithm from the literature
can attain such a performance.

The rest of the paper is organized as follows. Next section
presents the Learning-based Hybrid Search (LHS) for BCP and
BMCEP. Section III shows computational results on the bench-
mark instances and comparisons with some best performing
algorithms. Before concluding, Section IV shows an analysis
of the proposed LHS approach.

II. LEARNING-BASED HYBRID SEARCH (LHS) FOR BCP
AND BMCP

The Learning-based Hybrid Search (LHS) approach is de-
signed for BCP (more precisely, the k-BCP problem), since
one can easily convert BMCP into BCP by defining a new
graph as follows (see [7] for an example). For each vertex v;
of BMCP, we define a clique {v;,,v;,,...,vp, } of cardinality
p(i) with a distance d(i,i) for each edge of the clique. For
each edge {v;,v;} € E, the distance d(7,j) is duplicated
for each pair of vertices {v;,,v;,} of the two corresponding
cliques. Then the new graph has ) . p(i) vertices and
> {vsw;per P(1) X p(j) edges.

To approximate BCP, we solve a series of k-BCP as
performed in [7], [18], [20], i.e., to seek a legal bandwidth
coloring with k colors (k can be initially fixed to be slightly a
value larger than or equal to the best-known k in the literature).
As soon as a legal k-coloring is found, we decrease the current
value k£ to kK — 1 and solve the new k-BCP. We repeat this
process until no legal k-coloring can be found and return the
last £ for which a legal k-coloring is reached.

We describe below the LHS algorithm which basically
solves the decision k-BCP problem.

A. The general LHS procedure

Our Learning-based Hybrid Search (LHS) approach repeats
the following two phases: a coloring construction phase
(Section II-C) to extend in a step-by-step way a partial
legal solution by coloring a new vertex at each step and a
repair phase (Section II-D) using tabu search [12] to solve
constraint violations when the partial legal solution cannot be
further extended. The main procedure of the LHS approach is
summarized in Algorithm 1.

The coloring construction phase operates with partial (legal)
solutions and tries to expand a partial solution to a complete
solution without violating the problem constraints. Starting
from an empty solution, the construction procedure selects at
each step, according to a learning-based guiding function (see
Section II-B), an uncolored vertex and tries to assign to it

an available color. For the selected vertex, if a color can be
assigned to it without violating any distance constraints, the
vertex receives the color and the construction phase continues.
If no feasible coloring is possible for the selected vertex, a
dead-end is encountered (in this case, the last selected vertex
is called a dead-end vertex) and LHS switches to the tabu
search repair phase to escape from the dead-end.

Suppose the partial legal solution is composed of L — 1
colored vertices when the dead-end is encountered. Then
the tabu search repair phase takes as its input the partial
solution and extends it by assigning a randomly selected color
from the given k colors to the dead-end vertex. Obviously,
this extension leads inevitably to an illegal coloring (with
L vertices) which violates some distance constraints. The
purpose of the repair phase is then to try to find a legal coloring
for the set of L vertices by re-coloring these vertices. At the
end of the repair process, there are two possibilities. If the
dead-end is resolved, i.e., a legal partial coloring is found for
the set of L vertices, LHS switches back to the construction
phase to continue its coloring construction. On the other hand,
if the repair procedure fails to find a legal partial coloring for
the set of L vertices, LHS drops the on-going process and
prepares to restart a new round of construction-repair process.
In order to learn from this failure, LHS updates the guiding
function of some critical variables (see Section II-B) with the
help of an adaptive reinforcement learning strategy. As such,
the next round of the construction phase will benefit from
some learned information to re-order the vertices such that the
critical vertices which are difficult to color will be considered
with a high priority.

LHS repeats the above process until a pre-fixed number of
maximum tries is reached or a complete legal k-coloring is
obtained.

Algorithm 1 Learning-based Hybrid Search for the Bandwidth Coloring
Problem
Require: A graph G = (V, E), an integer k
Ensure: A feasible k-coloring C'x found or null

1: T+ 0 /* T counts the failed ‘construction-repair’ rounds */

2: C+ 0 /* C'is the current feasible coloring under construction */
3: while T' < mazTries do

4: repeat
S: /* Construction phase */

6: (C,v;) <+ Construct_partial_solution(C') /* v; is the dead-end

vertex encountered, Sect. II-C */

7: /* Tabu search based conflict repair phase */

8: C < Tabu_search_repair(C, v;) /* Apply tabu search to solve
conflicts, Sect. II-D */

9: if C, is still a conflicting coloring then

10: /* The current round of construction-local search fails */

11: Update the learning-based guiding function F /* Sect. II-B */

12: C+0;,Ce+0

13: break

14: else

15: C + Cy

16: end if

17:  until |Cy| = |V|

18:  if |C«| = |V| then

19: return C. /* Cy is a complete and legal k-coloring, return Cx */
20: end if

21 T+ T+1

22: end while

23: return C\




B. Learning-based guiding function

As we explain above and in Section II-C, the construction
procedure employs a guiding function F to dynamically deter-
mine the order of vertices for color assignment. This guiding
function constitutes thus one of the most critical components
of the LHS algorithm and needs to be designed with care.

In our case, the guiding function F dynamically ranks
each vertex v by taking into account both static and learning-
based dynamic information and is called at each step of the
construction process to select a vertex for color assignment
(a vertex with the highest rank is selected, ties are broken at
random). This function takes the following form:

) = {deg(var_deg(v),

T=0
Fl fb_val(v) + fr_deg(v),

(3)
T>0YveV

where 7' is the number of the failed ‘construction-repair’
rounds.

The deg(v) part of F represents the degree of vertex v,
ie., deg(v) = |A(v)| where A(v) = {u eV : {v,u} € E}.
For a given graph, this part remains static and captures a
basic and main characteristic of the graph. The use of this
information within F is based on the consideration that a
vertex with a large degree exhibits a stronger influence to its
adjacent vertices than a vertex with a small degree. So a vertex
with a high degree is selected with a higher priority for color
assignment. This static part of F is only considered for the
first round of the construction-repair process (I' = 0) when
there is no learning-based information available yet.

The freedom degree fr_deg(v) is the number of adjacent
vertices of vertex v which received a color. Let K (v) = {u €
A(v) : u is colored}, then fr_deg(v) = |K(v)|. Clearly,
fr_deg(v) takes values in {0,...,deg(v)}. For each vertex
v, fr_deg(v) is initially set to 0. Then each time an adjacent
vertex of v receives a color, fr_deg(v) is increased by 1.
As such, F evolves dynamically with fr_deg to favor the
coloring of those vertices which become more constrained by
the coloring of its adjacent vertices. The fr_deg component of
F is based on the following consideration. When fr_deg(v)
is small relative to deg(v) (say close to 0), few of its adjacent
vertices are colored. As a consequence, vertex v has a large
freedom in the sense that it is easy to color. In this case, vertex
v will be given a low F value, thus a low rank. Reversely,
if fr_deg(v) is close to its maximum value deg(v), almost
all of its neighboring vertices have already received a color.
In this case, coloring vertex v is more difficult since this is
strongly constrained by the colors of its adjacent vertices.
Consequently, we give a high F value (thus a high rank) to
such a vertex whose coloring becomes critical.

The feedback value fb_val(v) is used to learn from each
failed construction-repair process in order to influence the rank
of vertices for the next round of coloring construction process.
This part is initially set to O for each vertex at the beginning
of the whole search process. Then two types of updates
are dynamically operated after each failed construction-repair
process, i.e., when a dead-end is encountered, which cannot be
unblocked by the subsequent tabu search repair process (see
Sections II-C and II-D).

o Update of the dead-end vertex: Suppose that v is the
last vertex under consideration when the construction
phase encounters a dead-end (i.e., no color can be as-
signed to v without violating some distance constraints).
Since the dead-end involving vertex v cannot be re-
solved by the subsequent tabu search repair phase, we
consider the underlying vertex v to be difficult or crit-
ical to color. In order to favor the selection of this
vertex for color assignment for the next round of the
coloring construction phase, we increase its feedback
value fb_val(v) (thus its F rank) by a quantity A =
max;e1,. nideg(u) :u € V}.

e Update of the conflicting vertices: Suppose that c is the
conflicting partial coloring after an improving or plateau
move of the tabu search repair process. We consider that
the vertices that are still involved in constraint violations
are difficult or critical to color. In order to favor the
selection of these vertices for the next round of the
construction phase, we raise their rank. Precisely, let X
be the set of colored vertices in c. We first identify the set
C'V of conflicting vertices in ¢ such that CV = {v € X :
Ju € K(v), |e(v) — c(u)| < d(u,v)} where K (v) is the
set of colored vertices adjacent to v. Then for each vertex
v of CV, its feedback value fb_val(v) is increased by
1.

As such, if a vertex is repeatedly involved in constraint vio-
lations which are difficult to repair, its rank will progressively
be augmented and the vertex will be selected for coloring with
a high priority during the next round of the construction-repair
process.

C. Construction phase with forward checking

The construction phase is the main component of the LHS
approach responsible for generating legal k-colorings. The
whole procedure of the construction phase is illustrated in
Algorithm 2. During the construction phase, we maintain two
sets of vertices S C V and Y = V \ S. S is the current
partial legal solution representing the set of vertices with
their respective assigned colors while ¢/ contains the set of
remaining vertices waiting for color assignment.

The construction phase initially starts with S = @ anlf =V
and then iteratively extends S by including a new vertex v
from U with a legal color ¢(v) (i.e., ¢(v) satisfies the distance
constraints expressed in Eq. (2)). The construction phase relies
on two key elements: the learning-based guiding function F
(Section II-B) and a constraint satisfaction technique called
forward-checking [15].

The learning-based guiding function F provides a dynamic
order for the uncolored vertices of /. Using F, the construc-
tion procedure selects always the vertex with the largest F
value (ties are broken at random). For each selected vertex, the
forward-checking technique is applied to remove incompatible
colors for the selected vertex v with respect to its adjacent
vertices (i.e., the distance constraints). Forward-checking is
an important component of the construction procedure. We
explain its functioning in the rest of this section.

Let v € U designate the selected vertex for color assign-
ment, let D(v) be the set of the currently available colors of v



Algorithm 2 Pseudo-code of the construction phase with
forward checking

Require: S a partial feasible coloring
Ensure: Either S a complete legal coloring or (S,v) an extended
partial coloring S with a dead-end vertex v
LU+ V\S /* U is the set of uncolored vertices of graph
G */
2: while U # () do
3:  Select a vertex v € U with the largest F value (break ties
randomly)
4 D(v) + {1,2,...,k} /* Initial color set of vertex v */
5:  for each k € D(v) do
6: /* Let A(v) be the set of vertices adjacent to vertex v */
7: for each € A(v) do
8.
9
0

if 1 is a colored adjacent vertex of v then
if |k — c(p)| < d(v, p) then
/* Distance constraint violation, delete « from

D(v) */

11: D(v) + D(v) — {k}

12: end if

13: else

14: /* p is an uncolored adjacent vertex of v */

15: if K +d(v, ) > k and k — d(v, ) < 1 then

16: /* Color k for v is incompatible with an uncolored

vertex u, delete x from D(v) */

17: D(v) + D(v) — {x}

18: end if

19: end if

20: end for

21:  end for

22:  if D(v) # 0 then

23: Choose the smallest color x € D(v) and assign x to v

24: Extend S with v and its color

25: For each uncolored vertex p € A(v), update its guiding
function value F(u)

26:  else

27: /#* D(v) becomes empty, a dead-end is detected, return S
and the dead-end vertex v for the repair phase */

28: return (S,v)

29:  end if

30: end while
31: return S

initially setto {1,2,...,k},andlet A(v) = {p € V : {u,v} €
E} be the set of vertices adjacent to v. Two forward-checking
operations are triggered to reduce D(v) with the computational
complexity O(k x |A(v)]).

o First forward checking operation: This operation aims
to eliminate any color from D(v) which is incompatible
with the colored vertices in A(v). More precisely, for
a color k € D(v), if there exists an adjacent colored
vertex 1 € A(v) such that |k — ()] < d(v, ), color k
can not be assigned to vertex v (due to distance constraint
violation) and can be removed from D(v) (See Algorithm
2, lines 8-12).

o Second forward checking operation: This operation aims
to eliminate any color from D(v) which is incompatible
with the wuncolored vertices in A(v) if the color is
assigned to v. More precisely, for a color k € D(v),
if there exists an adjacent uncolored vertex p € A(v)
such that x + d(v, ) > k and k — d(v, u) < 1, color Kk
cannot be assigned to vertex v (since the uncolored vertex
1 has no available colors if « is assigned to v) and can

be removed from D(v) (see Algorithm 2, lines 14-18).

After these forward checking operations, if the color domain
D(v) is not empty, the current partial solution is extended by
vertex v with the smallest color of D(v). Before moving to the
next iteration of the construction phase, the algorithm updates
the guiding function value F(u) (i.e., fr_deg(n)) for each
uncolored vertex u € A(v) (Algorithm 2, lines 22-25).

On the other hand, if the color domain D(v) becomes empty
(i.e., no color can be assigned to v without violating some
distance constraints), a dead-end is detected. At this point,
the construction procedure is stopped and the search process
switches to the tabu search repair procedure (Algorithm 2,
lines 26-28).

Figure 1 illustrates the construction phase with forward
checking. In the example, we use six colors (kK = 6) to
color a graph G with five vertices a,b,...,g and six edge
weights. At the first construction step, the guiding function
is F{a,b,d,e,g} = {2, 3, 2, 2, 3}, b and g are thus the
vertices with the largest F value. Suppose a random selection
between b and g gives vertex b and D(b) = {1,2,3,4,5,6}.
According to the first forward checking operation, no color
can be removed from D(b). Then, according to the second
forward checking operation, {2, 3, 4, 5} can be removed from
D(b). Hence, D(b) = {1,6} and the smallest color 1 is chosen
to color the vertex b. Then the function F{a,b,d,e, g} is
updated to {3, -, 3, 2, 4}. At this point, one construction step is
successfully accomplished. The next steps of the construction
phase will handle the remaining vertices g,d, e and « in this
order and assign them colors 4, 6, 1 and 5 respectively.

In this example, no dead-end is encountered during the
construction phase. Generally, the application of forward-
checking can eliminate all the colors of the vertex currently
under consideration. In this case, the search switches to the
repair phase for conflict resolution that we explain in the next
section.

D. Tabu search repair phase

When the construction phase encounters a dead-end where
the selected vertex v has no available colors (all its colors
are removed by the forward-checking operations, see Section
I1-C), LHS assigns a random color from {1, ..., k} to vertex v
and updates the guiding function value F(u) (i.e., fr_deg(u))
for each uncolored vertex p € A(v). By doing this, some
distance constraints are inevitably violated causing the current
partial solution to be illegal. The purpose of the repair phase
is then to try to transform this conflicting solution into a
legal partial bandwidth coloring in order to switch back to the
construction phase. To achieve this, we develop a tabu search
[12] repair procedure (TSRP) for the k-BCP which combines
a basic tabu search procedure (TS) and a simple perturbation
mechanism. The TS procedure is an adaptation of the Tabucol
algorithm first introduced in [16] for the conventional graph
coloring problem and later improved in [7], [9].

1) Tabu search procedure: The general scheme of the tabu
search repair procedure is shown in Algorithm 3. As shown
in the algorithm, TSRP alternates between the tabu search
procedure (lines 4-18, Algorithm 3) and the perturbation
mechanism.
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Fig. 1.

Suppose that the partial illegal solution S is composed of L
vertices {v!,...,vL} C V. Then the TS procedure explores a
subset of the space Q = {1, ..., k}" to seek a legal bandwidth
coloring by using an evaluation function f, a neighborhood N
and a tabu list (see Section II-D2). Notice that {2 contains both
legal and illegal bandwidth k-colorings. The purpose of TS is
to find a legal solution by making successive improvements.

From the partial illegal coloring S, TS improves its solutions
by iteratively moving from the current solution to one neigh-
boring solution guided by the evaluation function. The best
solution (in terms of the evaluation function f) is recorded in
S.. At each iteration, TS moves from the current solution S to
a best authorized neighboring solution, records the transition
in the tabu list to prevent the search from revisiting solution S
and possibly updates the best solution S, (lines 7-15). If the
best solution cannot be improved for a given number mazlters
of consecutive iterations, the search is considered to be trapped
in a local optimum. To escape from the local optimum,
TSRP triggers a perturbation mechanism (see Section II-D3)
to modify the current solution which becomes the starting
solution of the next round of the tabu search procedure (lines
19-20). The repair phase using TSRP stops either when a legal
coloring is found by the tabu search procedure (lines 10-11)
or after reaching a prefixed number mazTSruns of the tabu
search runs (or perturbations) (lines 3, 22-23).

2) Evaluation function, constrained neighborhood and tabu
list: 'We next describe the key elements of the tabu search
procedure, i.e., the evaluation function to measure the quality
of a candidate solution (bandwidth) coloring, the neighborhood
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An illustrative example of the construction phase with forward checking.

to identify the neighboring solutions that can be attained at
each iteration, and the tabu list to avoid short-term cycling.

Evaluation function f: Recall that a distance d(i,j) is
defined for each edge {v;,v;} € E and the distance constraint
states that the absolute value of the difference between the
colors assigned to adjacent vertices v; and v; must be at least
the distance d(4,7). Given a partial (illegal) solution S, we
use the evaluation function defined in Eq. (4) [18] to quantify
the quality of S.

F(8) = max{0,d(i,j) - |e(v:) — e(v))]}
{i,J}€E

This function basically measures the degree of constraint
violations induced by a solution. Given two solutions S
and Sz, if f(S1) < f(S2) (e, S; has a smaller degree of
constraint violations than Ss), S is better than So. If f(S)
equals to 0, S is a feasible solution.

Constrained neighborhood N: TS uses a constrained
neighborhood N which can be described by the move operator
OneMove(v, 1, j). Let S be a solution composed of L vertices
X = {v',...,vF}. Let CV be the set of conflicting vertices
such that CV = {v € X : the color of v is conflicting with
the color of at least one vertex}. The OneMove operator
changes the current color ¢ of a conflicting vertex v € CV
to another color j. Let OneMove(v,i,j) designate such a
move and S ®OneMove(v, i, j) be the resulting neighboring
solution from S. Then the neighborhood N of S is composed
of all possible solutions that can be obtained by applying the
OneM ove operator to S, i.e.,

“4)



Algorithm 3 Tabu search repair procedure

Require: Graph G, color number k, partial illegal solution to be
repaired S, maximum number of launching TS mazT'Sruns
Ensure: a legal bandwidth k-coloring if found or the best solution

found

I: Su S /* S, records the best solution found so far */
2«0 /* Counts the number of launching TS */

3: while a < mazTSruns do

4:  /* Tabu search, see Section II-D2 */

5 pB+0 /* Counts consecutive iterations failing to improve

S« ¥/

6 repeat

7: Select one best eligible move OneMove(v, 1, 7)

8: S+ S & OneMove(v,1,j)

9: Update the tabu list
10: if f/(S) =0, ie., S is legal coloring then
11: return S
12: end if
13: if f(S) < f(S«), i.e., S is better than S, then
14: S+ S;8+0
15: else
16: B+—pB+1
17: end if

18:  until 5 = mazxlters

19: /* The perturbation mechanism, see Section II-D3 */

20: S < Perturbation(S,) /* The perturbed solution becomes
the starting point of the next TS run */

21: a+—a+1

22: end while

23: return S.

N(S)={S ® OneMove(v,i,j) :veCV}

With this neighborhood, TS explores a much restricted space
of k!€VI (instead of k¥) where CV is usually a very small
subset of vertices of the current coloring S. In order to render
the neighborhood exploration as fast as possible, we adopt
the incremental technique based on special data structures as
explained in [7] to streamline the calculations.

Given this neighborhood, each iteration of TS selects the
best OneMove(v,i,7) operator among all the eligible can-
didate moves to be applied to the current solution. Ties are
broken at random.

Tabu list management: The tabu list is introduced to record
forbidden moves that have been performed in the recent past.
Each time TS makes a move OneM ove(v, i, j), the pair (v, j)
is added to the tabu list, meaning that it is forbidden to remove
color j from vertex v for the next 7T (tabu tenure) iterations.
In our case, the tabu tenure ¢¢ is adaptively determined by
it = f(8S) + random(10) [7], [9] where f(S) is the value of
the evaluation function defined in Eq. (4) and random(10) is
a random integer from 1 to 10. Moreover, a forbidden move
is always accepted if it leads to a neighboring solution better
than the best solution found so far (aspiration criterion).

3) The perturbation mechanism: The tabu search procedure
described above can be trapped in a local optimum, leading
to search stagnation. When this happens, we employ a simple
perturbation strategy to change (or perturb) the current solution
S. Recall that S, records the best solution found so far. The
perturbation procedure always replaces S by S, and thus uses
S. as the new starting point of the next round of TS.

The perturbation strategy is based on the consideration that

S, is a high quality configuration (i.e., having few conflicts)
which could be close to a proper (legal) coloring. Using S, as
its starting point, the tabu search procedure will explore a new
search trajectory and hopefully encounters a proper coloring.

E. Discussions

In this section, we discuss the relation of our LHS algorithm
with the Forward Checking Coloration Neighborhood Search
(FCNS) approach [21] which is probably the closest study
for BCP. Indeed, both approaches employ forward checking
to build a partial color assignment. However there are three
notable differences between LHS and FCNS. First, unlike
LHS, the heuristic used for vertex selection of FCNS does not
integrate any learning technique. Second, when a dead-end is
encountered (i.e., no color can be assigned to the vertex under
consideration), LHS employs a tabu search procedure to repair
the conflicting coloring while FCNS just uncolors one or more
vertices in a heuristic way to resolve the conflict. Third, the
process of dropping an on-going construction phase provides
LHS with an opportunity of learning from previous failures
while FCNS does not use such similar technique.

From a more general perspective, LHS is also related to the
general GRASP metaheuristic [8] in the sense that both LHS
and GRASP are composed of a construction phase and a local
optimization phase. Yet, unlike GRASP which applies a local
search procedure to improve a complete solution (complete
color assignment in our case), the tabu search routine of LHS
repairs partial (and conflicting) solutions.

As shown in the next section, the proposed LHS algorithm,
equipped with its particular features, is a very competitive
method for the bandwidth coloring problem.

III. EXPERIMENTAL RESULTS

A. Benchmark instances and experimental protocol

Our LHS approach was tested on two sets of 66 well-known
benchmark instances (33 graphs for BCP and 33 for BMCP
[5]). These instances belong to three types: GEOMn, GEOMna
and GEOMnb (where n denotes the number of vertices of the
graph). The first type refers to sparse graphs, while the two
other types correspond to dense graphs.

The LHS algorithm is coded in C++ and compiled using
g++ with the ‘-O2’ option on an Intel Xeon E5440 pro-
cessor (2.83GHz and 4GB RAM). The run time required
for solving the DIMACS machine benchmarks (available
at: ftp://dimacs.rutgers.edu/pub/dsj/clique/) on our machine is
0.44, 2.63 and 9.85 seconds for graphs r300.5, r400.5 and
r500.5 respectively. The computational results reported in this
section were obtained with the parameter values shown in
Table 1. Given the stochastic nature of our LHS algorithm,
each problem instance is independently solved 20 times. As
explained in Section II, LHS solves the k-BCP problem by
decreasing the k values. For the experiments reported in this
paper, we set the initial value of k& to be the best-known (i.e.,
the smallest) value k, from the literature for all the graphs.



TABLE 1
SETTINGS OF PARAMETERS

Parameter Sect. Description Value
mazxTries II-A Maximum number of tries 10°
maxlters II-D Maximum number of non-improving moves for TS 104
mazTSruns 1I-D Maximum iterations of launching TS 50

B. Computational results of LHS on the BCP instances

This section is dedicated to an evaluation of the LHS’s
performance for the bandwidth coloring problem using the 33
BCP benchmark graphs. Columns 1-4 in Table II present the
characteristics of the tested graphs and column k, gives the
current best-known results reported in the published literature
and the unpublished paper [19]. The current best-known k,
reported in the published literature is also given in parentheses.
Columns 6-8 present detailed computational results of our
LHS algorithm: The best result in terms of the number of
colors (k), the success rate (SR, number of runs over 20 to
attain the best result k) and the average running time to reach
k (t, in seconds).

From Table II, one observes that except for three small
instances (indicated in italics), LHS can match the best-known
results of the other 30 instances. Remarkably, LHS is able to
improve the current best-known result for two hard instances
(GEOM100b and GEOM110b indicated in bold). Furthermore,
LHS achieves robust results with a success rate SR = 20/20
except for five cases (GEOM100a, GEOM100b, GEOM110a,
GEOM110b and GEOM120b). Besides, Table II also lists the
k value of these five graphs when SR = 20/20. The average
running time of LHS ranges from O second to 1 hour. Each
computing time corresponds to the average time for LHS to
reach a legal coloring with the £k value indicated in the table.

In order to further evaluate our LHS method, we compare
our results with those obtained by four best performing
algorithms in the literature: forward checking colouration
neighbourhood search (FCNS) [21], evolutionary algorithm
(EA) [20], multistart iterated tabu search (MITS) [18] and path
relinking (PR) [19]. For this purpose, we restrict our attention
to solution quality, i.e., the smallest k£ used to obtain a legal
k-coloring. Computing times are included only for indicative
purposes since there is no sense to compare the computing
times of two methods if they achieve colorings with different
k values. As one can observe in Table III, there are many
such cases. Indeed, it is generally more difficult to find a legal
k-coloring than a legal (k + 1)-coloring. This is particularly
true when k is close to the best-known value k. (see for
instance the cases GEOM100a, GEOM100b, GEOM110a and
GEOM110b in Table III). Finally, the experimental platforms
used by the reference algorithms are as follows: A 733MHz
Pentium III PC for FCNS, a PIV 2.4MHz computer with 512
MB RAM for EA and a 2.8GHz computer with 4GB RAM
for MITS and PR.

Table III presents the comparative results of LHS and the
four reference methods (FCNS, EA, MITS and PR). The “-
” marks for the reference MITS algorithm in Table III mean
that MITS fails to reach the best-known result for the tested
graph and the best obtained % is not reported for these graphs.
From Table III, one observes that the reference algorithms can

achieve the best reported k, for 17, 24, 28 and 29 instances
respectively, while LHS achieves the best-known results for 30
instances. Table III also discloses that LHS obtains no worse
results than FCNS, EA, MITS and PR. More importantly, LHS
can improve the best-known results in the literature for two
instances (entries in bold). Finally, to find a legal coloring with
the same k value, LHS requires comparable computing times
with respect to FCNS and EA, and shorter times than MITS
and PR for many cases. These outcomes provide evidence of
the efficacy of our LHS approach for BCP.

C. Computational results of LHS on the BMCP instances

We turn now our attention to an evaluation of the LHS
algorithm on the bandwidth multicoloring problem using the
set of 33 “GEOM?” benchmark instances for BMCP. For this
purpose, we first present our detailed computational results,
and then show a comparison between LHS and the five state-
of-the-art algorithms OF-SW [4], FCNS [21], EA [20], MITS
[18] and PR[19].

Table IV shows the detailed characteristics of each graph,
the best-known result k. (the best-known k. in the published
literature is also given in parentheses) and the result of our
LHS approach. In addition to the best colors obtained (k) with
the average running time to reach k (¢ in seconds), we also
provide the success rate (SR) of LHS for attaining the best
result k. Furthermore, we list the k value for each graph when
LHS could achieve the robust results with a SR = 20/20. Table
V reports the comparative results between LHS and the five
reference algorithms. The experimental platform used by OF-
SW algorithm is a 2GHz AMD Athlon MP 2400+ processor
with 256 KB cache and 1 GB RAM, and the platforms of
the other four reference algorithms are the same as given in
Section III-B.

From the results in Table IV, we observe that our LHS
approach can match the best-known k., for all 33 instances.
More importantly, LHS finds an improved best result for 12
out of 33 instances (entries in bold). This is remarkable given
that 14 of these 33 best-known results were reported very
recently in the unpublished work [19]. In particular, LHS
can consistently achieve the best-known k, in the literature
with a perfect success rate for all graphs except GEOMS80a,
GEOMO90a and GEOM110b. Besides, the indicated computing
time corresponds to the average time for LHS to reach a legal
coloring with the & value indicated in the table. From Table
IV, one also observes that the running time increases when &
decreases since this makes the problem more difficult to solve.

Table V lists the comparative results of LHS and the five
reference algorithms (OF-SW, FCNS, EA, MITS and PR).
The “-” marks for the OF-SW algorithm mean that no result
is available for the concerned graphs. From Table V, one



TABLE 11
LHS: DETAILED COMPUTATIONAL RESULTS ON BCP INSTANCES

Characteristics of the graphs K LHS
Name V] [E] Den k SR t(s)
GEOM20 20 20 0.1053 20 21 20/20 0.0
GEOM20a 20 37 0.1947 20 20 20/20 0.0
GEOM20b 20 32 0.1684 13 13 20/20 0.0
GEOM30 30 50 0.1149 27 28 20/20 0.0
GEOM30a 30 81 0.1862 27 27 20/20 0.0
GEOM30b 30 81 0.1862 26 26 20/20 0.0
GEOM40 40 78 0.1000 27 28 20/20 0.0
GEOM40a 40 146 0.1872 37 37 20/20 0.0
GEOM40b 40 157 0.2013 33 33 20/20 0.0
GEOM50 50 127 0.1037 28 28 20/20 0.0
GEOM50a 50 238 0.1943 50 50 20/20 0.1
GEOM50b 50 249 0.2033 35 35 20/20 1.2
GEOMO60 60 185 0.1045 33 33 20/20 0.0
GEOM60a 60 339 0.1915 50 50 20/20 0.1
GEOM60b 60 366 0.2068 41 41 20/20 214.7
GEOM70 70 267 0.1106 38 38 20/20 0.0
GEOM70a 70 459 0.1901 61 61 20/20 23.7
GEOM70b 70 488 0.2020 47 47 20/20 665.4
GEOMS80 80 349 0.1104 41 41 20/20 0.1
GEOM&80a 80 612 0.1936 63 63 20/20 6.6
GEOM&80b 80 663 0.2098 60 60 20/20 19.9
GEOM90 90 441 0.1101 46 46 20/20 0.0
GEOM90a 90 789 0.1970 63 63 20/20 23.8
GEOM90b 90 860 0.2107 69 69 20/20 779.2
GEOM100 100 547 0.1105 50 50 20/20 1.0
GEOM100a 100 992 0.2000 67 67 8/20 1557.4
68 20/20 189.8
GEOM100b 100 1050 0.2121 72 71 12/20 2038.6
72 20/20 759.6
GEOM110 110 638 0.1064 50 50 20/20 1.3
GEOM110a 110 1207 0.2013 71(72) 71 19/20 2218.7
72 20/20 3242
GEOM110b 110 1256 0.2095 78 77 10720 2598.7
78 20/20 94.3
GEOM120 120 773 0.1083 59 59 20/20 0.5
GEOM120a 120 1434 0.2000 82 82 20/20 171.1
GEOM120b 120 1491 0.2088 84 84 2/20 3568.1
85 20/20 1829.7

observes that OF-SW, FCNS, EA and MITS reach the best-
known results for 6, 8, 13 and 18 cases respectively. While
both the unpublished PR algorithm and our LHS algorithm at-
tain the best-known results for all 33 instances (in italics), LHS
requires a much shorter computing time for most instances.
More importantly, our LHS algorithm can find an improved
best solution for 12 instances (in bold).

Once again, we do not emphasize on computing time since
the compared approaches provide results with different k& val-
ues. The computing times of FCNS [21] are much shorter, but
its results are much worse in terms of solution quality. To find
solutions of the same quality (with the same k), LHS does not
consume more time than OF-SW [4] and EA [20]. Compared
to the most recent and the two best performing algorithms
MITS [18] and PR [19], LHS requires less computing times
to find equal or better solutions.

In summary, LHS competes very favorably with the five
high performing reference algorithms in the literature for
BMCP.

IV. DISCUSSION

In this section, we perform an additional experiment to
assess the impact of the learning-based guiding function F
defined in Eq. (3) (Section II-B) which is a key element of
the LHS approach.

Indeed, as explained in Section II-A, the construction phase
uses the guiding function F to decide the next vertex for color

assignment. This experiment aims to show its influence to
the performance of LHS. For this purpose, we compare LHS
(with F of Eq. (3)) and a LHS variant called LHS, 4, q0m-
LHS, 4ndom discards the guiding function F and selects ran-
domly vertices for color assignment.

For this experiment, we focus on 24 most difficult and
challenging benchmark instances for BMCP. With the same
experimental protocol, we run 20 times each of these two
LHS procedures (LHS and LHS,.n40m) to solve the 24
BMCP benchmark instances. The computational outcomes are
reported in Table VI.

From Table VI, one observes that LHS achieves always a
better or equal result compared to LHS, 4, 40m- In particular,
the result of LHS is better for 15 out of the 24 instances,
i.e., LHS requires a smaller number of colors to find a legal
coloring, with a color reduction ranging from 1 up to 8.
Given that finding a legal k-coloring with k close to the best-
known value £* is already a difficult task, the improvement of
LHS over LHS, 4ndom is significant. Moreover, LHS requires
less average time to reach its best solutions compared to
LHS, 4ndom- In summary, discarding the guiding function F
makes LHS less effective and weakens its performance.

Finally, one notices that even the weakened LHS, ,dom
procedure is competitive compared with the best existing
methods since LHS,.,,40m 1S able to match the best-known
results in most cases and even finds two improved best results
(indicated in bold). Thus this experiment indirectly shows the



TABLE III
COMPARISONS WITH FOUR STATE-OF-THE-ART ALGORITHMS ON BCP INSTANCES
Graph FCNS [21] EA [20] MITS [18] PR [19] LHS
Name k. k t(s) k t(s) k t(s) k t(s) k t(s)
GEOM20 20 21 0.0 21 0.0 - - 21 0.0 21 0.0
GEOM20a 20 20 0.0 20 0.0 20 0.0 20 0.0 20 0.0
GEOM20b 13 13 0.0 13 0.0 13 0.0 13 0.0 13 0.0
GEOM30 27 28 0.0 28 0.0 - - 28 0.0 28 0.0
GEOM30a 27 27 0.0 27 0.0 27 0.0 27 0.0 27 0.0
GEOM30b 26 26 0.0 26 0.0 26 0.0 26 0.0 26 0.0
GEOM40 27 28 0.0 28 0.0 - - 28 0.0 28 0.0
GEOM40a 37 37 0.0 37 0.0 37 0.0 37 0.0 37 0.0
GEOM40b 33 33 0.0 33 0.0 33 0.0 33 0.0 33 0.0
GEOMS50 28 28 0.0 28 0.0 28 0.0 28 0.0 28 0.0
GEOMS50a 50 50 2.0 50 0.0 50 0.0 50 0.0 50 0.1
GEOMS50b 35 35 0.0 35 0.0 35 3.0 35 1.0 35 1.2
GEOM60 33 33 0.0 33 0.0 33 0.0 33 0.0 33 0.0
GEOM60a 50 50 1.0 50 0.0 50 1.0 50 0.0 50 0.1
GEOMO60b 41 43 0.0 41 29.0 41 277.0 41 105.0 41 214.7
GEOM70 38 38 0.0 38 0.0 38 0.0 38 0.0 38 0.0
GEOM70a 61 62 2.0 61 12.0 61 45.0 61 47.0 61 23.7
GEOM70b 47 48 1.0 48 52.0 47 8685.0 47 6678.0 47 665.4
GEOMS0 41 41 0.0 41 0.0 41 0.0 41 0.0 41 0.1
GEOMS80a 63 63 12.0 63 150.0 63 21.0 63 12.0 63 6.6
GEOMBS&0b 60 61 0.0 60 145.0 60 322.0 60 191.0 60 19.9
GEOM90 46 46 3.0 46 0.0 46 0.0 46 0.0 46 0.0
GEOM90a 63 64 2.0 63 150.0 63 230.0 63 191.0 63 23.8
GEOM90b 69 72 2.0 70 1031.0 69 20144.0 69 23560.0 69 779.2
GEOM100 50 50 0.0 50 2.0 50 2.0 50 2.0 50 1.0
GEOM100a 67 68 9.0 68 273.0 67 11407.0 67 5556.0 67 1557.4
68 189.8
GEOM100b 72 73 15.0 73 597.0 72 24561.0 72 41832.0 71 2038.6
72 759.6
GEOM110 50 50 4.0 50 3.0 50 2.0 50 5.0 50 1.3
GEOM110a 71(72) 73 7.0 72 171.0 72 1529.0 71 5140.0 71 2218.7
72 3242
GEOM110b 78 79 2.0 78 676.0 78 24416.0 78 18136.0 77 2598.7
78 94.3
GEOM120 59 60 4.0 59 0.0 59 1.0 59 2.0 59 0.5
GEOM120a 82 84 4.0 84 614.0 82 34176.0 82 62876.0 82 171.1
GEOM120b 84 86 9.0 84 857.0 - - 85 66301.0 84 3568.1
85 1829.7

interest of the general cooperative approach of LHS which
combines a construction procedure and a repair procedure.

V. CONCLUSION

In this paper, we presented the Learning-based Hybrid
Search approach for the Bandwidth Coloring Problem (BCP)
and the Bandwidth MultiColoring Problem (BMCP). LHS
alternates between an informed construction phase and a repair
procedure until attaining a feasible solution. The construction
phase is guided by a learning-based function to choose the next
vertex for color assignment and applies a forward checking
technique to eliminate incompatible colors for unassigned
vertices. The tabu search based repair procedure is used
to resolve dead-end situations when the construction phase
cannot further extend the current partial solution.

Experimental evaluations on two sets of 66 benchmark
instances showed that the proposed LHS approach is highly
competitive in comparison with the current most effective
algorithms for BCP and BMCP. LHS can reach the best-
known results for most benchmarks of both BCP and BMCP.
In particular, LHS improves the best-known results for two
BCP instances and 12 BMCP instances.

One observes that the transformation from bandwidth multi-
coloring instances to bandwidth coloring instances introduces
extra symmetry in the resulting BCP graph. Studies on the
impact of these extra symmetries on search algorithms are

reported in [20], [21]. An interesting perspective to improve
the proposed LHS algorithm would be to integrate dedicated
symmetry handling techniques. For instance, special terms
may be built into the guiding function to distinguish a trans-
formed vertex from an original vertex. To further consider
coloring symmetries during the repairing phase, it would be
advantageous to replace the tabu search routine by a memetic
algorithm using a grouping crossover operator like the greedy
partition crossover (GPX) introduced in [9].

Finally, the general LHS algorithm follows a new frame-
work which is different from the existing approaches. In the
future, we hope to investigate its usefulness for solving other
constrained combinatorial problems.
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COMPARISONS OF LHS WITH FIVE STATE-OF-THE-ART ALGORITHMS ON THE SET OF 33 BMCP INSTANCES

TABLE V

Graph OF-SW [4] FCNS [21] EA [20] MITS [18] PR (1] LHS
Name k. k t(s) ko t(s) ko t(s) k t(s) ko t(s) k t(s)
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GEOM40b 74 74 140.0 74 4.0 74 1.0 74 2.0 74 4.0 74 15
GEOMS50 224 - - 224 1.0 224 1197.0 224 8.0 224 20 224 03
GEOMS50a 312(314) 315 1080.0 323 51.0 316 4675.0 314 40373.0 312 270860.0 311 14526
312 307.5
GEOMS50b 83 84  200.0 86 1.0 83  197.0 83 1200.0 83 723.0 83 721
GEOM60 258 258 710.0 258 71.0 258 139.0 258 19.0 258 23.0 258 13
GEOM60a 354(356) 356 1420.0 373 10.0 357 8706.0 356 38570.0 354 34580.0 353 9007.1
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GEOM70a 466(467) 478 1470.0 482 315.0 473 988.0 467 38759.0 466  6952.0 465 36604.9
466 12622.1
GEOM70b 116 120 380.0 119 55.0 117 897.0 116 213545.0 116 26110.0 115 3640.7
116 1844.7
GEOMS0 380(381) 382 1490.0 398 361.0 388 132.0 381 212213.0 380 34493.0 379 3578
380 164.0
GEOMS80a 358(361) 360 1510.0 380 109.0 363 8583.0 361 41235.0 358 41772.0 357 43403.0
360 13302.9
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373 3164.5
GEOM90b 144 147 590.0 147 303.0 144 1750.0 144 211366.0 144 14648.0 142 7680.8
144 1331.8
GEOM100 404 404 2170.0 424 7.0 410 3283.0 404 40121.0 404 16355.0 404 649
GEOM100a 436(442) 437 2500.0 461 26.0 444 12526.0 442 381.0 436 9108.0 429 78363.1
436 2310.7
GEOM100b 156 159 690.0 159 367.0 156 3699.0 156 213949.0 156 86308.0 153 10840.1
156 726.3
GEOM110 375(381) 378 2510.0 392 43.0 383 23440 381 183.0 375 25401.0 375 1598.8
GEOM110a 482(488) 490 3120.0 500 29.0 490 2318.0 488 926.0 482 9819.0 478 49457.1
482 3753
GEOM110b 201(204) 208 790.0 208 5.0 206 480.0 204 944.0 201 47653.0 201 5388.4
203 303.1
GEOM120 396 397 2730.0 417 9.0 396 2867.0 - - 396 15341.0 396 626.1
GEOM120a 539(554) 549 3690.0 565 41.0 559 3873.0 554 1018.0 539 45147.0 536 69518.6
539 20286.1
GEOM120b 189 191 910.0 196 3.0 191 3292.0 189 213989.0 189 14371.0 187 8025.8
189 315.2
TABLE VI
ASSESSMENT OF THE LEARNING-BASED GUIDING FUNCTION
Graph LHSrandonl LHS
Name K k SR t(s) k SR t(s)
GEOMS50 224 224 20/20 0.3 224 20/20 0.3
GEOM50a 312(314) 313 2/20 28288.6 311 20720 1452.6
GEOMS50b 83 83 16/20 3492.4 83 20720 72.1
GEOMO60 258 258 20/20 1.6 258 20/20 13
GEOM60a 354(356) 354 7120 12349.2 353 2/20 9007.1
GEOMO60b 113 113 1720 3549.1 113 20/20 910.7
GEOM70 266(270) 266 7120 14235.4 266 20720 2534.0
GEOM70a 466(467) 466 9/20 30681.1 465 6/20 36604.9
GEOM70b 116 117 3/20 7880.7 115 3120 3640.7
GEOM&0 380(381) 379 6/20 18108.5 379 20/20 357.8
GEOM&0a 358(361) 360 120 64551.1 357 2/20 43403.0
GEOM&0b 138(139) 138 20/20 529.6 138 20720 46.5
GEOM90 328(330) 328 3/20 15547.1 328 20/20 162.2
GEOM90a 372(375) 373 3/20 26154.4 372 3120 16782.1
GEOM90b 144 145 3/20 11794.4 142 7/20 7680.8
GEOM100 404 404 20/20 302.8 404 20/20 64.9
GEOM100a 436(442) 437 3/20 45299.8 429 1720 78363.1
GEOM100b 156 159 4/20 7565.8 153 1/20 10840.1
GEOM110 375(381) 375 3/20 324354 375 20/20 1598.8
GEOM110a 482(488) 481 6/20 24425.6 478 1/20 49457.1
GEOM110b 201(204) 202 120 15397.1 201 3/20 5388.4
GEOM120 396 396 20/20 14012.6 396 20/20 626.1
GEOM120a 539(554) 542 1720 76969.1 536 2/20 69518.6
GEOM120b 189 190 2/20 12950.6 187 8/20 8025.8
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