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2) LERIA, Université d’Angers, 2 bd Lavoisier F-49045 Angers Cedex 01

{philippe.galinier@polymtl.ca, Jin-Kao.Hao@univ-angers.fr}

Abstract

In this paper, we present a general approach for solving constraint problems
by local search. The proposed approach is based on a set of high-level constraint
primitives motivated by constraint programming systems. These constraints con-
stitute the basic bricks to formulate a given combinatorial problem. A tabu search
engine ensures the resolution of the problem such formulated. Experimental re-
sults are shown to validate the proposed approach.

Keywords: Constraint solving, combinatorial optimization, tabu search

1 Introduction

An instance of the Constraint Satisfaction Problem (CSP) [19, 23] is defined by a triplet
(X,D, C) where:

• X = {x1, · · · , xn} is a finite set of n variables.

• D = {Dx1 , · · · , Dxn} is a set of associated domains. Each domain Dxi
specifies

the finite set of possible values of the variable xi.

• C = {C1, · · · , Cp} is a finite set of p constraint. Each constraint is defined on a set
of variables and specifies which combinations of values are compatible for these
variables.

Given such a triplet, the problem consists in finding a complete assignment of the
values to the variables that satisfies all the constraints. Such an assignment is then said
consistent. Since the set of all assignments (not necessarily consistent) is defined by the
Cartesian product Dx1×· · ·×Dxn of the domains, solving a CSP means to determine a
particular assignment among a potentially huge search space. The CSP is known to be
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a NP-hard problem in the general case. Related to the CSP is the MAX-CSP problem
where one seeks an assignment such that a maximum number of constraints is satisfied.

The CSP is a very general formalism able to model a large number of combinatorial
search problems. The CSP can be used to formulate conveniently many well-known
problems such as graph k-coloring, satisfiability (SAT) as well as many practical appli-
cations related to resource assignments, planning or timetabling. One classical approach
for solving a CSP is the systematic tree search strategy combined with various domain
reduction techniques [23]. This approach is largely used by constraint programming
(CP) systems. In practice, complete methods based on systematic tree search may
fail to solve large CSP instances, because the computing time required may become
prohibitive.

Another powerful and popular strategy for solving large CSPs is the repair or Local
Search approach [1]. With local search1, an initial configuration (conflicting assignment)
is first built. Then one iterates a series of moves, each move consisting in modifying the
value of a variable. The goal is then to minimize gradually constraint violation until a
solution is eventually found. Although the principle of local search is very simple, it has
proved itself to be very effective for dealing with many hard combinatorial problems.
Indeed, this approach has been used to solve several well-know problems with elemen-
tary constraints such as k-colouring, SAT, frequency assignment problems and random
instances of binary CSPs. Local search has also found solutions for combinatorial search
problems involving much more complex constraints like the progressive party problem.

However, local search is often applied on a case-by-case basis, leading to the situation
of one problem one algorithm. Algorithms developed in such a way are rarely reusable
across several different, even similar problems. In this paper, we propose a general
local search approach which may be used to solve various CSPs (and MAX-CSPs). At
a very high level, the proposed system can be divided into two large parts: a general
formalism for problem modeling and a general search engine for problem resolution.
Problem modeling is achieved by using a set of high-level constraint primitives, like
in constraint programming. Problem solving is ensured by an embedded Tabu Search
engine. Now solving a particular constraint problem consists simply in modeling the
problem with constraint primitives. The embedded Tabu Search is then directly used
to search for a solution.

The remaining of the paper is organized as follows. Section 2 reviews the related
works. Section 3 presents our general approach for constraint solving by local search.
Section 4 shows examples of modeling combinatorial problems with the proposed ap-
proach. Section 5 presents experimental results on selected problems. The last section
gives some conclusions.

1Notice that traditionally the term ”local search” is the synonym of the descent or the iterative
improvement. In this paper, we use the term to include the wider class of neighbourhood search
methods such as Tabu Search and Simulated Annealing.
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2 Brief Review of Related Work

One finds in the literature several attempts of building repair-based systems for solving
CSPs. Systems reported in [7, 5, 20, 6] are particularly relevant to our work. These sys-
tems differ according to the types of constraints effectively allowed, the way of handling
the constraints and the resolution techniques used.

In the work of [20], each CSP variable Xi with value domain Di is replaced by a
set of |Di| binary variables xij: xij = 1 if variable Xi takes value j ∈ Dj, 0 otherwise.
In this 0-1 encoding of the CSP, the possible constraints are the linear inequalities.
Penalties are employed for the purpose of constraint satisfaction. The basic resolution
method is based on a tabu search algorithm. Another example is Genet and its variants
[7, 5]. This system proposes a rich language of constraints that includes both binary and
non-binary constraints. The resolution methods used in this system is based on repair
heuristics called Min-Conflicts (MC) and Breakout. While MC may be considered as
a very simple pure LS method (i.e. a descent), the Breakout heuristic gives a way to
adapt dynamically penalties for escaping from local optima. Very recently, a similar
system is also reported in [6].

In addition to these CSP-based systems, general heuristic approaches have also been
proposed for combinatorial problems based on other models. For instance, in [21], a
general formalism based on the list data structure is proposed for problem formula-
tion and a simulated annealing algorithm is used for problem resolution. Similarly,
in [25], the central formulation model is the so-called over-constrained integer pro-
gram (OIP) (equivalent to the general ILP model) which is solved by a repair heuristic
called Wsat(OIP). One also finds in the literature studies of building reusable soft-
ware components for heuristic search. Typically, these systems are defined by a library
of predefined functions which are implemented with the object-oriented programming
technology. One finds several examples of such systems in [8] and the recent book [24].
Finally, let us mention that local search techniques have been recently added into some
commercial constraint programming systems such as Ilog optimization tools and the
ECLiPSe platform. For example, ECLiPSe supports using both constraint propagation
and repairs [4].

3 A General LS Approach for Constraint Solving

As indicated previously, the CSP is a very general model for formulating various com-
binatorial search problems. In our system, we provide a set of constraint primitives
(or constraint types, or simply constraints by short) which may be used to model the
given problem as a CSP. For resolution purpose, we use a search engine based on Tabu
Search. In this section, we describe the set of constraint primitives as well as the
different components of our Tabu Search engine.
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3.1 Constraint Primitives and their Semantics

Constraint primitives are introduced for the purpose of problem formulation. The
expression power is clearly conditioned by both the number and the nature of the
available primitives. The primitives introduced in this section are chosen essentially for
their generality. Although this set of primitives is far from complete to encompass all
the CSPs, they are sufficient to illustrate the main concepts of the proposed approach.
Each primitive involves a list of variables [y1..yp] and possibly other parameters. We
denote by RC ⊆ Dy1 × ..×Dyn the set of tuples for which constraint C is satisfied.

• Constraint tuple([y1..yp], [a1..ap]) forbids the tuple [a1..ap]. We have: s ∈ RC ⇔
s(y1) 6= a1 ∨ · · · ∨ s(yp) 6= ap.

• Constraint binary([[x, y]], [a1x, a1y..a
p
x, a

p
y]) is a binary constraint defined in exten-

sion by the list (a1x, a1y), · · · , (ap
x, a

p
y) of forbidden couples2. We have: s ∈ RC ⇔

(s(x) 6= a1x ∨ s(y) 6= a1y) ∧ · · · ∧ (s(x) 6= ap
x ∨ s(y) 6= ap

y).

• Constraint different([x, y]): We have: s ∈ RC ⇔ s(x) 6= s(y).

• Constraint distance([x, y], D): We have: s ∈ RC ⇔|s(x)− s(y)| > D.

• Constraint alldifferent([y1..yp]) checks that all variables y1, · · · , yp receive different
values. Let Ns represent the number of pairs of variables having the same value
in the tuple s. We have: s ∈ RC ⇔ Ns = 0.

• Constraint atmost([y1..yp], a, P ) checks that the number of variables yi taking the
value a is inferior or equal to P . Let Ns represent the number of variables having
the value a in the tuple s: Ns = |{i/s(yi) = a}|. We have: s ∈ RC ⇔ Ns ≤ P.

• Constraint atleast([y1..yp], a, P ) checks that the number of variables yi taking the
value a is superior or equal to P . Let Ns represent the number of variables having
the value a in the tuple s: Ns = |{i/s(yi) = a}|. We have: s ∈ RC ⇔ Ns ≥ P.

• In constraint capa([y1..yp], a, [w1..wp], W ), a weight wi > 0 is assigned to each
variable yi and the constraint checks that the sum of the weights of the variables
taking the value a is inferior or equal to W . Let σs =

∑
i/s(yi)=a w(i). We have:

s ∈ RC ⇔ σs ≤ W.

• Constraint nbdifferences([x1, y1, · · · , xp, yp],P ) involves a set of pairs of variables
(xi, yi), 1 ≤ i ≤ p and checks that the number of pairs of variables having the
same value is inferior or equal to P . Let Ns represent the number of pairs of
variables having the same value in the tuple s: Ns = |{i/s(xi) = s(yi)}|. We
have: s ∈ RC ⇔ Ns ≤ P.

2Although the constraint is given here by extension, it would be possible to generate the tuples
with a ”for”-like structure.
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These constraints make it possible to represent a number of constraint problems (see
Section 4). Moreover, other constraint primitives may be added if necessary allowing a
higher expressiveness. However, notice that incremental algorithms must be designed
for all the constraint primitives to ensure an efficient resolution by local search (see
Section 3.4).

3.2 Penalty Functions Associated to Primitives

Our Tabu Search engine relies heavily on a penalty-based evaluation function to guide
its search (see section 3.3). Therefore, this function must be carefully designed. The
basic idea is to assign a penalty to any violated constraint, the penalty being defined
according to the degree of constraint violation. For some constraints, the penalty may
be simply defined as a 0/1 value depending on whether the constraint is satisfied or
not. For other constraints, more subtle penalties must be devised. More formally, the
penalty function fC : Dy1 × .. × Dyn → IR of constraint C associates to each tuple
s ∈ Dy1 × ..×Dyn a real value fC(s) ≥ 0. If the constraint is satisfied then this value is
0: s ∈ RC ⇔ fC(s) = 0; otherwise it is a strictly positive number: s /∈ RC ⇔ fC(s) > 0.

• tuple([y1..yp]): fC(s) = 0/1

• binary([x, y], [a1x, a1y..a
p
x, a

p
y]): fC(s) = 0/1

• different(x, y): fC(s) = 0/1

• distance(x, y, D): fC(s) = 0/1

For the following constraints, the penalty depends on the degree of violation of the
constraint by the considered tuple:

• alldifferent([y1..yp]): fC(s) = 0/Ns

• atmost(P, [y1..yp], a): fC(s) = 0/Ns − P

• atleast(P, [y1..yp], a): fC(s) = 0/P −Ns

• nbdifferences([x1, y1, · · · , xp, yp],P ): fC(s) = 0/Ns − P

• capa([y1..yp], a, [w1..wp], W ): fC(s) = 0/α + β(σs − W ), where (α, β) are two
parameters

For additional constraints, we propose to use whenever possible the following princi-
ple: to fix the penalty function fC(s) to the minimum number of variables that need to
be modified to reach a consistent assignment. Note that the penalties chosen for binary
constraints, tuple, atmost, atleast and nbdifferences are coherent with this principle.

Depending on the penalty function, we define the notion of critical variable:
variable y of constraint C is critical for a tuple s if changing the value of y
in s (keeping the same values for the other variables) makes it possible to re-
duce the penalty of the constraint: yi is a critical variable in s if and only if
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minv∈Dom(yi)fC(s(y1), .., s(yi−1), v, s(yi+1), .., s(yn)) < fC(s). If the constraint C is sat-
isfied, then no variable is critical in s. Otherwise, all variables or only some of them are
critical, depending on the constraint. For example, for alldifferent constraint, a variable
is critical if it takes the same value as at least one other variable.

3.3 LS Search Engine

For a given search problem (S, f) with S being a finite set of configurations and f
an evaluation function f : S → IR, LS needs a so-called neighbourhood function
N : S → 2S (N(s) ⊆ S is called the neighbourhood of s ∈ S). A LS algorithm
begins with an initial configuration s0 ∈ S and then generates a series of configurations
(si)i∈{0,1,···} such that ∀i ∈ {0, 1, · · ·}, si+1 ∈ N(si). Well-known examples of LS methods
include various descent methods, Simulated Annealing (SA) [18] and Tabu Search (TS)
[13]. The main difference among LS methods concerns the way of visiting the given
neighbourhood. In this study, we have chosen TS as our resolution engine. Indeed,
TS has been applied with great success to many hard combinatorial problems [13].
Numerous studies of using TS for solving CSP-like problems also suggested the interest
of this method for this class of problems. We define below the components of our local
search engine that are the search space, the evaluation function, the neighbourhood
function and the TS meta-heuristic.

Search Space

We call configuration any complete assignment, including inconsistent assignments.
Such a configuration s can be represented by the series of values taken by the variables
in X:

s = (s(x1), · · · , s(xn)).

The search space is the set S = Dx1 × · · · ×Dxn of all configurations.

Evaluation Function

The evaluation function f(s) of a configuration s ∈ S is the weighted sum of the penalty
functions of all the constraints of the given problem:

f(s) =
∑
C

pC ∗ fC(s)

where pC > 0 is the weighting associated to the constraint C. These weightings are to
be fixed empirically or automatically.

Neighbourhood Function

At each iteration, the LS heuristic replaces the current configuration by a new one
obtained by a local transformation called a move. Given a configuration s ∈ S, a move
consists in replacing in s the current value s(x) of a variable x by a new value v: such
a move is denoted by the couple < x, v >. For each s ∈ S, the set of the configurations
that can be reached by such a move constitute the neighbourhood of s.
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Restricted Neighbourhood

In order to make the search more effective, we use a heuristic that consists in restricting
the choice of a move to critical variables (see Section 3.2): in other words, a possible
move < x, v > will be considered only if x is critical (a variable x is critical in configu-
ration s if x is critical for at least one constraint).

TS Algorithm

The algorithm we use is called TabuCSP [10]. TabuCSP is a basic adaptation of the
tabu meta-heuristic to the CSP. It uses a short term memory (tabu list) and a very
simple aspiration mechanism. The role of the tabu list is to avoid short term cycling
and to go beyond local optima. The principle of the tabu list is the following: before
a move < x, v > is performed, one memorizes in the tabu list the couple < x, s(x) >
for a fixed number of iterations (tabu tenure). This way, the move < x, s(x) > is
forbidden for this period; in other words, one forbids to assign to x its previous value
s(x). However a tabu move can be chosen if it makes possible to reach a configuration
better than the best one found so far (in TS, removing in such a way the tabu status of
a particular move is called aspiration). Notice that the optimal tabu tenure generally
depends on the instance and is difficult to obtain. However, appropriate values can be
found by limited experiments or by some automatic mechanisms.

Data : tl : tabu tenure;
Result : the best configuration found
begin

generate a random configuration s
while not Stop-Condition do

choose the best authorized move < x, v >
introduce < x, s(x) > in the tabu list for tl iterations
assign value v to variable x in s

return the best configuration found
end

The algorithm first builds an initial configuration s: this initial configuration is
simply built by assigning to each variable any value chosen randomly in its domain. At
each iteration, the TabuCSP algorithm considers all authorized moves and chooses the
best one (break ties randomly). Recall that a move < x, v > is authorized if (1) the
variable v is critical and (2) either move < x, v > is not tabu, or it improves the best
solution found so far. The algorithm stops if a solution has been found (f(s) = 0) or if
a fixed limit is reached concerning the number of iterations.

3.4 Incremental Data Structures

The efficiency of TS is greatly influenced by its ability to find quickly a best move at
each iteration. Therefore, an important point when implementing a TS algorithm is the
design of powerful incremental data structures and algorithms. One may find, in the
literature, examples for dealing with simple constraints such as binary constraints [9].
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In the context of this work, we must deal with more complex non-binary constraints. In
what follows, we describe the general principle we have developed for such constraints.

We use a data structure denoted by γ that associates to each possible move < x, v >
a positive number denoted by γ(< x, v >) (recall a possible move is any couple < x, v >
such that x ∈ X and v ∈ Dom(x)). γ(< x, v >) memorizes the sum of the weightings of
the constraints that involve variable x and that would be violated if the value v would
be assigned to variable x.

Data structure γ is initialized before the first move and then updated after each
move, using incremental algorithms. Given this data structure, it is now possible to
compute the performance of a move < x, v >, i.e. the variation δ(< x, v >) of the
cost function that results from this move. δ(< x, v >) can be obtained in constant
time according to the equation: δ(< x, v >) = γ(< x, v >) − γ(< x, s(x) >). Note
that γ also indicates if a given variable x is in conflict: it is the case if and only if
γ(< x, s(x) >) > 0.

In order to implement the tabu list, we use another data structure denoted by T ;
each element of T corresponds also to a possible move. to know in constant time
whether a move is tabu: move < x, v > is tabu if and only if the current number of
iterations is smaller than T (< x, v >).

4 Problem Representation

In this section, we show various examples of modeling well-known problems with the
help of the constraint primitives introduced in the last section. Constraints of these
problems belong to different types, and are often non-binary. For each problem, we give
first a brief description and present then its formulation with constraint primitives. As
we will see, the formulation of a given problem can be achieved in a compact and concise
way, thanks to the expressive power of the primitives.

Boolean Satisfiability

A SAT instance is defined by a set of boolean variables and a set of clauses (disjunction
of literals). The problem can be represented as follows:

• Each boolean variable xi is represented by a variable.

• All domains equal {0, 1}.

• A literal lj is associated the value V (lj) = 1 (0) if it is positive: lj = xi (neg-
ative: lj = ¬xj). A clause li ∧ · · · ∧ ln is represented by a constraint tuple
([l1 · · · ln], [V (l1) · · ·V (ln)]).

Graph k-Coloring and Graph Coloring

Let G = (V, E) be an undirected graph with a vertex set V and an edge set E. A
k-coloring of G is any assignment φ : V → {1 · · · k} such that no two endpoints of a
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same edge receives the same value: {x, y} ∈ E ⇒ φ(x) 6= φ(y). An optimal coloring of
G is a k-coloring with the smallest possible k (the chromatic number χ(G) of G).

Given a couple (G = (V, E), k), the k-coloring problem PG,k consists in finding a
k-coloring of G. Problem PG,k is represented in the following way :

• Each vertex vi ∈ V is assigned a variable xi.

• All domains equal {1..k}.

• Each edge vivj ∈ E is associated to a constraint different([xi, xj]).

To find an optimal coloring of G (graph coloring problem), we solve PG,k with
decreasing values of k: given a value k0 for which a k -coloring is known, we continue
with k = k0 − 1, k0 − 2, · · · until we fail.

Maximum Clique

undirected graph G = (V, E) is any complete sub-graph of G. Given a graph G = (V, E)
with V = {v1, . . . , vn}, the Maximum Clique problem is to find a clique of maximal
cardinal.

We call PG,k the problem to find a clique with a fixed number k of vertices. Problem
PG,k can be represented in the following way :

• Each vertex vi ∈ V is assigned a variable xi.

• All domains equal {0, 1}.

• Each non-edge vivj /∈ E is associated to a constraint tuple([xi, xj], [1, 1]).

• There is a constraint atleast([x1..xn], 1, k).

To find a maximum clique of G, we solve PG,k with increasing successive values
k = 1, 2, ... until we fail.

Frequency Assignment Problem

A cellular network is defined by a set {C1, C2...CN} of N cells, each cell Ci requiring
Ti frequencies. The possible values for the frequencies are represented by consecutive
integers in the interval [0..NF ]. Interference occurs when two frequencies assigned to a
same cell or two adjacent cells are not sufficiently separated. Therefore, there are two
kinds of constraints:

• co-cell constraint: any pair of frequencies assigned to a radio cell must have a
certain distance between them in the frequency domain.

• adjacent-cell constraint: any pair of frequencies assigned to two adjacent cells
must be sufficiently separated in the frequency domain.
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These constraints are conveniently represented by a symmetric compatibility matrix
M [N, N ] where N is the number of cells in the network and each element of M is a
non negative integer. Let fi,k denote the value of the kth frequency (k ∈ {1..Ti}) of Ci

and let {1..NF} denote the set of NF available frequency values, then the interference
constraints are formulated as follows:

• M [i, i] (i ∈ {1..N}) is the minimum frequency separation necessary to satisfy the
co-cell constraints for the cell Ci. ∀ m, n ∈ {1..Ti}, m 6= n, |fi,m − fi,n| ≥ M [i, i]

• M [i, j] (i, j ∈ {1..N}, i 6= j) represents the minimum frequency separation required
to satisfy the adjacent-cell constraints between two cells Ci and Cj. M [i, j] = 0
means there is no constraint between the cells Ci and Cj.
∀m ∈ {1..Ti}, ∀n ∈ {1..Tj}, |fi,m − fj,n| ≥ M [i, j]

We represent the problem as follows:

• Each frequency fi,l is represented by a variable xi,l

X = {xi,l, 1 ≤ i ≤ N, 1 ≤ l ≤ Ti}.

• All domains equal [1..NF ].

• We define the following constraints:

– co-cell constraint: for each i ∈ [1..N ], for each l,m ∈ [1..Ti], l < m we require:
distance([fi,l, fi,m], M [i, i]).

– adjacent-cell constraint: for each i, j ∈ [1..N ], i < j, for each l ∈ [1..Ti] and
each m ∈ [1..Tj] we require: distance([fi,l, fj,m], M [i, j]).

Progressive Party Problem

The Progressive Party Problem (PPP) appeared in a yacht club in order to organize
a party that lasts for different successive time periods [3]. In the problem, there are
a given number H of host boats that invite the G guest crews of other boats on their
board. The size c(g) of each guest crew g ∈ [1..G] and the capacity C(h) of each boat
h ∈ [1...H] are given. For each time period, each guest crew must visit a host boat
respecting the following constraints:

• The capacities of the host boats must be respected.

• Each guest crew must move to a different boat for each time period.

• Two guest crews can meet at most once.

An assignment plan consists in assigning to each guest crew a boat to visit for each
time period. The problem consists in finding a valid assignment plan for a maximum
number of time periods. We denote by PT the problem of finding a valid assignment
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plan for a fixed number T of time periods3. To deal with PPP , we solve the series of
problems P1, P2, · · ·.

We represent problem PT in the following way:

• For each crew g ∈ [1..G] and each time period t ∈ [1..T ], variable xg,t represents
the boat visited by g at period t:
X = {xg,t, 1 ≤ g ≤ G, 1 ≤ t ≤ T}.

• All domains equal [1..H].

• We define the following constraints:

– For each time period t ∈ [1...T ] and each boat h ∈ [1...H] we require:
capa([x1,t · · ·xG,t], [c(1) · · · c(G)], h, C(h)).

– For each guest g ∈ [1..G] we require:
alldifferent([xg,1 · · ·xg,T ]).

– For each couple (g1, g2) (with g1 < g2), we require:
nbdifferences([xg1,1, xg2,1, · · · , xg1,T , xg2,T ], 1).

Let us mention that we can formulate other well-known combinatorial problems
including bin-packing, knapsack, unicost set covering problem, etc. In addition to
progressive party problem and frequency assignment problem, we may conveniently
formulate other complex real-world problems such as the problem of daily photograph
scheduling of an earth observation satellite and the sports league scheduling problem.

5 Problem Resolution

In this section, we show in some detail numerical results for three of the problems
introduced in the last section: the Graph Coloring Problem, the Frequency Assignment
Problem and the Progressive Party Problem. Whenever possible, results are contrasted
with those known in the literature. We give also performance indications for Binary
Max-CSP instances solved by the proposed approach.

Graph k-coloring and graph coloring

For graph coloring, we used the following graphs from the well-known second DIMACS
challenge benchmarks [17]4.

◦ Three random graphs: DSJC250.5, DSJC500.5 and DSJC1000.5. They have 250,
500 and 1000 vertices respectively and a density of 0.5 with unknown chromatic
number (the smallest number of colors reported in the literature for these graphs
are 28, 48 and 83 respectively).

3In the original problem, T=6. Larger T makes the problem harder.
4Available via ftp from ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/.
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◦ Two Leighton graphs: le450 15c and le450 25c. They are structured graph with
known chromatic number (respectively 15 and 25).

◦ two flat graphs: flat300 28 and flat1000 76. They are also structured graph with
known chromatic number (respectively 38 and 76).

We are interested in these graphs because they were largely studied in the litera-
ture and constitute thus a good reference for comparisons. Moreover these graphs are
difficult and represent a real challenge for graph coloring algorithms.

The tabu tenure tl used in these experiments is variable and depends on the number
nbCFL of conflicting vertices in the current configuration: tl = Random(A)+α ∗nbCFL

where A and α are two parameters and the function Random(A) returns randomly a
number in {0, · · · , A−1}. Experiments of various combinations suggested that (A = 10,
α = 0.6) is a robust combination for the chosen graphs.

graph k TabuCSP

DSJC250.5 28 10 2,500,000 355
29 10 587,000 85
30 10 97,000 15

DSJC500.5 50 10 1,495,000 402
51 10 160,000 47
52 10 43,000 14

DSJC1000.5 89 3(2) 4,922,000 2,099
90 5 3,160,000 1,357
91 5 524,000 226
92 5 194,000 85

le450 15c 16 8 (2) 319,000 69
17 10 18,000 5

le450 25c 26 10 107,000 38
27 10 7,300 4

flat300 28 32 10 149,000 25
flat1000 76 87 1(4) 7,400,000 3,301

88 2(3) 4,000,000 1,820

Table 1: Results of TabuCSP for graph k-coloring

Table 1 reports results with our approach. These results are also cited in [12] as
a reference for a hybrid evolutionary algorithm. Each line corresponds to particular
k-coloring instance and gives the results obtained by TabuCSP on this instance. These
experiments consist in a series of runs, each run being limited to 10 Millions iterations.
Column 3 indicates the number of successful executions and the number of fails. Column
4 and 5 display the average number of iterations and the average time for successful
runs (the timing is based on an UltraSPARC-IIi 333MHz with 132 MB RAM). For each
graph, the smallest value of k in the table is the smallest one for which TabuCSP could
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find a solution. For example, for DSJC1000.5, tabu found a solution with 89 colors but
failed to find one with 88 colors.

For the k-coloring problem, TabuCSP is reduced to the tabu algorithm called
TabuCOL of [15]. There are other known strategies for the k-coloring problem and
the graph coloring problem (see [16]). Compared with these other methods, the ap-
proach used by TabuCSP remains the simplest one and allows to produce competitive
results with respect to other ”pure” LS techniques [15, 16, 9]. Note however that, for
some large graphs, TabuCSP and other pure LS techniques are outperformed by hybrid
strategies, notably the Hybrid Evolutionary Algorithm of [12].

Frequency Assignment

For FAP, we used a set of instances proposed by France Telecom (CNET) [14]5. We
experimented with two different ways to fix the weightings of the constraints: 1) uniform
weightings, 2) weightings fixed to 1 for adjacent constraints and to infinite for co-cell
constraints. Note that the option 2 is equivalent to limit the search space to the
configurations that respect the co-cell constraint.

Problem Opt/LB TabuCSP SA CP GCA
NF(S) Iter T[sec] NF T[sec] NF T[sec] NF

8.150.20 8 8(10) 18 923 123 8 509 9 7 200 8
8.150.30 8 8(10) 404 3 8 446 12 10 800 15
15.300.20 15 15(10) 41 484 573 15 4 788 17 3 600 20
15.300.30 15 15(10) 22 429 327 15 2 053 24 36 000 27
8.75.25.1 16 17(10) 34 414 274 17 1 382 20 1 000 19
8.75.25.3 16 16(5) 62 764 485 17 1 744 19 7 595 19
8.150.15.3 16 18(10) 46 425 668 18 3 705 22 375 22
8.150.25.6 16 16(3) 56 120 906 17 5 981 30 153 29
15.300.25.6 30 35(2) 78 266 2 940 36 5 359 47 380 47
15.300.25.9 30 35(1) 61 294 2 168 36 6 586 45 - 45

Table 2: Results of TabuCSP for frequency assignment

We have used TabuCSP to solve these instances. In table 5, the results of TabuCSP
are compared with those of the best known results obtained by approaches such as Sim-
ulated Annealing (SA), Constraint Programming (CP) and Graph Coloring Algorithms
(GCA), reported in [14]. We notice first that TabuCSP outperforms CP and GCA
on these instances in terms of the quality of solutions. Moreover, TabuCSP outper-
forms the SA algorithm on 4 instances and does as well as SA on the other instances
(In terms of computing time, TabuCSP is always faster than SA even for solutions of
better quality).

The results show that our approach is very powerful for the FAP. Moreover, we
notice that it is flexible enough to try different options to solve a same problem.

5These instances are available from the second author of the paper.
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Progressive Party Problem

Recall that to solve the PPP, we solve a series of CSPs (PT )T=1,2,..., where PT represents
the problem of finding an assignment for T time periods. In the literature, only one
instance of the Progressive Party Problem has been widely tested - that one of the
original organization problem. In this instance, there are G = 29 crews and H = 13
boats, the party is organized for T = 6 time periods. We tried to solve the problem PT

for T = 6 to T = 10 (10 is an upper bound of the number of time periods).
After limited preliminary experiments, we decided to use weightings equal to 1 for

nbdifferences constraints and 2 for the two other constraints.

problem ILP CP TabuCSP
CP1 CP2 T[sec] Iter

P6 fail 27 min. a few sec. 0.3 sec. 210
P7 fail 28 min. a few sec. 0.5 sec. 330
P8 fail fail a few sec. 1.7 sec. 1,366
P9 fail fail several hours 67.5 sec. 51,507
P10 fail fail fail fail

Table 3: Results of TabuCSP for the Progressive Party Problem

Table 3 presents the best known results obtained with three different methods: ILP
(Integer Linear Programming) [3], CP [22, 2] and TabuCSP . From the table, we see
that ILP fails to solve any of P6 to P10. The results of CP indicated by CP1 [22] and
CP2 [2] are much more interesting. Indeed, CP1 solves P7 and P8 in 27 and 28 minutes
respectively, but fails to solve P9 and P10. The results of CP2 are much better: indeed
P7 and P8 are now solved in a few seconds (after several hundreds of backtracks). The
problem P9 is also solved, but using several hours (and millions of backtracks).

Using TabuCSP , we solve the problem up to 9 time periods. P8 is solved very
easily in two seconds (on a Sun ULTRA 1, 128 RAM, 134 MHz) with a few hundreds
of iterations while P9 is solved in about one minute with a few thousands of iterations.
It is still an open question whether a solution exists for 10 time periods. However,
TabuCSP finds frequently configurations involving only one violated constraint.

Binary Max-CSP instances

Finally, we also used TabuCSP for solving binary Max-CSP instances. The constraints
in explicit binary CSPs (or Max-CSPs) are represented using the binary primitive.
In [10], the results of TabuCSP are reported and compared with those of two repair
heuristics, notably the Min-conflict Random Walk heuristic (MCRW ) considered to be
among the most efficient AI heuristics. The comparison showed clearly that TabuCSP
outperforms MCRW for these instances.
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6 Discussion and Conclusion

In this paper, we presented a general approach for solving constraint problems by
local search. This approach is based on the definition of a set of high-level constraint
primitives and an advanced local search engine. The primitives provide a convenient
way to model various combinatorial search problems while the LS engine ensures an
efficient resolution. For an efficient handling of these primitives by LS, we introduced
a set of appropriate penalty functions.

Another important issue we have addressed concerns the implementation of the TS
resolution engine. Indeed, in order to make the search engine as efficient as possible, in-
cremental data structures and incremental algorithms have been developed. Combined
with a simple neighbourhood and an appropriate penalty technique for constraint han-
dling, the resulting TS algorithm proves to be a powerful solver.

To validate the approach, we have presented examples of modeling various com-
binatorial problems including the progressive party problem, graph coloring problem
and frequency assignment problem. Computational experiments on some well-known
instances showed that the proposed approach is not only general, but also able to pro-
duce very competitive results.

In this paper, we have focused our study to the CSP model where one seeks a
feasible solution for a given problem instance. It should be mentioned that there is no
real difficulty to extend the system for constrained optimization problems where one is
given a cost function in addition to constraints. Indeed, the penalty approach studied
in this paper is naturally applicable to deal with the constraints and the cost function
simultaneously.

To conclude, we think general constraint solving by LS constitutes an interesting
and important alternative for tackling large and difficult combinatorial (satisfaction or
optimization) problems and deserves more research efforts in the future.
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