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Abstract Given an undirected graph G = (V, E) with vertex set V = {1, ..., n} and

edge set E ⊆ V × V . The maximum clique problem is to determine in G a clique

(i.e., a complete subgraph) of maximum cardinality. This paper presents an effective

algorithm for the maximum clique problem. The proposed multistart tabu search algo-

rithm integrates a constrained neighborhood, a dynamic tabu tenure mechanism and a

long term memory based restart strategy. Our proposed algorithm is evaluated on the

whole set of 80 DIMACS challenge benchmarks and compared with five state-of-the-

art algorithms. Computational results show that our proposed algorithm attains the

largest known clique for 79 benchmarks.

Keywords Tabu search · maximum clique · constrained neighborhood · informed

restart · combinatorial optimization

1 Introduction

Let G = (V, E) be an undirected graph with vertex set V = {1, . . . , n} and edge set

E ⊂ V × V . A clique C of G is a subset of V such that every two vertices are pairwise

adjacent, i.e., ∀u, v ∈ C, {u, v} ∈ E. A clique is maximal if it is not contained in any

other clique, a clique is maximum if its cardinality is the largest among all the cliques

of the graph. The maximum clique problem (MCP) is to determine a maximum clique.

MCP is one of the first problems shown to be NP-complete in Karp’s seminal paper

on computational complexity (Karp (1972)). The MCP has many applications in real-

life problems, such as classification theory, coding theory, fault diagnosis, biological

analysis, cluster analysis and project selection (Pardalos and Xue (2002)). The MCP

is equivalent to the maximum independent (stable) set problem and is tightly related

to some other problems like vertex graph coloring.
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Given the importance of the problem, many methods have been proposed in the

literature. See Pardalos and Xue (2002) for a comprehensive review of these methods.

Examples of exact methods based on the general branch-and-bound approach can be

found in (Balas and Yu (1986); Carraghan and Pardalos (1990); Östergärd (2002);

Tomita and Seki (2003); Rebennack et al (2011)). As an alternative approach, a number

of approximate methods have been developed to find near-optimal solutions to large

and dense graphs. In the following, we briefly review some representative heuristics.

Battiti and Protasi (2001) propose a reactive local search (RLS) procedure which

is highly successful. Pullan and Hoos (2006) introduce a very effective stochastic local

search algorithm which is one of the best clique methods. Other interesting and repre-

sentative methods are based on deterministic and probabilistic tabu search (Gendreau

et al. (1993)), variable depth search (Katayama et al. (2005)), quadratic optimization

(Busygin et al. (2002); Busygin (2006)) and genetic search (Bui and Eppley (1995);

Marchiori (1998, 2002); Barbosa and Campos (2004); Singh and Gupta (2008); Zhang

et al. (2005)).

Many state-of-the-art methods (such as Battiti and Protasi (2001); Pullan and

Hoos (2006); Pullan (2006); Grosso et al. (2008)) are based on a general approach that

alternates between a clique expansion phase and a plateau search phase. During the

expansion phase, one seeks to expand a clique of size k to a new clique of size k + 1 by

adding a vertex (which is adjacent to all the vertices of the current clique). When the

current clique cannot be expended, one switches to plateau search during which vertices

of the current partial clique are swapped with vertices outside the partial clique. Once

the current clique can be further expanded, one switches back to the expansion phase

and so on. Methods using this approach differ mainly from each other in the way they

perform the plateau search.

One different and somewhat neglected approach is presented in Friden et al. (1989)

for the equivalent maximum stable set problem. The algorithm (called STABULUS)

seeks a clique of fixed size k by exploring a space of vertex subsets S such that |S| = k.

For a given candidate solution S (i.e., a vertex subset of size k), STABULUS swaps one

vertex in S against another vertex in V \S in order to maximize the number of edges

induced by the new solution. This approach was later explored successfully in Fleurent

and Ferland (1996).

In this paper, we follow the basic idea of Friden et al. (1989) and develop an

effective heuristic algorithm based on tabu search (Glover and Laguna (1997)). Like

STABULUS, the proposed approach searches a legal k-clique within a space of subsets

S (legal and illegal k-cliques) of size k (Section 2.1). Yet, the main components of

our algorithm are different from those of STABULUS. In particular, To allow the

algorithm to explore more efficiently the search space, the swap operations of our

algorithm are limited to vertices from two critical subsets A (a constrained subset of the

candidate solution S) and B (a constrained subset of V \S) (Section 2.2.2). To escape

from local optima, our algorithm applies both a deterministic selection rule (Section

2.2.3) and a probabilistic selection rule to occasionally accept deteriorating solutions

(Section 2.2.4). Our algorithm uses a dedicated tabu list to prevent the algorithm from

revisiting previous encountered solutions (Section 2.2.5). Finally, to allow the algorithm

to explore more new search regions, our algorithm employs a frequency-based restart

strategy (Section 2.3).

Our proposed algorithm is extensively tested on the commonly used DIMACS clique

benchmark instances (Section 3). Experimental results show the effectiveness of this

algorithm in finding large cliques within reasonable computing times. Actually, except
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for one case (over a total of 80 graphs), our method attains the previously best known

results on all the DIMACS instances. To the best of our knowledge, no single algorithm

in the literature achieves such a performance. In addition to the computational results,

we provide analyses about critical components of the algorithm.

2 Adaptive multistart tabu search

2.1 Solution strategy and general procedure

As noted in Friden et al. (1989), the maximum clique problem can be approximated

by finding a series of k-cliques for increasing values of k (a k-clique is a clique of size

k). Each time a k-clique is found, k is incremented by one and a new (larger) k-clique

is sought. This process is repeated until no k-clique can be found. The last k-clique

constitutes an approximation of the maximum clique of the graph. Consequently, the

maximum clique problem comes down to the problem of finding k-cliques.

Our Adaptive Multistart Tabu Search algorithm is designed for this k-clique finding

problem in a graph G = (V, E). In this section, we describe the general procedure of

AMTS while its components are detailed in Section 2.2.

For this purpose, we first define the search space Ω that is explored by AMTS. It is

composed of all the vertex subsets S of fixed size k (k-subsets) including both feasible

and infeasible cliques, i.e.,

Ω = {S ⊂ V : |S| = k} (1)

For any candidate solution S ∈ Ω, its quality is assessed by the evaluation function

f(S) that counts the number of edges induced by S:

f(S) =
∑

u,v∈S

euv (2)

where euv = 1 if {u, v} ∈ E, euv = 0 otherwise.

Obviously, if a candidate solution S reaches the maximal value of this function, i.e.,

f(S) = k ∗ (k−1)/2, any two vertices of S are connected by an edge and the candidate

solution S is a legal k-clique. If f(S) < k∗ (k−1)/2, there must be at least two vertices

in S which are not adjacent, consequently S is not a legal k-clique.

The objective of our AMTS algorithm is then to find in Ω a solution S that reaches

the maximal value of f such that f(S) = k ∗ (k − 1)/2. The pseudo-code of AMTS is

given in Algorithm 1.

AMTS explores the space Ω by employing an optimization procedure based on

tabu search (Glover and Laguna (1997)) (we denote this procedure by TS0, which is

described in Section 2.2). More specifically, AMTS generates first an initial solution

(k-subset) in Ω which is built greedily in k steps from an empty set S. At each step, a

vertex v ∈ V \S is added to S such that v has the maximum number of edges that are

connected to the vertices of S (ties are broken randomly).

¿From this initial solution S (a k-subset), AMTS runs TS0 to improve S by maxi-

mizing the function f (Formula 2). During a round of TS0, the search continues when-

ever TS0 finds improved solutions. If the search is judged to be stagnating (the param-

eter L at line 5 is used for this purpose), the current round of TS0 is stopped and then

restarted from a new starting solution (More information about the restart mechanism

is given in Sections 2.2.1 and 2.3). So a AMTS run is composed of multiple rounds of
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Algorithm 1 Adaptive multistart tabu search for maximum clique

Require: Graph G, Integer k (clique size), Integer L (search depth), Integer Itermax (maxi-
mum allowed iterations)

Ensure: k-clique if found
1: Begin

2: S ← Initialize(k) {Initial solution}
3: Iter ← 0 {Iteration counter}
4: while (Iter < Itermax) do

5: S∗ ← TS0(S, k, L, Iter) {Apply the tabu search procedure TS0 to improve S, §2.2}
6: if S∗ is a legal k-clique then

7: Return(S∗) and Stop

8: else

9: S ← FrequencyBasedInitialize(k) {Construction of a new solution S, §2.3}
10: end if

11: end while

12: End

13: Return(Failure)

the TS0 procedure. While each round of TS0 examines in detail a region of the search

space, each restart displaces the search to a new region.

The AMTS algorithm stops when a legal k-clique is found by TS0, in which case

the found k-clique is returned. AMTS may also stop when the total number Iter of

iterations attains a prefixed maximum number (Itermax) without finding a legal k-

clique. In this case, a failure is reported. Itermax is a user-defined parameter which

specifies the maximal search effort allowed to solve a given instance. Next we present

in detail the tabu search procedure TS0.

2.2 The tabu search procedure

2.2.1 Main idea

Our tabu search procedure TS0 is based on the well-known tabu search method (Glover

and Laguna (1997)). From a general point of view, tabu search explores the search

space by iteratively replacing the current solution by a new solution taken from a

given neighborhood. For each iteration, tabu search selects one of the best neighbors

among the neighbor solutions. With this selection rule, tabu search visits solutions

of increasing quality whenever solutions of better quality exist in the neighborhood.

When no improving solutions can be found (i.e., when a local optimum is reached), tabu

search still moves to a best neighbor (which is also the least worse solution within the

neighborhood). This strategy allows tabu search to go beyond local optima encountered

and continue its exploration toward possibly better solutions. To prevent the search

from comes back to an already examined solution, tabu search adopts a so-called tabu

list to record previously visited solutions. For a detailed presentation of tabu search,

the reader is referred to Glover and Laguna (1997).

Our TS0 procedure adapts the tabu search method to the problem of finding k-

cliques in a graph G = (V, E). The pseudo-code of our TS0 procedure is given in

Algorithm 2. TS0 operates on candidate solutions represented by k-subsets. S and S∗

designate respectively the current solution and the best solution found so far (according

to the evaluation function f defined in Section 2.1). I is an iteration counter used for
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Algorithm 2 The tabu search procedure TS0 for k-clique finding

Require: Graph G, Initial solution S, Integer k (clique size), Integer L (depth of tabu search),
Integer Iter (iteration counter)

Ensure: The best solution S∗ found by the tabu search
1: Begin

2: I ← 0 {I is the consecutive iterations during which f(S) is not improved}
3: S∗ ← S {S∗ records the best solution found so far}
4: while (I < L) do

5: if There exist improving moves in neighborhood CN then

6: Choose a best allowed swap(u, v) {§2.2.2 and 2.2.3}
7: else

8: Choose swap(u, v) according to the Prob. Move Select. Rule {§2.2.4}
9: end if

10: S ← S\{u} ∪ {v} {Move to the new solution}
11: Undate the tabu list {§2.2.5}
12: if S is a legal k-clique then

13: Return S and Stop
14: end if

15: Iter ← Iter + 1
16: if f(S) > f(S∗) then

17: S∗ ← S

18: I ← 0
19: else

20: I ← I + 1
21: end if

22: end while

23: End

24: Return (Clique S∗)

the restart of TS0 while Iter is the global iteration counter used by AMTS in its stop

test (see Algorithm 1).

For each while loop of Algorithm 2 (lines 4-23), TS0 moves from the current solution

S (a k-subset in Ω) to a new neighbor solution (another k-subset in Ω). For this, TS0

uses two different rules to select a dedicated vertex u in S and a specific vertex v outside

S (lines 5-6 and 8-9, see Sections 2.2.2-2.2.4), and then swaps u and v to obtain a new

solution (line 11). These swapped vertices are finally added in the tabu list preventing

them from being selected again for the next iterations (line 12, see Section 2.2.5). If

the new solution is a legal k-clique (i.e., f(S) = k ∗ (k− 1)/2), the algorithm stops and

returns the k-clique found (lines 13-15). Otherwise, if the new solution S is better than

the best solution S∗ found so far (f(S) > f(S∗)), TS0 updates S∗ by S and continues

to its next iteration (lines 17-21).

The while loop ends if no improved solution is found for L consecutive iterations

(L is called the search depth). In this case, the search is judged to be trapped in a

deep local optimum. To escape from this local optimum, AMTS restarts TS0 from a

new starting point (see Section 2.3).

In the rest of this section, we provide a detailed description of the main ingredi-

ents of the TS0 procedure while in Section 2.3, we explain the solution construction

procedure for each restart of the TS0 procedure.

2.2.2 Constrained swap move and neighborhood

To explore the search space Ω of k-subsets (Formula (1)), one naive way is to start

with any k-subset S ∈ Ω and subsequently swap a vertex of S with another vertex
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of V \S. Clearly, such a unconstrained swap (used in Friden et al. (1989)) induces a

neighborhood of size k ∗ (|V | − k) which may be quite large. More importantly such a

unconstrained neighborhood is not sufficiently focused and will not enable an efficient

exploration of the search space. For this reason, we introduce below the constrained

neighborhood which is both more focused and smaller-sized.

Let S ∈ Ω be a candidate solution (k-subset). For each vertex v ∈ V , let d(v)

denote the degree of v relative to the subset S:

d(v) = |{i ∈ S | {i, v} ∈ E}|

Let tabu list be the tabu list containing the vertices that are currently forbidden

for migration (see Section 2.2.5).

Let MinInS = min{d(u)| u ∈ S, u /∈ tabu list} and

Let MaxOutS = max{d(v)| v ∈ V \S, v /∈ tabu list}

Define:

A = {u ∈ S | u /∈ tabu list, d(u) = MinInS}

B = {v ∈ V \S | v /∈ tabu list, d(v) = MaxOutS}

Now, to obtain a neighbor solution S′ from S, we swap one vertex u ∈ A against

a vertex v ∈ B. This transition (from S to S′) can conveniently be characterized

by a move denoted by swap(u, v) and written formally as: S′ = S ⊕ swap(u, v) or

equivalently S′ = S\{u} ∪ {v}. All possible swap moves induced by A and B define

our constrained neighborhood CN(S), i.e.,

CN(S) = {S′ : S′ = S\{u} ∪ {v}, u ∈ A, v ∈ B} (3)

Given the definition of d(v), it is easy to see that function f(S) (Formula (2)) can

be rewritten as:

f(S) =
1

2
∗

∑

i∈S

d(i) (4)

For a given swap(u, v), the move gain ∆uv, i.e., the variation in the function value

f induced by the swap move, can be conveniently computed by:

∆uv = f(S′) − f(S) = d(v) − d(u) − euv (5)

where euv = 1 if {u, v} ∈ E, euv = 0 otherwise.

Consequently, for any u ∈ A and v ∈ B, the following formulation can be concluded:

∆uv =

{

MaxOutS − MinInS − 1, if {u, v} ∈ E

MaxOutS − MinInS, otherwise.

2.2.3 Move selection strategy

Obviously, the moves with ∆uv = MaxOutS −MinInS are preferable since they give

improvement of the evaluation function f mostly. Let T denote those swap moves with

the increment value equal to MaxOutS − MinInS.

T = {(u, v) : u ∈ A, v ∈ B, {u, v} /∈ E, ∆uv = MaxOutS − MinInS}

We apply the following strategy to determine the best neighbor solution. If T is

not empty, then one pair (u, v) from T is randomly selected for swap. If T is empty,

vertex u is randomly selected from A and v is randomly selected from B. Notice that

in this latter case, u and v must be two adjacent vertices.
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It can be easily showed that the solution S′ = S\{u} ∪ {v} obtained by swapping

such a pair of vertices (u, v) is one of the best non-tabu neighbor solutions in the

neighborhood CN(S), i.e., for any solution S′′ ∈ CN(S), f(S′) ≥ f(S′′). In fact, if

T = ∅, then for each S′′ ∈ CN(S), f(S′′) = f(S) + MaxOutS −MinInS − 1, i.e., any

solution in CN(S) has the same f value and S′ is among the best non-tabu solutions. If

T 6= ∅, then f(S′) = f(S)+MaxOutS−MinInS. For any other solution S′′ ∈ CN(S)

(assume that S′′ = S ⊕ swap(x, y)), f(S′′) = f(S) + MaxOutS − MinInS − exy ≤

f(S) + MaxOutS − MinInS = f(S′). Once again, we can see that S′ is one of the

best solutions in CN(S).

Finally, to prepare the next iteration of the algorithm, d, A, B, MinInS and

MaxOutS are updated accordingly after each swap(u, v) move.

2.2.4 Probabilistic diversifying move selection rule

The above move selection rule assures an exhaustive exploration of the constrained

neighborhood. To encourage the search to visit new regions in the search space, we

additionally employ a strategy that disables the usual move selection rule and prefers

occasionally some deteriorating moves. Such an alternative strategy is triggered only

in a controlled and probabilistic manner when the current solution S corresponds to

a local optimum, i.e., for each allowed swap(u, v), the new solution S′ = S\{u} ∪ {v}

is not better than the current solution S (f(S′) ≤ f(S)). In this case, we apply the

following Probabilistic Move Selection Rule (PMSR).

– With a low probability P = min{ l+2
|V |

, 0.1} where |V | is the order of the graph and

l = k ∗ (k − 1)/2 − f(S), select a (much worse) swap(u, v) as follows. Pick u at

random from S and pick v in V \S such that d(v) < ⌊k ∗ ρ⌋, where ρ is the density

of the graph.

– With probability 1-P , select one best allowed swap(u, v) according to the usual

selection strategy defined in Section 2.2.3.

This strategy provides a way to allow the search to occasionally go to another

region when no better solution can be found around the current solution.

2.2.5 Tabu list and tenure management

To define our tabu list, first recall that a neighbor solution of S is characterized by

a pair of (u, v) where u is a specific vertex in A ⊂ S and v outside S. To prevent

the search from revisiting S, when a swap(u, v) move is performed, vertex u is added

in a data structure called tabu list and remains in the list for the next Tu iterations

(called tabu tenure, see Glover and Laguna (1997)). We call vertex u tabu and forbid

the search to add u back to a solution during the period fixed by Tu. Similarly, vertex

v is marked tabu for the next Tv iterations, during which v cannot be removed from

the solution. We call a swap(u, v) move tabu if at least one of the two implied vertices

is marked tabu.

Inspired by the tabu mechanism proposed in Galinier and Hao (1999), the tabu

tenures Tu and Tv are dynamically adjusted by a function depending on the evaluation

function f(S). More precisely, let l1 = k ∗ (k − 1)/2− f(S), l = min{l1, 10}. Then, Tu

and Tv are defined respectively as follows.

Tu = l + Random(C) and
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Tv = 0.6 ∗ l + Random(0.6 ∗ C)

where C = max{⌊k/40⌋, 6} are two parameters and the function Random(X) returns

randomly an integer number in {0, . . . , X − 1}. It is clear that Tu > Tv holds.

The first part of the tabu tenure of Tu can be explained by the fact that a solution

with a small evaluation function value should have a longer tabu tenure to escape from

the local optimum trap. Since the exact value of the tabu tenure is unknown, the second

part of Tu and Tu provides a random adjustment.

The reason for Tu > Tv is that preventing vertices in the current solution S from

being removed is much more restrictive than preventing vertices outside S from being

added to S, since in general there are much fewer vertices contained in S than those

outside S. In addition, preventing vertices added to S from being removed for a rel-

atively long time can significantly inhibit available choices. Hence the tenure for the

added vertex v should be made smaller by comparison to the removed vertex u.

In order to implement the tabu list, a vector tabu list of |V | elements is used. As

suggested in Glover and Laguna (1997), each element tabu list(i) (1 ≤ i ≤ |V |) records

Ti + I, where I is the current number of iterations (Algorithm 2) and Ti is the tabu

tenure for vertex i. In this way, it is very easy to know if a vertex i is tabu or not at

iteration j : if tabu list(i) > j, vertex i is forbidden to move; otherwise, i can be moved

without restriction.

Finally, at each iteration, the tabu status of a move is canceled if the move leads

to a better solution than the best solution S∗ encountered so far.

2.3 A frequency-based strategy for new solution generation

To encourage the AMTS algorithm to explore new regions in the search space, we

repeat the tabu search procedure TS0 from different starting points. (This is what the

term multistart means). Recall that a restart is triggered when TS0 cannot find an

improved solution during L consecutive iterations (Section 2.2.1).

To build a new initial solution for each TS0 restart, we devise an informed procedure

guided by a long-term frequency memory. In this memory, we keep track of the number

of times a vertex has been moved during the search. To maintain the frequency gi of

vertex i, we use the following rules.

1. Initially, set gi = 0 for each vertex i ∈ V .

2. Subsequently, during the search, each time vertex i is removed from or put into the

current solution S, the frequency counter gi of vertex i is incremented, gi = gi + 1.

3. If for all i ∈ V , gi > k, then we reset gi = 0 for all i ∈ V . This mechanism re-

freshes the memory over time and avoids the situation where a vertex is definitively

prevented from being selected by the solution construction procedure (see below).

Given this frequency information, we create the new initial solution S for a restart

as follows. Initialize S by randomly adding a vertex having the smallest frequency

value in V and then repeat the above step until S contains exactly k vertices. For each

step, select a vertex v ∈ V \S such that v has the maximum number of edges that

connect to S. If several vertices satisfy the above criterion, select the vertex with the

smallest frequency value (less moved). If there are still several vertices that satisfy the

two criteria, select one of these vertices randomly.

Notice that if ATMS is given a maximum of allowed Itermax iterations, ATMS

may perform at most Itermax/L restarts during its run. A small (respectively large) L
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value implies more (respectively less) restart of the TS0 procedure. We show a study

of the influence of L on the performance of the AMTS algorithm.

3 Experimental results

3.1 DIMACS Challenge Benchmark

In this section, we present an extensive evaluation of our AMTS method using the set

of second DIMACS Challenge Benchmark instances (Johnson and Trick (1996)). We

also make comparisons with five state-of-the-art maximum clique algorithms from the

literature.

The DIMACS Challenge Benchmark set comprises 80 graphs from a variety of

applications such as coding theory, fault diagnosis problems, keller’s conjecture on

tilings using hypercubes and the Steiner triple problem. In addition, the set includes

graphs generated randomly and graphs where the maximum clique has been hidden by

incorporating low-degree vertices. The sizes of these instances range from less than 50

vertices and 1000 edges to greater than 3300 vertices and 5000000 edges. Columns 1

and 2 of Table 1 show the name and size of each graph.

Our AMTS algorithm1 is programmed in C, and compiled using GNU GCC on a

PC with 2.61 GHz CPU and 2G RAM.

3.2 Experimental settings

We report our computational results based on the parameters values given here, even

though fine-tuning the parameters would lead to improved results.

Parameter setting. The two main parameters for AMTS are the number of al-

lowed iterations (Itermax) for each run and the search depth L of TS0 (see Section 2.3).

Since AMTS stops when a legal k-clique is found, Itermax can be safely given a very

large value. In this paper, we use Itermax = 108 as in Pullan and Hoos (2006) for their

DLS-MC algorithm which is our main reference. Notice that for many graphs, AMTS

attains a legal k-clique with much fewer iterations and stops long before reaching 108

iterations.

As to the search depth L, it is set equal to |V | ∗ k except for the structured brock

and san graphs for which smaller values 4∗k are used. As a general rule, it is preferable

to restart more frequently AMTS for structured graphs (by using a small L) in contrast

to random graphs for which L should be set to a larger value. The effect of L on the

algorithm is studied in Section 4.1.

Finally, since a maximum clique in a graph G is a maximum independent set in the

complementary graph G, when the density of G is greater than 0.5, it is transformed

to its complement and AMTS is employed to solve the related maximum independent

set problem.

1 The source code of AMTS is available online at: http://www.info.univ-angers.fr/pub/
hao/amts.html.
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3.3 Computational results

Given the stochastic nature of our AMTS algorithm, we run the algorithm 100 times on

each DIMACS benchmark instance with different random seeds, like in Pullan (2006);

Pullan and Hoos (2006); Katayama et al. (2005); Battiti and Protasi (2001). To run

AMTS on a graph, we set k to be the largest known clique size reported in the literature.

During a AMTS run, legal cliques of size k−1 and k−2 are also recorded. These k−1

and k − 2 cliques are reported if no k-clique is found for at least one of the 100 AMTS

runs.

Table 1: The results obtained by AMTS on the set of 80 DIMACS benchmarks
based on 100 independent runs per instance. The maximum known clique size for
each instance is shown in the ω column (marked with an asterisk symbol when
ω is proven to be optimal). Quality is shown in the form a − b − c (column 4,
see explanation). AvgTime is the CPU time in seconds, averaged over all successful
runs. AvgSize is the clique size averaged over the 100 runs. The last column indicates
the total run time of the 100 runs of AMTS for each instance. In 95% cases where a
100% success rate is reached, one single run suffices to attain the largest clique size
reported in the literature.

Instance Node ω Quality AvgSize AvgTime Iter/sec TotalTime

brock200 1 200 21* 100-0-0 21 0.0136 280013 13.6
brock200 2 200 12* 100-0-0 12 0.3625 270770 36.25
brock200 3 200 15* 100-0-0 15 0.0105 272734 1.05
brock200 4 200 17* 100-0-0 17 1.7582 272728 175.82
brock400 1 400 27* 100-0-0 27 37.7739 187507 3777.39
brock400 2 400 29* 100-0-0 29 1.1818 187515 118.18
brock400 3 400 31* 100-0-0 31 1.7909 157902 179.09
brock400 4 400 33* 100-0-0 33 0.5956 146373 59.56
brock800 1 800 23* 98-0-2 22.96 234.6277 85714 25326.85
brock800 2 800 24* 100-0-0 24 33.1439 85649 3314.39
brock800 3 800 25* 100-0-0 25 52.3981 78950 5239.81
brock800 4 800 26* 100-0-0 26 15.2340 70768 1523.40
C125.9 125 34* 100-0-0 34 0.0018 400214 0.18
C250.9 250 44* 100-0-0 44 0.0058 336700 0.58
C500.9 500 57 100-0-0 57 0.1263 206611 12.63
C1000.9 1000 68 100-0-0 68 1.1471 181180 114.71
C2000.5 2000 16 100-0-0 16 0.6611 31685 66.11
C2000.9 2000 80 1-93-6 78.95 450.0996 86199 115300.62
C4000.5 4000 18 100-0-0 18 126.6315 15422 12663.15
DSJC500.5 500 13* 100-0-0 13 0.0071 106723 0.71
DSJC1000.5 1000 15* 100-0-0 15 0.3113 59241 31.13
keller4 171 11* 100-0-0 11 < 0.0001 212000 0.01
keller5 776 27 100-0-0 27 0.0565 120772 5.65
keller6 3361 59 100-0-0 59 10.8103 47755 1081.03
MANN a9 45 16* 100-0-0 16 0.0161 835681 1.61
MANN a27 378 126* 100-0-0 126 0.0707 715188 7.07
MANN a45 1035 345* 4-96-0 344.04 112.8498 436381 22450.52
MANN a81 3321 1100 0-0-100 1098 27.5524 332219 2755.24
hamming6-2 64 32* 100-0-0 32 < 0.0001 581395 0.01
hamming6-4 64 4* 100-0-0 4 < 0.0001 245700 0.01
hamming8-2 256 128* 100-0-0 128 0.0005 236966 0.05
hamming8-4 256 16* 100-0-0 16 < 0.0001 177935 0.01
hamming10-2 1024 512* 100-0-0 512 0.3116 71123 31.16
hamming10-4 1024 40 100-0-0 40 0.9167 130548 91.67
gen200 p0.9 44 200 44* 100-0-0 44 0.0074 375939 0.74
gen200 p0.9 55 200 55* 100-0-0 55 0.0006 531914 0.06
gen400 p0.9 55 400 55 100-0-0 55 0.5476 211914 54.76
gen400 p0.9 65 400 65 100-0-0 65 0.0123 355871 1.23
gen400 p0.9 75 400 75 100-0-0 75 0.0415 200512 4.15
c-fat200-1 200 12* 100-0-0 12 0.0014 108675 0.14
c-fat200-2 200 24* 100-0-0 24 0.1742 91407 17.42
c-fat200-5 200 58* 100-0-0 58 0.1102 87719 11.02
c-fat500-1 500 14* 100-0-0 14 0.1354 47755 13.54
c-fat500-2 500 26* 100-0-0 26 0.2253 44150 22.53
c-fat500-5 500 64* 100-0-0 64 0.1009 39510 10.09
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Table 1 – continued from previous page

Instance
Node ω Quality AvgSize AvgTime Iter/sec TotalTime

c-fat500-10 500 126* 100-0-0 126 2.6587 29629 265.87
johnson8-2-4 28 4* 100-0-0 4 < 0.0001 375939 0.01
johnson8-4-4 70 14* 100-0-0 14 < 0.0001 425531 0.01
johnson16-2-4 120 8* 100-0-0 8 < 0.0001 96993 0.01
johnson32-2-4 496 16* 100-0-0 16 < 0.0001 22857 0.01
p hat300-1 300 8* 100-0-0 8 0.0008 130548 0.08
p hat300-2 300 25* 100-0-0 25 0.0007 220750 0.07
p hat300-3 300 36* 100-0-0 36 0.0016 255754 0.16
p hat500-1 500 9* 100-0-0 9 0.0011 84175 0.11
p hat500-2 500 36* 100-0-0 36 0.0008 165213 0.08
p hat500-3 500 50 100-0-0 50 0.0053 284419 0.53
p hat700-1 700 11* 100-0-0 11 0.0098 60518 0.98
p hat700-2 700 44* 100-0-0 44 0.0012 155470 0.12
p hat700-3 700 62 100-0-0 62 0.0053 233798 0.53
p hat1000-1 1000 10 100-0-0 10 0.0008 45202 0.08
p hat1000-2 1000 46 100-0-0 46 0.0009 105470 0.09
p hat1000-3 1000 68 100-0-0 68 0.0813 200348 8.13
p hat1500-1 1500 12* 100-0-0 12 2.1815 31628 218.15
p hat1500-2 1500 65 100-0-0 65 0.3284 80123 32.84
p hat1500-3 1500 94 100-0-0 94 0.3153 139885 31.53
san200 0.7 1 200 30* 100-0-0 30 0.2074 100102 20.74
san200 0.7 2 200 18* 100-0-0 18 0.2420 88909 24.20
san200 0.9 1 200 70* 100-0-0 70 0.1676 170024 16.76
san200 0.9 2 200 60* 100-0-0 60 0.1322 300293 13.22
san200 0.9 3 200 44* 100-0-0 44 0.0757 300263 7.57
san400 0.5 1 400 13* 100-0-0 13 11.4577 33336 1145.77
san400 0.7 1 400 40* 100-0-0 40 8.7633 40032 876.33
san400 0.7 2 400 30* 100-0-0 30 29.9791 42873 2997.91
san400 0.7 3 400 22* 100-0-0 22 56.2885 45024 5628.85
san400 0.9 1 400 100* 100-0-0 100 1.8674 42888 186.74
san1000 1000 15* 100-0-0 15 315.1698 37273 31516.98
sanr200-0.7 200 18* 100-0-0 18 0.0009 290697 0.09
sanr200-0.9 200 42* 100-0-0 42 0.0047 336700 0.47
sanr400-0.5 400 13* 100-0-0 13 0.0137 130548 1.37
sanr400-0.7 400 21 100-0-0 21 0.0048 182815 0.48

Table 1 gives the computational statistics using the same information as that em-

ployed in the literature on the maximum clique problem such as Pullan (2006); Pullan

and Hoos (2006); Katayama et al. (2005); Battiti and Protasi (2001).

For each instance, we show in column 4 the solution quality by a triple a − b − c,

where a is the number of runs (out of the 100 runs) in which a clique size of ω (ω is

the maximum known clique size reported in the literature) is found, b is the number

of runs in which the algorithm fails to find a clique size of ω, but attains a clique size

of ω − 1, c is the number of runs where only cliques of size ω − 2 or worse are found.

The next three columns provide other information: the averaged clique size over 100

runs, averaged CPU time in seconds over the successful runs and the average iterations

per second. The last column indicates the total run time of the 100 runs of AMTS to

solve an instance. As shown below, for most of the tested instances, one single run is

sufficient to attain the largest clique size known in the literature.

Table 1 discloses that AMTS can find cliques of the largest known size for 79 out

of the 80 benchmarks. The only instance for which AMTS fails to find the best known

solution (ω = 1100) is MANN a81. For this instance, AMTS obtains consistently cliques

of size 1098 in 100 of all the 100 runs. (The average time provided in Table 1 for the

instance MANN a81 is the average time to find cliques size of 1098.)

Of the 79 instances for which AMTS attains the best known solutions, in 76 cases

it finds such a solution with a success rate of 100%. Consequently, one single run would

suffice for AMTS to find a clique of the largest known size. For only three instances
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Table 2 The performance of AMTS on the C2000.9 instance.

clique size(k) AvgTime AvgIter success rate
80 450.09 38797622 1
79 338.39 29169205 93
78 33.52 2890191 100

(brock800 1, C2000.9, MANN a45), not every run of AMTS can find a clique of the

largest known size. Still each run can attain either a best known clique or cliques of

sizes very close to the largest known size ω.

Indeed, for brock800 1 whose best known clique size is equal to 23, AMTS reaches

with a very high probability of 0.98 cliques of this size with a single run. For C2000.9

which has a largest known clique size ω = 80, the success rate is only 1%, but AMTS

obtains consistently cliques of size 79 in 93 of 100 runs, while the remaining 6 runs

finds cliques of size 78 (see Table 2). To the best of our knowledge, cliques of size 80

for C2000.9 have only been reported recently in Grosso et al. (2008). Not only AMTS

attains this result, but also it can easily attain cliques of size 79 in reasonable time as

shown in Table 2. Very similar comments can be made for MANN a45.

If we check the computing times in Table 1, we observe that for 58 out of the 80

DIMACS instances (i.e., more than 72% cases), the average CPU time for attaining the

best known solution is within 1 CPU second. A CPU time of 10 seconds to 7 minutes

are required on average for the 22 remaining instances.

In sum, in 95% cases where a 100% success rate is reached, one single run of AMTS

suffices to attain the largest clique size reported in the literature with a running time

ranging from less than 1 second to several minutes. For the remaining 5% cases, each

single run of AMTS is able to find legal k-cliques with k equaling or very close to the

best known size ω.

3.4 Comparative results

In this section, we attempt to compare AMTS with 5 representative state-of-the-art

methods from the literature. The main comparison criterion is the quality of the so-

lutions found in terms of the largest and average clique size. Due to the differences

among the programming languages, data structures, compiler options and computers,

computing times are provided only for indicative purposes.

First, we recall the hardware and basic experimental conditions used by these

reference methods.

– DLS-MC (Stochastic local search (Pullan and Hoos (2006))). The results of DLS-

MC were based on a dedicated 2.2 GHz Pentium IV machine with 512KB L2 cache

and 512MB RAM. For each instance, DLS-MC was run 100 times, each run being

allowed 108 iterations like in our case.

– KLS (k-opt variable depth search algorithm (Katayama et al. (2005))). The results

of of KLS were based on a Sun Blade 1000 Workstation (UltraSPARC-III 900 MHz,

2 GB memory). For each instance, KLS was run 100 trials. For each trial, KLS was

repeatedly executed n times, where n was the number of nodes of a given graph.
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– HSSGA (Heuristic based steady-state genetic algorithm (Singh and Gupta (2008))).

HSSGA was run on a Pentium-III 1GHz Linux based system with 384 MB RAM.

HSSGA was run 10 times on each graph instance. For each run, HSSGA was run

until either the optimum solution value was found or a maximum of 20 000 gener-

ations was reached.

– RLS (Reactive local search (Battiti and Protasi (2001); Battiti and Mascia (2010))).

RLS was run on a Pentium-II (450MHz CPU, 384MB RAM) machine. For each

instance, 100 runs were performed, for each run, the number of iterations was fixed

to 20000 × n.

– QUALEX-MS (Quick Almost Exact Motzkin-Straus-based search (Busygin (2006))).

QUALEX-MS was run on a Pentium IV 1.4GHz computer under Red Hat Linux.

In Table 3, we first compare our AMTS method with DLS-MC which is the current

best maximum clique algorithm. The comparison focuses on solution quality, i.e., the

largest clique size found (averaged size is given in parenthesis if it is different from the

largest one). As explained above, computing times are provided only as complementary

information. Notice moreover that the results of DLS-MC were obtained after fine-

tuning its parameter (Pullan and Hoos (2006)) on an instance-by-instance basis.

Table 3 shows that AMTS compares favorably with DLS-MC in terms of the best

clique size. Indeed, AMTS can find the largest clique sizes for all the 80 instances

except one case (MANN a81) while DLS-MC can find the best known solutions for all

the instances except three cases (MANN a81, MANN a45 and C2000.9). The difference

between AMTS and DLS-MC can also be observed in terms of the average clique size

obtained by the two algorithms; AMTS finds larger average clique size on three large

and hard instances (C2000.9, MANN a45 and MANN a81) while the result of DLS-MC

is better for one instance (brook800 1).

In terms of solution speed, DLS-MC shows better performance than AMTS on a

number of instances, in particular some structured graphs. Indeed, for these instances

(e.g., brock and san graphs), both algorithms can (rather easily) attain the best known

solutions, but DLS-MC needs much less computing time.

In Table 4, we report the best and the average clique size obtained by AMTS in

comparison with the other four algorithms (KLS, HSSGA, RLS and QUALEX-MS) on

37 DIMACS benchmark instances which are used by these reference algorithms. Table

5 summarizes the comparative results in terms of the number of instances on which

these algorithms performs better or worse than AMTS.

Tables 4 and 5 show that AMTS finds larger cliques than KLS for 9 graphs, while

the reverse is true only for one graph. Moreover, the average clique size found by

AMTS is better than that of KLS on 14 instances whereas KLS outperforms AMTS on

one instance. Regarding the other three algorithms (HSSGA, RLS and QUALEX-MS),

AMTS can find an equal or better solution than these reference algorithms on each of

the 37 benchmark instances.

4 Analysis of critical components of AMTS

4.1 Influence of restart

Recall that for each run of the algorithm, ATMS restarts from a new solution if the

current solution is not improved for L consecutive iterations. So a small (large) value of
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Table 3 Comparative results between AMTS and the top-performing maximum clique method

DLS-MC. Results of DLS-MC are taken from Pullan and Hoos (2006). The results of both algorithms

are based on 100 runs with a maximum of 108 iterations per run and per instance. For DLS-MC,

average CPU times less than or equal to 0.0001 seconds are shown as ǫ. The focus is on solution

quality. Computing times are provided only for indicative purposes.

AMTS DLS-MC AMTS DLS-MC

Instance Clique

size

CPU(s) Clique

size

CPU(s) Instance Clique size CPU(s) Clique size CPU(s)

brock200 1 21 0.0136 21 0.0182 johnson32 2 4 16 < ǫ 16 < ǫ

brock200 2 12 0.3625 12 0.0242 johnson8 2 4 4 < ǫ 4 < ǫ

brock200 3 15 0.0105 15 0.0367 johnson8 4 4 14 < ǫ 14 < ǫ

brock200 4 17 1.7582 17 0.0468 keller4 11 < ǫ 11 < ǫ

brock400 1 27 37.774 27 2.2299 keller5 27 0.0565 27 0.0201

brock400 2 29 1.1818 29 0.4774 keller6 59 10.810 59 170.483

brock400 3 31 1.7909 31 0.1758 MANN a9 16 0.0161 16 < ǫ

brock400 4 33 0.5956 33 0.0673 MANN a27 126 0.0707 126 0.0476

brock800 1 23(22.96) 234.628 23 56.497 MANN a45 345(344.04) 112.850 344 51.960

brock800 2 24 33.144 24 15.734 MANN a81 1098 27.552 1098(1097.96) 264.009

brock800 3 25 52.398 25 21.920 p hat300 1 8 0.0008 8 0.0007

brock800 4 26 15.234 26 8.8807 p hat300 2 25 0.0007 25 0.0002

C125.9 34 0.0018 34 < ǫ p hat300 3 36 0.0016 36 0.0007

C250.9 44 0.0058 44 0.0009 p hat500 1 9 0.0011 9 0.0010

C500.9 57 0.1263 57 0.1272 p hat500 2 36 0.0008 36 0.0005

C1000.9 68 1.1471 68 4.440 p hat500 3 50 0.0053 50 0.0023

C2000.5 16 0.6611 16 0.9697 p hat700 1 11 0.0098 11 0.0194

C2000.9 80(78.95) 450.100 78(77.93) 193.224 p hat700 2 44 0.0012 44 0.0010

C4000.5 18 126.632 18 181.234 p hat700 3 62 0.0053 62 0.0015

DSJC500.5 13 0.0071 13 0.0138 p hat1000 1 10 0.0008 10 0.0034

DSJC1000.5 15 0.3113 15 0.7990 p hat1000 2 46 0.0009 46 0.0024

c-fat200-1 12 0.0014 12 0.0002 p hat1000 3 68 0.0813 68 0.0062

c-fat200-2 24 0.1742 24 0.0010 p hat1500 1 12 2.1815 12 2.7064

c-fat200-5 58 0.1102 58 0.0002 p hat1500 2 65 0.3284 65 0.0061

c-fat500-1 14 0.1354 14 0.0004 p hat1500 3 94 0.3153 94 0.0103

c-fat500-2 26 0.2253 26 0.0004 san200 0.7 1 30 0.2074 30 0.0029

c-fat500-5 64 0.1009 64 0.0020 san200 0.7 2 18 0.2420 18 0.0684

c-fat500-10 126 2.6587 126 0.0015 san200 0.9 1 70 0.1676 70 0.0003

gen200-P0.9-44 44 0.0074 44 0.0010 san200 0.9 2 60 0.1322 60 0.0002

gen200-P0.9-55 55 0.0006 55 0.0003 san200 0.9 3 44 0.0757 44 0.0015

gen400-P0.9-55 55 0.5476 55 0.0268 san400 0.5 1 13 11.458 13 0.1641

gen400-P0.9-65 65 0.0123 65 0.0010 san400 0.7 1 40 8.7366 40 0.1088

gen400-P0.9-75 75 0.0415 75 0.0005 san400 0.7 2 30 29.979 30 0.2111

hamming6-2 32 < ǫ 32 < ǫ san400 0.7 3 22 56.289 22 0.4249

hamming6-4 4 < ǫ 4 < ǫ san400 0.9 1 100 1.8674 100 0.0029

hamming8-2 128 0.0005 128 0.0003 san1000 15 315.170 15 8.3636

hamming8-4 16 < ǫ 16 < ǫ sanr200 0.7 18 0.0009 18 0.0020

hamming10-2 512 0.3116 512 0.0008 sanr200 0.9 42 0.0047 42 0.0127

hamming10-4 40 0.9167 40 0.0089 sanr400 0.5 13 0.0137 13 0.0393

johnson16-2-4 8 < ǫ 8 < ǫ sanr400 0.7 21 0.0048 21 0.0230

L leads to more (less) frequent restart. To analyze the influence of the restart strategy

on the performance of the AMTS algorithm, we focus on the effect of L and study the

running profile of the evaluation function f (Formula (2), Section 2.2.1) by varying the

value of L.

Experiments in this study are performed on a structured instance (brock800 2) and

a random instance (C2000.9). To solve these instances, we consider 3 different values L
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Table 4 Comparative results of AMTS with four other leading clique algorithms (KLS
(Katayama et al. (2005)), HSSGA (Singh and Gupta (2008)), RLS (Battiti and Protasi (2001))
and QUALEX-MS (Busygin (2006)) on 37 DIMACS benchmark instances. The results of these
methods are taken from the references. Graphs that are not shared by all these algorithms are
not shown. The focus is on solution quality. Computing times are provided only for indicative
purposes.

Instance Node Best Max-Clique Algorithm

AMTS KLS HSSGA RLS QUALEX-MS
size time size time size time size time size time

brock200 2 200 12* 12 0.3625 11 0.0035 12 0.29 12 9.605 12 < 1
brock200 4 200 17* 17 1.7582 16 0.0066 17(16.7) 1.14 17 19.491 17 < 1
brock400 2 400 29* 29 1.1818 25(24.84) 0.1334 29(25.1) 2.35 29(26.063) 42.091 29 3
brock400 4 400 33* 33 0.5956 25 0.0174 33(27.0) 2.76 33(32.423) 108.638 33 2
brock800 2 800 24* 24 33.144 21(20.86) 0.4993 21(20.7) 10.72 21 4.739 24 18
brock800 4 800 26* 26 15.234 21(20.67) 1.2160 21(20.1) 3.04 21 6.696 26 18
C125.9 125 34* 34 0.0018 34 0.0011 34 0.06 34 0.004 34 < 1
C250.9 250 44* 44 0.0058 44 0.0278 44(43.8) 0.34 44 0.029 44 1
C500.9 500 57 57 0.1263 57(56.15) 0.2699 56(54.2) 4.17 57 3.124 55 4
C1000.9 1000 68 68 1.1471 68(66.38) 2.0049 66(64.1) 14.27 68 41.660 64 27
C2000.5 2000 16 16 0.6611 16 2.8971 16(15.4) 27.52 16 9.976 16 278
C2000.9 2000 80 80(78.95) 450.10 77(74.90) 14.715 74(71.0) 117.66 78(77.575) 823.358 72 215
C4000.5 4000 18 18 126.63 18(17.02) 23.802 17(16.8) 158.42 18 2183.089 17 2345
DSJC500.5 500 13* 13 0.0071 13 0.0256 13 0.71 13 0.194 13 5
DSJC1000.5 1000 15* 15 0.3113 15(14.93) 0.6711 15(14.7) 7.38 15 6.453 14 36
keller4 171 11* 11 0.0001 11 0.0003 11 0.01 11 0.002 11 1
keller5 776 27 27 0.0565 27 0.0399 27(26.9) 4.04 27 0.171 26 16
keller6 3361 59 59 10.810 57(55.59) 52.364 57(54.2) 314.65 59 189.814 53 1291
MANN a27 378 126* 126 0.0707 126 0.0178 126(125.5) 3.17 126 3.116 125 1
MANN a45 1035 345* 345(344.04)112.85 345(343.88) 6.2014 343(342.6) 65.25 345(343.602)398.770 342 17
MANN a81 3321 1100 1098 27.552 1100(1098.07)39.484 1095(1094.2) 3996.65 1098 2830.820 1096 477
hamming8-4 256 16* 16 0.0001 16 0.0004 16 0.01 16 0.003 16 1
hamming10-4 1024 40 40 0.9167 40 0.2209 40(39.0) 10.21 40 0.078 40 45
gen200 p0.9 44 200 44* 44 0.0074 44 0.0317 44(43.1) 1.07 44 0.037 42 < 1
gen200 p0.9 55 200 55* 55 0.0006 55 0.0065 55 0.29 55 0.016 55 1
gen400 p0.9 55 400 55 55 0.5476 53(52.21) 0.2089 53(51.4) 1.83 55 1.204 51 2
gen400 p0.9 65 400 65 65 0.0123 65 0.0647 65(63.8) 1.71 65 0.050 65 2
gen400 p0.9 75 400 75 75 0.0415 75 0.0425 75 1.93 75 0.051 75 2
p hat300-1 300 8* 8 0.0008 8 0.0021 8 0.02 8 0.018 8 1
p hat300-2 300 25* 25 0.0007 25 0.0012 25 0.02 25 0.006 25 1
p hat300-3 300 36* 36 0.0016 36 0.0118 36(35.9) 0.18 36 0.021 35 1
p hat700-1 700 11* 11 0.0098 11 0.1245 11 1.02 11 0.186 11 10
p hat700-2 700 44* 44 0.0012 44 0.0077 44 0.19 44 0.028 44 12
p hat700-3 700 62 62 0.0053 62 0.0158 62(61.7) 2.01 62 0.035 62 11
p hat1500-1 1500 12* 12 2.1815 12 2.6054 12(11.5) 14.62 12 30.274 12 95
p hat1500-2 1500 65 65 0.3284 65 0.0625 65(64.9) 2.03 65 0.158 64 111
p hat1500-3 1500 94 94 0.3153 94 0.4286 94(93.1) 2.91 94 0.192 91 108

Table 5 Comparison result of AMTS with KLS (Katayama et al. (2005)), HSSGA (Singh and
Gupta (2008)), RLS (Battiti and Protasi (2001)) and QUALEX-MS (Busygin (2006) in terms
of number of instances on which AMTS found better (or worse) results out of the 37 DIMACS
benchmark instances. The symbol ’-’ used for QUALEX-MS indicates that the average clique
size is not available.

Best clique size Average clique size
Better than

AMTS
Worse than

AMTS
Better than

AMTS
Worse than

AMTS
KLS 1 9 1 14
HSSGA 0 10 0 26
RLS 0 3 0 6
QUALEX-MS 0 14 - -
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= 100, 1000 and 10000. For each of these values, we perform 100 runs of AMTS, each

run being given a maximum of Itermax = 107 iterations.
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Fig. 1 Running profile of AMTS with L = 100, 1000 and 10000 as well as AMTS without
restart (basic TS) on brock800 2.

The running profile is defined by the function i 7−→ f∗(i) where i is the number

of iterations (counter Iter) and f∗(i) is the best evaluation function value known at

iteration i, averaged over 100 runs. More precisely, let j denote the jth run of AMTS

(j = 1...100), fj
i (S∗) the value of the evaluation function f (defined by Formula (2) in

Section 2.2.1) of the best solution S∗ known at iteration i of AMTS jth run. For each

plotted iteration i in the running profile, f∗(i) is equal to
∑100

j=1 fj
i (S∗)/100. Such a

profile gives a natural way to observe the evolution of the best values of the objective

function during a search (Galinier and Hao (1999)).

Figure 1 shows the running profiles of AMTS on the graph brock800 2 with k = 24.

The figure shows also the running profile of AMTS without restart, i.e., with L =

Itermax (we call this version basic TS). From Figure 1, we observe that AMTS with

L = 100 dominates AMTS with L = 1000 and L = 10000. Since smaller L implies

more restarts, this experiment suggests a frequent restart is quite useful for the instance

brock800 2 (in fact for other special structured instances). One also notices that AMTS

without restart performs the worst.

Figure 2 shows the running profiles of AMTS on C2000.9 with k = 79. It is interest-

ing to observe that for this graph, AMTS performs better with large values L = 1000

or L = 10000 than with L = 100. AMTS without restart performs here quite well. This

suggests that for C2000.9 (in fact for many random instances) a long search with the

basic TS0 engine is more effective than a search with frequent restarts.

The above observations are confirmed by the results reported in Table 6. In this

table, we show the number of runs (out of the 100 runs) where a clique size of k is found

successfully by AMTS with these L values and ATMS without restart. For brock800 2,

search with frequent restarts makes ATMS more effective and robust whereas the re-

verse is true for C2000.9.

More generally, various experiments suggest that for some structured graphs, rela-

tively smaller L values are preferable whereas for random graphs, it is advantageous to

use relatively larger L values. This experiment also explains the choice of the L values
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Table 6 Success rate of ATMS with different values of L ∈ {100, 1000, 10000} and AMTS
without restart (basic TS) for brock800 2 (k = 24) and C2000.9 (k = 79).

Graph L=100 L=1000 L=10000 Basic TS
brock800 2 99 87 18 0
C2000.9 0 6 19 17

used in Section 3.3. In sum, compared to the Itermax parameter, L is more sensitive

to the structure of the graph and should be tuned with more care.

4.2 The tabu list

As explained in Section 2.2.5, each time a swap(u, v) move is performed, both the

dropped vertex u and the added vertex v are marked tabu for respectively Tu and Tv

iterations. We experiment here two additional tabu strategies which are summarized

together with the previous one as follows.
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Fig. 2 Running profile of AMTS with L = 100, 1000 and 10000 as well as AMTS without
restart (basic TS) on C2000.9.
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– Strategy 1: Only preventing the dropped vertex u from being put back into S in

the next Tu iterations.

– Strategy 2: Only preventing the added vertex v from being removed from S in the

next Tv iterations.

– Strategy 3: Preventing u from being put back into S in the next Tu iterations while

preventing v from being removed from S in the next Tv iterations. This strategy

is used in this paper.

We test these three strategies on C2000.9 with k = 79. Figure 3 shows the running

profiles. From the figure, we can observe that strategy 3, which is used by our proposed

AMTS algorithm, largely dominates strategy 1 and strategy 2 throughout the search.

5 Conclusions

Our proposed Adaptive Multistart Tabu Search algorithm represents a new approach

for approximating the maximum clique problem. AMTS seeks a clique of fixed size k

by effectively exploring subsets of vertices of size k. For this purpose, AMTS combines

a TS procedure with a guided restart strategy. The TS engine is based a constrained

neighborhood and an adaptive technique for tuning the double tabu tenures. To enable

a more intensive exploration of the search space, AMTS uses an informed multistart

strategy which relies on a long term memory (move frequencies) to regenerate new

initial starting solutions.

AMTS shows an excellent performance on the complete set of 80 standard DIMACS

benchmark instances. AMTS finds the current best known solutions for all the instances

except one case (MANN a81 for which cliques of size 1098 are found easily). The

competitiveness of AMTS is further confirmed when it is compared with five state-of-

the-art maximum clique procedures.

Most of the current top-performing algorithms for the maximum clique problem

are based on an expansion and plateau search model. The proposed method constitutes

an interesting alternative approach that probably merits more attention and research

efforts.

Finally, the AMTS algorithm has been applied very recently with success to solve

two combinatorial problems: graph coloring and graph sum coloring (Wu and Hao

(2012a,b)). The algorithm with its source code that we will make publically available

will certainly find more applications.
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