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Abstract The Minimum Sum Coloring Problem (MSCP) is a variant of the well-known
vertex coloring problem which has a number of AI related applications. Due to its theoret-
ical and practical relevance, MSCP attracts increasing attention. The only existing review
on the problem dates back to 2004 and mainly covers the history of MSCP and theoretical
developments on specific graphs. In recent years, the field has witnessed significant pro-
gresses on approximation algorithms and practical solution algorithms. The purpose of this
review is to provide a comprehensive inspection of the most recent and representative MSCP
algorithms. To be informative, we identify the general framework followed by practical so-
lution algorithms and the key ingredients that make them successful. By classifying the main
search strategies and putting forward the critical elements of the reviewed methods, we wish
to encourage future development of more powerful methods and motivate new applications.

Keywords Sum coloring · Approximation algorithms · Heuristics and metaheuristics ·
Local search · Evolutionary algorithms.

1 Introduction

Given a graph G, a proper k-coloring of G is an assignment of k different colors {1, . . . ,k}
to the vertices of G such that two adjacent vertices receive two different colors. The classi-
cal graph vertex coloring problem (GCP) is to find a proper (or legal) k-coloring with the
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minimum number of colors χ(G) (i.e., the chromatic number of G) for a general graph G.
The minimum sum coloring problem (MSCP) is a variant of the GCP and aims to determine
a proper k-coloring while minimizing the sum of the colors assigned to the vertices. MSCP
was proposed by Kubicka [30] in the field of graph theory and by Supowit [44] in the field
of VLSI design. MSCP has applications in VLSI design, scheduling and resource allocation
for instance [1,6,29,37,43]. MSCP is also related to other generalizations or variants of
GCP like sum multi-coloring [2], sum list coloring [5] and bandwidth coloring [26].

Like the classical vertex coloring problem, MSCP is notable for its practical applicabil-
ity and theoretical intractability. Indeed, in the general case, the decision version of MSCP
is NP-complete [29,30] and approximating the minimum color sum within an additive con-
stant factor is NP-hard [33]. As a result, MSCP is a computationally challenging problem
and any algorithm able to determine the optimal solution of the problem is expected to re-
quire an exponential complexity. Due to its high computational complexity, polynomial-time
algorithms exist only for some special cases of the problem (see Section 3) and solving the
problem in the general case remains an imposing challenge.

In the past several decades, much effort has been devoted to developing various ap-
proximation algorithms and practical solution algorithms. Approximation algorithms aim
to provide solutions of provable quality while practical solution algorithms try to find sub-
optimal solutions as good as possible within a bounded and acceptable computation time.
The class of heuristic and metaheuristic algorithms has been mainly developed since 2009
and has enlarged our capacity of finding improved solutions on the benchmark graphs. Rep-
resentative examples of the existing heuristic algorithms include greedy algorithms [36,39],
tabu search [8], breakout local search [4], iterated local search [19], ant colony [12], genetic
and memetic algorithms [11,24,25,27,40,46] as well as heuristics based on independent set
extraction [47,49].

To the best of our knowledge, there is only one review published one decade ago in 2004
[31] that focuses on polynomial-time algorithms for specific graphs, MSCP generalizations
(or variants) and applications. For the purpose of solving MSCP, the first studies essentially
concerned the development of approximation algorithms and simple greedy algorithms. Re-
search on practical solution algorithms of MSCP was relatively new and appeared around
2009. Nevertheless, important progresses have been made since that time. The purpose of
this paper is thus to provide a comprehensive review of the most recent and representative
MSCP algorithms. To be informative, we identify the general framework followed by the
existing heuristic and metaheuristic algorithms and their key ingredients that make them
successful. By classifying the main search strategies and putting forward the critical ele-
ments of the reviewed methods, we wish to encourage future development of more powerful
methods and motivate new applications.

In the following sections, we first provide a general definition of MSCP, then a brief
introduction of approximation algorithms in Section 3, followed by the presentation of
the studied heuristics and metaheuristics in Section 4. Section 5 presents lower and up-
per bounds. Before concluding, Section 6 introduces MSCP benchmark instances and sum-
marizes the computational results reported by the best performing algorithms on these in-
stances.

2 Definitions and formulation of MSCP

Let G = (V,E) be a simple undirected graph with vertex set V = {v1, . . . ,vn} and edge set
E ⊂ V ×V . A proper k-coloring c of G is a mapping c : V → {1, . . . ,k} such that c(vi) ̸=
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c(v j), ∀{vi,v j} ∈ E. Equivalently, a proper k-coloring can be defined as a partition of V
into k mutually disjoint independent sets (or color classes) V1, . . . ,Vk such that ∀u,v ∈ Vi
(i = 1, . . . ,k),{u,v} /∈ E. The objective of MSCP is to find a proper k-coloring c with a
minimum sum of the colors that are assigned to the vertices of V . The minimum sum of
colors for MSCP is called the chromatic sum of G, and is denoted by ∑(G). The strength
s(G) of a graph G is the smallest number of colors over all optimal sum colorings of G.
Obviously, the chromatic number χ(G) of G from the classical vertex coloring problem is a
lower bound of s(G), i.e., χ(G)≤ s(G).

Let C (G) be the set of all proper k-coloring of G and the minimization objective f (c)
(c ∈ C (G)) of MSCP is given by Eq. (1).

f (c) =
n

∑
i=1

c(vi) or f (c) =
k

∑
l=1

l|Vl | (1)

where |Vl | is the cardinality of Vl and |V1| ≥ . . .≥ |Vk| with the chromatic sum given by:

∑(G) = min
c∈C (G)

f (c) (2)

Figure 1 shows an illustrative example for MSCP. The graph has a chromatic number
χ(G) of 3 (left figure), but requires 4 colors to achieve the chromatic sum (right figure).
Indeed, with the given 4-coloring, we achieve the chromatic sum of 15 while the 3-coloring
of left figure leads to a suboptimal sum of 18 (upper bound).
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Fig. 1 An illustrative example for MSCP [24]. The optimal coloring of the graph leads to an upper bound of
the chromatic sum of the graph.

As shown in [43], MSCP can be conveniently formulated as an integer linear program-
ming problem as follows:

minimize g(x) = ∑n
i=1 ∑k

l=1 l · xil

subject to

∑k
l=1 xil = 1, i ∈ {1, . . . ,n}

xil + x jl ≤ 1,∀{vi,v j} ∈ E, l ∈ {1, . . . ,k}
xil ∈ {0,1}

(3)

where xil = 1 (i ∈ {1, . . . ,n}, l ∈ {1, . . . ,k}) if vi is assigned color l, xil = 0 otherwise.
The first constraint of this ILP model ensures that each vertex receives a single color

while the second constraint states that two adjacent vertices cannot be assigned the same
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color. This linear model can be solved by any ILP solver like CPLEX [46]. Finally, as shown
in [46], MSCP can also be formulated as a binary quadratic programming model.

3 Polynomial-time and k-approximation algorithms for MSCP

One notes that till now no exact algorithm especially designed for MSCP was reported
in the literature except the general solution approach used in [46] which applies CPLEX
to the integer linear programming formulation (Eq. (3)). On the other hand, a number of
polynomial-time and k-approximation algorithms have been proposed for specific classes
of graphs, such as trees, interval graphs, bipartite graphs, etc [9,16,22,28,37]. These algo-
rithms exploit particular properties of the special graphs considered. In what follows, we
briefly recall the main characteristics of these specific classes of graphs:

• A cograph, also called P4-free graph, is a graph that does not contain the path P4 for any
four vertices1;

• P4-reducible graphs are a generalization of cographs where every vertex belongs to at
most one P4;

• P4-sparse graphs generalize P4-reducible graphs by imposing that every set of five ver-
tices induces at most one P4;

• Unicyclic graphs contain exactly one cycle;
• A partial k-tree G is a graph with treewidth of at most k, where the treewidth is the size

of the largest vertex set in a tree decomposition of G;
• A graph is outerplanar if it is planar (it can be embedded in the plane without crossing

edges) and all its vertices lie on the exterior face;
• The line graph L(G) of any graph G = (V,E) is such that its vertex set is E and two

vertices of L(G) are adjacent if their corresponding edges in G are incident;
• In an interval graph, each vertex corresponds to an interval (over the set of real numbers

for instance) and there is an edge between two vertices if their corresponding intervals
intersect.

In the field of VLSI design, Kroon et al. [29] considered the “optimum cost chromatic
partition problem” (OCCP), whose definition is similar to MSCP. For this problem, they
introduced a linear-time algorithm for trees (see also [34]). Other classes of graph optimally
solved in linear time include cographs [21] or unicyclic graphs [32] for instance.

In [21], Jansen found that the OCCP can be solved in polynomial time for partial k-
trees. Then, Salavatipour presented a polynomial-time algorithm for P4-reducible graphs
[42]. Furthermore, Bonomo and Valencia-Pabon studied P4-sparse graphs and found a large
sub-family of P4-sparse graphs that can be solved in polynomial time [7]. A cubic algorithm
has also been proposed for outerplanar graphs [32].

Bar-Noy et al. proposed a 2-approximation algorithm2 for line graphs and showed a
(∆ + 2)/3-approximation algorithm for graphs with maximum degree ∆ [1]. Then, Bar-
Noy and Kortsarz proposed a 10/9-approximation algorithm for bipartite graphs [3]. This
approximation ratio was next improved to 27/26 by Malafiejski et al. [38] which is the best
ratio for bipartite graphs to our knowledge. For interval graphs, Nicoloso et al. presented a

1 A path P4 is a sequence of 4 vertices, say (v1,v2,v3,v4), such that {vi,vi+1} ∈ E ∀i ∈ {1,2,3} and
{vi,vi+k} /∈ E ∀k ∈ {1,2,3,4}\{i−1, i+1}.

2 A k-approximation algorithm ensures to return a solution whose evaluation / cost is no more than a factor
k of the optimum.



Algorithms for the minimum sum coloring problem: a review 5

2-approximation algorithm [41], the best known ratio for this class of graphs being 1.796
[17]. Let us finally mention a 2-approximation algorithm for the entire class of P4-sparse
graphs [6].

4 Heuristics and metaheuristics for MSCP

Since these approximability results cannot be generalized to an arbitrary graph, for practi-
cally solving MSCP in the general case, a number of heuristic and metaheuristic algorithms
have been proposed recently. In this section, we review the most representative and effec-
tive MSCP heuristic and metaheuristic algorithms which belong to three large classes of
methods: greedy algorithms, local search heuristics, and evolutionary algorithms. For each
reviewed algorithm, we identify its key ingredients, and highlight if the search process is
constrained in the feasible space or is allowed to visit infeasible regions. We also provide
in Table 1 a summary of the reviewed algorithms as well as indicators about their perfor-
mances.

4.1 Greedy algorithms

Greedy algorithms are among the first heuristics proposed for MSCP. These algorithms are
generally fast, simple, and easy to implement. Nevertheless, they usually achieve results of
poor quality. On the other hand, given their particular features (speed and simplicity), they
can advantageously be integrated into other more elaborated approaches where the greedy
heuristic is used to generate an initial solution and seeds the search process. For instance,
they can be used to provide initial upper bounds for an exact algorithm or to build the initial
solution(s) for local search heuristics and evolutionary algorithms.

Two families of greedy algorithms for MSCP are proposed in [36]: MDSAT(n) and
MRLF(n). They are based on the two well-known greedy coloring heuristics DSATUR [10]
and RLF [35].

The original DSATUR heuristic employs the saturation degree dsat of a vertex3 as the
selection criterion to dynamically determine the next vertex to color. MDSAT(n) improves
DSATUR by considering the impact of coloring a vertex where the impact is measured based
on the number of vertices whose dsat would (not) be changed. The original RLF heuristic
follows the partition perspective of a vertex coloring. It colors as many non-adjacent vertices
as possible with one color before going to another color. MRLF(n) which extends RLF is
based on the idea of selecting the next candidate vertex v for coloring such that it reduces the
chance of using a new color next and keeps the current class color as large as possible. To
achieve this goal, MRLF(n) implements sophistic greedy rules which rely on the cardinality
of a subset of uncolored vertices that could be colored with and without using a new color.

A more complicated greedy heuristic (EXSCOL) is proposed in [47,49]. It is based
on independent set extraction and is highly effective for hard and large graphs. At each
iteration, EXSCOL first identifies an independent set S as large as possible by using a tabu
search procedure. Secondly, it searches as many independent sets as possible of the same size
|S| to build a pool of candidate independent sets. Then, EXSCOL determines a maximum
number of disjoint independent sets by solving a maximum set packing problem. Finally,
the vertices of each extracted independent set receive the same smallest available color to

3 dsat(vi) is the number of colors used to color the vertices adjacent to vi.



6 Yan Jin, Jean-Philippe Hamiez, Jin-Kao Hao�

form a color class. The above process is repeated until the graph becomes empty. Notice that
there is no procedure to reconsider the extracted independent sets such that it is impossible
for EXSCOL to attain an optimal solution once a “bad” independent set has been extracted.

4.2 Local search heuristics

Local search (or neighborhood search) heuristics progressively modify a candidate solution
c by local transformations until a stop condition is reached [15]. The two key components
of a local search procedure are the evaluation function and the move (or transformation)
operator which are defined on a given search space.

The evaluation function is used to assess the quality of a given coloring. The existing
MSCP algorithms employ one of two types of evaluation function according to whether fea-
sible or infeasible colorings are visited. For algorithms that explore only feasible solutions
(i.e. proper colorings), the minimization function f (i.e., the sum of colors, Eq. (1)) of the
MSCP problem is directly used. On the other hand, algorithms that visit both feasible and
infeasible solutions usually call for an augmented evaluation function fp which combines
the objective function f and a penalty function p.

In local search algorithms, one iteratively uses one or more move operators to transform
the incumbent solutions c to generate new neighboring solutions c′. The set of neighboring
solutions that can be reached by applying a move operator (mv) to the current solution forms
the neighborhood (denoted by Nmv). We describe the commonly used operators as follows.

• One-move changes the color of a vertex in the current solution by moving a vertex v
from its current color class Vi to another color class Vj (i ̸= j). This operator can generate
both proper or improper colorings and thus can be used to explore feasible and infeasible
regions of the coloring search space;

• Swap displaces a vertex v from its current color class Vi to another color class Vj (as
One-move) and then moves all adjacent vertices u of v to Vi. This operator can generate
both proper or improper colorings;

• Exchange swaps a subset of vertices A ⊂Vi (|A|> 1) and another subset of vertices B ⊂
Vj (|B| > 1) (i ̸= j) such that the subgraph induced by A∪B is a connected component
[25]. The new solution c′ is feasible (respectively infeasible) if the starting solution c is
feasible (infeasible).

In what follows, we classify the representative local search algorithms into two cate-
gories according to the adopted neighborhood(s): single neighborhood search and multi-
neighborhood search. Since local search can get stuck in local optima, most local search
algorithms for MSCP use some diversification techniques to help the search to escape local
optima encountered during the search. This is typically achieved by applying one or more
perturbation operators to change a local optimum in a random or dedicated way.

4.2.1 Single neighborhood search

The tabu search (TS) algorithm proposed in [8] adapts the tabu algorithm designed for the
classic vertex coloring problem [13,20]. It starts with a random coloring and visits both
proper and improper colorings with the neighborhood NOne−move induced by the One-move
operator. If there exist conflicting vertices, TS chooses a best move (according to its evalu-
ation function fp) to change the color of a conflicting vertex. Otherwise, TS picks a (non-
conflicting) vertex and change its color at random. The above steps are repeated until a
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stopping criterion is satisfied. This algorithm relies simply on the tabu list for its diversifica-
tion and does not call for other perturbation mechanism. This algorithm only showed limited
computational results.

The breakout local search (BLS) algorithm described in [4] jointly uses two descent
methods and an adaptive multi-perturbation strategy to escape local optima. The basic idea
of BLS is to use descent-based local search to discover local optima and employ adaptive
perturbations to continually visit different search regions in the search space. BLS explores
both feasible and infeasible solutions with the help of the One-move operator. At each it-
eration, if the current solution c is a feasible coloring, BLS applies a first descent search
procedure to attain a local optimum in terms of the objective function f . If c is an infeasi-
ble coloring (i.e., with conflicting vertices), BLS applies another descent search procedure
guided by an augmented evaluation function which takes into account both the objective
function f and the conflicting vertices. BLS is characterized by its adaptive perturbation
strategy which, upon the discover of a local optimum, triggers dedicated perturbation oper-
ations to escape the local optimum trap. Based on the information on the search state, the
perturbation strategy of BLS introduces a varying degree of diversification by dynamically
determining the number of perturbation moves to be applied and by adaptively selecting the
suitable moves (random or directed perturbations).

4.2.2 Multi-neighborhood search

The MDS(5)+LS algorithm [19] applies an iterated multi-neighborhood search and also ex-
plores feasible and infeasible regions of the search space. It first employs the Swap operator
until no further improvement exists in terms of its augmented evaluation function. Note that
the obtained solution is not necessarily a proper coloring. If this is the case, MDS(5)+LS
switches then to the One-move operator to repair the solution. Additional colors can be used
to guarantee that the final coloring is proper at the end of this search phase. Finally, it as-
signs all the vertices with their smallest legal color and changes the color labels according to
the sorted cardinality of the color classes Vl (|V1| ≥ . . .≥ |Vk|). Afterward, a random pertur-
bation operator is applied which consists in moving some vertices from their current color
class to another color class at random. This perturbed solution is then used as the starting
point of the next round of the search procedure.

4.3 Evolutionary algorithms

Different from local search algorithms which are based on a single solution, evolutionary
algorithms use a pool of solutions and try to find gradually better solutions by applying
genetic operators (e.g., crossover, mutation, . . . ) to solutions of the population [15].

The most popular evolutionary algorithms for MSCP follow the hybrid evolution frame-
work called the memetic algorithm which jointly uses a recombination operator and a local
search improvement to explore the search space [15]. They include, for instance, the MASC
algorithm [25], MA-MSCP algorithm [40] and the HESA hybrid search algorithm [24].
Besides, an early parallel genetic algorithm PGA [27] employs assignment and partition
crossovers, first-fit mutation, and proportional selection without any local search improve-
ment.

The MASC memetic algorithm [25] follows the design guidelines of memetic algo-
rithms for discrete optimization [18] and combines a multi-parent crossover operator (called
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MGPX) and a double-neighborhood tabu search procedure. MGPX is a variant of the well-
known GPX crossover originally proposed for the classical vertex coloring problem [13].
It builds the color classes of the offspring (which is always a proper coloring) one by one
and transmits entire color classes as large as possible until all vertices of the offspring are
colored. Besides, the tabu search procedure applies the two different and complementary
neighborhoods induced by Exchange and One-move in a token-ring way to find good local
optima (according to the objective function f ) until the search is stagnating. MASC employs
a dedicated perturbation operator to diversify the search. MASC only explores the feasible
search space of MSCP.

MA-MSCP is another hybrid genetic algorithm [40] that also focuses on the feasible
search space. It includes a two-parent crossover operator (yet another adaptive variant of
GPX [13]), a hill-climbing local search algorithm and a “destroy & repair” procedures. Dur-
ing the local search phase, the hill-climbing procedure is first applied to improve the current
solution by using the One-move operator. To escape local optima, MA-MSCP then applies
the “destroy & repair” strategy, which randomly removes some vertices and re-inserts each
of them into its largest available color class while keeping the solution feasible. If there is no
such a color class, the vertex is moved to a new color class. MA-MSCP employs the above
two procedures alternately until no further improvement can be obtained.

HESA is also a hybrid search algorithm [24] that alternates between feasible and infea-
sible regions of the search space. HESA relies on a double-crossover recombination method
and an iterated double-phase tabu search procedure. The recombination method jointly uses
a diversification-guided crossover and a grouping-guided crossover to generate promising
offspring solutions. During the double-phase tabu search procedure, it first checks if the
given solution c is a proper coloring. If c is proper, the first tabu search is called to improve
its sum of colors. Otherwise, another tabu search is used to attain a proper coloring which is
further improved by the first tabu search to obtain a better sum of colors. The double-phase
tabu search only explores the NOne-move neighborhood. For the purpose of search diversifi-
cation, HESA applies a conditional mixed perturbation strategy: 1) apply the Swap operator
to a randomly chosen vertex to transform the incumbent solution, or 2) replace the current
solution by the last local optimum.

Table 1 summarizes the reviewed existing heuristic algorithms with their main charac-
teristics including the type of search paradigm, the neighborhood(s) and the presence or
absence of a perturbation strategy together with a comment on their relative performance.

Finally, we mention the BQP-PR evolutionary algorithm [46] which relies on a binary
quadratic programming formulation of the problem (see Section 2) and combines a path
relinking approach with a tabu search procedure.

5 Bounds for MSCP

We will refer here to “theoretical” (lower and upper) bounds if they are formally proved,
see Section 5.1. By opposition, “computational” bounds introduced in Section 5.2 designate
those obtained running approximate algorithms.

5.1 Theoretical bounds

Recall that for any undirected simple graph G = (V,E) with n = |V | vertices and m = |E|
edges, the chromatic number χ(G) is the smallest number of colors needed to color the ver-
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tices of G such that a proper k-coloring exists and the chromatic sum ∑(G) is the minimum
sum of the colors assigned to all vertices among all proper k-colorings of G. In this section,
we list the current known theoretical lower and upper bounds of MSCP according to [27,40,
45].

∑(G)≤ n+m

⌈
√

8m⌉ ≤ ∑(G)≤ ⌊3(m+1)
2

⌋

n+
χ(G)(χ(G)−1)

2
≤ ∑(G)≤ ⌊n(χ(G)+1)

2
⌋

(4)

From Eq.(4), one easily observes that the best theoretical lower and upper bounds avail-
able for MSCP are respectively LBt = max{⌈

√
8m⌉,n+ χ(G)(χ(G)−1)

2 } and UBt = min{n+

m,⌊ 3(m+1)
2 ⌋,⌊ n(χ(G)+1)

2 ⌋}.

5.2 Computational bounds

Given that MSCP is to find a proper k-coloring while minimizing the sum of the colors
assigned to the vertices, Eq. (1) gives a computational upper bound for MSCP.

Let G′ = (V,E ′)(E ′ ⊆ E) be any partial graph of G = (V,E), ∑(G′) is a lower bound of
∑(G) since any proper coloring of G must be a proper coloring of G′: ∑(G)≥ ∑(G′).

Partial graphs considered in the literature to estimate the computational lower bound fLB
include bipartite graphs (trees and paths) [14,29] and cliques [39,49], while graph decom-
position into cliques4 provide better bounds according to [39]. Let c = {S1,S2, . . . ,Sk} be a
clique decomposition of G, then Eq. (5) gives a computational lower bound for MSCP since
there is a single way of coloring any clique Sl (with |Sl | colors) and the sum of colors of Sl
is |Sl |(|Sl |+1)/2.

fLB(c) =
k

∑
l=1

|Sl |(|Sl |+1)
2

(5)

Figure 2 shows an illustrative lower bound via clique decomposition. We decompose G
into six cliques by ignoring some edges of the original graph G and obtain the chromatic
sum ∑(G′) = 13 (right figure). Clearly, this is a lower bound for MSCP while the chromatic
sum ∑(G) = 15 (left figure).

To obtain a clique decomposition, one popular approach is to find a proper coloring of
the complementary graph Ḡ of G [19,24,40,49], since each color class of Ḡ is a clique of
G.

6 Benchmark and performance evaluation

In this section, we first introduce a set of MSCP instances (benchmarks) that are commonly
used to assess the performance of MSCP algorithms and then provide indications about the

4 A clique is a complete graph where all the vertices are pairwise adjacent. A clique decomposition of a
graph is a partition of the vertex set V into a collection of cliques.
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Fig. 2 An illustrative lower bound via clique decomposition. The right figure is a clique decomposition of
the graph on the left.

performances of the reviewed MSCP algorithms. Due to many different factors (program-
ming languages, running platforms, experimental protocols...), it is quite difficult to draw
definitive conclusions. Nevertheless, we try to provide some useful indications with respect
to their performance in terms of best and average results.

6.1 Benchmark

There exists a set of 94 frequently used benchmark instances often used for performance
evaluation of MSCP algorithms. 58 instances are part of the COLOR 2002–2004 com-
petitions5 while the remaining 36 instances come from the second DIMACS challenge6.
Compared to the well-known DIMACS instances, the COLOR 2002-2004 instances are rel-
atively easy except the four large “wap” graphs. These instances refer to various topologies
and densities, which can be classified into the 14 following types:

• Twelve classical random graphs (DSJCn.d,n ∈ {125,250,500,1000},d ∈ {1,5,9});
• Three geometric graphs (DSJR500.d, d ∈ {1c,1,5});
• Six flat graphs (flat300 χ 0 with χ ∈{20,26,28} and flat1000 χ 0 with χ ∈{50,60,76});
• Twelve Leighton graphs (le450 χa, le450 χb, le450 χc, le450 χd, χ ∈ {5,15,25});
• Four latin square graph (latin sqr 10 and qg.orderχ , χ ∈ {30,40,50});
• Two very large random graphs (C2000.5 and C4000.5);
• Fourteen graphs based on register allocation (fpsol2.i.a, inithx.i.a, zeroin.i.a, mulsol.i.b,

a ∈ {1,2,3} and b ∈ {1,2,3,4,5});
• Two graphs from the scheduling area (school1 and school1 nsh);
• Twenty four graphs from the Donald Knuth’s Stanford GraphBase (milesn with n ∈

{250,500,750,1000,1500}, anna, david, huck, jean, homer, games120, queen8.12, and
queena.a, a ∈ {5, . . . ,16});

• Five graphs based on the Mycielski transformation (myciela, a ∈ {3,4,5,6,7});
• Four graphs that have a hard-to-find four clique embedded (mugn a, n ∈ {88,100},a ∈

{1,25});
• Two “insertion” graphs (2-Insert 3 and 3-Insert 3);

5 http://mat.gsia.cmu.edu/COLOR02
6 http://dimacs.rutgers.edu/Challenges/
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• Four graphs from real-life optical network design problems (wap05, wap06, wap07, and
wap08).

Table 2 gives the detailed characteristics of the benchmark graphs. Columns 1–5 and 8–
12 indicate the number n of vertices, the number m of edges, the density d = 2m/n(n−1) and
the chromatic number χ(G) of each graph. Columns 6–7 and 13–14 show the best theoretical
lower and upper bounds of the chromatic sum (LBt and UBt respectively). Underlined entries
(in all tables) indicate that theoretical upper bounds equal the computational upper bounds
while no theoretical lower bound equals the computational lower bound. Note that, since the
chromatic number χ(G) of some difficult graphs are still unknown, we use the minimum k
for which a k-coloring has been reported for G in the literature instead of χ(G) to compute
LBt and UBt using the min/max equations introduced in Section 5.1.

Table 2 Main characteristics of MSCP benchmark (94 instances)

Graph G n m d χ(G) LBt UBt Graph G n m d χ(G) LBt UBt
myciel3 11 20 0.36 4 17 27 zeroin.i.1 211 4100 0.19 49 1387 4311
myciel4 23 71 0.28 5 33 69 zeroin.i.2 211 3541 0.16 30 646 3270
myciel5 47 236 0.22 6 62 164 zeroin.i.3 206 3540 0.17 30 641 3193
myciel6 95 755 0.17 7 116 380 wap05 905 43081 0.11 50 2130 23077
myciel7 191 2360 0.13 8 219 859 wap06 947 43571 0.10 40 1727 19413
anna 138 493 0.05 11 193 631 wap07 1809 103368 0.06 ≤ 41 2629 37989
david 87 406 0.11 11 142 493 wap08 1870 104176 0.06 ≤ 42 2731 40205
huck 74 301 0.11 11 129 375 qg.order30 900 26100 0.06 30 1335 13950
jean 80 254 0.08 10 125 334 qg.order40 1600 62400 0.05 40 2380 32800
homer 561 1628 0.01 13 639 2189 qg.order60 3600 212400 0.03 60 5370 109800
queen5.5 25 160 0.53 5 36 75 DSJC125.1 125 736 0.09 5 135 375
queen6.6 36 290 0.46 7 57 144 DSJC125.5 125 3891 0.50 17 261 1125
queen7.7 49 476 0.40 7 70 196 DSJC125.9 125 6961 0.90 44 1071 2812
queen8.8 64 728 0.36 9 100 320 DSJC250.1 250 3218 0.10 ≤ 8 278 1125
queen8.12 96 1368 0.30 12 162 624 DSJC250.5 250 15668 0.50 ≤ 28 628 3625
queen9.9 81 1056 0.33 10 126 445 DSJC250.9 250 27897 0.90 ≤ 72 2806 9125
queen10.10 100 1470 0.30 11 155 600 DSJC500.1 500 12458 0.10 ≤ 12 566 3250
queen11.11 121 1980 0.27 11 178 726 DSJC500.5 500 62624 0.50 ≤ 47 1581 12000
queen12.12 144 2596 0.25 12 210 936 DSJC500.9 500 112437 0.90 ≤ 126 8375 31750
queen13.13 169 3328 0.23 13 247 1183 DSJC1000.1 1000 49629 0.10 ≤ 20 1190 10500
queen14.14 196 4186 0.22 14 287 1470 DSJC1000.5 1000 249826 0.50 ≤ 82 4321 41500
queen15.15 225 5180 0.21 15 330 1800 DSJC1000.9 1000 449449 0.90 ≤ 222 25531 111500
queen16.16 256 6320 0.19 16 376 2176 DSJR500.1 500 3555 0.03 12 566 3250
school1 385 19095 0.26 14 476 2887 DSJR500.1c 500 121275 0.97 84 3986 21250
school1-nsh 352 14612 0.24 14 443 2640 DSJR500.5 500 58862 0.47 122 7881 30750
miles250 128 387 0.05 8 156 515 flat300 20 0 300 21375 0.48 20 490 3150
miles500 128 1170 0.14 20 318 1298 flat300 26 0 300 21633 0.48 26 625 4050
miles750 128 2113 0.26 31 593 2048 flat300 28 0 300 21695 0.48 28 678 4350
miles1000 128 3216 0.40 42 989 2752 flat1000 50 0 1000 245000 0.49 50 2225 25500
miles1500 128 5198 0.64 73 2756 4736 flat1000 60 0 1000 245830 0.49 60 2770 30500
fpsol2.i.1 496 11654 0.09 65 2576 12150 flat1000 76 0 1000 246708 0.49 76 3850 38500
fpsol2.i.2 451 8691 0.09 30 886 6990 le450 5a 450 5714 0.06 5 460 1350
fpsol2.i.3 425 8688 0.10 30 860 6587 le450 5b 450 5734 0.06 5 460 1350
mug88 1 88 146 0.04 4 94 220 le450 5c 450 9803 0.10 5 460 1350
mug88 25 88 146 0.04 4 94 220 le450 5d 450 9757 0.10 5 460 1350
mug100 1 100 166 0.03 4 106 250 le450 15a 450 8168 0.08 15 555 3600
mug100 25 100 166 0.03 4 106 250 le450 15b 450 8169 0.08 15 555 3600
2-Insert 3 37 72 0.11 4 43 92 le450 15c 450 16680 0.17 15 555 3600
3-Insert 3 56 110 0.07 4 62 140 le450 15d 450 16750 0.17 15 555 3600
inithx.i.1 864 18707 0.05 54 2295 19571 le450 25a 450 8260 0.08 25 750 5850
inithx.i.2 645 13979 0.07 31 1110 10320 le450 25b 450 8263 0.08 25 750 5850
inithx.i.3 621 13969 0.07 31 1086 9936 le450 25c 450 17343 0.17 25 750 5850
mulsol.i.1 197 3925 0.20 49 1373 4122 le450 25d 450 17425 0.17 25 750 5850
mulsol.i.2 188 3885 0.22 31 653 3008 latin sqr 10 900 307350 0.76 ≤ 97 5556 44100
mulsol.i.3 184 3916 0.23 31 649 2944 C2000.5 2000 999836 0.50 ≤ 145 12585 147000
mulsol.i.4 185 3946 0.23 31 650 2960 C4000.5 4000 4000268 0.50 ≤ 259 37670 522000
mulsol.i.5 186 3973 0.23 31 651 2976 games120 120 638 0.09 9 156 600
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6.2 Performance of MSCP algorithms

Based on the benchmark introduced in the previous section, Table 3 (see the Appendix)
summarizes the computational results of six representative and effective MSCP algorithms
presented in Section 4: BLS [4], MASC [25], MDS(5)+LS [19], EXSCOL [47,49], MA-
MSCP [40] and HESA [24]. Column 1–3 present the tested graph and its best known lower
and upper bounds ( f b

LB and f b
UB respectively, in bold face when optimality is proved), the

following 18 columns give the detailed computational results of the six algorithms. “–”
marks for the reference algorithms mean non-available results. The results in terms of so-
lution quality (best / average lower and upper bounds, f ∗LB/ f a

LB and f ∗UB/ f a
UB respectively)

are directly extracted from the original papers. Computing times are not listed in the table
due to the difference of experimental conditions (platforms, programming languages, stop
conditions...). Nevertheless, the second and third lines of the heading respectively indicate
the main computer characteristic (processor frequency) and the stop condition to have an
idea of the maximum amount of search used by each approach. Note that there is no spe-
cific stop condition for EXSCOL since its extraction process ends when the current graph
becomes empty. Furthermore, some heuristics can halt before reaching the stop criterion,
when a known (lower) bound is reached for instance.

From Table 3, one observes that only HESA reports results for all the 94 graphs of the
benchmark. Besides, MDS(5)+LS, EXSCOL, MA-MSCP, and HESA provide lower and up-
per bounds while BLS and MASC only give an upper bound. Additionally, Figure 3 provides
performance information of each of the six algorithms compared to the best known upper
and lower bounds. One observes that no algorithm can reach all the best known results. BLS
and MASC attain the best upper bounds for 17 graphs out of the 27 tested graphs and for 56
graphs out of the 77 tested graphs respectively. MDS(5)+LS reaches the best lower (upper)
bound for 24 (26) instances out of 38. EXSCOL reaches the best lower and upper bounds
for 38 (out of 62 graphs) and 24 (out of 52 graphs) respectively. MA-MSCP reaches the best
lower / upper bound for 51 / 53 graphs out of 81. HESA equals the best lower (upper) bound
for 86 (85) instances out of 94.

Since the number of tested graphs differs from one algorithm to another, the performance
of these algorithms cannot be compared from a statistical viewpoint. However, from Table
3 and Figure 3, we can roughly conclude that BLS, MASC, MDS(5)+LS, EXSCOL, MA-
MSCP and HESA are currently the most effective algorithms for solving the MSCP problem.

From the theoretical and computational bounds reviewed above, we can make the fol-
lowing observations:

• Optimality is proved for 21 instances out of the 94 tested graphs since the best upper
bounds are equal to the best lower bounds (see entries in bold in Table 3);

• 12 theoretical upper bounds equal the computational upper bounds while no theoretical
lower bound equals the computational lower bound (underlined in Tables 2–3);

• The theoretical upper bounds of queena.a (a ∈ {11,12,13,14,15,16}) are equal to the
best computational lower bounds meaning optimal results;

• Table 3 shows that the best computational lower bounds of some easy graphs (myciela,
a ∈ {3,4,5,6}, for instance) are not equal to the optimal upper bounds (optimality
proved with CPLEX [46]). Hence, the method of decomposing the graph introduced
in Section 5.2 is not good enough in some cases and should be improved.
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Fig. 3 The performance of six representative MSCP algorithms. The y-axis shows the number of graphs for
which an algorithm attains a result equal to or worse than the best known reported bound.
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7 Perspectives and conclusion

This review is dedicated to recent approximation algorithms and practical solution algo-
rithms designed for the minimum sum coloring problem which attracted increasing attention
in recent years. MSCP is a strongly constrained combinatorial optimization problem which
is theoretically important and computationally difficult. In addition to its relevance as a typ-
ical model to formulate a number of practical problems, MSCP can be used as a benchmark
problem to test constraint satisfaction algorithms and solvers.

Based on this review, we discuss some perspective research directions.
• Evaluation function and search space: as introduced in Section 2, the aim of MSCP is

twofold: (1) find a proper k-coloring c of a graph and (2) ensure that the sum of the
colors assigned to the vertices is minimized. An evaluation function combining these
two objectives has been proposed in [19]:

f ′(c) =
k

∑
l=1

l|Vl |+M|E(Vl)|

where E(Vl) is the set of conflicting edges in Vl and M > 0 is a sufficiently large natu-
ral number. Since the evaluation function is used to guide the heuristic search process,
it would be interesting to design other effective evaluation function based on a better
recombination of the two parts of f ′.
Another possibility could be to explore only the feasible graph coloring search space,
like in the competitive MASC and MA-MSCP approaches [25,40], using more effective
(multi-)neighborhood structures.
Besides, the combination of the above two ingredients in a proper way may lead to
improved MSCP algorithms.

• Maximum independent sets extraction: As shown in Section 4.1, EXSCOL is a greedy
heuristic based on the independent sets extraction that is quite effective for large graphs.
Its major deficiency is that it does not include a procedure to reconsider “bad” inde-
pendent sets that has been extracted. Hence, one possibility is to devise a backtracking
procedure when a “bad” independent set has been identified as proposed for the graph
coloring problem [48].

• Exact algorithms: There is no exact algorithm especially designed for MSCP except the
general approach which applies CPLEX to solve the integer linear programming formu-
lation of MSCP [46]. However, as shown in [46], this approach is only applicable to easy
DIMACS instances. On the other hand, some exact algorithms for the classical vertex
coloring problem successfully solved a subset of the hard DIMACS graphs. Hence, it
would be important to fill the gap by designing exact algorithms for MSCP.
To conclude, the minimum sum coloring problem, like the classical coloring problem, is

a generic and useful model. Advances in solution methods (both exact and heuristic meth-
ods) for these coloring problems will help find satisfying solutions to many practical prob-
lems. Given the increasing interest in the sum coloring problem and their related coloring
problems, it is reasonable to believe that research in these domains will become even more
intense and fruitful in the forthcoming years.
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17. Halldórsson, M.M., Kortsarz, G., Shachnai, H. (2003). Sum coloring interval graphs and k-claw free
graphs with applications for scheduling dependent jobs. Algorithmica 37, 187–209.

18. Hao, J.-K. (2012). Memetic algorithms in discrete optimization. In F. Neri, C. Cotta, P. Moscato (eds.)
Handbook of Memetic Algorithms. Studies in Computational Intelligence 379, Chapter 6, pages 73–94,
Springer.

19. Helmar, A., Chiarandini, M. (2011). A local search heuristic for chromatic sum. In L. Di Gaspero,
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Appendix

For the purpose of completeness, this Appendix, which reproduces and extends the results
given in [24], shows a performance summary of the six main heuristic algorithms for the
set of 94 DIMACS benchmark graphs in terms of the lower and upper bounds of the MSCP
problem.



Algorithms for the minimum sum coloring problem: a review 19
Ta

bl
e

3:
T

he
pe

rf
or

m
an

ce
of

si
x

he
ur

is
tic

s
an

d
m

et
ah

eu
ri

st
ic

s
fo

rt
he

lo
w

er
an

d
up

pe
rb

ou
nd

s
of

M
SC

P

G
ra

ph
B

L
S

[4
]

M
A

SC
[2

5]
M

D
S(

5)
+L

S
[1

9]
E

X
SC

O
L

[4
7,

49
]

M
A

-M
SC

P
[4

0]
H

E
SA

[2
4]

2.
83

G
H

z
2.

7
G

H
z

2.
93

G
H

z
2.

8
G

H
z,

2.
83

G
H

z
1.

66
G

H
z

2.
83

G
H

z
2

ho
ur

s
50

ge
ne

ra
tio

ns
1

ho
ur

N
o

st
op

co
nd

iti
on

2
ho

ur
s

2
ho

ur
s

N
am

e
fb LB

fb U
B

f∗ U
B

fa U
B

f∗ U
B

fa U
B

f∗ LB
f∗ U

B
f∗ LB

fa LB
f∗ U

B
fa U

B
f∗ LB

fa LB
f∗ U

B
fa U

B
f∗ LB

fa LB
f∗ U

B
fa U

B
m

yc
ie

l3
16

21
21

21
.0

21
21

.0
16

21
16

16
.0

21
21

.0
16

16
.0

21
21

.0
16

16
.0

21
21

.0
m

yc
ie

l4
34

45
45

45
.0

45
45

.0
34

45
34

34
.0

45
45

.0
34

34
.0

45
45

.0
34

34
.0

45
45

.0
m

yc
ie

l5
70

93
93

93
.0

93
93

.0
70

93
70

70
.0

93
93

.0
70

70
.0

93
93

.0
70

70
.0

93
93

.0
m

yc
ie

l6
14

2
18

9
18

9
19

6.
6

18
9

18
9.

0
14

2
18

9
14

2
14

2.
0

18
9

18
9.

0
14

2
13

9.
5

18
9

18
9.

0
14

2
14

2.
0

18
9

18
9.

0
m

yc
ie

l7
28

6
38

1
38

1
39

3.
8

38
1

38
1.

0
28

6
38

1
28

6
28

6.
0

38
1

38
1.

0
28

6
27

7.
5

38
1

38
1.

0
28

6
28

6.
0

38
1

38
1.

0
an

na
27

3
27

6
27

6
27

6.
0

27
6

27
6.

0
27

3
27

6
27

3
27

3.
0

28
3

28
3.

2
27

3
27

3.
0

27
6

27
6.

0
27

3
27

3.
0

27
6

27
6.

0
da

vi
d

23
4

23
7

23
7

23
7.

0
23

7
23

7.
0

23
4

23
7

22
9

22
9.

0
23

7
23

8.
1

23
4

23
4.

0
23

7
23

7.
0

23
4

23
4.

0
23

7
23

7.
0

hu
ck

24
3

24
3

24
3

24
3.

0
24

3
24

3.
0

24
3

24
3

24
3

24
3.

0
24

3
24

3.
8

24
3

24
3.

0
24

3
24

3.
0

24
3

24
3.

0
24

3
24

3.
0

je
an

21
6

21
7

21
7

21
7.

0
21

7
21

7.
0

21
6

21
7

21
6

21
6.

0
21

7
21

7.
3

21
6

21
6.

0
21

7
21

7.
0

21
6

21
6.

0
21

7
21

7.
0

ho
m

er
11

29
11

50
-

-
11

55
11

58
.5

-
-

-
-

-
-

11
29

11
29

.0
11

57
14

81
.9

11
29

11
29

.0
11

50
11

51
.8

qu
ee

n5
.5

75
75

75
75

.0
75

75
.0

75
75

75
75

.0
75

75
.0

75
75

.0
75

75
.0

75
75

.0
75

75
.0

qu
ee

n6
.6

12
6

13
8

13
8

13
8.

0
13

8
13

8.
0

12
6

13
8

12
6

12
6.

0
15

0
15

0.
0

12
6

12
6.

0
13

8
13

8.
0

12
6

12
6.

0
13

8
13

8.
0

qu
ee

n7
.7

19
6

19
6

19
6

19
6.

0
19

6
19

6.
0

19
6

19
6

19
6

19
6.

0
19

6
19

6.
0

19
6

19
6.

0
19

6
19

6.
0

19
6

19
6.

0
19

6
19

6.
0

qu
ee

n8
.8

28
8

29
1

29
1

29
1.

0
29

1
29

1.
0

28
8

29
1

28
8

28
8.

0
29

1
29

1.
0

28
8

28
8.

0
29

1
29

1.
0

28
8

28
8.

0
29

1
29

1.
0

qu
ee

n8
.1

2
62

4
62

4
-

-
62

4
62

4.
0

-
-

-
-

-
-

62
4

62
4.

0
62

4
62

4.
0

62
4

62
4.

0
62

4
62

4.
0

qu
ee

n9
.9

40
5

40
9

-
-

40
9

41
0.

5
-

-
-

-
-

-
40

5
40

5.
0

40
9

41
1.

9
40

5
40

5.
0

40
9

40
9.

0
qu

ee
n1

0.
10

55
0

55
3

-
-

-
-

-
-

-
-

-
-

55
0

55
0.

0
55

3
55

5.
2

55
0

55
0.

0
55

3
55

3.
6

qu
ee

n1
1.

11
72

6
73

3
-

-
-

-
-

-
-

-
-

-
72

6
72

6.
0

73
3

73
5.

4
72

6
72

6.
0

73
3

73
4.

4
qu

ee
n1

2.
12

93
6

94
3

-
-

-
-

-
-

-
-

-
-

93
6

93
6.

0
94

4
94

8.
7

93
6

93
6.

0
94

3
94

7.
0

qu
ee

n1
3.

13
11

83
11

91
-

-
-

-
-

-
-

-
-

-
11

83
11

83
.0

11
92

11
97

.0
11

83
11

83
.0

11
91

11
95

.4
qu

ee
n1

4.
14

14
70

14
82

-
-

-
-

-
-

-
-

-
-

14
70

14
70

.0
14

82
14

90
.8

14
70

14
70

.0
14

82
14

87
.3

qu
ee

n1
5.

15
18

00
18

14
-

-
-

-
-

-
-

-
-

-
18

00
18

00
.0

18
14

18
23

.0
18

00
18

00
.0

18
14

18
20

.1
qu

ee
n1

6.
16

21
76

21
93

-
-

-
-

-
-

-
-

-
-

21
76

21
76

.0
21

97
22

05
.9

21
76

21
76

.0
21

93
21

99
.4

sc
ho

ol
1

24
39

26
74

-
-

-
-

-
-

-
-

-
-

23
45

22
83

.3
26

74
27

66
.8

24
39

24
18

.9
26

74
26

74
.0

sc
ho

ol
1-

ns
h

21
76

23
92

-
-

-
-

-
-

-
-

-
-

21
06

20
64

.6
23

92
24

77
.1

21
76

21
69

.4
23

92
23

92
.0

m
ile

s2
50

31
8

32
5

32
7

32
8.

8
32

5
32

5.
0

31
8

32
5

31
8

31
6.

2
32

8
33

3.
0

31
8

31
8.

0
32

5
32

5.
4

31
8

31
8.

0
32

5
32

5.
0

m
ile

s5
00

68
6

70
5

71
0

71
3.

3
70

5
70

5.
0

68
6

71
2

67
7

67
1.

4
70

9
71

4.
5

68
6

68
6.

0
70

8
71

1.
2

68
6

68
6.

0
70

5
70

5.
8

m
ile

s7
50

11
45

11
73

-
-

-
-

-
-

-
-

-
-

11
45

11
45

.0
11

73
11

83
.9

11
45

11
45

.0
11

73
11

73
.6

m
ile

s1
00

0
16

23
16

66
-

-
-

-
-

-
-

-
-

-
16

23
16

23
.0

16
79

16
97

.3
16

23
16

23
.0

16
66

16
70

.5
m

ile
s1

50
0

32
39

33
54

-
-

-
-

-
-

-
-

-
-

32
39

32
39

.0
33

54
33

57
.2

32
39

32
39

.0
33

54
33

54
.0

fp
so

l2
.i.

1
34

03
34

03
-

-
34

03
34

03
.0

31
51

34
03

34
03

34
03

.0
-

-
34

03
34

03
.0

34
03

34
03

.0
34

03
34

03
.0

34
03

34
03

.0
fp

so
l2

.i.
2

16
68

16
68

-
-

16
68

16
68

.0
-

-
-

-
-

-
16

68
16

68
.0

16
68

16
68

.0
16

68
16

68
.0

16
68

16
68

.0
fp

so
l2

.i.
3

16
36

16
36

-
-

16
36

16
36

.0
-

-
-

-
-

-
16

36
16

36
.0

16
36

16
36

.0
16

36
16

36
.0

16
36

16
36

.0
m

ug
88

1
16

4
17

8
-

-
17

8
17

8.
0

16
4

17
8

16
4

16
2.

3
-

-
-

-
-

-
16

4
16

4.
0

17
8

17
8.

0
m

ug
88

25
16

2
17

8
-

-
17

8
17

8.
0

16
2

17
8

16
2

16
0.

3
-

-
-

-
-

-
16

2
16

2.
0

17
8

17
8.

0
m

ug
10

0
1

18
8

20
2

-
-

20
2

20
2.

0
18

8
20

2
18

8
18

8.
0

-
-

-
-

-
-

18
8

18
8.

0
20

2
20

2.
0

C
on

tin
ue

d
on

ne
xt

pa
ge



20 Yan Jin, Jean-Philippe Hamiez, Jin-Kao Hao�
Ta

bl
e

3
C

on
tin

ue
d

fr
om

pr
ev

io
us

pa
ge

G
ra

ph
B

L
S

[4
]

M
A

SC
[2

5]
M

D
S(

5)
+L

S
[1

9]
E

X
SC

O
L

[4
7,

49
]

M
A

-M
SC

P
[4

0]
H

E
SA

[2
4]

2.
83

G
H

z
2.

7
G

H
z

2.
93

G
H

z
2.

8
G

H
z,

2.
83

G
H

z
1.

66
G

H
z

2.
83

G
H

z
2

ho
ur

s
50

ge
ne

ra
tio

ns
1

ho
ur

N
o

st
op

co
nd

iti
on

2
ho

ur
s

2
ho

ur
s

N
am

e
fb LB

fb U
B

f∗ U
B

fa U
B

f∗ U
B

fa U
B

f∗ LB
f∗ U

B
f∗ LB

fa LB
f∗ U

B
fa U

B
f∗ LB

fa LB
f∗ U

B
fa U

B
f∗ LB

fa LB
f∗ U

B
fa U

B
m

ug
10

0
25

18
6

20
2

-
-

20
2

20
2.

0
18

6
20

2
18

6
18

3.
4

-
-

-
-

-
-

18
6

18
6.

0
20

2
20

2.
0

2-
In

se
rt

3
55

62
-

-
62

62
.0

55
62

55
55

.0
-

-
-

-
-

-
55

55
.0

62
62

.0
3-

In
se

rt
3

84
92

-
-

92
92

.0
84

92
84

82
.8

-
-

-
-

-
-

84
84

.0
92

92
.0

in
ith

x.
i.1

36
76

36
76

-
-

36
76

36
76

.0
34

86
36

76
36

76
36

76
.0

-
-

36
76

36
16

.0
36

76
36

79
.6

36
76

36
75

.3
36

76
36

76
.0

in
ith

x.
i.2

20
50

20
50

-
-

20
50

20
50

.0
-

-
-

-
-

-
20

50
19

89
.2

20
50

20
53

.7
20

50
20

50
.0

20
50

20
50

.0
in

ith
x.

i.3
19

86
19

86
-

-
19

86
19

86
.0

-
-

-
-

-
-

19
86

19
61

.8
19

86
19

86
.0

19
86

19
86

.0
19

86
19

86
.0

m
ul

so
l.i

.1
19

57
19

57
-

-
19

57
19

57
.0

-
-

-
-

-
-

19
57

19
57

.0
19

57
19

57
.0

19
57

19
57

.0
19

57
19

57
.0

m
ul

so
l.i

.2
11

91
11

91
-

-
11

91
11

91
.0

-
-

-
-

-
-

11
91

11
91

.0
11

91
11

91
.0

11
91

11
91

.0
11

91
11

91
.0

m
ul

so
l.i

.3
11

87
11

87
-

-
11

87
11

87
.0

-
-

-
-

-
-

11
87

11
87

.0
11

87
11

87
.0

11
87

11
87

.0
11

87
11

87
.0

m
ul

so
l.i

.4
11

89
11

89
-

-
11

89
11

89
.0

-
-

-
-

-
-

11
89

11
89

.0
11

89
11

89
.0

11
89

11
89

.0
11

89
11

89
.0

m
ul

so
l.i

.5
11

60
11

60
-

-
11

60
11

60
.0

-
-

-
-

-
-

11
60

11
60

.0
11

60
11

60
.0

11
60

11
60

.0
11

60
11

60
.0

ze
ro

in
.i.

1
18

22
18

22
-

-
18

22
18

22
.0

-
-

-
-

-
-

18
22

18
22

.0
18

22
18

22
.0

18
22

18
22

.0
18

22
18

22
.0

ze
ro

in
.i.

2
10

04
10

04
-

-
10

04
10

04
.0

10
04

10
04

10
04

10
04

.0
-

-
10

04
10

02
.1

10
04

10
04

.0
10

04
10

04
.0

10
04

10
04

.0
ze

ro
in

.i.
3

99
8

99
8

-
-

99
8

99
8.

0
99

8
99

8
99

8
99

8.
0

-
-

99
8

99
8.

0
99

8
99

8.
0

99
8

99
8.

0
99

8
99

8.
0

w
ap

05
12

44
9

13
65

6
-

-
13

66
9

13
67

7.
8

-
-

12
42

8
12

33
9.

3
13

68
0

13
71

8.
4

-
-

-
-

12
44

9
12

43
8.

9
13

65
6

13
67

7.
8

w
ap

06
12

45
4

13
77

3
-

-
13

77
6

13
77

7.
8

-
-

12
39

3
12

34
8.

8
13

77
8

13
83

0.
9

-
-

-
-

12
45

4
12

43
1.

6
13

77
3

13
77

7.
6

w
ap

07
24

80
0

28
61

7
-

-
28

61
7

28
62

4.
7

-
-

24
33

9
24

26
3.

8
28

62
9

28
66

3.
8

-
-

-
-

24
80

0
24

78
3.

6
29

15
4

29
26

1.
1

w
ap

08
25

28
3

28
88

5
-

-
28

88
5

28
89

0.
9

-
-

24
79

1
24

68
1.

1
28

89
6

28
94

6.
0

-
-

-
-

25
28

3
25

26
3.

4
29

46
0

29
54

2.
3

qg
.o

rd
er

30
13

95
0

13
95

0
-

-
13

95
0

13
95

0.
0

-
-

13
95

0
13

95
0.

0
13

95
0

13
95

0.
0

13
95

0
13

95
0.

0
13

95
0

13
95

0.
0

13
95

0
13

95
0.

0
13

95
0

13
95

0.
0

qg
.o

rd
er

40
32

80
0

32
80

0
-

-
32

80
0

32
80

0.
0

-
-

32
80

0
32

80
0.

0
32

80
0

32
80

0.
0

32
80

0
32

80
0.

0
32

80
0

32
80

0.
0

32
80

0
32

80
0.

0
32

80
0

32
80

0.
0

qg
.o

rd
er

60
10

98
00

10
98

00
-

-
10

98
00

10
98

00
.0

-
-

10
98

00
10

98
00

.0
11

09
25

11
09

93
.0

10
98

00
10

98
00

.0
10

98
00

10
98

00
.0

10
98

00
10

98
00

.0
10

98
00

10
98

00
.0

D
SJ

C
12

5.
1

24
7

32
6

32
6

32
6.

9
32

6
32

6.
6

23
8

32
6

24
6

24
4.

1
32

6
32

6.
7

24
7

24
4.

6
32

6
32

7.
3

24
7

24
7.

0
32

6
32

6.
1

D
SJ

C
12

5.
5

54
9

10
12

10
12

10
12

.9
10

12
10

20
.0

49
3

10
15

53
6

52
2.

4
10

17
10

19
.7

54
9

54
1.

0
10

13
10

18
.5

54
9

54
8.

5
10

12
10

12
.2

D
SJ

C
12

5.
9

16
91

25
03

25
03

25
03

.0
25

03
25

08
.0

16
21

25
11

16
64

15
92

.5
25

12
25

12
.0

16
89

16
77

.7
25

03
25

19
.0

16
91

16
91

.0
25

03
25

03
.0

D
SJ

C
25

0.
1

57
0

97
0

97
3

98
2.

5
97

4
99

0.
5

52
1

97
7

56
7

56
2.

0
98

5
98

5.
0

56
9

55
8.

4
98

3
99

5.
8

57
0

56
9.

2
97

0
98

0.
4

D
SJ

C
25

0.
5

12
87

32
10

32
19

32
48

.5
32

30
32

53
.7

11
28

32
81

12
70

12
58

.8
32

46
32

53
.9

12
80

12
49

.4
32

14
32

85
.5

12
87

12
71

.6
32

10
32

35
.6

D
SJ

C
25

0.
9

43
11

82
77

82
90

83
16

.0
82

80
83

22
.7

37
79

84
12

41
79

40
82

.4
82

86
82

88
.8

42
79

41
60

.9
82

77
83

48
.8

43
11

42
79

.4
82

77
82

77
.2

D
SJ

C
50

0.
1

12
50

28
36

28
82

29
42

.9
28

41
28

44
.1

11
43

29
51

12
50

12
46

.6
28

50
28

57
.4

12
41

12
14

.9
28

97
29

90
.5

12
50

12
43

.4
28

36
28

36
.0

D
SJ

C
50

0.
5

29
23

10
88

6
11

18
7

11
32

6.
3

10
89

7
10

90
5.

8
25

65
11

71
7

29
21

29
02

.6
10

91
0

10
91

8.
2

28
68

27
97

.7
11

08
2

11
39

8.
3

29
23

28
96

.0
10

88
6

10
89

1.
5

D
SJ

C
50

0.
9

11
05

3
29

86
2

30
09

7
30

25
9.

2
29

89
6

29
90

7.
8

97
31

30
87

2
10

88
1

10
73

4.
5

29
91

2
29

93
6.

2
10

75
9

10
44

3.
8

29
99

5
30

36
1.

9
11

05
3

10
95

0.
1

29
86

2
29

87
4.

3
D

SJ
C

10
00

.1
27

62
89

91
95

20
96

30
.1

89
95

90
00

.5
24

56
10

12
3

27
62

27
58

.6
90

03
90

17
.9

27
07

26
51

.2
91

88
96

67
.1

27
19

27
07

.6
89

91
89

96
.5

D
SJ

C
10

00
.5

67
08

37
57

5
40

66
1

41
00

2.
6

37
59

4
37

59
7.

6
56

60
43

61
4

67
08

66
65

.9
37

59
8

37
67

3.
8

65
34

61
82

.5
38

42
1

40
26

0.
9

65
82

65
41

.3
37

57
5

37
59

4.
7

D
SJ

C
10

00
.9

26
55

7
10

34
45

-
-

10
34

64
10

34
64

.0
23

20
8

11
27

49
26

55
7

26
30

0.
3

10
34

64
10

35
31

.0
26

15
7

24
57

2.
0

10
52

34
10

73
49

.0
26

29
6

26
15

0.
3

10
34

45
10

34
63

.3
D

SJ
R

50
0.

1
20

69
21

56
-

-
-

-
-

-
-

-
-

-
20

61
20

52
.9

21
73

22
53

.1
20

69
20

69
.0

21
56

21
70

.7
D

SJ
R

50
0.

1c
15

39
8

16
28

6
-

-
-

-
-

-
-

-
-

-
15

02
5

14
44

3.
9

16
31

1
16

40
8.

5
15

39
8

15
21

2.
4

16
28

6
16

28
6.

0
D

SJ
R

50
0.

5
22

97
4

25
44

0
-

-
-

-
-

-
-

-
-

-
22

72
8

22
07

5.
0

25
63

0
26

97
8.

0
22

97
4

22
65

6.
7

25
44

0
25

68
4.

1
fla

t3
00

20
0

15
31

31
50

-
-

31
50

31
50

.0
-

-
15

24
15

05
.7

31
50

31
50

.0
15

15
14

79
.3

31
50

31
50

.0
15

31
15

18
.2

31
50

31
50

.0
C

on
tin

ue
d

on
ne

xt
pa

ge



Algorithms for the minimum sum coloring problem: a review 21
Ta

bl
e

3
C

on
tin

ue
d

fr
om

pr
ev

io
us

pa
ge

G
ra

ph
B

L
S

[4
]

M
A

SC
[2

5]
M

D
S(

5)
+L

S
[1

9]
E

X
SC

O
L

[4
7,

49
]

M
A

-M
SC

P
[4

0]
H

E
SA

[2
4]

2.
83

G
H

z
2.

7
G

H
z

2.
93

G
H

z
2.

8
G

H
z,

2.
83

G
H

z
1.

66
G

H
z

2.
83

G
H

z
2

ho
ur

s
50

ge
ne

ra
tio

ns
1

ho
ur

N
o

st
op

co
nd

iti
on

2
ho

ur
s

2
ho

ur
s

N
am

e
fb LB

fb U
B

f∗ U
B

fa U
B

f∗ U
B

fa U
B

f∗ LB
f∗ U

B
f∗ LB

fa LB
f∗ U

B
fa U

B
f∗ LB

fa LB
f∗ U

B
fa U

B
f∗ LB

fa LB
f∗ U

B
fa U

B
fla

t3
00

26
0

15
48

39
66

-
-

39
66

39
66

.0
-

-
15

25
15

11
.4

39
66

39
66

.0
15

36
15

01
.6

39
66

39
66

.0
15

48
15

30
.3

39
66

39
66

.0
fla

t3
00

28
0

15
47

42
38

-
-

42
38

43
13

.4
-

-
15

32
15

15
.3

42
82

42
86

.1
15

41
15

03
.9

42
61

43
89

.4
15

47
15

36
.5

42
60

42
90

.0
fla

t1
00

0
50

0
66

01
25

50
0

-
-

25
50

0
25

50
0.

0
-

-
66

01
65

71
.8

25
50

0
25

50
0.

0
64

33
61

21
.5

25
50

0
25

50
0.

0
64

76
64

52
.1

25
50

0
25

50
0.

0
fla

t1
00

0
60

0
66

40
30

10
0

-
-

30
10

0
30

10
0.

0
-

-
66

40
66

00
.5

30
10

0
30

10
0.

0
64

02
60

47
.7

30
10

0
30

10
0.

0
64

91
64

66
.5

30
10

0
30

10
0.

0
fla

t1
00

0
76

0
66

32
37

16
4

-
-

37
16

7
37

16
7.

0
-

-
66

32
65

83
.2

37
16

7
37

21
3.

2
63

30
60

74
.6

38
21

3
39

72
2.

7
65

09
64

82
.8

37
16

4
37

16
5.

9
le

45
0

5a
11

93
13

50
-

-
13

50
13

50
.0

-
-

-
-

-
-

11
90

11
71

.5
13

50
13

50
.0

11
93

11
91

.5
13

50
13

50
.0

le
45

0
5b

11
89

13
50

-
-

13
50

13
50

.0
-

-
-

-
-

-
11

86
11

66
.5

13
50

13
50

.0
11

89
11

85
.0

13
50

13
50

.1
le

45
0

5c
12

78
13

50
-

-
13

50
13

50
.0

-
-

-
-

-
-

12
72

12
42

.3
13

50
13

50
.0

12
78

12
70

.4
13

50
13

50
.0

le
45

0
5d

12
82

13
50

-
-

13
50

13
50

.0
-

-
-

-
-

-
12

69
12

45
.2

13
50

13
50

.0
12

82
12

74
.2

13
50

13
50

.0
le

45
0

15
a

23
31

26
32

-
-

27
06

27
42

.6
-

-
23

29
23

13
.7

26
32

26
41

.9
23

29
23

24
.3

26
81

27
33

.1
23

31
23

31
.0

26
34

26
48

.4
le

45
0

15
b

23
48

26
32

-
-

27
24

27
56

.2
-

-
23

43
23

15
.7

26
42

26
43

.4
23

48
23

35
.0

26
90

27
30

.6
23

48
23

48
.0

26
32

26
56

.5
le

45
0

15
c

26
10

34
87

-
-

34
91

34
91

.0
-

-
25

91
25

45
.3

38
66

38
68

.9
25

93
25

69
.1

39
43

40
48

.4
26

10
26

06
.6

34
87

37
92

.4
le

45
0

15
d

26
28

35
05

-
-

35
06

35
11

.8
-

-
26

10
25

72
.4

39
21

39
28

.5
26

22
25

87
.2

39
26

40
32

.4
26

28
26

27
.1

35
05

38
83

.1
le

45
0

25
a

30
03

31
53

-
-

31
66

31
76

.8
-

-
29

97
29

64
.4

31
53

31
59

.4
30

03
30

00
.4

31
78

32
04

.3
30

03
30

03
.0

31
57

31
66

.7
le

45
0

25
b

33
05

33
65

-
-

33
66

33
75

.1
-

-
33

05
33

04
.1

33
66

33
71

.9
33

05
33

04
.1

33
79

34
16

.2
33

05
33

05
.0

33
65

33
75

.2
le

45
0

25
c

36
57

45
15

-
-

47
00

47
73

.3
-

-
36

19
35

97
.1

45
15

45
25

.4
36

38
36

17
.0

46
48

47
00

.7
36

57
36

56
.9

45
53

45
83

.8
le

45
0

25
d

36
98

45
44

-
-

47
22

48
05

.7
-

-
36

84
36

27
.4

45
44

45
50

.0
36

97
36

83
.2

46
96

47
40

.3
36

98
36

98
.0

45
69

46
07

.6
la

tin
sq

r
10

40
95

0
41

44
4

-
-

41
44

4
41

48
1.

5
-

-
40

95
0

40
95

0.
0

42
22

3
42

39
2.

7
-

-
-

-
40

95
0

40
95

0.
0

41
49

2
41

67
2.

8
C

20
00

.5
15

09
1

13
24

83
-

-
-

-
-

-
15

09
1

15
07

7.
6

13
25

15
13

26
82

.0
-

-
-

-
14

49
8

14
44

2.
9

13
24

83
13

25
13

.9
C

40
00

.5
33

03
3

47
32

34
-

-
-

-
-

-
33

03
3

33
01

8.
8

47
32

34
47

32
11

.0
-

-
-

-
31

52
5

31
41

3.
3

51
34

57
51

46
39

.0
ga

m
es

12
0

44
2

44
3

44
3

44
3.

0
44

3
44

3.
0

44
2

44
3

44
2

44
1.

4
44

3
44

7.
9

44
2

44
2.

0
44

3
44

3.
0

44
2

44
2.

0
44

3
44

3.
0


