
1 

 

The Unconstrained Binary Quadratic Programming Problem: A Survey 

 

Gary Kochenberger 

School of Business Administration, University of Colorado at Denver, Denver, CO 80217, 

gary.kochenberger@cudenver.edu, Tel: 303-921-6372 

 

Jin-Kao Hao   

LERIA, Université d'Angers, 2 Boulevard Lavoisier, 49045 

 Angers, France, hao@info.iniv-angers.fr 

 

Fred Glover 

OptTek Inc 

Boulder, Colorado 80302, glover@opttek.com 

 

Mark Lewis 

Craig School of Business, 

Missouri Western State University, St Joseph, MO, 64507, mlewis14@missouriwestern.edu 

 

Zhipeng Lü 

School of Computer Science and Technology, 

 Huazhong University of Science and Technology, 430074 Wuhan, China 

Zhipeng.lui@gmail.com 

Haibo Wang 

Sanchez School of Business, 

Texas A&M International University, Laredo, TX 78041, hwang@tamiu.edu  

 

Yang Wang 

LERIA, Université d'Angers, 2 Boulevard Lavoisier, 49045 

Angers, France,yangw@info.iniv-angers.fr 

 

Abstract: 

 In recent years the unconstrained binary quadratic program (UBQP) has grown in 

importance in the field of combinatorial optimization due to its application potential and its 

computational challenge.  Research on UBQP has generated a wide range of solution techniques 

for this basic model that encompasses a rich collection of problem types.  In this paper we survey 

the literature on this important model, providing an overview of the applications and solution 

methods.   
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1.0 Introduction: 

 The Unconstrained Binary Quadratic Programming (UBQP) problem is defined by 

                                                         
min

. .

tx Qx

s t x SÎ
 

where S represents the binary discrete set { }0,1
n
or { }1,1

n
-  and Q is an n-by-n square, symmetric 

matrix of coefficients.  This simple model is notable for embracing a remarkable range of 

applications in combinatorial optimization. For example, the use of this model for representing 

and solving optimization problems on graphs, facility locations problems, resources allocation 

problems, clustering problems, set partitioning problems, various forms of assignment problems, 

sequencing and ordering problems, and many others have been reported in the literature.  

 Even more remarkable is the fact that, once given a UBQP formulation, these problems 

can be solved by a UBQP method which is not specialized to exploit the problem domain of any 

individual class of problems, to yield solutions whose quality in many cases rivals or even 

surpasses the quality of the solutions produced by the best specialized methods, while achieving 

this outcome with an efficiency that likewise rivals or surpasses the efficiency of leading 

specialized methods.  

 In this paper we survey the literature on UBQP, both its applications and solution 

methods.  While many important constrained nonlinear binary models have been reported in the 

literature over the years, we focus our attention here on models that naturally occur in the form 

of an unconstrained quadratic binary model and those that have been re-cast into the form of 

UBQP. The paper is organized as follows.  In section 2 we survey the range of applications that 

have been reported in the literature. Section 3 then presents a survey of the solution 

methodologies reported in the literature for solving UBQP. Section 4 highlights key theoretical 

work and this is followed by section 5 which wraps up the paper with our summary and 

conclusions. 
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2.0 Applications: 

 Some reported applications appear naturally in the form of UBQP while others are “re-

cast” into the UBQP form by employing various transformations.   In the sub-sections below we 

examine these different categories of applications in turn. Within sub-sections, we present 

applications in the chronological order in which they appeared in the literature to give the reader 

a sense of when certain topics were addressed appeared in print, as well as progress made and 

trends in solution methodologies. 

 

2.1 Natural UBQP problems/applications 

 The literature on UBQP goes back to the 1960s where the topics of pseudo-boolean 

functions and binary quadratic optimization were introduced by Hammer and Rudeanu (1968). 

Early papers related to UBQP concern applications in finance (Laughunn (1970)), project 

selection (Rhys(1970)), cluster analysis (Rao (1971)), economic analysis (Hammer and Shliffer 

(1971)), traffic management (Witzgall(1975)) and computer aided design (Krarup and Pruzan 

(1978)). While these applications actually take the form of constrained quadratic binary 

programs, they are mentioned here due to their historical role in fostering an interest in quadratic 

binary applications and also because several allow special cases that are precisely in the form of 

UBQP.   

 More recently many interesting applications that are expressed naturally in the form of 

UBQP have appeared in various papers.  Barahona, Grotschell, Junger and Reinelt (1988) 

formulate and solve the problem of finding ground states of spin glasses with exterior magnetic 

fields, an important problem in physics, as an instance of UBQP. Computational results reveal 

that the model produces high quality solutions to spin glass problems of realistic size in 

reasonable amounts of computation time using 1980s technology. 

 Hansen and Jaumard (1990), in their work on the satisfiability problem, report their 

experience using the UBQP model as an approach for representing and solving small to medium 

sized Max 2-sat problems.  Computational studies validated the attractiveness of this approach to 

the Max 2-sat problem in terms of quickly producing high quality solutions. 

 Boros and Hammer (1991) discuss the use of UBQP as an approach for modeling the 

Max-Cut problem. Their paper highlights the relationship between UBQP, Max-cut, Max 2-sat, 

and the Weighted Signed Graph Problem.  The authors also present a discussion of valid 
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inequalities and facets for polyhedra that provide the basis for further computational and 

theoretical work. 

 Alidaee, Kochenberger and Ahmadian (1994) discuss two machine scheduling problems 

in the context of UBQP: (1) scheduling n jobs on a single machine to minimize total weighted 

earliness and tardiness, and (2) scheduling n jobs on two parallel identical processors to 

minimize weighted mean flow time.  In each case, the authors show how the problems can be 

modeled in a straight-forward manner as an instance of UBQP. 

 Pardalos and Xue (1994) indicate how the maximum clique problem can be modeled as 

an instance of UBQP.  The authors also discuss the relationship between the maximum clique 

problem, the maximum independent set problem, and the vertex cover problem, indicating how 

each can be represented by UBQP. Finally, the authors provide a survey of solution methods for 

the maximum clique problem. 

 De Simone, Diehl, Junger, Mutzel, Reinelt, and Rinaldi (1995), as in the earlier 1988 

paper by Barahona, Grotschell, Junger and Reinelt, adopt the UBQP model as a representation 

for the problem of finding ground states for the spin glass problem.  In this 1995 paper the 

authors use the UBQP model to compute exact ground states for Ising spin glasses on 2-

dimensional grids with periodic boundary interactions, Gaussian bond distributions, and an 

exterior magnetic field.  Preliminary experiments with a branch and cut algorithm for optimizing 

the UBQP form of the problem proved very promising, quickly producing high quality solutions 

to large spin glass instances. 

 Bomze, Budinich, Pardalos, and Pelillo (1999) discuss the maximum clique (MC) 

problem and how it can how it can be modeled in a variety of ways including a representation in 

terms of UBQP.  The authors provide a very broad and in depth discussion of a variety of 

applications and of both exact and heuristic solution methods for the MC problem.  

Computational experience with various solution approaches to the MC problem is also presented. 

 Iasemidis, Pardalos, Sackellares, and Shiau (2001) discuss the use of the UBQP model as 

part of a process employed to predict the arrival of epileptic seizures.  The entrainment between 

two brain sites can be quantified from measures of electrical activity (EEG) of the brain.  The 

UBQP model was successful in identifying the most entrained sites leading to the optimal 

location of electrode sites.  In clinical trials this procedure was successful in predicting epileptic 

seizures 20-40 minutes in advance of their occurrence. 
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    Alidaee, Glover, Kochenberger, and Rego (2005) discuss the number partitioning 

problem where the objective is to assign numbers to subsets such that the sums of the numbers in 

each subset are as close as possible to one another.  The authors show that the n = 2 subset case 

can be modeled as an instance of UBQP and that problems with n > 2 can be modeled as a 

constrained version of UBQP.  Extensions of the basic model along with computational 

experience for the n=2 case are presented indicating the attractiveness of the approach. 

 Kochenberger, Glover, Alidaee, and Lewis (2005) discuss their experience with adopting 

the UBQP model to represent and solve max 2-sat problems.  Expanding the computational 

scope reported earlier by Hansen and Jaumard (1990) on UBQP and the Max 2-sat problem, they 

offer extensive computational experience on very large test problems with up to 1000 variables 

and more than 10,000 clauses. Employing a basic form of tabu search to solve the UBQP 

instances, best known solutions to most test problems were found in a few seconds of 

computation time. 

 Neven, Rose and Macready (2008) discuss the use of quantum adiabatic algorithms, 

which represent new approaches to NP-hard combinatorial problems, for solving the image 

recognition problem.  The authors indicate how the pattern recognition problem of deciding 

whether two images contain the same object can be modeled as an instance of UBQP, which they 

show is the general input format required by D-Wave superconducting quantum AQC 

processors.  Computational experience was not reported.  

 Pajouh, Balasundaram, and Prokepyev (2013) discuss the use of the UBQP model for 

representing the maximal independent set problem.  The authors present an analysis of local 

maxima properties along with relations between continuous local maxima of the quadratic 

formulation and the binary local maxima in the Hamming distance 1 and 2 neighborhoods.  

These results are then used to construct effective local search algorithms for the maximum 

independent set problem.   

 Kochenberger, Hao, Lu, Glover and Wang (2013) discuss the Max Cut problem and how 

the UBQP model can be effectively used to model and solve large scale instances.  Using a tabu 

search algorithm, extensive computational testing is reported on problems with up to 10,000 

variables. Comparisons with other solution methods from the literature for the max cut problem 

are provided, indicating the attractiveness of the UBQP/Tabu Search approach.                 
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2.2 UBQP via reformulation 

 The applications of the previous section illustrate the widespread usefulness of the UBQP 

model.  The actual applicability of UBQP, however, is greatly extended due to re-formulation 

procedures that re-cast a constrained problem into an equivalent unconstrained binary quadratic 

model. Many re-formulations are accomplished by including quadratic infeasibility penalties in 

the objective function as an alternative to explicitly imposing constraints.  In this manner a 

constrained model can be re-cast into the form of UBQP.  In fact, any linear or quadratic 

problem with linear constraints and bounded integer variables can in principle be re-formulated 

as UBQP using quadratic penalties. 

 For several simple constraints, appropriate quadratic penalties are known in advance and 

can be used straight away.  Examples of such penalties are given in Table1 below where P is a 

large positive scalar. 

               

Classical Constraint Equivalent Penalty 

1x y+ £  ( )P xy  

1x y+ ³  (1 )P x y xy- - +  

1x y+ =  (1 2 )P x y xy- - +  

x y£  ( )P x xy-  

1 2 3 1x x x+ + £  1 2 1 3 2 3( )P x x x x x x+ +  

Table 1: Illustrative Known Penalties 

 Note that the penalty term in each case is zero if the associated constraint is satisfied, and 

otherwise the penalty is positive. These penalties, then, can be directly employed as an 

alternative to explicitly introducing the original constraints. For general constraints, however, 

appropriate penalty functions are not known in advance and need to be “discovered.” A simple 

procedure (see for instance Hammer & Rudeanu (1968); Hansen (1979);  Hansen, Jaumard, & 

Mathon (1993); and Boros & Hammer( 2002) for finding an appropriate penalty for any linear 

constraint is given as follows: 
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 Consider the general constrained problem of the form 

                                       0min x xQx=            

                                s.t.               ,x b x binaryA =                                                     (1)           

                                                                   

This model accommodates both quadratic and linear objective functions since the linear case 

results when Q is a diagonal matrix (observing that xj
2 
= xj when xj is a 0-1 variable).  Under the 

assumption that A and b have integer components, problems with inequality constraints can also 

be put in this form by representing their bounded slack variables by a binary expansion. These 

constrained quadratic optimization models are converted into equivalent UQP models by adding 

a quadratic infeasibility penalty function to the objective function in place of explicitly imposing 

the constraints Ax b= .   

Specifically, for a positive scalar P: 

   

( ) ( )0

ˆ

t
x xQx P Ax b Ax b

xQx xDx c

xQx c

= + - -

= + +

= +

 

where the matrix D and the additive constant c result directly from the matrix multiplication 

indicated.  Dropping the additive constant, the equivalent unconstrained version of the 

constrained problem becomes 

                                             ˆ: min ,UBQP xQx x binary                                                (2) 

A suitable choice of the penalty scalar P can always be chosen so that the optimal solution to 

UBQP is the optimal solution to the original constrained problem.  For ease of reference, the 

preceding procedure that transforms (1) into (2) will be called Transformation # 1. 

 Transformation #1 can be used in cases where an appropriate quadratic penalty function 

isn’t known in advance.  In certain special cases, as mentioned earlier, appropriate penalties are 

known and can be directly employed.  One particularly important case that arises in many 

constrained combinatorial problems is: 
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                                1j kx x+ £                                                                 (3)   

denoting a situation where a pair of binary choices are available and we must preclude choosing 

both.  As shown in the preceding table, an equivalent quadratic penalty for this situation is 

simply 

                                                   j kPx x                                                                (4) 

Due to the frequency with which the constraint of (3) appears in many important applications we 

single it out for special attention and refer to the penalty of (4) as an alternative to the constraint 

of (3) as Transformation # 2.  Many of the applications that follow were originally modeled as 

constrained 0/1 models and were recast into the form of UBQP by using Transformation 1 and/or 

2. 

 Other paths to reformulation exist as well.  Often a well-chosen change of variable can 

result in transforming a constrained model into the form of UBQP. This is particularly important 

in the context of certain optimization problems on graphs where binary variables denoting 

whether or not an edge is chosen can be replaced by the product of the two associated binary 

node variables. In making such a substitution, we go from an “edge-oriented” model to a “node-

oriented” model.  This typically results in a much smaller model in terms of both the number of 

variables and the number of constraints. 

 The clique partitioning problem affords a good example for illustrating this approach.  

The standard integer programming (IP) formulation (see for example Oosten, Rutten & 

Spieksma (2001)) for clique partitioning is:   

( ),

max ij ij

i j E

w x
Î

å  

. .

1 , ,

{0,1} { , }

ij ir jr

ij

s t

x x x all distinct i j r V

x for all i j E

+ - £ " Î

Î Î

 

The variable ijx is equal to 1 if the edge (i,j) is in the partition and is equal to 0 otherwise. The 

coefficient ijw  is the weight of the edge (i,j) in the graph. 
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An alternative model results by changing from edge-based variables to node-based 

variables.  For this new model we add artificial edges as needed to produce a complete graph and 

denote an upper bound on the number of cliques to be formed by Kmax.  Then, letting 1ikx =  if 

node i is assigned to clique k and 0ikx =  otherwise, an equivalent model is: 

1 max

1 1 1

max

1

max

. .

1 1,

n n K

ij ik jk

i j i k

k

ik

k

w x x

s t

x for i n

-

= = + =

=

= =

åå å

å

 

In this formulation n is the number of nodes in the graph and ijw  again denotes the weight of 

edge (i,j). This model is much smaller than the standard IP in terms of both number of variables 

and the number of constraints.  Note also that it is of the form:  

max

. .

x Qx

s t

Ax b x binary

¢

=

 

which can be re-cast into the form of UBQP using Transformation  #1. 

2.3 Specific Application Instances 

 Each of the applications presented below were originally modeled as a constrained 

combinatorial problem and then re-cast into the form of UBQP.  Once in this unified form the 

problems were successfully solved by various heuristic means. 

 Lewis, Alidaee, and Kochenberger (2005) address the problem of assigning tasks to 

processors in a distributed, multitasking computer architecture such that the sum of the resultant 

task completion costs and inter-task communication costs are minimized.   The standard model 

for this problem is a constrained quadratic optimization model in binary variables with 

constraints ensuring that each task gets assigned to one of the processors available.  The authors 

employ Transformation # 1 to re-cast this model into the form of UBQP which in turn is solved 

with a basic tabu search heuristic.  Computational experience with large-scale instances 

highlights the attractiveness of this approach. 
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 Kochenberger, Glover and Alidaee (2005) discuss the classic vertex coloring problem 

and how it can be effectively modeled and solved in the form of UBQP. A standard 

representation of the K-Coloring problem consists of two categories of constraints, one ensuring 

that each node gets a color, and the other ensuring that adjacent nodes receive different colors.  

The authors use Transformation # 1 on the first set of constraints and Transformation # 2 on the 

second to produce a UBQP representation of the problem. Computational experience applying a 

tabu search method to standard test problems from the literature indicates that this approach is 

very competitive with, and often superior to, specialized methods for vertex coloring. 

 Similar reformulations, using transformations #1 and/or #2 have been reported for other 

well-known combinatorial problems. Kochenberger, Glover, Alidaee, and Wang (2005) examine 

the use of UBQP as a tool for clustering microarray data into groups with high degrees of 

similarity. Wang, Alidaee, Glover, and Kochenberger (2006) discuss the problem of grouping 

machines and parts together in a flexible manufacturing system in a manner that facilitates 

economies in time and cost. Kochenberger, Alidaee, Glover, and Wang (2007) discuss the use of 

UBQP as a tool for modeling and solving the generalized independent set (GIS) problem.  In 

each case the original model was re-cast into the form of UBQP and successfully solved in this 

new form. 

 In addition, Lewis, Kochenberger, and Alidaee (2008) discuss the classic set partitioning 

(SP) problem and how the UBQP framework can be utilized for modeling and solving this 

important class of problems. Computational experience using a basic tabu search heuristic on 

problems with up to 15,000 variables and 5,000 rows and various densities is presented with 

comparisons drawn with CPLEX.  Also in 2008, Alidaee, Kochenberger, Lewis, Lewis, and 

Wang (2008) discuss the use of the UBQP model for representing and solving the well-known 

set packing problem. Favorable computational experience with a wide variety of set packing 

problems with up to 2,000 variables and 10,000 constraints  is reported.   

 Lewis, Alidaee, Glover, and Kochenberger (2009) discuss the Linear Ordering (LO) 

problem and how it can be modeled and solved as an instance of UBQP.  The standard model in 

the literature for LO is a large 0-1 linear program with many constraints.  For instance, a model 

designed to order 150 items would have, in the classic model, more than one million constraints. 

Rather than use the general procedure of Transformation # 1, the authors show how to easily re-
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cast the constrained model into the unconstrained form of UBQP by using a special quadratic 

penalty that is uniquely suitable for the problem at hand. Computational experience with both 

medium and large sized test problems reveals the effectiveness of this approach. 

 Douiri and Elbernoussi (2012) discuss the Sum Coloring Problem which generalizes the 

classical vertex coloring problem by seeking a valid coloring of vertices such that the sum of the 

colors assigned to all vertices in minimized.   The transformation to UBQP is accomplished by 

using Transformation # 1 on the constraints that ensure each vertex gets a color and 

Transformation # 2 on the constraints that require adjacent nodes to have different colors.  

Computational experience with the resulting UBQP model was carried out using a genetic 

algorithm.  Results obtained on a variety of standard test problems illustrate the attractiveness of 

this approach.  

 Wang and Xu (2013) discuss another variant of the classical vertex coloring problem, 

called the Robust Graph Coloring Problem (RGCP), where for a given feasible coloring, a 

penalty is incurred for each non-adjacent vertices that have the same color assigned. The 

optimization problem is to determine a feasible coloring that minimizes the sum of the penalties 

associated with the edges in the complementary edge set with endpoints that are assigned the 

same color. As with the previously discussed coloring problems, the transformation to UBQP is 

carried out using a combination of Transformation #1 and Transformation #2.  Computational 

experience with several variations of a genetic algorithm on a set of test problems illustrates the 

effectiveness of the UBQP approach for modeling and solving RGCP. 

 Lewis, Kochenberger, Wang, and Glover (2013) discuss the use of UBQP for modeling 

and solving the Generalized Vertex Covering Problem (GVCP).  GVCP generalizes the 

minimum weight vertex covering problem by employing a three tier cost structure for each edge 

and charging a cost depending on whether one, both or neither end point of a given edge is 

covered by the subset chosen.  The optimization problem is to find the subset of nodes that 

minimizes the sum of both the node and edge costs.  The model presented previously in the 

literature for GVCP is a large 0-1 linear program with a binary variable for each node in the 

graph and two binary variables for each edge.  The authors here show how GVCP can readily be 

formulated as UBQP by employing a simple change of variable such that all edge variables and 
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all constraints are eliminated.  Computational experience comparing the original linear model 

and the equivalent UBQP model illustrates the superiority of UBQP for this class of problems. 

3.0 Solution Methods 

 While a few special cases of UBQP are polynomially solvable (see for instance Picard 

(1976), Barahona (1986),  Pardalos and Jha (1991)),  UBQP in general is an NP-hard problem 

(see Pardalos and Jha (1992)) and for all but small to moderate sized problems, heuristic methods 

are required to produce good solutions in a reasonable amount of computer time.  Nonetheless, 

there is a sizable literature on exact methods for UBQP.   In the sub-sections below we first 

survey the exact methods that have appeared in the literature followed by the heuristic methods 

described in the literature for solving UBQP. 

3.1 Exact Methods 

 The literature on exact methods for UBQP introduces a variety of algorithms, each with 

the virtue of terminating, given enough time and memory, with a globally optimal solution.  

Most approaches involve a tree search of a general branch-and-bound nature but other methods 

exist as well.  In this section we survey, in chronological order, the prominent methods reported 

over the past thirty–plus years.  

 Gulati, Gupta, and Mittal (1984) describe a branch and prune algorithm for solving 

UBQP which is designed to determine all local minimizing points, terminating with the global 

optimal solution revealed as the incumbent.  Computational experience with random test 

problems with up to 125 variables is given.  

 Carter (1984) proposes a branch and bound algorithm for UBQP that first employs 

modified form of Cholesky factorization to transform an indefinite instance of UBQP into an 

equivalent positive definite form of the problem.  Variable elimination based on hessian 

information is used accelerate search process.   Computational experience on a variety of random 

test problems with various characteristics and with up to 30 variables is given. 

 Williams (1985) describes a branch and bound algorithm for UBQP that successfully 

solved a set of randomly generated test problems with up to 100 variables.  The algorithm begins 

with a reduction procedure that obtains a good starting solution and subsequently uses the “roof 
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dual” to help guide the depth-first  branch and bound search.  Comparisons with other methods 

are given. 

 Barahona, Junger, and Reinelt (1989) describe an approach to solving UBQP that first 

reduces the problem to an equivalent instance of a max-cut problem.  This, in turn, is solved by a 

linear programming-based branch and bound method.  Constraints based on the cut polytope are 

used to improve node information and enhance the search process.  Computational experience is 

reported on random problems up to size 100 variables along with comparisons with other 

methods.  

 Kalantari and Bagchi (1990) describe the adaptation of an algorithm for minimizing 

linearly constrained concave quadratic functions for the purpose of solving UBQP.  Their 

method starts with a transformation to ensure the Q matrix is positive definite, giving an 

equivalent concave quadratic minimization problem.  The authors then describe their branch-

and-bound method where subproblems are defined by fixing a variable at zero or one and bounds 

are computed by minimizing a linear convex envelope over the feasible region of the 

subproblem.  Computational testing is reported on random problems with up to 50 variables. 

 Pardalos and Rodgers (1990a) describe a branch-and-bound algorithm for solving UBQP 

that successfully solved a variety of test problems with up to 200 variables.  The algorithm, 

which uses no multiplications or divisions, incorporates dynamic preprocessing techniques for 

fixing variables and heuristics for finding good starting points. In (1990b) the authors describe a 

parallel version of the algorithm implemented and tested on a hypercube architecture.  

Computational experience and an analysis of the speedup achieved are presented.  Then in 

(1992), the authors describe a variation of their branch-and-bound algorithm designed for the 

UBQP representation of the maximum clique problem.  Extensive computational experience is 

reported for alternative branching rules and data structures, in route to producing a specialized 

algorithm optimized for the maximum clique problem with up to 1000 vertices and 150,000 

edges.  

 Billionnet and Sutter (1994) describe a branch-and-bound algorithm for solving UBQP 

that successfully solved a large variety of random test problems with up to 100 variables.  Their 

innovation was in the calculation of lower bounds to guide the search process.  At each node in 
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the search tree, a lower bound is computed by combining information obtained from roof duality, 

a quadratic posiform associated with the directed cycles of an implications graph, and a 

component obtained from the induced posiform of degree 4.  Computational experience is given 

comparing the method with other methods. 

 Palubeckis (1995) describes a branch-and-bound algorithm for solving UBQP utilizing 

heuristically generated subproblem solutions that are mapped onto the zero n-vector leading to 

transformed subproblems in the form of the original UBQP model. Special classes of polytope 

facets are employed in computing bounds used to guide the search process.  Computational 

experience with random problems with up to 100 variables, and additional experience with 

several real problems having to do with printed circuit board design, illustrate the efficiency of 

the method and indicate that it compares favorably with other contemporary methods.  

 Helmberg and Rendl (1998) describe a branch-and-bound algorithm for solving UBQP 

based on semidefinite relaxations and cutting planes to enhance the quality of the bounds 

produced.  The semidefinite relaxations are solved by an interior point algorithm specialized for 

semi-definite programs.  Computational experience is reported on a set of UBQP instances of the 

max-cut variety with up to 100 variables.  While the approach was robust in that it was 

successful in solving the test problems attempted, run times were generally not competitive with 

other recently reported exact methods for UBQP. 

 Hansen, Jaumard, and Meyer (2000) describe an enhanced version of the branch-and-

bound method of Pardalos and Rodgers (1990a) that led to favorable comparisons with the 

original algorithm on a standard set of problems with up to 100 variables.  The new method 

employs improved bounds obtained by first transforming the problem to an equivalent posiform 

which yields tighter roof dual bounds as well as effective variable elimination test that efficient ly 

guide the tree search process.  The roof dual bounds are computed via a maximum flow 

algorithm. 

 Huang, Pardalos, and Prokopyev (2006) describe a depth-first branch-and-bound method 

that begins by first formulating an equivalent bi-level formulation of UBQP.  This new 

formulation facilitates bounding procedures and pruning strategies, utilizing a gradient midpoint 
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method that proved to be effective in early testing.  Computational experience with random test 

problems of various densities and with up to 60 variables is presented. 

 Pardalos, Prokopyev, and Busygin (2006) discuss the connections between discrete 

optimization and continuous optimization in general with a focus on formulations that embed the 

initial discrete domain into a larger continuous space.  The authors then focus on the general 

UBQP model, indicating how a reformulation based on an appropriate diagonal perturbation, 

causing the Q matrix to be negative semidefinite, yields an equivalent continuous problem of 

minimizing a quadratic concave function over the unit hypercube. A discussion of this approach 

applied to the maximum clique problem is given. 

 Pan, Tan, and Jiang (2008) describe a continuous approach for solving UBQP based on 

the Fischer-Burmeister nonlinear complementarity function.  Rather than employing relaxations 

and bounding information in a tree search scheme, the authors reformulate UBQP as a 

continuous problem with equilibrium constraints.  In turn, the optimal solution to this model is 

found by a global continuation algorithm utilizing a strictly convex global smoothing function 

and solving a sequence of unconstrained minimization problems.  Computational experience is 

reported with random problems with up to 1000 variables, indicating the effectiveness of this 

approach.  

 Gueye and Michelon (2009) present a general framework for constructing linearizations 

of UBQP which, in turn, can be solved in principle by standard optimizers for mixed integer 

linear programs.  The framework, which contains existing linearization methods in the literature 

as special cases, consists of decomposing the objective function into component matrices, 

identifying a complete linear representation of the polytope for each component, and then adding 

constraints that link the components together.  A new linearization, derived from the general 

framework, is described and computational comparisons are given with existing methods 

illustrating the potential of the new approach.  

 Dinh, Canh, and Thi (2010) discuss a new continuous approach for solving UBQP that is 

based on DC (difference of convex functions) programming.  In their approach, principles of DC 

programming are used to develop a local optimization algorithm (DCA) that solves a finite 

number of linear programs leading to a locally optimal solution.  Globally optimal solutions are 
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produced by embedding DCA in a branch-and-bound algorithm.    Computational experience on 

problems from the literature with up to 100 variables, along with comparison with other 

methods, is given. 

Mauri and Lorena (2011) present a new algorithm for solving UBQP based on 

Largangean decompositions.  Their method starts with a linearization of UBQP represented by a 

graph.  In turn, the graph is partitioned into clusters of vertices forming a dual problem that is 

solved by a subgradient algorithm.   Clusters are formed using the well-known METIS heuristic 

and the linear Lagrangean subproblems are solved using CPLEX.  In (2012a) the authors present 

a column generation alternative to the subgradient algorithm leading to performance 

improvement.  In (2012b) the authors present and test further enhancements to their column 

generations approach for solving UBQP.  Throughout all, computational experience on standard 

UBQP test problems with up 500 variables is given.  Comparisons with other decomposition-

based methods are given indicating the potential of the procedures proposed here. 

 Li, Sun, and Liu (2012) present a new algorithm for solving UBQP based on the inherent 

geometric properties of the minimum circumscribed sphere containing the ellipsoidal contour of 

the objective function.  Based on these properties, effective bounding information as well as new 

procedures for optimally fixing variables are derived.  In addition, this geometric approach led to 

new optimality conditions for UBQP.  The new bounding techniques and variable fixing 

conditions were combined in a branch-and-bound method and tested on standard problems with 

up to 200 variables. Comparisons drawn with other recent methods in the literature indicate the 

attractiveness of the method proposed. 

In addition to the exact methods surveyed above from the literature, we point out that 

several commercial methods, based on branch-and-cut techniques, are now available and hold 

considerable promise for directly optimizing moderate sized instances of UBQP.  See for 

example the paper by Billionnet & Elloumi ( 2007) which reports on the use of the branch-and 

cut quadratic integer optimizer available from CPLEX. 

3.2 Heuristic and Metaheuristic Methods 

 The NP-hard nature of UBQP along with its application potential has motivated a large 

number of papers in recent years describing various heuristic methods for quickly finding high 
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quality solutions to medium to large sized problem instances. Although a few of these methods 

are simple enough to qualify as heuristics, those that generate the best solutions are metaheuristic 

procedures that incorporate compound strategies considerably more advanced than in the basic 

heuristics.  These methods are surveyed below: 

Boros, Hammer and Sun (1989) develop a Devour Digest Tidy-up (DDT) procedure to 

rapidly obtain a solution to UBQP. Based on the posiform expression of UBQP’s objective 

function, the proposed method includes devour, digest and tidy-up phases. The devour phase 

identifies a term with the largest coefficient and sets it to 0 in terms of minimization. The digest 

phase draws logical conclusions for the items from the devour phase. The tidy-up phase finally 

substitutes the logical consequences previously derived into the current quadratic function. 

Computational experience indicates the effectiveness of the method proposed, in particular on 

problems of low density. 

Glover, Kochenberger, and Alidaee (1998) propose an adaptive memory tabu search 

algorithm, which incorporates a strategic oscillation scheme to enable the search to go beyond 

the local optimum obtained by constructive and destructive phases. A key feature of this method 

lies in the use of a critical event memory, that collects recency and frequency information from 

critical events (moves that causes the solution values to decrease), to guide the oscillation 

process. Another feature lies in the use of adaptive oscillation depths. Extensive computational 

experience discloses that the proposed method outperforms the best exact and heuristic methods 

previously reported in the literature in terms of speed and solution quality. 

Glover, Kochenberger, Alidaee and Amini (1999) describe an enhanced version of their 

previous adaptive memory tabu search algorithm. A simple but effective scheme is proposed for 

accelerating the evaluation of moves and for updating associated problem information. In 

addition, methods for generating high quality initial solutions and for creating additional trial 

solutions at critical events are also introduced. Computational experience with up to 1000 

variables reveals this enhanced version can produce high quality solutions within several 

minutes. 

Beasley (1998) adapts tabu search and simulated annealing to solving UBQP. The tabu 

search implementation incorporates a strategy in which, once an improved solution is found, a 
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simple local search is successively employed to perform moves irrespective of their tabu status. 

Contrary to the tabu search procedure, a local search is applied only at the end of the simulated 

annealing process. Computational comparisons indicate that their tabu search generally performs 

better than simulated annealing for small and medium instances but worse for large instances. 

Alkhamis, Hasan, and Ahmed (1998) present a simulated annealing based heuristic with a 

well-selected cooling schedule. Tested on several hundred test problems, the proposed heuristic 

outperforms several algorithms based on bounding techniques, in particular with respect to 

computational time. Additional analysis shows that initial solutions and the matrix density have 

limited influence on the effectiveness of the simulated annealing algorithm.  

Merz and Freisleben (1999) devise a hybrid genetic algorithm, in which a simple local 

search is incorporated into the traditional genetic algorithm. The crossover operator is a variant 

of uniform crossover, requiring the generated offspring solutions to have the same hamming 

distance from the parents. The population updating criterion refers to the quality of solutions, 

assuring that each solution occurs only once in the population, as customarily done in scatter 

search methods. A diversification component is launched when the average hamming distance of 

the population drops below a threshold or the population is not updated for more than 30 

consecutive generations. Computational experience shows that a simple genetic algorithm is 

sufficient to find best known results for problem instances with less than 200 variables but for 

those with a large number of variables, local search is needed for attaining high quality solutions. 

Amini, Alidaee, and Kochenberger (1999) present a scatter search approach, which 

consists of a diversification generation method, a solution improvement method, a reference set 

update method, a subset generation method and a solution combination method. The 

diversification generation method systematically generates a collection of diverse trial solutions 

based on a seed solution by setting an incremental parameter that determines which bits of the 

seed solution should be flipped. The improvement method performs a compound move that 

sequentially cycles among three types of candidate moves until no attractive move can be 

identified. The reference set update method replaces solutions in the reference set with new 

candidate solutions using the quality measurement. The solution combination method uses linear 

combination of solutions in a subset derived from the subset generation method to produce new 

solutions. Since some variables may receive fractional values in the solution obtained in the 
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linear combination, a rounding procedure is employed to recover integer values. Experiments on 

three classes of problems show the attractiveness of the proposed method. 

Lodi, Allemand, and Liebling (1999) present an evolutionary method for solving UBQP. 

The proposed algorithm is characterized by the following features. First, a preprocessing phase is 

applied to fix certain variables at their optimal values and keep them unchanged during each 

successive round of local search, hence resulting in a reduced problem scale. Second, a local 

search procedure that alternates between construction phase and destructive phases is used to get 

an improved solution. Finally, a uniform crossover operator is used to produce offspring 

solutions, where variables with common values in parental solutions are temporarily fixed in this 

round of local search. Computational experience on problem instances with up to 500 variables 

is given. A further analysis demonstrates that the preprocessing phase is effective for small 

problem instances but is unable to appreciably reduce the problem size for large ones. 

Katayama, Tani, and Narihisa (2000) propose a genetic local search algorithm for solving 

UBQP. Their local search procedure integrates 1-flip moves dedicated to going into new good 

search area and k-flip moves dedicated to solution improvement. A traditional uniform crossover 

and a simple mutation operator are joined to generate a suitable offspring solution. A 

diversification/restart strategy is incorporated to maintain a diversified population. Tests on large 

problem instances indicate the effectiveness of the proposed algorithm. 

Katayama and Narihisa (2001) present a simulated annealing algorithm with an 

innovative use of multiple annealing processes to enhance the search. Each annealing process 

takes the best solution found in the previous annealing process as the initial solution and employs 

a different initial temperature. Experimental results demonstrate the performance of the proposed 

algorithm, especially for large instances with 2500 variables. 

Merz and Freisleben (2002) describe a greedy heuristic and two local search algorithms 

based upon 1-flip and k-flip neighborhoods. The greedy construction procedure starts from a 

solution with all variables assigned to 0.5 (the so called third state) and each constructive step 

picks a variable with probability proportional to the gain value when changing the variable's 

value from 0.5 to 0 or 1. Each iteration of the 1-flip local search proceeds to the neighbor 

solution with the best solution quality. The k-flip local search borrows the idea from the Lin-
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Kernighan algorithm of Kernighan and Lin (1972) for solving the graph partitioning problem to 

efficiently reduce the neighborhood exploration. Each k-flip move consists in repeating 

performing the best 1-flip move until all 1-flip moves are performed and picking the best from 

the resulting solutions. Computational comparisons disclose the superiority of the multistart k-

flip local search combined with randomized greedy initial solutions. 

Glover, Alidaee, Rego, and Kochenberger (2002) propose several one-pass heuristics to 

advance the Devour Digest Tidy-up (DDT) method of Boros, Hammer and Sun (1989). Based on 

the hypothesis that setting multiple variables with value 1 or 0 in a pass may lead to worse 

performance, the idea is to guarantee only one variable gets the implied assignment in each pass. 

The proposed one-pass heuristics differ in strategies for evaluating contributions of variables. 

Computational experience indicates that the method outperforms the DDT method but no single 

one-pass heuristic dominates the others on every problem instance. 

Palubeckis and Tomkevicius (2002) present a greedy random adaptive search procedure 

(GRASP) which cycles between a construction phase and a local search phase. Each step in the 

construction phase picks a variable from a candidate list with probability proportional to the gain 

value of this variable, where the candidate list is composed of a certain number of variables with 

the largest gain values, calculated according to a specific gain function. The local search phase 

implements a simple ascent algorithm. Two enhanced versions are tested, which result by 

replacing local search with tabu search and by combining a classic random restarting procedure  

with tabu search. Computational comparisons illustrate the merit of incorporating greedy 

construction based initial solutions and tabu search.   

Palubeckis (2004) examines five multistart tabu search strategies dedicated to the 

construction of an initial solution.  The first multistart strategy produces a new initial solution in 

a random way. The second identifies a candidate set of variables whose values are prone to 

change when moving from the current solution to an optimal one and then applies a steepest 

ascent algorithm where variables not included in this candidate set are fixed at specific values. 

The third multistart strategy is the same as the constructive phase proposed in Palubeckis, 2002. 

The fourth uses a set of elite solutions to calculate the probability of each variable being assigned 

value 1. If the probability for a given variable is larger than 0.5, then this variable is assigned to 

be 1 in the constructed solution; otherwise it is assigned to be 0. The last multistart strategy uses 
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a perturbation scheme of changing the problem instance at hand, followed by a short run of tabu 

search on the modified instance. Extensive comparisons on problem instances with up to 7000 

variables demonstrate the algorithm using the second multistart strategy performs better than the 

other proposed alternatives. 

Merz and Katayama (2004) conduct landscape analysis and observe that (1) local optima 

of the UBQP problem instances are concentrated in a small fraction of the search space; (2) the 

fitness of local optima and the distance between local optima and the global optimum are 

correlated. Based on the observations, they propose a memetic algorithm in which an innovative 

variation operator is used to generate an offspring solution and the k-flip local search proposed in 

Katayama, Tani, and Narihisa (2000) is used to improve solution quality. The variation operator 

introduces new alleles not contained in both parents by referring to the move gain of performing 

1-flip moves, avoiding the rediscovery of local optima already extensively visited. Comparisons 

with other algorithms demonstrate the effectiveness of the proposed algorithm. 

Boros, Hammer, and Tavares (2006) present several preprocessing techniques to simplify 

the UBQP problem. The purpose of the preprocessing simplification is to provide several 

features, including lower bounds for the minimum of the objective function, optimal assignments  

for some variables, and binary relations between the values of certain pairs of variables and 

subproblems decomposed from the original problem. The simplification is achieved by using  

basic techniques such as first-order derivatives, second-order derivatives or roof-duality, and by 

using integrative techniques that combine the conclusions derived from the basic techniques. 

Computational experience on numerous problem classes shows the value of the proposed 

preprocessing techniques.   

Palubeckis (2006) presents an iterated tabu search algorithm which uses a dedicated 

perturbation mechanism to enhance the high-quality solution obtained by the tabu search 

procedure. Each step of the perturbation constructs a candidate list of a limited size consisting of 

variables with largest 1-flip move gains with regard to this current solution, from which a 

variable is randomly selected and flipped to complement the value of this variable. The current 

solution is thus updated and the next perturbation step continues until the number of perturbed 

variables reaches the specified number. Comparisons with state-of-the-art algorithms disclose the 

competitiveness of the proposed algorithm in spite of its simplicity. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



22 

 

Boros, Hammer, and Tavares (2007) present a local search scheme for solving UBQP. 

Starting from an initial solution, each iterative step constructs a candidate set from which a 

variable is picked and its value is changed to its complement, thus moving to the next solution. 

This iterative procedure repeats until the candidate set becomes empty. Based on the above 

scheme, they investigate five initialization methods, two candidate set construction methods and 

four variable selection methods, thus reaching up to 40 local search alternatives. Experiments on 

multiple benchmark instances indicate that the local search alternative combining the following 

methods achieves the best performance. The initial method assigns each variable with a 

fractional value equaling to the proportion of the sum of all the positive entries of the matrix in 

the sum of the absolute value of each entry of the matrix. The candidate set construction method 

constructs a candidate set consisting of variables that yield an improvement in the current 

solution by flipping its value regardless of whether or not it was already flipped in the previous 

iteration. The variable selection method selects from the candidate set the variable with the 

largest improvement to the current solution.  

Glover, Lu, and Hao (2010) present a diversification-driven tabu search algorithm, which 

alternates between a basic tabu search procedure and a memory-based perturbation strategy 

guided by a long-term memory. Three memory structures are introduced in the perturbation 

strategy: (1) a flipping frequency vector to record the number of times a variable has been 

flipped from the initial iteration until the current iteration; (2) an elite set of solutions to record a 

certain number of best local optimal solutions; (3) a consistency vector to count the times each 

variable is assigned a given value in the set of elite solutions. Based on the memory information, 

the perturbation operator modifies an elite solution by favoring variables with low flipping 

frequency and high consistency to flip. Comparisons drawn with several algorithms proposed by 

Palubeckis (2004, 2006) disclose the superiority of this algorithm.  

Lu, Glover, and Hao (2010) present a hybrid metaheuristic approach which has the 

following features. First, it combines a traditional uniform crossover operator with a 

diversification guided path relinking operator to guarantee the quality and diversity of an 

offspring solution. Second, it defines a new distance by reference to variable's importance and 

employs a quality-and-distance criterion to update the population. Finally, a tabu search 

procedure is responsible for intensified examination around the offspring solutions. 
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Computational comparisons with best performing algorithms indicate the effectiveness of this 

hybrid algorithm.  

Lu, Hao, and Glover (2010) develop a hybrid genetic tabu search with multi-parent 

crossover to solve UBQP. The proposed algorithm jointly uses traditional uniform crossover and 

logic multi-parent combination operators to generate diversified offspring solutions. 

Computational experience is given showing the competitiveness of the proposed algorithm.  

Cai, Wang, Yin, and Zhou (2011) present a memetic clonal selection algorithm with 

estimation of distribution algorithm (EDA) guided vaccination for solving UBQP. The proposed 

algorithm adopts EDA vaccination, fitness uniform selection scheme and adaptive tabu search to 

overcome the deficiencies of traditional clonal selection algorithm. Experimental comparisons 

indicate the tabu search algorithm enhances the performance of the clonal selection algorithm. 

Shylo and Shylo (2011) develop a global equilibrium search which performs multiple 

temperature cycles. Each temperature cycle includes an initial solution generation phase and a 

tabu search phase. The method to generate an initial solution employs historical information to 

determine the probability that a variable receives the value 1. The tabu search procedure requires 

that each admissible move leads to a solution with hamming distance to a reference set 

surpassing a distance threshold. Computational comparisons with several algorithms indicate the 

attractiveness of the proposed algorithm.  

Hanafi, Rebai, and Vasquez (2013) devise five alternative DDT heuristics based on 

different representations of the BQO formulation. DDT1 to DDT4 respectively have standard, 

posiform, bi-form and negaform representations and DDT5 has a posiform representation 

combined with a one-pass mechanism. One obvious difference between the DDT alternatives 

proposed here and those proposed by Boros et al. (1989) and Glover et al. (2002) lies in the use 

of an r-flip local search procedure to improve solutions obtained by DDT constructions. 

Extensive tests on small, medium and large benchmark instances disclose that (1) DDT3 with the 

bi-form representation generally produces the best results for medium and large instances; (2) the 

r-flip local search contributes to significant improvement of the results of the proposed DDT 

methods with only a slight increase of time consumption. 
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Wang, Zhou, and Yin (2011) present a tabu Hopfield neural network with an estimation 

of distribution algorithm (EDA). The cooperation between long term memory of EDA with the 

short term memory of tabu search prevents the network from becoming trapped in local optima. 

Computational testing indicates the superiority of the proposed algorithm compared to other 

Hopfield neural network based algorithms. 

Lu, Glover, and Hao (2011) study neighborhood union and token-ring search methods 

within a tabu search algorithm. They focus on two neighborhoods, N1 consisting of 1-flip moves 

and N2 consisting of a chosen subset of 2-flip moves. The neighborhood union includes the 

strong neighborhood union that picks each move from both N1 and N2 and the selective 

neighborhood union that picks a move from N1 with probability p and N2 with probability 1-p. 

The token ring search continuously performs move in N1 until no improvement is possible and 

then switches to perform move in N2 to continue the search. Computational comparisons reveal 

the superiority of the token ring search over the neighborhood union.  

Wang, Lu, Glover and Hao (2012) present two path relinking algorithms, which are 

composed of a reference set construction method, a tabu search based improvement method, a 

reference set update method, a relinking method and a path solution selection method. The 

proposed algorithms differ from each other mainly on the way they generate the path, one 

employing a greedy strategy and the other employing a random strategy. Extensive 

computational experience and comparisons with several state-of-the-art algorithms highlight the 

attractiveness of the proposed algorithms in terms of both solution quality and computational 

efficiency. 

Wang, Lu, Glover and Hao (2012) propose a simple GRASP-Tabu Search algorithm 

working with a single solution and an enhanced version by combining GRASP-Tabu Search 

algorithm with a population management strategy based on an elite reference set. In the basic 

version, the initial solution is constructed according to a greedy random construction heuristic. In 

the enhanced version, a new solution is reconstructed by first inheriting parts of the good 

assignments of one elite solution to form a partial solution and then completing the remaining 

parts as the basic version does. Experimental tests on a large range of both random and 

structured problem instances disclose that the proposed algorithms, in particular the enhanced 

version, yield very competitive outcomes. 
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Wang, Lu, Glover, and Hao (2012) present a backbone guided tabu search algorithm 

which alternates between a basic tabu search procedure and a variable fixing/freeing phase based 

on identifying strongly determined variables. While the tabu search phase ensures the 

exploitation of a search space, the variable fixing (freeing) phase dynamically enlarges (reduces) 

the backbone of assigned values that launches the tabu search exploration. Experiments show 

that the proposed algorithm obtains highly competitive outcomes in comparison with the 

previous best known results from the literature. A direct comparison with the underlying tabu 

search procedure confirms the merit of incorporating backbone information.  

As indicated in the papers of this section, our ability to efficiently solve large instances of 

UBQP by heuristic means has grown substantially in recent years.  It is common now for authors 

to report computational experience on problems with 7,000 – 10,000 variables.  Note that the set 

partitioning application discussed in section 2.3 by Lewis, et. al. (2008) reported computational 

experience on problems up to 15,000 variables.  

4.0 Key Theoretical Results 

 By far the majority of the papers in the literature related to UBQP are primarily devoted 

to applications or various solution schemes, either exact or heuristic in nature.  As a result, our 

priority in this paper has been to focus our survey on applications and solution methodologies.  

Many of the articles surveyed in section 3 above, however, contain a discussion of the theoretical 

results relevant to the method being put forth.  That is, these papers are mainly about the method 

at hand but may also contain a discussion of underlying theory. As a result, we’ve not explicitly 

highlighted theoretical issues but rather left them to be discovered, as might be appropriate, as 

part of the articles on applications and solutions methods surveyed. Nonetheless, there are a few 

recent papers in the literature of particular note focused on theoretical issues pertaining to 

UBQP.  It is these papers that we highlight here in this section.    

 Carraresi, Farinaccio and Malucello (1999) present an exact algorithm for testing the 

optimality of a given solution for a quadratic 0-1 unconstrained problem. Their method, based on 

necessary and sufficient conditions introduced by Hirriart-Urruty for general convex problems, 

expands their earlier work (1995) which was an approximation scheme for testing solutions. 

 Beck and Teboulle (2000) characterize global optimal solutions for UBQP as well as 

discussing the relationship between optimal solutions to UBQP and the optimal solutions of its 
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continuous relaxation. They derive a sufficient optimality condition which guarantees that a 

given feasible point is a global optimal for UBQP as well as a necessary global optimality 

condition.   

 Jeyakumar, Rubinov, and Wu (2007) examine the relationship between the global 

optimality of nonconvex constrained optimization and Lagrange multiplier conditions, 

establishing sufficient as well as necessary conditions for global optimality for general quadratic 

minimization problems with quadratic constraints.  This analysis led, as a special case, to new 

sufficient and necessary global optimality conditions for UBQP that are sharper than those given 

earlier by Beck and Teboulle.   

 Xia (2009), by analyzing local sufficient optimality conditions, also extended the Beck 

and Teboulle results by developing tighter sufficient optimality conditions. In addition, without 

making the positive-semidefinite assumption, Xia examines the relationship between local/global 

minimizers of UBQP and the KKT points of the continuous relaxation, further extending 

previous results in the literature. 

 Gao and Ruan (2010) present a discussion of canonical duality theory, designed in 

general for a wide class of nonconvex/nonsmooth/discrete problems.  The authors show how this 

duality theory can be adapted for the quadratic case with binary constraints.  Conditions are 

given that allow instances of UBQP to be converted into smooth concave maximization dual 

problems over a closed convex feasible region without a duality gap.  Finally, the relationship 

between canonical duality theory and semi-definite programming for UBQP is discussed. 

 Zheng, Sun, Li, and Xu (2012) present new sufficient conditions for verifying zero 

duality gap in nonconvex constrained quadratic programs and then show how the results 

specialize for UBQP.  In related work, Sun, Liu, and Gao (2012) investigate the duality gap 

between UBQP and its semi-definite programming relaxation. Making the connection between 

the duality gap and the cell enumerations of hyperplane arrangement in discrete geometry,   

estimates of the duality gap can be derived, yielding improved lower bounds for UBQP. 

  We note that there are several theoretical papers in the literature on the constrained 

version of UBQP that don’t explicitly consider the pure UBQP model but are nonetheless 

relevant to our work in that UBQP is a special case of the constrained cases considered.  

Notably, Pinar (2004) gives a discussion of sufficient global optimality conditions for the 

problem of minimizing a quadratic function in binary variables subject to equality quadratic 
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constraints. Lu, et. al., (2011) presents a discussion of KKT conditions and conic relaxations to 

develop sufficient conditions that generalize known positive semi-definiteness results for finding 

globally optimal solutions for the problem of minimizing a UBQP subject to inequality quadratic 

constraints.  Finally, Li (2012) presents an extension of Pinar’s global optimality conditions for 

the quadratic equality constrained case along with presenting conditions enabling global 

optimality to be assessed by checking the positive semi-definiteness of a related matrix.  

 

5.0 Summary & Conclusions 

 Interest in UBQP has grown substantially in recent years as researchers have discovered 

the remarkable ability of this simple model form to represent a wide variety of combinatorial 

problems along with its computational challenge, particularly as model sizes have increased.  

Due to its NP-hard nature, methods capable of producing exact solutions are limited to modest 

sized applications, giving way to modern heuristic methods for larger models. Even today, exact 

methods appear to be limited to a few hundred variables. In an effort to realize the application 

potential of UBQP as model size scales to higher levels, most research is focused on 

metaheuristic methods of one kind or another. The results are encouraging: Articles in the 80s 

were reporting on solving problems with 100-200 variables while more recent articles are 

reporting on problems with up to 15,000 variables.  To a large extent, this growth in performance 

is due to advances in both algorithm design and computer hardware.   

 Successfully moving to the next order of magnitude in terms of model size will require 

creative schemes for handling very large Q matrices along with improved algorithmic methods. 

Various partitioning and multi-level methods hold particular promise here but the door is open 

for other innovations as well.  Advances in computer performance, both in terms of storage and 

speed, can also be expected to lend a hand in allowing larger applications. Moreover, 

developments in the area of quantum computing, as illustrated by the work by Neven, Rose, and 

Macready (2008),  represent emerging technologies with a potential for solving combinatorial 

problems as represented by UBQP. Future papers will reveal which of these research areas, or 

indeed, if some other approach, will contribute to facilitating solutions to UBQP as application 

size continues to scale upward. 
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