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Abstract—The Latin square completion problem (LSC) in-
volves completing a partially filled Latin square of order n by
assigning numbers from 1 to n to the empty grids such that each
number occurs exactly once in each row and each column. LSC
has numerous applications and is however NP-complete. In this
paper, we investigate an approach for solving LSC by converting
a LSC instance to a domain-constrained Latin square graph and
then solving the associated list coloring problem. To be effective,
we first employ a constraint propagation based kernelization
technique to reduce the graph model and then call for a dedicated
memetic algorithm to find a legal list coloring. The population-
based memetic algorithm combines a problem-specific crossover
operator to generate meaningful offspring solutions, an iterated
tabu search procedure to improve the offspring solutions and
a distance-quality-based pool updating strategy to maintain a
healthy diversity of the population. Extensive experiments on
more than 1800 LSC benchmark instances in the literature
show that the proposed approach can successfully solve all the
instances, surpassing the state-of-the-art methods. To our knowl-
edge, this is the first approach achieving such a performance for
the considered problem. We also report computational results for
the related partial Latin square extension problem.

Index Terms—Latin square completion, Graph coloring, List
coloring, Memetic search, Tabu search.

I. INTRODUCTION

A Latin square L of order n is composed of n×n grids (or
cells) such that each grid is filled with a number in {1, . . . , n}
(n ∈ N+) and each number occurs in each row and each
column exactly once. If some grids of L remain unfilled
(or empty), L is a partial Latin square. The Latin square
completion problem (LSC) of order n involves completing
the empty grids of a partial Latin square with numbers in
{1, . . . , n} to obtain a legal Latin square.

LSC was first studied by Hall [19] and Ryser [37], and was
known to be NP-complete in the general case [1], [8], [11].
LSC can be considered as a special case of the partial Latin
square extension problem (PLSE), which is to assign numbers
in {1, . . . , n} to as many empty grids as possible under the
condition that each number has to occur at most once in each
row and each column. Both LSC and PLSE arise naturally in
a variety of practical applications, such as scheduling, optical
routing, error correcting codes as well as combinatorial design
[3], [9], [16], [26], [29].
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Given their theoretical and practical importance, a number
of studies on LSC and PLSE have been reported in the
literature. For instance, in 1999, Kumar et al. proposed two
approximation algorithms for PLSE with nontrivial worst-case
performance guarantees [26]. In 2002, Gomes and Shmoys
studied three complete solution methods for solving LSC: a
Constraint Satisfaction based approach (CSP), a hybrid 0/1
Linear Programming/CSP based strategy (LP/CSP), and a
Boolean Satisfiability based approach (SAT) [17]. In 2004,
Ansótegui et al. focused on a systematic comparison of SAT
and CSP models for the Latin square (quasigroup) completion
problem [2]. The same year, Gomes et al. presented a natural
randomized rounding algorithm based on a packing linear pro-
gramming relaxation, which yields an e/(e−1)-approximation
algorithm [18]. These algorithms are able to solve small LSC
instances within a reasonable time, but fail to solve most of
the large and hard traditional benchmark instances. Recently
in 2016, Haraguchi introduced several powerful iterated local
search algorithms with multiple neighborhoods to solve PLSE
as well as LSC [21]. Assessed on a large set of 1800 new
instances of various sizes and characteristics, these local search
algorithms showed state-of-the-art performances. In particular,
the Trellis-neighborhood search algorithm (Tr-ILS∗) proves
to outperform other tested ILS variants and two general
optimization solvers (IBM-ILOG CPLEX and LocalSolver).
The instances and the associated results presented in [21] will
be used as the main references for our computational studies.

Despite much research effort dedicated to LSC and the
resulting advances, there are still very few methods that
are able to solve the problem effectively. For instance, no
existing algorithm can find a solution for some traditional
instances tested in [17] and many new instances introduced
by Haraguchi in [21]. It is thus quite useful and challenging
to devise a method able to solve large and difficult instances.

In this work, we investigate for the first time a solution
method for solving LSC by converting the problem to a
particular graph coloring problem (i.e., precoloring extension
[5], then list coloring [12], [28]). With reference to the
particular features of the resulting coloring model, we propose
a memetic coloring algorithm (MMCOL) to solve it. Note that
as a heuristic, if MMCOL finds a legal coloring for a given
LSC instance, then the problem is solved. Otherwise, it says
nothing about whether the LSC instance is solvable or not.

We summarize the contributions of this work as follows.
First, from a perspective of solution method, the proposed

approach considers the Latin square completion problem as
a particular graph coloring problem. In this approach, we
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start by converting a LSC instance to a domain-constrained
Latin square graph (Section II-A). Then we reduce the graph
model by applying a constraint propagation based kerneliza-
tion technique (Section II-B), leading to an instance of the
list coloring problem. Finally, we seek a legal list coloring of
the graph by running a dedicated memetic algorithm (Section
III). The kernelization technique recursively uses constraint
propagation to remove the vertices with a fixed color (cor-
responding to filled grids). The memetic algorithm adapts
ideas from graph coloring algorithms to effectively solve the
underlying list coloring problem. In particular, the algorithm
integrates a problem-specific crossover to generate promising
offspring solutions, an effective iterated tabu search procedure
to improve each offspring solution, and a distance-and-quality
based pool updating strategy to ensure a healthy diversity of
the population.

Second, from a perspective of computational performance,
we provide experimental results on a large number of LSC
benchmark instances available in the literature (over 1800 in
total including 19 traditional benchmark instances from [17]
and 1800 new instances from [21]) and show comparisons
with various state-of-the-art approaches including four recent
iterated local search algorithms, general IP and exact CP
solvers, and a general heuristic solver. While the reference
approaches can only solve a subset of the tested instances,
our approach is able to solve all the instances consistently.
Such a performance has never been reported in the literature,
demonstrating the high effectiveness of considering LSC as
a graph coloring problem and using the proposed population-
based memetic algorithm to color Latin square graphs. We also
adapt the method to the general partial Latin square extension
problem and report computational results on additional 1800
PLSE benchmark instances from [21].

Third, and more generally, the proposed method can be used
to solve the list coloring and precoloring extension problems,
which are relevant graph models both in theory and in practice
[28]. Indeed, for these two important coloring problems, al-
though the literature offers many theoretical studies on specific
graphs, we are not aware of any dedicated and effective
algorithm able to handle large graphs. Our work thus fills
in this gap. Moreover, since precoloring extension and list
coloring are useful models to formulate various applications,
our method can be applied in these practical settings as well.

The rest of the paper is organized as follows. Section II
describes the converted graph coloring model. Section III
presents the proposed MMCOL algorithm. Section IV reports
computational results obtained with the proposed method
and provides comparisons with state-of-the-art algorithms.
Section V shows an analysis of two key components of the
method, followed by concluding comments in the last section.
The Appendix reports computational results of the proposed
method on the related partial Latin square extension problem.

II. LATIN SQUARE COMPLETION AND GRAPH COLORING

A. Partial Latin square and Latin square graph

Let P be a partial Latin square with n × n grids, an
associated graph G = (V,E), called Latin square graph, can

be conveniently defined with the vertex set V = {{1, . . . , n}×
{1, . . . , n}} (|V | = n2) representing the grids and edge set
E (|E| = n2(n − 1)) where {u, v} ∈ E if and only if
u and v represent two grids of the same row or column
[6]. Then the Latin square completion problem is equivalent
to finding a legal n-coloring of the associated Latin square
graph G by using the colors {1, . . . , n} as follows. Let D(v)
denote the color domain of vertex v of the graph. Obviously,
if v corresponds to a grid already filled with number k
(k ∈ {1, . . . , n}), D(v) is a singleton domain {k}; otherwise,
D(v) is initially set to {1, . . . , n}. The above coloring problem
is the so-called precoloring extension problem [5], where some
vertices have a fixed color and the remaining vertices are to
be assigned a color in {1, . . . , n}.

Note that a legal n-coloring of G can also be defined as a
partition of V into n color classes V1, . . . , Vn such that ∀u, v ∈
Vi (i = 1, . . . , n), {u, v} /∈ E holds. Basically, in order to
legally complete a partial Latin square, each color class must
contain exactly n vertices when all the grids are filled. Let
|Vi| be the cardinality of color class Vi (i = 1, . . . , n), we use
|Ri| = n− |Vi| to denote the residual capacity of color class
Vi.

Fig. 1 shows a partial Latin square of order 3, with 2 filled
grids and 7 empty grids (Fig. 1(a)) and the corresponding
domain-constrained graph G with 9 vertices and 18 edges (Fig.
1(b)). Let Lxy represent the grid with xth row and yth column,
then the connection between Lxy and its corresponding vertex
vi is given by i = (x − 1) × n + y. The objective is to find
a legal 3-coloring of the associated G by using the colors
{1,2,3}. The vertices with the blue and red colors (indicated
by colors 1 and 2 respectively) represent the filled grids in Fig.
1(a) while the black vertices represent the empty grids. In this
example, D(v3) = {1} and D(v6) = {2} while the color
domain of each uncolored vertex is D(vi) = {1, 2, 3} (i =
1, 2, 4, 5, 7, 8, 9). The residual capacities of V1, V2 and V3 are
2, 2 and 3 respectively (|R1| = 2, |R2| = 2, |R3| = 3). Now,
completing the partial Latin square is equivalent to finding a
legal coloring of the graph by assigning a color in {1, 2, 3} to
each uncolored vertex of G.

One notices that unlike the general graph coloring problem,
the precoloring extension problem associated to a Latin square
graph has a specific feature. That is, if a vertex v of the
graph represents a grid already filled with k ∈ {1, . . . , n},
v has a singleton color domain D(v) = {k} and thus
receives definitively the unique color k. Moreover, this color
is forbidden for any vertex u adjacent to v and should be
excluded from the color domain D(u). From a perspective
of graph coloring, we can beneficially use this property to
perform a preprocessing of the graph to obtain a reduced graph
and then color the reduced graph instead of the initial Latin
square graph.

B. Preprocessing to simplify the Latin square graph

The preprocessing procedure (Algorithm 1) aims to reduce
the given Latin square graph by using the colored vertices
(i.e., those with a singleton color domain). For this pur-
pose, we apply a kernelization technique based on constraint
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Fig. 1. An illustrative example of converting a partial Latin square (a) to a domain-constrained Latin square graph (b).

propagation [36] as follows. We first remove the pre-colored
vertices (corresponding to the filled grids) as well as the
edges connected to a colored vertex. Moreover, considering
the coloring constraint stating that two adjacent vertices cannot
receive the same color, once a vertex v receives color k, k is
forbidden for any adjacent vertex u and can be safely removed
from its color domain D(u). If the color domain of a vertex u
becomes a singleton, vertex u definitively receives the unique
color. Since vertex u is now a colored vertex, it can be used
to further reduce the graph. This process is repeated until no
color domain can be reduced. Notice that if the color domain
of a vertex is reduced to the empty set during the preprocessing
procedure, then the given LSC instance has no solution, i.e.,
it cannot be fully completed.

Algorithm 1 Preprocessing procedure for graph reduction
Require: A Latin square graph G = (V,E) with some

vertices already colored, each vertex v’s color domain
D(v) (v ∈ V )

Ensure: A reduced graph
1: while ∃ a vertex v ∈ V with singleton color domain
D(v) = {k} do

2: Pick such a vertex v ∈ V with D(v) = {k} // v is
colored by k

3: V ← V \ {v} // Remove this colored vertex v from the
graph

4: E ← E \ {{u, v} ∈ E} // Remove the edges linked to
v

5: for each uncolored u ∈ V adjacent to v do
6: D(u) ← D(u) \ {k} // Remove color k from the

color domain D(u)
7: end for
8: end while
9: return G = (V,E)

Consider again the example of Fig. 1. After applying the
preprocessing to the Latin square graph in Fig. 2(a), we obtain
the reduced graph shown in Fig. 2(b). In this particular case,
since v9 is connected to the two colored vertices v3 and v6,
the colors 1 and 2 are removed from the color domain of
v9, causing D(v9) to become a singleton {3}. As a result,

v9 receives the unique color 3. The color domains of other
vertices adjacent to v3, v6 or v9 are also reduced, leading
to the graph of Fig. 2(b) with D(v1) = D(v2) = {2, 3},
D(v4) = D(v5) = {1, 3}, and D(v7) = D(v8) = {1, 2}.

In terms of graph coloring, a reduced Latin square graph
like Fig. 2(b) is a domain-constrained graph because the
permissible colors of a vertex are limited to a list of colors
in {1, . . . , n} (instead of the whole set {1, . . . , n}). In fact,
the underlying coloring problem is the so-called list coloring
problem [12], [28], which, like the classic vertex coloring
problem, is NP-complete in the general case. Our literature
review on list coloring indicates that no practical algorithm is
currently able to color large graphs. Meanwhile, it is known
that the list coloring problem can be transformed to the vertex
coloring problem [28]. However, this transformation needs to
create an auxiliary graph which is larger than the input graph
by adding k ≥ n vertices and

(
k
2

)
edges. Note that in the

case of LSC, the Latin square graphs include already 2500-
4900 vertices for n = 50, 60, 70 for the main benchmark
instances tested in this work. To our knowledge, few vertex
coloring algorithms are able to effectively color graphs of these
sizes given that the benchmark graphs from the well-known
DIMACS Challenge (https://mat.gsia.cmu.edu/COLOR) are
limited to 1000 vertices. For these reasons, we introduce below
a dedicated algorithm specifically designed to solve the list
coloring problem of Latin square graphs.

III. MEMETIC ALGORITHM FOR COLORING LATIN SQUARE
GRAPHS

We describe in this section the population-based memetic al-
gorithm for coloring domain-constrained Latin square graphs,
i.e., solving the associated list coloring problem where each
vertex v can only take a color from its given color domain
D(v).

A. General procedure

The proposed algorithm (called MMCOL, shown in Al-
gorithm 2) follows the general memetic framework which
combines population-based evolutionary search and local op-
timization [7], [13], [31], [32]. One notices that memetic
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(a) (b)
Fig. 2. The Latin square graph of Fig 1(b) and the residual Latin square graph obtained by the preprocessing procedure.

approaches have proved to be highly successful to solve graph
coloring and partition problems [4], [14], [24], [27], [30], [33].

Algorithm 2 Graph coloring algorithm for Latin square com-
pletion (MMCOL)
Require: A reduced Latin square graph G = (V,E), the

number of colors n, population size p, color domain D(v)
of each vertex v ∈ V

Ensure: The best n-coloring c∗ and f∗ found so far
1: Population Initialization(P ,p); // Generate p initial solu-

tions of G, Sect. III-C
2: c∗ ← c; // c∗ records the best coloring found so far
3: f∗ ← f(c∗); // f∗ records the smallest number of

conflicting edges
4: repeat
5: (P1, P2)← Selection(P ) // Select two parents at random

for crossover
6: o ← MAGX(P1, P2) // Crossover to get an offspring

coloring, Sect. III-D
7: o ← ITS(o) // Improve o with an iterated local search

procedure based on Tabucol and a relaxation-based
perturbation, Sect. III-E

8: if f(o) < f∗ then
9: c∗ ← o; f∗ ← f(o);

10: end if
11: Population Updating(P, o) // Use the improved off-

spring o to update the population, Sect. III-F
12: until a stopping condition is met
13: return f∗, c∗

The algorithm takes a reduced Latin square graph G as
its input and tries to find a legal list coloring in the search
space defined in Section III-B. For this purpose, the algorithm
starts with an initial population (Algorithm 2 line 1, Sect.
III-C). Then, to find a legal n-coloring, MMCOL repeats
a number of generations to improve the population until
a stopping condition (limited to maxGenerations) is met.
At each generation, MMCOL randomly selects two parent
colorings from the population (Algorithm 2 line 5, Sect. III-C)

and recombines them to generate an offspring coloring by
a dedicated crossover operator (Algorithm 2 line 6, Sect.
III-D). This offspring coloring is then improved by an iterated
tabu search procedure ITS (Algorithm 2 line 7, Sect. III-E).
Finally, the improved offspring is used to update the population
according to an updating strategy based on a distance-quality
criterion (Algorithm 2 line 11, Sect. III-F). During the memetic
search process, if a legal coloring is found, MMCOL stops and
returns the legal coloring found.

B. Search space and evaluation function

Let G = (V,E) be a Latin square graph with L ver-
tices {v1, . . . , vL} and color domains D(vi) ⊆ {1, . . . , n}
(i = 1, . . . , L). Our MMCOL algorithm explores the following
space C of candidate list colorings.

C = {c : V → {1, . . . , n} : c(vi) ∈ D(vi), i = 1, . . . , L}

Given a candidate coloring c in C, if c(u) = c(v) and
{u, v} ∈ E (i.e., two adjacent vertices u and v receive the
same color), then {u, v} is a conflicting edge in c while u and
v are called conflicting vertices. To assess the quality of the
coloring c, we use the evaluation or fitness function f given
in Eq. (1), which counts the number of conflicting edges in c.

f(c) =
∑
{i,j}∈E

max{0, 1− |c(vi)− c(vj)|} (1)

Consequently, if f(c) = 0, c is conflict-free and identifies
a legal list coloring. Otherwise (f(c) > 0), c is an illegal
coloring with conflicting edges. For two candidate solutions
c1 and c2, c1 is considered to be better than c2 if f(c1) < f(c2)
(c1 contains fewer conflicting edges).

Given the above evaluation function, the objective of our
memetic algorithm is to find a legal (conflict-free) list coloring
in the search space C by minimizing f .

C. Population initialization

The MMCOL algorithm applies a randomized coloring
strategy to create the initial population P that is composed
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of p colorings sampled in C (p is the population size and set
to 20 in this work). Let G = (V,E) be the given graph with
V = {v1, . . . , vL} and D(vi) ⊆ {1, . . . , n} (i = 1, . . . , L).
To build an initial coloring of G, we iteratively select an
uncolored vertex v at random and then assign it a random
color k from its color domain D(v). Such an initial solution
can be obtained very quickly in O(L), but may involve a
high number of conflicting edges. To obtain an initial coloring
of reasonable quality, we improve this solution by the local
optimization procedure (see Sect. III-E) and then insert the
improved solution into the population if the solution does not
exist in P . Otherwise, the solution is discarded and a new
solution is generated. This initialization process is repeated
until the population is filled up with p different colorings.

D. Crossover operator
Recombination is an important component of our MMCOL

algorithm that aims to transmit meaningful features from
parents to offspring solutions [20]. For the conventional graph
coloring problem, the Greedy Partition Crossover (GPX) [14]
is known to be highly effective. However, given that list
coloring graphs have restricted color domains (instead of the
set {1, . . . , n}), GPX cannot be applied directly in the context
of the list coloring problem. On the other hand, the key idea of
GPX, i.e., inheriting large color classes, is of interest even in
the case of list coloring. As a result, we propose an adaptation
of GPX by taking into account the constrained color domains
of our graphs. This leads to our maximum approximate group
based crossover (MAGX) for Latin square graph coloring.

Algorithm 3 Pseudo-code of the MAGX crossover operator
Require: Parent solutions P1 = {V 1

1 , . . . , V
1
n }, P2 =

{V 2
1 , . . . , V

2
n }, and color domain D(v) of each vertex

v ∈ V
Ensure: An offspring solution o = {V o1 , . . . , V on }

1: g ← 0 // Count the number of color classes already built
in o

2: while g < n do
3: Identify from parents (P1 and P2) the largest color class

V bi (b = 1 or 2) satisfying |V bi | ≤ |Ri| and color class
V oi is empty

4: V oi ← V bi // Color class V bi is transmitted to the
offspring

5: Remove the vertices of V bi from P1 and P2

6: g ← g + 1
7: end while
8: for each empty color class V oi in o do
9: V oi ← V 1

i

⋂
V 2
i // For the residual vertices, transmit

the vertices that share the same color in both parents
10: end for
11: for each uncolored v ∈ V in o do
12: v is randomly assigned a color from its color domain

D(v)
13: end for
14: return o

The proposed MAGX crossover operator generates one
offspring solution from two randomly selected parent solutions

(see Algorithm 3). Let P1 = {V 1
1 , . . . , V

1
n } and P2 =

{V 2
1 , . . . , V

2
n } be the parent solutions, MAGX generates, in

three phases, the offspring solution o = {V o1 , . . . , V on } where
each V oi (i = 1, . . . , n) is initially set to empty.

First, MAGX builds a number of color classes of o by
inheriting color classes from the parent solutions. To build
a new color class, MAGX selects, among the color classes
of both P1 and P2, one largest class (call it V bi ) such that
its cardinality does not exceed the residual capacity Ri of
the corresponding color class (Algorithm 3 line 3). MAGX
then uses V bi to form the new color class V oi and removes the
vertices of V bi from both parent solutions (Algorithm 3 lines 4-
6). One notices that the color class whose cardinality is larger
than its residual capacity must contain conflicting vertices. So,
a color class whose cardinality is equal to (or slightly smaller
than) the residual capacity is preferred in order to obtain a
offspring class without conflicts. Moreover, unlike the general
coloring problem where the colors are interchangeable during
the recombination operation (like GPX of [14] does), for our
list coloring problem of Latin square graphs, each color class
of the offspring must inherit the color of the selected parent
due to the constrained color domains of the vertices.

Second, for each color j such that V oj = ∅ in o, if V 1
j and

V 2
j share common vertices, these vertices are used to form the

color class V oj of the offspring.

Third, for each vertex v missing in o, v is assigned a random
color class in its color domain D(v).

At this stage, a complete offspring solution o is obtained.
In case that the offspring is the same as one of the parent
solutions (this rarely happens), MAGX applies a slightly
different strategy for the first phase such that the largest
color class is selected by considering alternatively P1 and
P2 (instead of considering simultaneously P1 and P2). Since
the three phases have a time complexity of O(n2), O(n)
and O(n2) respectively, the time complexity of the MAGX
crossover is bounded by O(n2).

Fig. 3 shows an illustration example of the MAGX
crossover. This example involves a Latin square graph of
order 3 (n = 3) with 9 vertices a, b, c, d, e, f, g, h, i to be
assigned to 3 color classes V1, V2, V3. Suppose that the color
domains D(a) = D(c) = D(g) = {1, 3}, D(h) = {1, 2}
and D(x) = {1, 2, 3} for x ∈ {b, d, e, f, i}. At the beginning,
no color class exists in o, so |Ri| = 3 (i = 1, 2, 3). In the
first step, V2 = {d, e, f} of P1 is identified as the largest
color class whose |V2| ≤ |R2| and V2 of the offspring o is
empty. Thus, this color class {d, e, f} becomes the color class
V2 of the offspring and the vertices d, e, f are removed from
both P1 and P2. Notice that due to the fact that vertices may
have different color domains, the vertices of the inherited color
class {d, e, f} of o receives the same color as the donor parent
(here color 2). Similarly, V3 = {b, c, i} and V1 = {a, g} of
P2 are inherited as color classes V3 and V1 of o. After these
operations, vertex h is still missing in o. Since this vertex
belongs to different classes in P1 and P2, h is assigned a
random color class from its color domain D(h) = {1, 2}.
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Fig. 3. Illustration of the first phase of the MAGX crossover operator (Algorithm 3 lines 2–7).

E. Iterated tabu search procedure

The iterated tabu search procedure (ITS) (Algorithm 4) takes
an offspring solution c generated by the MAGX crossover
operator as its input and tries to improve its quality in terms
of fitness function f (Eq. (1), Sect. III-B). For this purpose,
ITS iterates between a tabu search procedure followed by a
relaxation-based perturbation procedure to try to attain a legal
coloring by resolving the conflicts (Algorithm 4 lines 3–13).
TS iteratively improves c by recoloring conflicting vertices
(see Sect. III-B). At the end of each tabu search run, if the
conflicts are resolved, then a legal list coloring c∗ is found, and
the whole search terminates immediately. If conflicts remain in

the solution, ITS triggers a perturbation procedure to modify
the solution and then uses the modified solution as its starting
solution for the next tabu search run (Algorithm 4 line 9). ITS
repeats the above process until a pre-fixed maximum number
of iterations maxLSIters is reached or a legal coloring is
obtained.

1) Tabu search based coloring procedure: As its key
optimization procedure, ITS uses the tabu search method
[15] to improve a given illegal list coloring. Specifically,
the tabu search (TS) procedure used in this work is based
on the implementations presented in [10], [14] of the pop-
ular TabuCol algorithm for the conventional graph coloring
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Algorithm 4 Pseudo-code of iterated tabu search (ITS)
Require: A n-coloring c, depth of tabu search α, color

domain D(v) of each vertex v ∈ V
Ensure: A legal coloring c∗

1: c∗ ← c; // c∗ records the best solution found so far
2: f∗ ← f(c∗); // f∗ records the smallest number of

conflicting edges
3: repeat
4: (c, f) ← TS(c, α); // Apply the tabu search procedure

with search depth α to improve the input coloring c,
see Sect. III-E1

5: if f < f∗ then
6: c∗ ← c; f∗ ← f(c);
7: end if

// c is not legal coloring, trigger perturbation
8: if f > 0 then
9: (c, f) ← Perturbation Procedure(c); // Apply the

perturbation procedure to locate at a promising re-
gion, see Sect. III-E2

10: else
11: return the legal coloring c∗;
12: end if
13: until maxLSIters is reached

problem [22]. Suppose that the solution c is composed of
L vertices {v1, v2, . . . , vL} and each vertex vi receives a
permissible color in its constrained color domain D(vi) (i ∈
{1, 2, . . . , L}). The tabu search procedure explores the space
C composed of all possible colorings (see Sect. III-B) to seek
a legal list coloring.

To improve the solution, TS iteratively makes transitions
from the current solution c to one neighboring solution. To
obtain a neighboring solution c′ from solution c, TS displaces
a conflicting vertex v from its current color class Vi to another
eligible color class Vj such that j ∈ D(v) (i.e., the current
color i of vertex v is changed to a new permissible color j
in v’s color domain D(v)). Thus, c and c′ differ only by the
color of a conflicting vertex v. Since the color domains are
bounded by n, the size of this neighborhood is bounded by
O(nc × n) where nc is the number of conflicting vertices in
coloring c. At each iteration, TS selects among the eligible
neighboring solutions the best neighbor c′b according to the
evaluation function f (Eq (1), Sect. III-B) and uses c′b to
replace c. A neighboring solution is eligible if it is not
forbidden by the tabu list (see explanation below) or if it
is better than the best recorded solution. Suppose that the
selected neighboring solution is obtained by changing the color
i of conflicting vertex v, (v, i) is recorded in the tabu list,
indicating that vertex v is forbidden to receive the color i
again for the next β consecutive iterations (β is called the
tabu tenure). Following [10], [14], β is dynamically tuned
by β = 0.6 ∗ f(c) + random(10) where random(10) is a
random number in {1, . . . , 10}. The TS procedure stops when
its iteration counter reaches the given limit α (α is called the
tabu search depth). The best solution c and the number of
conflicting edges in c recorded during the search are returned
as its output when the procedure terminates.

2) Relaxation-based perturbation: It is possible that no
legal list coloring is found at the end of a tabu search run
(see Algorithm 4 line 8). In this case, the search is considered
to be trapped in a local optimum and we trigger a relaxation-
based perturbation procedure to escape from the trap.

X 

Improved by TS 
on the subgraph

…... 

c*
P 

…... 

c
P 

c + 

c 

Fig. 4. The relaxation-based perturbation.

The overall procedure of the relaxation-based perturbation
is illustrated in Fig. 4. Let X ⊂ V be the set of conflicting
vertices (i.e., each vertex of X is involved in at least one
conflicting edge in c). The perturbation procedure is performed
in three steps: 1) Extract a subgraph G′ by randomly removing
d|X|/2e conflicting vertices along with the incident edges; 2)
Improve the coloring on G′ using TS; and 3) Construct a new
coloring on G by getting it back to G.

The perturbation procedure is based on the consideration
that the conflicting vertices of the local optimum are critical
vertices for obtaining a legal list coloring. Meanwhile, these
are also difficult vertices for conflict resolution. By ignoring
some of these difficult vertices, TS has a higher chance to
resolve the conflicts of the relaxed subproblem, thus provid-
ing new search opportunity when the improved solution of
the relaxed suproblem is added back to the ignored partial
solution. Notice that, in case that the improved c∗p is not a legal
coloring after the second step of the perturbation procedure,
c∗p is still a high quality partial coloring which could be
close to a complete solution. Using c∗p as its starting point
to be extended, TS will explore a new search trajectory and
hopefully encounters a legal coloring.

F. Population updating

In order to avoid premature convergence of our MMCOL
algorithm, we apply a population updating strategy similar
to those used in [24], [27], [33], [38]. The adopted strategy
simultaneously considers solution quality and diversity when
using an offspring solution to update the population.

Given two list colorings ci and cj , we use the so-called
set-theoretic partition or transfer distance Di,j [34], [35] to
measure the dissimilarity of ci and cj , which is defined as the
minimum number of vertices that need to be moved between
color classes of ci to transform ci to cj . The diversity between
one solution and the entire population P is given by Di,P =
minj 6=i{Dij}. Furthermore, we define the goodness score of
one n-colorings ci of P in terms of both solution quality and
diversity by s(ci) = f(ci)+e

0.08n2/Di,P ,∀ci ∈ P where f(ci)
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is the number of conflicting edges of ci [27]. A small (large)
s(ci) value indicates a good (bad) solution with respect to
the individuals of P . Given offspring o, the population P is
updated with o according to the following procedure.
Step 1 Insert the offspring solution o into P and compute the

score s(ci) of each individual ci of P .
Step 2 Identify the worst individual cw (i.e., with the largest

value of the scoring function s) and second worst
individual csw (with the second largest s value).

Step 3 If cw is different from o, remove cw from P .
Step 4 If cw is o, remove cw with probability 0.8 and remove

csw with probability 0.2.
This updating strategy ensures that the individuals of the

population are not only of high quality, but also sufficiently
distanced. This property provides a basis for the random
strategy used in our algorithm to select the parents for the
crossover.

IV. EXPERIMENTAL RESULTS

In this section, we assess the proposed approach by report-
ing computational results on the Latin square completion prob-
lem and showing comparisons with state-of-the-art methods.
We show in the Appendix additional results on the related
partial Latin square extension problem.

A. Benchmark instances and experimental protocol

To evaluate the performance of the proposed approach for
solving LSC, we carry out extensive experiments on the set of
1800 random LSC benchmark instances recently introduced
in [21]1. These LSC benchmark instances (named as LSC-n-
r) are evenly divided into 18 types (n ∈ {50, 60, 70}, r ∈
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8}) where n is the order of the partial
Latin square and r (r ∈ [0, 1]) denotes the ratio of filled grids
over the n × n grids. So each type (n, r) has 100 instances.
These instances were generated by randomly removing (1 −
r)n2 grids from an arbitrary legal Latin square. As a result,
these LSC instances always admit a complete Latin square.

By converting these instances to Latin square graphs (see
Sect. II-A), we obtain graphs with 2500 to 4900 vertices and
122,500 to 338,100 edges2. To solve each instance, we first
apply the preprocessing procedure of Section II-B to obtain a
reduced list coloring graph which is then colored with the
MMCOL algorithm. The preprocessing step takes typically
from several seconds to dozens of seconds.

In addition to these 1800 random instances, we also assess
our approach on the set of 19 traditional benchmark instances
from the COLOR03 competition3 that were tested, for in-
stance, in [17], [21].

MMCOL was coded in C++4 and compiled using g++
with the ‘-O3’ option on a computer running Linux equipped
with 2.83 GHz and 8 GB RAM. When running the DIMACS
machine benchmark procedure ‘dfmax.c’5 on our machine, we

1Available at http://puzzle.haraguchi-s.otaru-uc.ac.jp/PLSE/
2Available at https://github.com/YanJINFR/Latin-Square-Completion.git
3Available at http://mat.gsia.cmu.edu/COLOR03/
4Available at http://www.info.univ-angers.fr/∼hao/lsc.html
5Available at ftp://dimacs.rutgers.edu/pub/dsj/clique/

obtain the following results: 0.20, 1.23 and 4.68 seconds for
graphs r300.5, r400.5 and r500.5 respectively. The computa-
tional results reported in this section were obtained with the
parameter setting shown in Table I.

In the following subsections, we first show the results on
the 19 traditional instances, and then present a comparative
analysis of our computational results on the large set of 1800
benchmark instances with respect to the state-of-the-art results
in the literature. Given the stochastic nature of MMCOL, each
instance was independently solved 30 times with different
random seeds.

TABLE I
PARAMETER SETTING

Parameter Sect. Description Value
maxLSIters III-A Maximum iterations of ITS procedure 100

maxGenerations III-A Maximum number of generations 100

p III-C population size 20

α III-E Depth of tabu search 105

B. Results on 19 traditional benchmark instances

The computational results of MMCOL on the 19 traditional
Latin square graphs are summarized in Table II. Columns 1–3
of Table II indicate the characteristics of each instance: the
name, the Latin square order n and the ratio r. Columns
4–5 present the success rate over 30 trials (SR) and the
computation time over the successful runs t(s) in seconds
(a successful run means that a legal Latin square is attained
for this run). From Table II, one observes that MMCOL can
complete the partial Latin square for all the 19 instances.
Besides, our MMCOL requires a very short computation time
even for the large instances with n ≥ 50. Moreover, the last
five instances are critically constrained and fully “balanced”,
where the number of empty grids is approximately the same
over rows and columns. These instances are known to be
particularly difficult [25] and only the two smallest ones
of these five instances (qwhdec.order33.holes381.bal.1 and
qwhdec.order50.holes825.bal.1) can be solved by very few
approaches presented in [17] including CSP, hybrid strategy
mixing LP/CSP and SAT-based method. The difficulty of
these instances are further confirmed by the most recent study
reported in [21], where even the best performing heuristic Tr-
ILS* [21] cannot solve any of these “balanced” instances. We
also ran the source code of Tr-ILS* on our computer for a
long computation time of 3600 seconds and still failed to
solve any of these five balanced instances. It is thus remarkable
that our MMCOL approach solves these instances consistently,
even though MMCOL has a low success rate for 2 instances.
We conclude that MMCOL performs very competitively with
respect to all of the existing approaches for solving these
traditional instances.

C. Comparative results on the set of 1800 benchmark in-
stances

Table III summarizes the computational statistics of our
MMCOL algorithm on the set of 1800 benchmark instances,
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TABLE II
COMPUTATIONAL RESULTS ON THE SET OF 19 TRADITIONAL BENCHMARK

INSTANCES

Instance MMCOL
Name n r SR t(s)

qwhdec.order5.holes10.1 5 0.60 30/30 0.00
qwhdec.order18.holes120.1 18 0.63 30/30 0.00
qg.order30 30 0.00 30/30 0.23
qwhdec.order30.holes316.1 30 0.65 30/30 0.19
qwhdec.order30.holes320.1 30 0.64 30/30 0.65
qg.order40 40 0.00 30/30 1.25
qg.order60 60 0.00 30/30 1.93
qg.order100 100 0.00 30/30 18.49
qwhdec.order35.holes405.1 35 0.67 30/30 24.80
qwhdec.order40.holes528.1 40 0.67 30/30 19.18
qwhdec.order60.holes1440.1 60 0.60 30/30 2.84
qwhdec.order60.holes1620.1 60 0.55 30/30 0.77
qwhdec.order70.holes2940.1 70 0.40 30/30 0.74
qwhdec.order70.holes2450.1 70 0.50 30/30 0.80
qwhdec.order33.holes381.bal.1 33 0.65 30/30 238.23
qwhdec.order50.holes825.bal.1 50 0.67 30/30 133.03
qwhdec.order50.holes750.bal.1 50 0.70 3/30 207.91
qwhdec.order60.holes1080.bal.1 60 0.70 5/30 397.94
qwhdec.order60.holes1152.bal.1 60 0.68 30/30 430.11

together with the results of seven most recent methods in
the literature reported in [21]. The reference methods in-
clude CPX-IP, CPX-CP, LSSOL, 1-ILS*, 2-ILS, 3-ILS and
Tr-ILS*, where CPX-IP and CPX-CP are IP (Integer Pro-
gramming) and CP (Constraint Programming) solvers from
IBM/ILOG CPLEX, LSSOL denotes the LocalSolver6, and 1-
ILS*, 2-ILS, 3-ILS and Tr-ILS* are four iterated local search
algorithms with (1,∞)-neighborhood, (2,∞)-neighborhood,
(3,∞)-neighborhood and Trellis-neighborhood search respec-
tively. All the reference algorithms are performed on an Intel
core i7-4770 Processor with 3.90 GHz and 8 GB RAM (which
is faster than our computer), with a time limit of 30 seconds for
CPX-IP, CPX-CP and LSSCOL, and 10 seconds for 1-ILS*,
2-ILS, 3-ILS and Tr-ILS*. Table IV additionally presents the
detailed results of our approach on a subset of 600 difficult
benchmark instances.

Columns 1–3 of Table III show the characteristics of the
tested instances: the order n of each Latin square, the ratio
r and the number of instances Inst# for each type (n, r).
Following [21], columns 4–10 present the results of the seven
reference algorithms (CPX-IP, CPX-CP, LSSOL, 1-ILS*, 2-
ILS, Tr-ILS* and 3-ILS), “Suc#” shows for each type of 100
instances the number of instances for which an algorithm can
obtain a legal solution. Columns 11–12 give the results of
our MMCOL algorithm in terms of “Suc#” and the average
time tavg(s) in seconds is defined by tavg(s) =

∑i=100
i=1 ti(s)

100 ,
where ti(s) is the average time over the successful runs for the
ith instance. The last row (Perfect success times) shows the
number of instance types with Suc# = 100, i.e., the number
of instance types among the 18 types (n, r) for which all the
100 instances are solved by an algorithm.

From Table III, one observes that both exact methods CPX-
IP and CPX-CP solve all 100 instances for only 3 out of the
18 types. The five ILS heuristics (LSSOL, 1-ILS*, 2-ILS, 3-

6http://www.localsolver.com/

ILS and Tr-ILS*) solve all 100 instances for 1, 4, 5, 1 and 6
of 18 types (in bold) respectively. In contrast, our MMCOL
algorithm can solve all the instances for all 18 types. The
average time to find a solution is less than 11 seconds except
for the 300 instances with r = 0.7 for which MMCOL needs
less than 300 seconds to attain a solution while all reference
algorithms fail to solve any of these instances. Besides, we
observe that the seven reference algorithms have a worse
performance for the types (n ∈ {50, 60, 70}, r ∈ {0.6, 0.7})
which are known to be more difficult [21]. On the other
hand, MMCOL has no particular difficulty to solve these hard
instances. In order to verify if the ILS algorithms can solve
more instances by using more computation time, we ran the
source code of the best performing algorithm Tr-ILS* under
a much relaxed time limit of 3600 seconds on the instances
of types (n ∈ {50, 60, 70}, r ∈ {0.6, 0.7}). One observes
that the 100 instances of LSC-50-60 (n = 50, r = 0.6)
can be fully completed, 98 and 95 instances of LSC-60-60
(n = 60, r = 0.6) and LSC-70-60 (n = 70, r = 0.6) can be
fully completed respectively. Nevertheless, no instance of the
types (n ∈ {50, 60, 70}, r = 0.7) can be fully completed even
if these instances have more filled grids for the LSC.

Furthermore, we show in Table IV the detailed results of
MMCOL on the 600 difficult instances (n ∈ {50, 60, 70}, r ∈
{0.6, 0.7}) for which most reference algorithms perform badly.
For each instance, we present the success rate over 30 trials
SR and the average computation time over the successful runs
t(s) in seconds. From Table IV, we observe that MMCOL
achieves the perfect success rate 30/30 on three types (n ∈
{50, 60, 70}, r = 0.6). MMCOL has a lower success rate only
for 28 instances of the type LSC-50-70 (n = 50, r = 0.7), 3
instances of the type LSC-60-70 (n = 60, r = 0.7) and 3
instances of the type LSC-70-70 (n = 70, r = 0.7) (in italic).

In summary, MMCOL competes very favorably with seven
most recent methods in the literature and proves to be highly
effective in solving the set of 1800 benchmark instances with
no exception.

V. ANALYSIS OF TWO KEY COMPONENTS

In this section, we present an analysis of two key compo-
nents of the proposed method: the constraint propagation based
kernelization and the role of the MAGX crossover operator.

A. Impact of constraint propagation based kernelization

The constraint propagation based kernelization of Section
II-B is used to preprocess an initial Latin square graph and thus
reduces the search space of the subsequent list coloring task. In
order to investigate the impact of this kernelization technique,
we evaluate the reduced vertices and the color domains for the
1800 benchmark instances.

Table V summarizes the statistics of the reduced graphs
for each type of instances. Columns 1–3 recall the instance
characteristics: the order n, the ratio r and the number of
instances Inst#. For each type (n, r) of 100 instances,
column 4 “#Vavg” indicates the average number of the pre-
colored vertices (i.e., the filled grids) in the initial Latin square
graph. Since the color domain of some vertices becomes a
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TABLE III
COMPARATIVE RESULTS OF MMCOL WITH BEST-PERFORMING ALGORITHMS ON THE SET OF 1800 LSC BENCHMARK INSTANCES

Instance CPX-IP CPX-CP LSSOL 1-ILS∗ 2-ILS 3-ILS Tr-ILS∗ MMCOL
n r Inst# Suc# Suc# Suc# Suc# Suc# Suc# Suc# Suc# tavg(s)

0.3 100 9 94 10 100 100 95 100 100 0.22
0.4 100 3 71 8 99 99 92 100 100 0.18

50 0.5 100 0 12 6 96 96 83 100 100 0.22
0.6 100 0 0 0 30 23 5 36 100 1.99
0.7 100 0 0 0 0 0 0 0 100 299.45
0.8 100 100 100 100 100 100 100 100 100 0.00
0.3 100 0 71 1 100 100 51 100 100 0.55
0.4 100 0 22 0 96 99 52 100 100 0.41

60 0.5 100 0 1 0 89 95 17 95 100 0.51
0.6 100 0 0 0 16 12 0 23 100 4.77
0.7 100 0 0 0 0 0 0 0 100 209.65
0.8 100 100 100 99 98 100 99 99 100 0.00
0.3 100 0 34 0 100 100 19 99 100 1.27
0.4 100 0 8 0 95 97 8 98 100 0.90

70 0.5 100 0 0 0 82 87 0 84 100 1.03
0.6 100 0 0 0 5 2 0 10 100 10.02
0.7 100 0 0 0 0 0 0 0 100 272.11
0.8 100 100 100 46 93 97 95 98 100 0.06

Perfect success times over 18 types (n, r) 3 3 1 4 5 1 6 18

singleton during the kernelization process, the graph can be
further reduced. Hence, column 5 “#V ′avg” shows the average
number of further reduced vertices. Column 6 “#Davg”
presents for each type of 100 instances the average cardinality
of the color domains after kernelization, i.e., #Davg =∑j=Inst#

j=1 (
∑i=n×n

i=1 |D(vi)|)
Inst# . And column 7 “Solved#” gives the

number of instances that are solved during the kernelization
process (i.e., all color domains are reduced to a singleton).

From Table V, one observes that the vertices of the con-
verted graphs are dramatically reduced by the kernelization
technique. For the types of instances (n ∈ {50, 60, 70}, r =
0.3, 0.4, 0.5 and (n = 60, r = 0.6)), only the pre-colored ver-
tices (the filled grids) are removed from the graphs, meaning
that removing the pre-colored vertices does not lead to any
new singleton domain. However, for the types of instances
(n ∈ {50, 60, 70}, r = 0.8), many vertices can be further
removed by the kernelization technique. Furthermore, the
color domains of the uncolored vertices are obviously reduced
from their initial sizes n. In particular, for 32 instances of
the type (n = 50, r = 0.8) and 9 instances of the type
(n = 60, r = 0.8), a solution is found during kernelization
(i.e., all color domains are reduced to a singleton), without
needing to run the subsequent coloring algorithm. We conclude
that the kernelization technique plays an important role in
reducing the initial Latin square graphs and helps to ease the
subsequent list coloring task.

B. Impact of the MAGX crossover operator

Within the proposed memetic algorithm, the MAGX
crossover described in Section III-D is another key component.
To assess its impact, we present an experiment to compare
MMCOL (with the crossover MAGX), MMCOL’ (with an
uniform assignment crossover) and ITS (without MAGX). The

uniform assignment crossover builds an offspring solution by
inheriting, for each vertex, the color either from parent P1 or
P2 with an equal probability of 0.5. For a fair comparison, we
use the same parameter setting for MMCOL and MMCOL’ and
set maxLSIters = 104 for each ITS run, which corresponds
roughly to the same search effort of MMCOL/MMCOL’ with
100 generations (see Table 1). The initial solutions of all the
algorithms are generated by the initialization procedure given
in Section III-C. We ran MMCOL, MMCOL’ and ITS 30
times to solve each of the 600 difficult benchmark instances
(n ∈ {50, 60, 70}, r ∈ {0.6, 0.7}) listed in Table IV. The
comparative results are shown in Fig. 5 where we indicate
for each type of 100 instances, the number of instances for
which an algorithm can find a solution with a perfect success
rate 30/30 (i.e., each of its 30 trials finds a legal list coloring).

From Fig. 5, one notices that both MMCOL, MMCOL’ and
ITS have a perfect success rate 30/30 on the 300 instances
of types (n ∈ {50, 60, 70}, r = 0.6). On the other hand, for
the other 300 instances of types (n ∈ {50, 60, 70}, r = 0.7),
MMCOL achieves a perfect success rate 30/30 on 72, 97 and
97 instances respectively, against 48, 83 and 90 instances for
ITS and 71, 72 and 28 instances for MMCOL’.

Additionally, Table VI presents the detailed results on the
22 most difficult instances of LSC-50-70 where we show for
each instance and each algorithm (MMCOL, MMCOL’ and
ITS), the success rate SR over 30 trials and the average
computation time t(s) in seconds over the successful runs.
This table indicates that MMCOL obtains a higher success
rate SR than MMCOL’ and ITS for 17 and 22 instances re-
spectively (in bold) with shorter computation times t(s) except
for 2 cases. This experiment confirms that the population-
based evolutionary framework implemented in our memetic
algorithm and its crossover operator contribute positively to
the performance of the proposed algorithm.
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TABLE IV
DETAILED COMPUTATIONAL RESULTS OF MMCOL ON A SUBSET OF 600 INSTANCES

ID LSC-50-60 LSC-50-70 LSC-60-60 LSC-60-70 LSC-70-60 LSC-70-70
SR t(s) SR t(s) SR t(s) SR t(s) SR t(s) SR t(s)

1 30/30 1.80 30/30 229.52 30/30 6.14 30/30 237.78 30/30 7.50 30/30 211.15
2 30/30 1.67 29/30 353.16 30/30 4.59 30/30 262.11 30/30 9.23 30/30 320.59
3 30/30 1.88 30/30 77.12 30/30 3.71 30/30 143.20 30/30 10.59 30/30 192.00
4 30/30 1.40 27/30 302.56 30/30 4.09 30/30 135.90 30/30 12.11 30/30 262.11
5 30/30 1.91 30/30 295.33 30/30 3.83 30/30 143.76 30/30 9.89 30/30 213.62
6 30/30 1.91 29/30 511.98 30/30 3.62 30/30 58.73 30/30 11.77 30/30 354.76
7 30/30 1.82 30/30 219.66 30/30 6.81 30/30 246.25 30/30 12.01 30/30 278.17
8 30/30 1.63 24/30 994.24 30/30 4.44 30/30 101.65 30/30 9.25 30/30 108.13
9 30/30 1.34 29/30 219.90 30/30 3.95 30/30 432.35 30/30 11.35 30/30 129.48
10 30/30 2.31 30/30 156.48 30/30 5.35 30/30 262.10 30/30 10.51 30/30 268.28
11 30/30 2.18 30/30 245.21 30/30 5.28 30/30 174.23 30/30 10.79 30/30 238.76
12 30/30 2.52 29/30 279.76 30/30 5.21 30/30 232.61 30/30 9.44 30/30 239.79
13 30/30 3.20 17/30 1154.08 30/30 4.31 30/30 178.88 30/30 9.18 30/30 310.61
14 30/30 2.47 30/30 78.89 30/30 6.62 30/30 220.65 30/30 12.60 30/30 315.94
15 30/30 1.51 30/30 55.16 30/30 4.89 30/30 277.19 30/30 8.36 30/30 392.82
16 30/30 2.28 30/30 58.69 30/30 5.02 30/30 172.64 30/30 10.69 30/30 217.64
17 30/30 2.02 30/30 315.53 30/30 6.35 30/30 171.60 30/30 10.49 30/30 280.76
18 30/30 2.17 30/30 63.03 30/30 3.54 30/30 109.55 30/30 10.52 30/30 391.01
19 30/30 2.42 30/30 140.20 30/30 4.55 30/30 212.71 30/30 10.37 30/30 146.66
20 30/30 3.23 10/30 912.57 30/30 4.74 30/30 197.22 30/30 12.84 30/30 260.88
21 30/30 2.46 27/30 516.05 30/30 4.36 30/30 124.49 30/30 10.92 30/30 185.08
22 30/30 2.26 30/30 69.85 30/30 5.08 30/30 192.56 30/30 13.49 30/30 169.89
23 30/30 2.89 30/30 170.39 30/30 4.22 30/30 189.37 30/30 10.05 30/30 411.34
24 30/30 2.45 30/30 304.91 30/30 4.82 30/30 228.04 30/30 7.06 29/30 472.18
25 30/30 3.16 28/30 598.79 30/30 5.60 30/30 396.87 30/30 9.24 30/30 711.93
26 30/30 2.35 13/30 1006.82 30/30 5.17 30/30 113.45 30/30 8.60 30/30 383.70
27 30/30 2.91 30/30 275.97 30/30 4.11 30/30 265.82 30/30 13.47 30/30 198.42
28 30/30 2.28 29/30 634.01 30/30 4.37 30/30 90.16 30/30 9.69 30/30 314.49
29 30/30 1.89 30/30 381.79 30/30 4.48 30/30 122.30 30/30 8.21 30/30 387.83
30 30/30 2.67 30/30 249.37 30/30 5.91 30/30 530.25 30/30 11.60 30/30 459.71
31 30/30 2.11 29/30 362.59 30/30 6.41 30/30 266.20 30/30 14.32 30/30 210.70
32 30/30 1.97 30/30 287.39 30/30 6.04 28/30 687.59 30/30 10.82 30/30 463.97
33 30/30 2.03 30/30 56.08 30/30 4.56 30/30 96.57 30/30 8.69 30/30 250.81
34 30/30 1.56 30/30 153.74 30/30 3.88 30/30 235.41 30/30 14.16 30/30 253.28
35 30/30 2.14 29/30 583.45 30/30 6.77 30/30 142.38 30/30 7.78 30/30 211.31
36 30/30 2.14 30/30 373.41 30/30 6.65 30/30 136.03 30/30 9.71 30/30 433.29
37 30/30 1.41 30/30 69.45 30/30 6.45 30/30 175.92 30/30 9.54 30/30 234.66
38 30/30 2.57 28/30 373.18 30/30 5.12 30/30 89.58 30/30 14.84 30/30 182.65
39 30/30 2.65 30/30 226.60 30/30 4.25 30/30 304.11 30/30 16.04 30/30 168.72
40 30/30 2.09 29/30 460.62 30/30 3.62 30/30 468.96 30/30 10.13 30/30 170.03
41 30/30 1.82 30/30 95.53 30/30 8.16 30/30 108.12 30/30 10.50 30/30 390.81
42 30/30 1.98 30/30 93.70 30/30 3.27 30/30 185.71 30/30 6.91 30/30 134.69
43 30/30 3.06 30/30 85.74 30/30 4.00 30/30 163.11 30/30 10.70 30/30 267.40
44 30/30 1.74 30/30 46.91 30/30 4.40 30/30 93.55 30/30 10.14 30/30 190.74
45 30/30 1.71 30/30 300.44 30/30 5.12 30/30 157.89 30/30 7.92 30/30 511.40
46 30/30 2.20 30/30 268.83 30/30 5.54 30/30 276.91 30/30 11.06 30/30 232.72
47 30/30 1.80 30/30 180.58 30/30 2.70 30/30 129.40 30/30 10.39 30/30 224.85
48 30/30 2.04 30/30 52.25 30/30 4.32 30/30 219.03 30/30 9.19 30/30 259.98
49 30/30 1.41 29/30 117.13 30/30 5.33 30/30 210.02 30/30 8.10 30/30 154.96
50 30/30 1.18 30/30 389.08 30/30 5.92 27/30 1104.26 30/30 7.59 30/30 470.39
51 30/30 2.95 29/30 293.51 30/30 5.87 30/30 238.48 30/30 11.52 30/30 295.06
52 30/30 1.84 30/30 71.20 30/30 5.50 30/30 261.65 30/30 10.73 30/30 167.39
53 30/30 1.50 30/30 89.39 30/30 5.09 30/30 73.60 30/30 11.03 30/30 177.52
54 30/30 1.60 30/30 137.29 30/30 4.67 30/30 108.94 30/30 10.21 30/30 145.50
55 30/30 1.29 30/30 327.82 30/30 6.11 30/30 260.51 30/30 8.25 30/30 199.61
56 30/30 1.63 30/30 137.14 30/30 4.08 30/30 141.16 30/30 9.52 30/30 383.23
57 30/30 3.63 4/30 1724.49 30/30 3.48 30/30 95.86 30/30 9.87 30/30 197.62
58 30/30 2.60 23/30 1160.19 30/30 3.39 30/30 167.31 30/30 11.81 30/30 456.38
59 30/30 2.28 30/30 276.06 30/30 7.84 30/30 213.65 30/30 7.95 30/30 677.79
60 30/30 1.43 30/30 143.88 30/30 4.50 30/30 131.84 30/30 7.89 30/30 226.17
61 30/30 1.46 30/30 27.79 30/30 5.37 30/30 144.70 30/30 6.78 30/30 259.97
62 30/30 2.52 30/30 55.34 30/30 6.00 30/30 70.70 30/30 7.85 30/30 281.82
63 30/30 1.65 30/30 193.20 30/30 4.16 30/30 219.72 30/30 10.08 30/30 298.14
64 30/30 1.61 30/30 141.12 30/30 4.02 30/30 349.99 30/30 10.41 30/30 546.86
65 30/30 1.66 30/30 293.92 30/30 4.85 30/30 130.68 30/30 6.80 30/30 156.37
66 30/30 1.63 30/30 240.08 30/30 2.92 30/30 74.45 30/30 7.06 30/30 262.80
67 30/30 2.39 30/30 95.70 30/30 6.48 30/30 157.17 30/30 8.60 30/30 198.07
68 30/30 1.28 30/30 168.85 30/30 4.84 27/30 781.71 30/30 6.12 30/30 474.08
69 30/30 1.23 30/30 52.04 30/30 3.77 30/30 123.35 30/30 11.13 30/30 163.11
70 30/30 2.01 27/30 561.12 30/30 5.19 30/30 151.39 30/30 7.00 30/30 297.63
71 30/30 1.08 30/30 106.96 30/30 4.25 30/30 168.97 30/30 10.12 30/30 194.81
72 30/30 2.91 29/30 423.29 30/30 3.76 30/30 106.15 30/30 11.49 30/30 456.06
73 30/30 2.58 30/30 71.39 30/30 5.78 30/30 221.44 30/30 10.78 30/30 279.10
74 30/30 2.15 17/30 918.90 30/30 4.84 30/30 448.23 30/30 7.58 30/30 275.67
75 30/30 1.57 30/30 202.87 30/30 4.27 30/30 189.70 30/30 5.78 30/30 192.49
76 30/30 2.18 30/30 67.06 30/30 5.68 30/30 267.95 30/30 11.53 30/30 165.14
77 30/30 1.45 30/30 55.37 30/30 6.55 30/30 159.72 30/30 11.54 30/30 189.93
78 30/30 2.30 29/30 265.87 30/30 5.76 30/30 197.63 30/30 12.40 30/30 162.90
79 30/30 2.45 30/30 58.50 30/30 3.56 30/30 119.92 30/30 10.48 29/30 478.63
80 30/30 1.33 30/30 112.48 30/30 5.11 30/30 159.74 30/30 9.22 30/30 324.70
81 30/30 1.12 30/30 124.85 30/30 4.18 30/30 233.84 30/30 11.83 30/30 365.06
82 30/30 1.56 30/30 240.88 30/30 5.28 30/30 109.26 30/30 10.49 29/30 318.54
83 30/30 1.26 25/30 438.82 30/30 3.64 30/30 61.54 30/30 14.78 30/30 305.79
84 30/30 1.28 30/30 163.42 30/30 3.98 30/30 309.11 30/30 11.62 30/30 130.06
85 30/30 1.67 30/30 44.76 30/30 4.61 30/30 120.79 30/30 8.78 30/30 122.38
86 30/30 1.91 30/30 324.36 30/30 2.99 30/30 93.56 30/30 11.39 30/30 98.84
87 30/30 1.56 30/30 518.07 30/30 3.66 30/30 184.49 30/30 9.06 30/30 140.46
88 30/30 1.15 30/30 130.92 30/30 4.47 30/30 162.81 30/30 8.56 30/30 338.45
89 30/30 1.88 30/30 497.59 30/30 4.60 30/30 176.23 30/30 8.86 30/30 233.54
90 30/30 1.65 28/30 968.10 30/30 3.12 30/30 171.07 30/30 10.33 30/30 261.34
91 30/30 2.94 30/30 401.46 30/30 4.36 30/30 100.40 30/30 9.65 30/30 113.15
92 30/30 2.36 30/30 118.06 30/30 4.95 30/30 366.14 30/30 8.94 30/30 127.49
93 30/30 1.22 30/30 161.35 30/30 2.66 30/30 141.83 30/30 11.57 30/30 121.07
94 30/30 1.37 30/30 297.39 30/30 3.75 30/30 95.65 30/30 10.69 30/30 218.80
95 30/30 1.93 30/30 95.87 30/30 3.21 30/30 115.31 30/30 10.56 30/30 129.73
96 30/30 1.62 30/30 175.05 30/30 4.97 30/30 386.67 30/30 6.86 30/30 251.44
97 30/30 1.93 30/30 213.69 30/30 3.53 30/30 165.69 30/30 11.01 30/30 288.06
98 30/30 1.71 29/30 354.62 30/30 3.89 30/30 130.48 30/30 9.58 30/30 190.03
99 30/30 1.55 30/30 204.81 30/30 4.25 30/30 136.39 30/30 6.25 30/30 222.49
100 30/30 2.73 17/30 550.96 30/30 5.60 30/30 292.85 30/30 9.19 30/30 404.90
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LSC-50-60 LSC-50-70 LSC-60-60 LSC-60-70 LSC-70-60 LSC-70-70

ITS 100 48 100 83 100 90
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Fig. 5. Comparison of MMCOL, MMCOL’ and ITS on 600 difficult instances.

TABLE V
STATISTICS OF THE REDUCED LATIN SQUARE GRAPHS AFTER

KERNELIZATION

Instance #Vavg #V ′avg #Davg Solved#

n r Inst#

0.3 100 750.0 0.00 25.01 0
0.4 100 1000.0 0.00 18.64 0

50 0.5 100 1250.0 0.00 13.24 0
0.6 100 1500.0 0.19 8.83 0
0.7 100 1750.0 9.19 5.37 0
0.8 100 2000.0 495.24 2.01 32
0.3 100 1080.0 0.00 29.91 0
0.4 100 1440.0 0.00 22.23 0

60 0.5 100 1800.0 0.00 15.74 0
0.6 100 2160.0 0.00 10.43 0
0.7 100 2520.0 4.63 6.29 0
0.8 100 2880.0 516.63 2.43 9
0.3 100 1470.0 0.00 34.79 0
0.4 100 1960.0 0.00 25.83 0

70 0.5 100 2450.0 0.00 18.24 0
0.6 100 2940.0 0.03 12.03 0
0.7 100 3430.0 2.25 7.19 0
0.8 100 3920.0 162.24 3.47 0

VI. CONCLUSION

We have proposed an approach to solve the Latin square
completion problem (LSC) by converting LSC to a domain-
constrained graph coloring problem. By taking advantage
of the particular features of Latin square graphs, we have
developed a constraint propagation based kernelization tech-
nique to preprocess the given Latin square graph to obtain a
reduced graph, for which an associated list coloring problem
is defined. To effectively solve the list coloring problem,
we have devised a dedicated memetic algorithm MMCOL
which integrates a tailored crossover operator to generate new
solutions, an iterated tabu search procedure to improve each
offspring solution and a distance-quality based pool updating
strategy to ensure a healthy diversity of the population.

Extensive evaluations on a large number of benchmark

instances in the literature (19 traditional instances and 1800
random instances) have showed that the proposed approach
performs very well with respect to the state-of-the-art methods
including those introduced very recently in 2016. In particular,
our approach is able to find a solution for all the benchmark
instances consistently and effectively, a performance never
attained by any existing approach. We have also used a slightly
modified version of the method to solve the general partial
Latin square extension problem and reported computational
results on the set of 2018 PLSE instances in the Appendix.

Given that LSC and PLSE have a number of applications,
the proposed approach can help to solve these applications.
More generally, the method proposed in this work can be
used to approximate the important list coloring and precoloring
extension problems, for which few practical algorithms exist
in the literature. The method will be particularly useful if large
problem instances are considered.

For future work, it would be interesting to identify addi-
tional features of Latin square graphs and use them to design
effective search strategies and operators. Approaches based on
vertex coloring algorithms are also worthy of investigation.
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APPENDIX

A. Results on the partial Latin square extension problem

We now show that the method presented in this work can
be used to solve the related and more general partial Latin
square extension problem (PLSE). Recall that PLSE is to
assign numbers {1, . . . , n} to as many empty grids as possible
under the condition that each number occurs at most once in
each row and each column. To apply the proposed method to
solve PLSE, we make the following two adjustments.

First, unlike LSC, the color domains of some vertices in
the case of PLSE may become empty during the constraint
propagation based kernalization process, implying that the
corresponding grids cannot be legally filled by any given
number. In terms of graph coloring, if the color domain of
a vertex v becomes empty when applying the preprocessing
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procedure, any color for vertex v is definitively conflicting
with at least one of its adjacent vertices. If this happens, we
randomly assign a color {1, . . . , n} to vertex v and keep this
color unchanged during the search process.

Second, at the end of the MMCOL algorithm, there are
two possibilities. If the returned final coloring c∗ is conflict-
free (i.e., f(c∗) = 0), the given partial Latin square is fully
completed and an optimal solution is found. Otherwise, some
vertices are assigned conflicting colors in c∗ (i.e., f(c∗) > 0).
In this case, we obtain a legal partial solution by dropping from
c∗ some conflicting vertices. The dropped vertices correspond
to the grids that cannot be legally filled while the remaining
vertices in the legal partial coloring define a solution for
the given PLSE instance. To remove conflicting vertices, we
first drop any vertex v with empty color domain caused by
the preprocessing procedure. Then, if conflicts remain, we
repetitively remove the vertex u which is conflicting with the
largest number of other vertices in the coloring until we obtain
a partial conflict-free coloring.

Table VII summarizes the results of our MMCOL al-
gorithm and seven reference methods on the set of 1800
PLSE benchmark instances introduced in [21]. Like the
LSC instances of Section IV-A, these 1800 PLSE instances
are evenly divided into 18 types (n ∈ {50, 60, 70}, r ∈
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8}) (so 100 instances per type (n, r)).
For these instances, n2 is a trivial upper bound of their optimal
solutions. In this experiment, we used the same experimental
condition as for solving LSC (Section IV-C). Like [21], we
solved each instance once. Columns 1–3 indicate the char-
acteristics of the instances with the same information as in
Table III. Columns 4–17 present, for each reference algorithm
and for each type (n, r) of 100 instances, the number of fully
completed Latin squares “suc#”, and the average completed
grids over 100 instances “Avg”. Columns 18–20 show the
results of our MMCOL algorithm in terms of “suc#”, “Avg”
and the average computation time “tavg(s)” in seconds. Notice
that if a partial Latin square is fully completed, the optimum
is attained (so 1186 instances out of 1800 are solved to
optimality). Otherwise, the reported result in terms of the filled
grids gives a lower bound of the given PLSE instance.

Table VII shows that MMCOL obtains improved or equal
average results for 15 out of 18 types (in bold) except the
types (n ∈ {50, 60, 70}, r = 0.8). In particular, for the 1000
instances of types (n ∈ {50, 60, 70}, r ∈ {0.3, 0.4, 0.5}),
(n = 70, r = 0.6), and 186 instances of types (n ∈
{50, 60}, r = 0.6), (n = 70, r = 0.7), MMCOL attains
an optimal solution. Meanwhile, for the instances of types
(n ∈ {50, 60, 70}, r = 0.8), MMCOL performs worse than
the reference algorithms. We mention that since the instances
of types (n ∈ {50, 60, 70}, r = 0.8) are strongly constrained,
the color domains of some uncolored vertices are reduced
to the empty set during the constraint propagation based
preprocessing of Section II-B, indicating that these instances
cannot be fully completed. Let α > 0 be the number of
vertices with an empty color domain identified during the
preprocessing, n2 − α defines an upper bound of the given
instance, which is strictly tighter than the trivial n2 bound.
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