Genetic Tabu Search for the Multi-objective
Knapsack Problem

Vincent Barichard and Jin-Kao Hao

Vincent.Barichard@info.univ-angers.fr
Jin-Kao.Hao@univ-angers.fr

LERIA - Faculty of Sciences - University of Angers
2, Boulevard Lavoisier, 49045 Angers Cedex 01, France

January 15, 2003

Abstract
We introduce a hybrid algorithm for the 0-1 multi-dimensional multi-
objective knapsack problem. This algorithm, called GT'SM9XF  combines
a genetic procedure and a tabu search operator. The algorithm is evalu-
ated on 9 well-known benchmark instances and shows highly competitive
results compared with two state-of-the-art algorithms.

1 Introduction

Given a set of items (or objects), each being associated a vector of profits and
weights, the 0-1 multi-dimensional multi-objective knapsack problem (MOKP)
consists in selecting a subset of items in order to maximize a multi-objective
function while satisfying a set of knapsack constraints. More formally, the
MOKRP can be stated as follows:

max 2 (z) = chzz j=1,...,0
i1
MOKPO1 § gt. Zwﬁxz < l=1,....m
i=1
v € 0,1} i=1,..n

where n is the number of items, z; is a decision variable o the number of ob-
jectives, z7 is the j** component of the multi-objective function z, and m the
number of constraints of the problem. Just like the NP-hard 0-1 single multi-
dimensional knapsack problem MKP, the MOKP may be used to formulate



many practical problems such as capital budgeting and resource allocation. For
resolution purpose, several heuristic algorithms have been developed. We may
mention neighborhood algorithms based on simulated annealing [10, 12] and
tabu search [4], evolutionary algorithms based on vector evaluated genetic al-
gorithm (VEGA) [9], non-dominated sorting genetic algorithm (NSGA) [11, 2]
and strength Pareto evolutionary algorithm (SPEA) [14]. Very recently, hy-
brid algorithms combining genetic search and local search! were also proposed
[1, 8]. In particular, the multiple objective genetic local search (MOGLS) algo-
rithm described in [6] proves to be very successful for solving large scale MOKP
instances.

In this paper, we are interested in the hybrid approach and introduce
GTSMOKP 5 genetic tabu search algorithm for the MOKP. Inspired by a ge-
netic tabu search algorithm for the graph coloring problem [3] and the MOGLS
algorithm [6], GTSMOKP distinguishes itself from MOGLS essentially by the
integration of a powerful neighborhood method (tabu search) within the genetic
framework. To assess the performance of GTSMOKP | the algorithm is exten-
sively evaluated on a set of 9 well-known benchmarks and compared with NSGA
and MOGLS, two of the most famous algorithms for the MOKP. Experimental
results of GTSMOKP are highly competitive on all the tested instances with
respect to the competing algorithms.

The paper is organized as follows. In the next section, we introduce the
general principles of our hybrid algorithm GT SMOKP  Experimental results as
well as comparisons of GTSMOKP with two other algorithms are the subject of
the section 3. Last section gives some conclusions and perspectives.

2 Genetic Tabu Search for the MOKP (GTSMOKF)

Genetic local search (GLS) is now recognized as a highly competitive approach
for tackling hard, single or multi-objective combinatorial problems. For the
MOKP, we may mention MOGLS which uses a pure descent algorithm as its
local search operator [6].

The general schema of genetic local search is now well-known and becomes
a quasi standard for this kind of hybridation. At each generation, a number of
crossovers (via random or problem-specific operators) are carried out. For each
newly generated configuration (individual) s, a local search operator LS(s) is
applied to s in order to improve its quality. Finally, a replacement strategy is
applied to decide whether the improved configuration should be accepted in the
population.

In this section, we present our hybrid genetic tabu search algorithm GT'SMOKF
for the MOKP.

IThe term of local search is often used as synonym of pure descent methods. In this paper,
this term is used to encompass all neighborhood based methods such as tabu search and
simulated annealing.




2.1 General algorithm

GTSMOKP follows the above general schema for genetic local search. We give
the skeleton of GT SMOKP in algorithm 1. More details are given in section 2.2.

Input: a MOKP instance
Output: set of non dominated solutions
P « InitPopulation (|P])
while not Stop-Condition do
A «— GetRandomWeightVector (used for fitness assignment, see next sec-
tion)
fitness assignment of each individual s in P according to f(s,r, \) (see next
section)
TP «— The N "best" individuals of P
(p1,p2) «— ChooseParents(T P)
s « Crossover(p1,p2)
s « TabuSearch(s, NumberO f Iterations)
P — AddPopulation(s, P)
end while

Algorithm 1: GTSMOKP: the genetic tabu search algorithm for the MOKP.

Notice that although it is not explicitly stated in the algorithm, non-dominated
solutions are always recorded in an appropriate data structure. It is these non-
dominated solutions that constitute the output of the algorithm. We presents
in the following subsections the different components of GT SMOKP

2.2 Search space and fitness assignment

A configuration (or an individual) s is any binary vector with n components
satisfying all the m constraints of the problem. The search space S is then
defined to be the set of all such binary vectors, which is clearly a subset of

{0,1}™.
To evaluate the fitness of a configuration s, we use, like in [7], a weighted
linear function defined as follows:

f(s,m ) = Z Ai * (15 — 2i(s)) (1)

where

e s the configuration to be evaluated;

e 2;(s) (i=1...0) the valuation of s for the i‘"

function of the problem;

component of the objective

e ) a weight vector composed of o components which is scalarized to [0..1],
and whose i*" component ); corresponds to the weight given to the i*?
objective;



e 7 a o-components reference vector.

Therefore, for each configuration s and a given reference vector r, a fitness
value is assigned to s according to the valuations of s with respect to the ob-
jectives and the (variable) weight given to each objective. This fitness function
(1) defines thus a total order for the configurations of the search space S. This
order serves as the basis for the genetic and tabu search operators.

2.3 Genetic search

After assigning a fitness to each individual of P, the current population is sorted
according to the fitness values. The first (best) N? individuals are copied to
a temporary population. From this temporary population, two individuals are
randomly selected and then mated using one-point random crossover. After
restoring the feasibility, the child is improved by the tabu search algorithm (see
next subsection). If the improved individual s, is better than the worst one of
the temporary population, s, is added to the current population and replaces
the oldest individual. Otherwise, s, is rejected.

2.4 Tabu search (TS)

The TS operator TabuSearch(s,L) aims to improve a feasible configuration s
produced by the crossover for a maximum of L iterations before inserting the
improved s into the population.

This section gives a brief review of the most important Tabu Search features.
For a comprehensive presentation of TS, the reader is invited to consult the book
of Glover and Laguna [5]. We give below some notations necessary for a good
understanding of our TS algorithm.

Neighborhood and move. The neighborhood function A is defined over the
search space S and associates each configuration s to a subset of S. More pre-
cisely, let s a configuration, then N'={s’ | s’ is feasible and Hammingdistance(s, s')=
1}. In other words, for each s € S, one can get one neighboring configuration s’
by adding (flipping a variable from 0 to 1) or dropping (flipping a variable from

1 to 0) one item from s in such a way that the knapsack constraints are always
satisfied. The operation of flipping a variable to get a neighboring configuration

is called a move. A move from s to s’ € N can be identified without ambiguity
by the attribute j if s’ is obtained by flipping the ;" component of s.

Evaluation of the neighborhood. The quality of each neighboring config-
uration s’ € NV is evaluated by the weighted linear fitness function (1), just like
it is done for evaluating any other configuration of the search space S.

2N < |P| is to be fixed empirically. In this paper, N=20 for |P| = 150 to 350.



Tabu list. The role of tabu list is to prevent the search from short-term
cycling. Since a move corresponds to flipping a single variable, the index of the
flipped variable, say j is classified tabu for the next k iterations. The value k,
called also tabu tenure, is a parameter to be fixed empirically. The tabu tenure
is reset to 0 for each tabu run.

The skeleton of our TS algorithm used in GT SMOKP is given in algorithm 2.

Input: a feasible configuration sp, the number of iterations L
Output: a new feasible configuration s
S < 8o
for i =0to L do
choose the best authorized move
update the tabu list with the chosen move
perform the chosen move in s
update the set of non-dominate configuration with s
end for

Algorithm 2: The Tabu search algorithm.

3 Experimental Results

3.1 Test data

In this section, we will compare our GTSMOKP algorithm with NSGA and
MOGLS, two of the most powerful algorithms for the MOKP. The experiments
are based on the nine instances that were used in [16]. These instances have 2,
3 and 4 objectives, in combination with 250, 500 and 750 items. Moreover, for
each instance, the number of constraints is equal to the number of objectives.
The instances were generated randomly with uncorrelated profits and weights,
and the capacities of the knapsack constraints were set to be half of the total
weight regarding the corresponding constraint. As a result, half of the items are
expected to be in the optimal solutions.

3.2 Performance measures

In order to evaluate the results (the trade-off fronts) produced by the different
algorithms, we use two measures which are scaling-independent with regard to
each objective criterion: The size of the dominated space (S) and the coverage
of two sets [15].

Definition 1 The size of the dominated space (S). Let A = (z1,22,...,2;) C X
be a set of | decision vectors. The function S gives the volume enclosed by
the union of the polytopes pi1,pa, ..., p1, where each p; is formed by the inter-
sections of the following hyper-planes arising out of x;, along with the axes:



for each azis in the objective space, there exists a hyper-plane perpendicular to
the azis and passing through the point (f1(x;), fa(xi), ..., fr(x:)). In the two-
dimensional case, each p; represents a rectangle defined by the points (0,0) and

(f1(s), fa(zi))-

This measure cannot be used to compare two sets relatively to each other.
In order to determine the dominance ratio between two sets, we apply a second
measure.

Definition 2 The coverage of two sets. Let A,B C X be two sets of decision
vectors. The function C maps the ordered pair (A, B) to the interval [0,1]:

beB|dacA:a>b
cimy . [0E B }

The value C(A, B) = 1 means that all decision vectors in B are weakly dominated
by A. The opposite, C(A, B) = 0, represents the situation when none of the
points in B are weakly dominated by A.

3.3 Experimental settings

The GT SMOKP algorithm is programmed in CAML and compiled using OCAML.
In order to get fair comparisons between our algorithm and other state-of-the-
art algorithms, we implemented, also in CAML, NSGA and MOGLS, two al-
gorithms recognized as among the most effective ones for the MOKP. In our
implementations, the most important data structures are shared by the three
algorithms. This provides us a solid basis for a fair comparison between these
algorithms.

Before comparing GT'SMOKP NSGA and MOGLS, we first compared our
implementation of NSGA and MOGLS with that of MOMHLib [7]. Results
showed that those two implementations give totally comparable performance.

In our experimentation, the following settings are used:

e for NSGA, we set the mutation rate to 0.2, and the neighborhood distance
to 0.4, according to [16] and [6];

o for GTSMOKP ' we set the number of generations to 50, the number of
tabu iterations to L = 12 for each run of the tabu algorithm and the tabu
tenure to 2.

e for NSGA and MOGLS, we allow always a larger number of generations to
give a computation time superior or equal to the time given to GT SMOKF
(see table 1).

e the population sizes were set according to the number of items and the
number of objectives of the instance, but the same size is used for the
three algorithms for a given instance (see table 1).



Instance Method

Number of | Number of | Initial population Number of generation
objectives items size (all algorithms) | NSGA | MOGLS | GTSMY""

250 150 500 110 50

2 500 200 500 140 50

750 250 500 150 50

250 200 1100 160 50

3 500 250 1100 170 50

750 300 1100 170 50

250 250 3000 300 50

4 500 300 3000 320 50

750 350 3000 320 50

Table 1: Parameters settings for different algorithms and instances.

Number of | Number of | NSGA | MOGLS | GT SMOKP
Objectives Items
250 60 54 50
2 500 205 150 135
750 330 200 185
250 265 250 210
3 500 900 490 465
750 1800 740 660
250 1417 1264 1188
4 500 3500 2300 2200
750 7000 3100 2500

Table 2: Average running times given to each algorithm (seconds).

Table 1 summarizes the settings of the main parameters used by NSGA,
MOGLS and GT SMOKP,

Table 2 shows, for each of the three compared algorithms and for each prob-
lem instance, the computing time obtained from the above parameter settings®.
We notice that NSGA is always given more computing time than MOGLS, which
is given in turn more computing time than GT'SMOKP  Thus, we are sure that
GTSMOKP s in no case favored compared with the two other competing algo-
rithms.

3Timing is based on binary codes generated by the compiler OCAML and a PC running
Linux (Bi-Pentium IIT 1 Ghz).



Number of | Number of | NSGA | MOGLS | GT SMOKP
Objectives Ttems
250 9.52e+7 9.86e+7 9.87e+7
2 500 3.91e+8 4.08e+8 4.08e+8
750 8.36e+8 8.93e+8 8.93e+8
250 8.45e+11 | 9.33e+11 9.35e+11
3 500 6.74e+12 | 7.72e+12 7.73e+12
750 2.33e+13 | 2.71e+13 2.72e+13
250 6.97e+15 | 8.11e+15 8.12e+15
4 500 1.09e+17 | 1.35e+17 1.36e+17
750 5.52e+17 | 7.19e+17 7.20e+17

Table 3: Average of the size of the dominated space S.

3.4 Comparative results

In this section, we present experimental results of GT SMOKP together with
those of NSGA, MOGLS. Results shown below for each instance represent av-
eraged ones from several independent runs.

Table 3 shows the results for the S measure (size of the dominated space).
From the table, one observes first that both GT'SMPKP and MOGLS gives
significantly better results (larger S values) than NSGA for all the instances.
When comparing GTSMOKP and MOGLS, one observes that GT'SMOKP out-
performs MOGLS for 7 out of the 9 instances and gives the same results for 2
bi-objective instances (500 and 750 items). One may also notice the remarkable
results of the GTSMOKP on the hardest instances.

Following [16], figure 1 summarizes the results on the C measure (set cover-
age). On this figure, each small black bar represents the results of the C measure
between two methods, for each problem instance. Because of a low dispersion
of the results, the average is significant for the C measure.

It is observed that once again the results of NSGA are inferior to those of
MOGLS and GTSMOKP for all the instances. When comparing MOGLS and
GTSMOKP we observe that the results are in favor of GT'SMOKP for all bench-
marks instances. Indeed, the values obtained by
C(MOGLS,GTSMOKP) are smaller than the values obtained by
C(GTSMOKP MOGLS). We notice that on several instances (500 items 3
objectives, and 500 items 4 objectives) the factor rate between the results is
greater than 10.

In summary, even if GTSMOXP ig run in unfavorable conditions (fewer gen-
erations and less running times), it gives results which are at least as good as
or better than those of NSGA and MOGLS for the 9 benchmark instances ac-
cording to the two used measures. In order to convince us of this superiority,
we also counted for each algorithm the number of solutions which are part of
the Pareto optimal front. Because of the size of the problem instances, we only



MOGLS

Figure 1: Results of the comparison with C measure. Each chart contains nine
box plots representing the distribution of C values for a certain ordered pair of
algorithms; the three box plots to the left relate to 2 objectives and (from left
to right) 250, 500 and 750 items; correspondingly the three middle box plots
relate to 3 objectives and the three to the right to 4 objectives. The scale is
0 at the bottom and 1 at the top of each chart. Furthermore, each rectangle
refers to algorithm A associated with the corresponding row and algorithm B
associated with the corresponding column and gives the fraction of B weakly
dominated by A : C(4, B).

have the Pareto optimal front for the instances with 2 objectives, 250 and 500
items.

Again, the results of GT'SMOKP compare very favorably with those of NSGA
and MOGLS. Indeed, for the first instance (250 items), 9.33% of the solutions
found by GTSMOKP are elements of the Pareto front while this rate is respec-
tively 0.18% for NSGA and 6.51% for MOGLS. For the second instance (500
items), this rate is respectively 0.35% for GT'SMOKP 0.07% for MOGLS and
0% for NSGA.

Finally, let us mention that we carried out another experiment where
GTSMOKP s given the same number of generations as for MOGLS. We ob-
served that GT'SMOKP obtains much better results than those reported in this
paper, thus even better results than MOGLS.



4 Conclusion

In this paper, we have presented GT'SMOKP 5 highly effective genetic tabu

search algorithm for solving the 0-1 multidimensional multi-objective knapsack
problem (MOKP). The GT'SMOKP algorithm combines the global nature of ge-
netic search and the local nature of tabu search, leading to a better compromise
of exploitation and exploration. The performance of GT SMOKPF is assessed us-
ing a set of 9 well-known benchmark instances and compared extensively with
two state-of-the-art algorithms which are NSGA and MOGLS. Experimental
results show that GT'SMOKP  even with less computing effort, compares very
favorably with the competing algorithms on all the tested instances.

Both the genetic part and the tabu search part used in GTSMOKP are
straight forward implementation of the basic principles of these two paradigms.
For this reason, we are strongly convinced many improvements are possible.
For example, for the genetic part, other selection strategies should be experi-
mented, and problem specific crossover operators may be developed. For the TS
operator, we believe techniques developed for the classical 0-1 multidimensional
multi-objective knapsack problem such as those presented in [13] could be very
useful in the context of the MOKP.

References

[1] Corne D. W., Knowles J. D. M-PAES: a memetic algorithm for multi-
objective optimization. Proceedings of the 2000 congress on evolutionary
computation (CEC 2000).

[2] Deb K., Goel T. Controlled elitist non-dominated sorting genetic algorithms
for better convergence. In Proceedings of Evolutionary Multi-Criterion Op-
timization. 67-81, 2001.

[3] Galinier P., Hao J.K. Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization. 3(4): 379-397, 1999.

[4] Gandibleux X., Mezdaoui N., Freville A. A multiobjective Tabu Search pro-
cedure to solve combinatorial optimization problems. Lecture Notes in Eco-
nomics and Mathematical Systems. 455: 291-300, Springer, 1997.

[5] Glover F., Laguna M. Tabu Search, Kluwer Academic Publishers. 1997.

[6] Jaszkiewicz A. On the performance of multiple objective genetic local search
on the 0/1 knapsack problem: a comparative experiment. Research report,
Institute of Computing Science, Poznan University of Technology. RA-002,
2000.

[7] Jaszkiewicz A. Experiments done with the MOMHLib.
http://www-idss.cs.put.poznan.pl/ jaszkiewicz/MOMHLib/

10



[8] Khor E.F., Tan K.C., Lee T.H. Tabu-Based Exploratory Evolutionary Al-
gorithm for Effective Multi-objective Optimization. In Proceedings of Evo-
lutionary Multi-Criterion Optimization. 344-358, 2001.

[9] Schaffer J.D. Multiple objective optimization with vector evaluated genetic
algorithms. Ph. D. thesis. Vanderbilt University. Unpublished, 1984.

[10] Serafini P. Simulated annealing for multiobjective optimization problems.
Proc. of 10th Int. Conf. on MCDM. 1: 87-96, 1992.

[11] Srinivas N., Deb K. Multiobjective optimization using non dominated sort-
ing in genetic algorithms. Evolutionary Computation. 2(3): 221-248, 1994.

[12] Ulungu E.L., Teghem J., Fortemps Ph., Tuyttens D. MOSA method: a tool
for solving multiobjective combinatorial optimization problems. Journal of
Multi-Criteria Decision Analysis. 8: 221-336, 1999.

[13] Vasquez M., Hao J-K. A hybrid approach for the 0-1 multidimensional
knapsack problem. Proc. of the 13" Intl. Joint Conference on Artificial In-
telligence (IJCAI-01). 1: 328-333, 2001.

[14] Zitzler E., Thiele L. An evolutionary algorithm for multiobjective optimiza-
tion: the strength Pareto approach. Technical Report 43. 1998.

[15] Zitzler E., Thiele L. Multiobjective optimization using evolutionary algo-
rithms: a comparative case study. Lecture Notes in Computer Science. 1498:
292-301, Springer, 1998.

[16] Zitzler E., Thiele L. Multiobjective evolutionary algorithms: a compara-
tive case study and the strength Pareto approach. IEEE Transactions on
Evolutionary Computation. 3: 257-271, 1999.

11



