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Abstract The contribution of this work is twofold. Firstly, we introduce a new chan-
nel assignment model for GSM radio networks. In this model both spatial and tem-
poral variations of traffic are taken into account in order to improve network capacity
and robustness. Secondly, using this model, we develop an original and effective hy-
brid algorithm to get high quality frequency plans. This algorithm combines a prob-
lem specific crossover and a Tabu search procedure. The proposed model and hybrid
algorithm are evaluated using both artificial and real data. Computational results al-
low us to confirm the effectiveness of the proposed approach.

Keywords Hybrid genetic algorithms · Robust channel assignment · Traffic
modeling · Real world OR application

1 Introduction

Over the past two decays, demand for mobile communication services has grown
continually and rapidly. In such a context, it becomes more and more critical to be
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able to manage the system resources in a flexible manner [41]. In this paper, we
consider the fixed frequency assignment problem where the traffic undergoes both
spatial and temporal variations. Considering traffic variations for frequency assign-
ment is desirable and even necessary to enable high network capacity and quality of
service.

Many schemes of channel management have been adopted to cope with traffic
variations [22]. Mainly, those schemes may be classified into three classes:

– Reactive schemes operate in real-time as new calls arrive in the system and conse-
quently induce additional signaling loads in the network or require some changes
to both base station and terminal equipment. Dynamic channel assignment [3–5,
7], hybrid channel assignment [38] and channel borrowing [40] belong to this class.

– Proactive or adaptive schemes periodically readjust the frequency plan according
to expected traffic evolution [33]. This readjustment must be made in such a way
that one performs a minimum number of modifications on the existing frequency
plan in order to minimize channel handoff.

– Fixed schemes permanently allocate to each station a set of nominal channels. Fre-
quency planning is then made on the basis of over-sizing of traffic data or using
probabilistic distribution of traffic load [19, 28, 31, 34]. The major inconvenient of
this kind of strategies is still the lake of robustness against traffic variations.

In this paper, we propose a new model for fixed channel assignment (FCA) which
takes into account both spatial and temporal variation of traffic in order to improve
network capacity and frequency plan robustness. In this model, we assume that we
have data on traffic variation for np future periods representing the cyclical evolution
of traffic (daily or weekly). The objective is then to find an assignment of the available
frequencies to the base stations in order to satisfy traffic demands and to minimize
interference. Three criteria are retained to measure the performance of frequency
plans: (1) total interference over the given time period, (2) temporal robustness of the
frequency plan, and (3) spatial repartition of interference. The first criterion is well
known; the other two criteria, however, are rarely studied in the literature. Contrary to
reactive and proactive schemes, this model has the advantage of introducing neither
additional signaling loads nor interventions on network equipment.

The classical FCA is known to be a very difficult optimization problem [1, 6, 13,
17, 27, 30]. The presence of additional optimization criteria in the new model makes
the problem even harder. For the resolution purpose, we have elaborated an original
genetic Tabu search heuristic (GTS). The main characteristic of the algorithm is the
use of a common Tabu list for all population individuals. This structure allows ex-
perience sharing between current solutions. Another important feature is its domain-
specific genetic operators: violation-directed mutation and geographical crossover
[34]. The efficiency of the hybrid algorithm is compared to three other algorithms,
derived by switching off some of its components. The first one (noted GLS) is the
same genetic Tabu search except that Tabu search is replaced by a simple descent
algorithm based on the same neighborhood structure. The second algorithm used for
the comparison is a basic Tabu search (TS) algorithm that uses again the same neigh-
borhood structure as before and proceeds by inspecting the entire neighborhood at
each iteration. The third algorithm is a hybrid genetic Tabu search algorithm iden-
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tical to GTS algorithm but where the population individuals don’t share a common
Tabu list. Consequently, each individual have its proper Tabu list.

The paper is organized as follows. In the next section, we describe the context
of this study and we give an overview on fixed channel assignment modeling his-
tory. Then the impact of traffic variation on frequency plan performance is shown. In
the Sect. 3, we introduce formally the multi-criteria cost model. Description of the
genetic Tabu search and its operators are presented in Sect. 4. Sections 5, 6 and 7
present the three comparison algorithms. Section 8 is dedicated to experiments and
computational results. The conclusion is drawn in the last section.

2 Fixed channel assignment in GSM networks

In radio mobile networks [24, 29], communications are ensured by a radio link. The
mobile network operators dispose of a very limited number of frequencies to cover
all the network area (limited to 62 frequencies in France). For this reason, frequency
reuse is indispensable to increase the capacity of a network.

A GSM air-interface [23] is composed of a set of sites, each supporting one to three
stations. Each station covers an area called cell representing all the points served by
this station (Fig. 1). Fixed channel assignment (FCA) is widely used in today’s cel-
lular networks because of its implementation simplicity. In this scheme, each station
requires a fixed number of frequencies according to its traffic load, which may si-
multaneously occur in the cell. Channel assignment consists in finding a permanent
assignment of the available frequency spectrum to the stations of the network, which
satisfies stations demands and minimizes interference. Interference is caused by the
presence of overlapping areas between cells where several signals of good quality
are received.1 In these areas, traffic satisfaction is highly conditioned by used fre-

Fig. 1 Cellular network map:
each colored area corresponds to
one cell

1Notice that signal overlapping is necessary to ensure communications handovers.
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quencies. We distinguish three classes of interference constraints according to their
importance:

– Co-station constraint (call it C1 hereafter): frequencies assigned to the same station
must be spaced by at least 3 channels.

– Co-site constraint (call it C2 hereafter): frequencies assigned to stations located on
the same site must be spaced by at least 2 channels.

– Inter-site constraint: frequencies assigned to stations belonging to different sites
are spaced according to their mutual interference.

Generally, the co-station and co-site interferences are considered as hard constraints
that satisfaction conditions the feasibility of the frequency plan, whereas the inter-site
interferences are seen as soft constraints that express a preference of some solutions.

The first works on the FCA are based on a reusing matrix [12, 16, 18, 21] indi-
cating channel separation required between frequencies to completely eliminate the
interference. In such a model, interference priorities are ignored. In fact, inter-site
interference involves different levels of damage to the affected communications. This
damage is measured according to used frequencies distance, interference power and
the affected traffic. More realistic models were recently proposed, which are based on
the quantification of interference risks [6, 9, 20]. In this case, the interference damage
produced by each station on each other is estimated. Frequency plan quality corre-
sponds then to the sum of recorded interference damage rather than the number of
unsatisfied separation constraints.

The impact of traffic on interference is twofold. As jamming station, traffic inten-
sity describes the using rate of frequencies assigned to the station and hence impacts
on the quantity of generated interference. As interfered station, traffic intensity re-
flects the importance of the area covered by the station and consequently the interest
of interference reduction on this area. Since traffic is variable, frequency plan consid-
ered good according to traffic situation at a given period might become bad at other
periods. To manage traffic evolution, current frequency planning methods are based
on an over-sizing of traffic data. One commonly used technique is based on traffic
data at second busy hour of the day (2BH) [21]. More precisely, on each station, the
quantity of traffic recorded at the second busy hour of the day is retained (Fig. 2). This
traffic is considered constant and occurring in a simultaneous way. This over-sizing
involves an inaccuracy in modeling of traffic capacity.

Contrary to aggregating traffic data, we propose here a frequency channel assign-
ment model, which takes into account the dynamic aspect of traffic and is, hence,
more adequate in modeling global quality of the frequency plans and their robust-
ness towards these changes. In the following of the article we refer to this model by
dynamic model.

In the dynamic model, we consider that traffic evolution follows a cyclical scheme
(daily or weekly) that remains stable for a relatively long period (about 3 to 6 months).
Consequently, the frequency plan is built to fit the traffic evolution. Such a frequency
plan will remain operational for several months. As for classical model, the frequency
plan will be readjusted when important changes occur in the cyclical variation of
traffic (for example seasonal changes).
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Fig. 2 Traffic evolution of one cell over 24 hours

3 Fixed channel assignment model

Let N be a GSM network composed of n stations and {1, . . . , nf } the set of available
frequencies. For each station i, we know the required number of frequencies, MAi ,
and the traffic load thi at any period h ∈ [1..np]. We note t2BH

i the traffic load on the
station i at the second busy period and fi,k the kth frequency assigned to station i.

Let C1 and C2 two binary functions representing the co-station and co-site con-
straints and are defined as follows:

C1(i, k,p) =
{

1 if |fi,k − fi,p| < 3
0 else

, (1)

C2(i, j, k,p) =
{

1 if |fi,k − fj,p| < 2
0 else

(2)

Let I be the function measuring inter-site interference damage generated by one
station on one other. I (i, j, ti , tj , d) designates interference damage produced by the
station i on the station j when they use two frequencies spaced by d channels. Where
ti , tj correspond to traffic load on the two stations. The value of the function doesn’t
correspond directly to a physical measure but it is well correlated with the notion of
lost traffic.

In our model, the problem is formulated by np directed graphs, one per period.
Each graph Gh represents inter-site constraint damages measured according to traffic
situation at period h. Nodes of graph correspond to stations and arcs represent inter-
ference risks. Each arc linking i to j is weighted by a pair of values (Bh

i,j,0,B
h
i,j,1),

where:

Bh
i,j,d = I (i, j, thi , thj , d) (3)
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Let us first notice that inter-site interference damage is considered negligible when
d exceeds 1 channel. Secondly, co-site and co-station constraints are constant during
all the periods since they refer to network architecture and not to clients demand.

On the basis of those graphs, the quality of a frequency plan is assessed on both
a global and local level. The global quality of the frequency plan refers to the total
interference recorded on the network over the whole time period. The local quality
measures the performance stability of the frequency plan over the time and the space.
Three criteria are to be retained then: Total interference, frequency plan robustness,
and spatial repartition of interference. These criteria can be stated more formally as
follows.

– Total interference or global quality of the frequency plan.

F1 =
np∑

h=1

n,n∑
i=1,j=1

i �=j

∑
(fi,k,fj,p)

k∈[1..MAi ]
p∈[1..MAj ]

Bh
i,j,|fi,k−fj,p | (4)

– Robustness of the frequency plan through time periods. It aims to minimize the
worst performance of the frequency plan over the time.

F2 =
np

MAX
h=1

n,n∑
i=1,j=1

i �=j

∑
(fi,k,fj,p)

k∈[1..MAi ]
p∈[1..MAj ]

Bh
i,j,|fi,k−fj,p | (5)

– Spatial repartition of interference through the network. It aims to minimize the
maximal amount of interference on one station.

F3 = n

MAX
i=1

n∑
j=1
j �=n

np∑
h=1

∑
(fi,k,fj,p)

k∈[1..MAi ]
p∈[1..MAj ]

Bh
i,j,|fi,k−fj,p | (6)

According to this model, the objective of the channel assignment problem is to find
the fi,k values which satisfy co-station and co-site constraints and minimize F1,F2
and F3. The frequency plan will be then operational during all periods. The general
scheme of problem modeling and solving is described in Fig. 3.

The computational complexity of the standard FCA problem has been studied in
several works [1, 6, 8]. From these studies we know that:

1. FCA, reduced to the minimization of the function F1, is NP-complete.
2. The general problem of finding a feasible solution satisfying co-station and co-site

constraints is NP-complete.
3. The problem of deciding whether an instance of the problem presents a feasible

solution is NP-complete.

In addition, the non-linear nature of the F2 and F3 criteria increases the diffi-
culty of the problem. Moreover, previous studies have also shown the difficulty of
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Fig. 3 Fixed channel assignment model: from traffic data evolution over np periods, np constraints graphs
are built. Constraints graphs are used to construct the fixed frequency plan

the practical solving of the FCA. For these reasons, heuristics constitute a natural and
practical solution approach for tackling FCA with the dynamic model.

Next section presents our hybrid heuristic algorithm for solving the FCA problem.
This algorithm combines genetic search and a Tabu algorithm and uses the above
quality functions (F1,F2 and F3) as part of its evaluation function.

4 Genetic Tabu search for FCA (GTS)

Our solution method is based on the hybrid evolutionary framework which combines
local search with population based evolutionary algorithms. This framework, which
becomes more and more popular in recent years, has been applied with great success
to several well-known NP-hard combinatorial problems [11, 24, 26, 32]. Such a hy-
brid evolutionary algorithm often requires two complementary key elements: a pow-
erful local search operator and a problem specific crossover operator. The crossover
operator is used to create new and potentially interesting solutions, which are further
improved by the local search operator.

For the channel assignment problem, we developed such a hybrid algorithm, which
embeds a Tabu search (TS) procedure [14] within a genetic algorithm [15]. In what
follows, we give a detailed presentation of this genetic Tabu search (GTS) algorithm.

4.1 Individual representation and fitness evaluation

A frequency plan is coded by a vector 〈f1,1, . . . , f1,MA1 , f2,1, . . . , f2,MA2 , . . . ,
fN,1, . . . , fN,MAN

〉, representing frequencies assigned to each station. Each element
fi,k designates the kth frequency assigned to the station Si . The search space of a
problem corresponds therefore to all such configurations where fi,k ∈ [1..nf ].

Co-station and co-site constraints are handled using a penalty-based approach.
The evaluation (fitness) function corresponds to a linear sum of C1,C2 and the three
criteria F1,F2 and F3 (7). To emphasize their importance, co-station and co-site con-
straints are weighted by a large value ω. This value is chosen in such a way that
constraints satisfaction has always priority over optimization criteria. To that end, the
value of ω is set to the greatest evaluation of the function F1 + F2 + F3 in the ini-
tial population. Since this value is necessarily very high during the initial generation,
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Fig. 4 Working scheme of the
Genetic Tabu search algorithm

this ensures us that the value of ω would be large enough to favour hard constraints
satisfaction. Notice that the ω value is kept fix during the search.

F = ω

(
N∑

i=1

MAi−1∑
k=1

MAi∑
p=k+1

C1(i, k,p) +
N−1∑
i=1

N∑
j=i+1

i,j∈same site

MAi∑
k=1

MAj∑
p=1

C2(i, j, k,p)

)

+ F1 + F2 + F3 (7)

The objective of the FCA algorithm is thus to find the fi,k values that minimize
the function F . Notice that F1, F2 and F3 have a unit weight. This is for the following
reasons.

– The three functions are of identical nature. All correspond to an interference quan-
tity.

– The normalization of the functions will be prejudicial to F1 criterion since it corre-
sponds to the biggest values. However the analysis of the three criteria shows that
the decision maker is principally interested in improving the global quality of the
network.

4.2 General scheme of the GTS algorithm

Starting from an initial population of random frequency plans (the population size is
fixed to 10 for all the referenced tests), the genetic Tabu search algorithm performs a
series of cycles called generations. At each generation, two frequency plans are se-
lected from the current population and combined with a problem specific crossover
operator (section D). Then the two generated frequency plans are mutated by a
Tabu search operator (section E) before being inserted into the population. Figure 4
presents schematically the working of the algorithm.

4.3 Selection and replacement operators

To favor the selection of good solutions, population individuals are ordered according
to their fitness so that the best solution (lower fitness) has the rank 0, the second
best solution obtains the rank 1 and so on. The worst solution will thus obtain the
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biggest rank (population size −1). Let ri be the rank of the individual i, the selection
probability of i is then calculated following (8).

SPi = (Pop_size − ri) × 2

Pop_size × (Pop_size + 1)
(8)

Rank based selection has a major advantage to regulate selection pressure and
hence allows better convergence of the algorithm [36]. By convergence we mean the
stagnation state of the search process caused by the resemblance between population
individuals. Using the rank based selection, we ensure that the selection probability
of the best solution doesn’t exceed the value 2/(Pop_size + 1). Therefore reproduc-
tion rate of parents in further generations is limited and convergence process is bet-
ter controlled. In addition, ranking eliminates the need for fitness scaling when the
individual’s fitness within the population converges to a narrow interval and hence
selection pressure is maintained during the search. This approach shares similarities
with the fitness entropy based method used in [35].

New individuals, created by crossover and then mutation (next 2 sections), are
inserted in the population in place of other solutions (not necessarily their parents).
Replacement favors the elimination of bad frequency plans. Equation (9) gives the
replacement probability of an individual i.

RPi = ri × 2

Pop_size × (Pop_size − 1)
(9)

Let us notice that the best frequency plan is never replaced. This elitism selection
strategy ensures that the best solution found during the search will not be lost and
will continue to contribute to further evolutions.

4.4 Crossover operator

Several crossover operators are available in the literature. However, in several cases
the use of domain-specific operators has given better results. The analysis of the fre-
quency plan structure shows the importance of the notion of vicinity. In fact, the
quality of a frequency plan depends on the frequencies distribution at the local level
(cell, site, district, etc. . . . ). A good crossover operator should allow the conserva-
tion of the conflict-free assignments of the parent solutions and help the resolution of
conflicting assignments.

For that reason, we have adopted the so-called geographic crossover described in
[34], which is specially designed for channel assignment. This crossover operator
works as follow. Given two frequency plans, the first step of the crossover consists in
taking randomly a reference station Si . Let V (Si) be the set of co-site and interfering
stations of Si(Sj interferes with Si if ∃d and h /Bh

i,j,d �= 0 or Bh
j,i,d �= 0 where Bh

i,j,d

definition is given in (3). Then the frequencies assigned to stations Si ∪ V (Si) are
exchanged between the two parents generating two new frequency plans (Fig. 5). In
that manner, this geographic crossover helps conserve the building blocks constitut-
ing parent codes. This is made by swapping information related to the local resolution
of interference between stations.
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Fig. 5 Example of crossover between two frequency plans. Values of a vector present the frequencies
allocated to each station. Frequencies assigned to the same station are indicated by an horizontal double
arrow. The interference risks are: S1 interferes with S2, S1 interferes with S4, S2 interferes with S3, S3
interferes with S5 and S4 interferes with S5. In the example we consider that the reference station is S3
and since it interferes with S2 and S5, the frequencies assigned to stations {S2, S3, S5} are exchanged

We give here the skeleton of crossover operator.

Crossover (Frequency plan parent1, parent2)
Begin

St_ref = random(nbstations)
Neighbors_St = St_ref + co_site_station(St_ref) +

interfer(St_ref);
for each i belong to Neighbors_St

for each k an assignment of i
offspring2[i, k] := parent1[i, k];

offspring1[i, k] := parent2[i, k];
End for

End for
for each i not belong to Neighbors_St

for each k an assignment of i
offspring1[i, k] := parent1[i, k];

offspring2[i, k] := parent2[i, k];
End for

End for
Return (offspring1, offspring2)

End.

4.5 Tabu search based mutation

For mutation, we use a local search operator based on Tabu search (TS). The pur-
pose of the TS operator is to improve iteratively the frequency plans generated by
the crossover before inserting them into the population. The TS operator shares some
similarities with the Tabu algorithm described in [17] which is designed for solving
the FAP based on the static traffic model. However, our TS operator distinguishes
itself by some specific features: the way of assessing the fitness of frequency assign-
ments, the manner that the moves are chosen and the role of the Tabu list.

Tabu search based operator corresponds to a kind of macro-mutation where at each
iteration (also called a move), a conflicting assignment (i, k) representing the kth
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Fig. 6 Common Tabu list
mechanism

frequency assigned to station Si , is chosen and its current frequency value is replaced
by another value. More precisely, these choices are taken following two steps.

1. The first step consists in choosing the assignment to change. For that end, a vio-
lation score is first calculated for each assignment (i, k). This score measures the
contribution of this assignment to the recorded interference. The violation scores
are used as a way to locate the problematic affectations. Equation (10) gives the
expression of the violation score of the kth frequency assigned to station Si . Once
the violation scores are calculated, we choose an assignment according to (11),
which describes the choice probability of an assignment (i, k). Therefore assign-
ments with a high violation score will have more chance to be mutated.

SCOREi,k = ω ×

⎛
⎜⎜⎜⎜⎜⎝

MAj∑
p=1
p �=k

C1(i, k,p) +
N∑

j=1
j �=i

i,j∈same site

MAj∑
p=1

C2(i, j, k,p)

⎞
⎟⎟⎟⎟⎟⎠

+
np∑

h=1

N∑
j=1
j �=i

∑
fjp

p∈[1..MAj ]

Bh
i,j,|fik−fjp | (10)

GSPi,k = SCOREi,k

/
N∑

j=1

MAj∑
p=1

SCOREj,p (11)

2. After the choice of an assignment (i, k), a new frequency value f ′
i,k is affected to

it to replace the current value fi,k . The chosen f ′
i,k corresponds to the frequency

value leading to the best frequency plan and not being forbidden by the Tabu list.
The elements (i, k, fi,k) and (i, k, f ′

i,k) are then added to the Tabu list.

This process is repeated for a given number of iterations noted TSML.
The Tabu list is implemented as an attributive memory, where certain attributes of

the frequency plan are stored instead of the full solution. The Tabu list is then handled
as a FIFO list. The number of iterations that a move is considered Tabu (Tabu tenure)
is static and corresponds to the Tabu list size.

The new Tabu elements have two different roles. The element (i, k, fi,k) prevents
the algorithm from re-visiting previously seen solutions. The element (i, k, f ′

i,k) pre-
vents the other individuals from re-exploring the same search area since the Tabu list
is shared by all the individuals as shown in Fig. 6.
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The number of TS iterations is determined by the TSML (Tabu search based Mu-
tation Length) parameter. The result of the Tabu search based mutation is the best
frequency plan encountered during the Tabu search cycle.

We give below the main loop of the Tabu search based mutation followed by the
genetic Tabu search algorithm. The main procedure is stopped when the genetic Tabu
search reaches a given number of iterations. During the experimental tests, this num-
ber is chosen in such a manner that it guaranties the same running time for all tested
algorithms. Notice that a criterion like “stagnation state condition” is not able to give
such a guarantee.

TabuSearchOperator(Frequency plan fp)
Begin

Best_fp := fp;
CalculateScores(fp);
for iter := 1 to TSML {Tabu Search based mutation length}

(i, k) := ChooseAssignment(fp);
f_old := fp[i, k];
f_new := ChooseFrequency(fp, i, k);
AddToTabuList(i, k, f_old);
AddToTabuList(i, k, f_new);
fp[i, k] := f_new;
UpdateScores(fp);
If BetterThan(fp,Best_fp)
then Best_fp = fp; End if

End for
End.

Genetic Tabu Search
Begin

P := RandomInitPopulation(Pop_size);
For g := 1 to NbGenerations

(p1,p2) := SelectParents(P)
with a Pc probability do

(f1,f2) := Crossover(p1,p2)
otherwise f1 := p1; f2 := p2;
f1 := TabuSearchOperator(f1);
f2 := TabuSearchOperator(f2);
(v1,v2) := SelectVictims(P);
ReplaceBy(v1,f1);
ReplaceBy(v2,f2);

End for
End.

4.6 Synergy between Tabu search based mutation and crossover

As the generations go by and thanks to selection and crossover mechanisms, the pop-
ulation individuals tend to present the same properties. Considering the directive as-
pect of the Tabu search based mutation, similar individuals are induced to follow the
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same itinerary. Consequently, this involves an exploration redundancy and therefore
the slowness and the loss in diversity of search. To overcome this problem, Tabu list
stores the recent evolution trace of all population individuals. The itinerary followed
by an individual is avoided for the others involving the multiplicity of optimization
itineraries. The crossover operator appears then as the only mechanism to share and
exchange experience between individuals. In other words, the crossover operator al-
lows the combination of various search itineraries.

Crossover operator can be considered as an exploitation tool in our hybrid algo-
rithm. It leads to individuals that bring no diversity into the population since all the
genes are inherited from one of parents but at the same time offspring individual can-
not be considered in the local neighbor of their parents since they are so different
of each parent taken separately. The Tabu search based mutation operator, as for it,
proceeds locally by operating small modifications of the solutions. The use of the
common Tabu list mechanism allows not only to avoid the exploration of already
visited area by the same individual but also all areas visited by the other individuals.
Therefore, despite that the Tabu search based mutation is a local search procedure it
remains a good way for exploration since it has a global view of the search state given
by the Tabu list. Consequently, there is no redundancy in the roles of crossover and
mutation operators. The mutation works as a life cycle during which each individual
acquire an experience that enriches the group experience. This is possible thanks to
the common Tabu list that prevents each individual from following the same search
itinerary. The crossover operator appears here as the unique way to exchange this
experience between individuals.

5 Tabu search for FCA (TS)

In order to assess the hybridizing effect of our genetic Tabu search algorithm, we
have also developed a separate Tabu search algorithm [14, 37]. This algorithm is
basically the same as the Tabu search based mutation (Sect. 4.5) since the most im-
portant components are shared (individual representation, evaluation function, Tabu
list management etc.) Tabu search is a meta-heuristic well known for its ability to
escape from local optima. The last decade has seen the multiplication of works on
Tabu search in the field of telecommunications and notably radio networks [25, 39].
Tabu search is a local heuristic based on the four principals:

– Define the manner to construct the neighborhood of a solution and the kind of
move to use.

– An interdiction rule of a set of moves (considered Tabu) generally to prevent search
cycles.

– A rule of choosing one solution among the set of neighbors.
– An aspiration criterion allowing the use of a move even if it is Tabu.

5.1 Initial solution

The Tabu search algorithm starts from an initial solution generated using an adap-
tation of the DSATUR procedure [2]. The algorithm assigns frequencies to stations
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progressively. At each step, we choose a free assignment (i, k) having a minimal
number of allowed frequencies (frequencies satisfying all interference constraints:
co-station, co-site and inter-site). Among all the allowed frequencies, we choose the
one fi,k that has the minimal index. If there is no allowed frequency, we choose then
one frequency that satisfies co-station and co-site constraints and minimizes inter-site
interferences.

5.2 Neighborhood

For a given frequency plan, the set of neighbors corresponds to all possible frequency
plans which can be obtained by changing the value fi,k of the kth frequency of a
station i. Consequently, each move is represented by a triplet (i, k, f ) correspond-
ing respectively to the station, the assignment and the new frequency value. At each
iteration of the Tabu search algorithm, the neighborhood of the current solution is
examined. Since the number of neighbors may be very high (W × (nf − 1) where
W = ∑N

i=1 MAi ) we adopt an incremental evaluation technique [10]. In this tech-
nique, a nf × W matrix is incrementally calculated. The elements of the matrix
represent the cost variation (called also move value) for each possible move of the
current solution. At each step, the non-Tabu neighboring solution with the best cost
variation is selected and becomes the current solution. If a neighbor is better than
the best solution found so far, this neighbor is still selected even if it is forbidden by
the Tabu list. After a move, the matrix is updated according to this change and the
selected move is inserted in the Tabu list for a given number of iterations.

We give here the skeleton of the Tabu search algorithm.

Tabu Search
Begin

S = DSATURE;
CalculateMatrix;
For it := 1 to nb_iteration_max

(i, k, f_new) := ChooseMove();
InsertInTabuList(i, k, fi,k);
S := NextSolution(S, i, k, f );
UpdateMatrix;

End for
End.

6 Genetic local search for FCA (GLS)

In order to assess the effect of the Tabu search based mutation in the hybrid genetic
algorithm, in particular to see how the common Tabu list impacts on the search; we
have discarded the common Tabu list, the other components remaining the same. In
this case, the initial Tabu search based mutation degenerates to a simple descent based
mutation. As for the initial genetic Tabu search algorithm, this mutation operator car-
ries out iterative changes on a single frequency plan. At each iteration, the choice of
the assignment to change is made on the basis of violation scores. However, changes
are no more recorded in the Tabu list. We give here the algorithmic scheme of the
descent mutation operator, the main algorithm being the same.
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DescentMutation(Frequency plan fp)
Begin
Best_fp := fp;
CalculateScores(fp);
for i := 0 to ML {Mutation Length}

(i, k) := ChooseAssignment(fp);
f_old := fp[i, k];
f_new := ChooseFrequency(fp, i, k);
fp[i, k] := f_new;
UpdateScores(fp);

End for
If BetterThan(fp,Best_fp) then
Best_fp := fp;
End if

End.

7 Genetic Tabu search with no common list for FCA (GTS_NCL)

To support the comparison we also compare our GTS algorithm with an identical
algorithm noted GTS_NCL. The common Tabu list is replaced by an individualized
short-term Tabu list. More precisely, at the beginning of each Tabu search based mu-
tation; the Tabu list is set to empty. Therefore each mutation execution is completely
independent of the rest of the search.

TabuSearchOperator(Frequency plan fp)
Begin

Best_fp := fp;
CalculateScores(fp);

TabuList = {};
for iter := 1 to TSML {Tabu search based mutation length}

(i, k) := ChooseAssignment(fp);
f_old := fp[i, k];
f_new := ChooseFrequency(fp, i, k);
AddToTabuList(i, k, f_old);
AddToTabuList(i, k, f_new);
fp[i, k] := f_new;
UpdateScores(fp);
If BetterThan(fp,Best_fp)

then Best_fp = fp; End if
End for

End.

8 Experimental results

Experimental tests presented in this section have two purposes. At the algorithmic
level, we assess the performance of the Genetic Tabu algorithm and the influence
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of algorithmic parameters on the search. In particular, we study the impact of Tabu-
based mutation on the hybrid algorithm. At the modeling level, we compare fre-
quency plans generated using our traffic model with those generated using the classi-
cal 2BH modeling [21].

Tests are carried out on both fictitious and real world problems and are accessible
at http://www.info.univ-angers.fr/pub/hao/COAP2010.html. The two fictitious FCA
instances used in our experimentation represent 63 stations extracted from a real net-
work B . The word “fictitious” refers only to the data of traffic evolution. The two
instances have the following characteristics: 225 frequencies to assign, traffic data
over 6 periods and around 1100 inter-site constraints. Each instance represents a dif-
ferent class of traffic evolution that allows us to study the performance of dynamic
traffic modeling on different traffic evolution scenarios.

The first network, B_63_1, represents synchronous and proportional rises and falls
of traffic on the entire network. The second instance, B_63_2, emphasizes the mobil-
ity aspect of clients and presents two distinct areas. The rise of traffic on one area is
accompanied by a fall of traffic intensity on the other area.

The third network (Network D) uses real traffic evolution data. This network is
characterized by 639 stations, 1411 frequencies to assign, about 30000 inter-site con-
straints and traffic data over 13 hours (7:00–20:00). The studied period corresponds
to the overloaded hours of the network, the other non-problematic hours being ne-
glected.

In addition to these three instances, two other instances are used which are
constructed by logarithmic scaling of the weights of B_63_1 and B_63_2 graphs
(B

′h
i,j,d = log10(B

h
i,j,d × 100 + 1)). We note by B_63_1_log and B_63_1_log these

problem instances. Logarithmic scaling allows homogenizing of interference weights
and therefore the study of the performance of algorithms under homogeneous edges
weights.

Finally we have implemented a random graph generator (RGG). This tool allows
us to generate a graph by specifying the number of stations, the number of periods
as well as the density and the heterogeneity degree of the graph. The density of the
graph is taken from [0, 1] measuring the probability that two different stations are
interfering. The heterogeneity parameter is a value between [0, 1] defining the het-
erogeneity level of the graph weights. Four problem instances are generated using the
RGG; all these instances are composed of 50 stations with 5 periods. The first instance
(RGG_50_1) presents a density of 0.5 and a heterogeneity level of 0.2. The second
one, RGG_50_2 has a density of 0.2 and a heterogeneity level of 0.5. RGG_50_3 has
a density of 0.2 and a heterogeneity level of 0.2. The fourth instance has a density of
0.2 and a heterogeneity level of 1.0.

For all these networks, we consider that the same scheme of traffic evolution will
recur in the future days. The frequency plan that fits the traffic evolution over the
studied period will fit the traffic of the network in the future days until an important
traffic evolution occurs. At that moment, the frequency plan will be changed.

http://www.info.univ-angers.fr/pub/hao/COAP2010.html
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Table 1 Average and standard
deviation on 30 runs of the
solutions costs found by the
GTS in function of TLS. The
hard constraints are always
satisfied by all the runs

TLS B_63_1 B_63_2

Mean SD SD % Mean SD SD %

20 557718 25045 4.6 504325 29247 5.8

50 546582 31105 5.6 498448 20491 4.1

100 532261 26826 5.0 445287 28418 6.4

200 523786 29295 5.5 428894 22796 5.3

500 549305 26150 4.8 460561 21645 4.7

1000 550681 29728 5.4 485127 25230 5.2

2000 555640 30868 5.6 508254 29714 5.8

Table 2 Average and standard
deviation on 30 runs of the
solutions costs (Function F)
found by the GTS in function of
TSML. The hard constraints are
always satisfied by all the runs

TSML B_63_1 B_63_2

Mean SD SD % Mean SD SD %

5 553125 26627 4.8 522485 15868 3.3

10 529566 16121 3.1 491515 14548 2.9

30 523486 18059 3.4 428894 21106 4.9

100 533429 17816 3.3 436773 15872 3.6

200 540882 16981 3.1 438906 13371 3.1

500 547281 29309 5.3 465713 17911 3.8

8.1 Genetic tabu search performance

The quality of the best solution found in the final population is taken as the final
result of a search. To eliminate possible implementation effects, we do not consider
the solving speed. Thus search may be run for several hours.

8.1.1 Influence of search parameters

In this first part of the study, we are interested in studying the influence of two most
important specific parameters for our genetic Tabu search algorithm: Tabu list size
or Tabu tenure (TLS) and Tabu search based mutation length (TSML). To observe the
influence of TLS on the search we vary its values and we fix the other parameters.
Table 1 gives for each value of TLS the average (Mean) and the standard deviation
(SD) on 30 runs of the solutions costs (function F) found by the GTS. The other
parameters are fixed as follow: population size = 10, generation number = 100,000,
TSML = 30, Pc = 0.3. Population size and Pc values are fixed according to a primary
test phase showing that given its intensification and diversification quality, the GTS
algorithm performs well under small population size and moderate use of crossover.

The influence of TSML on the search is analyzed in Table 2. In this case, we
keep the same values of population size, generation number and crossover probability
and we fix the value of TLS to 200. Let us mention that hard constraints are always
satisfied for every tested value and for all the runs.

From Table 1, we observe that moderate values of TLS (lines corresponding to
TLS = 100, 200 and 500) give the best results. In fact, a low value of TLS deteriorates
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Fig. 7 Evolution profiles
according to different values of
TSML for the B_63_1 instance.
Each curve represents an
average of the evolution
tendencies over 10 runs
corresponding to the same
TSML value. The x-axes
(number of generations) and
y-axes (fitness function F) are
scaled in log

the exploration quality of the search. A high value of TLS slows down the search
convergence and restricts its freedom of movement.

In the same way, from Table 2, we observe that the Tabu search length has an
important influence on search performances. When Tabu search length is low, Tabu
search mutation has no enough time to improve the quality of new solutions generated
by crossover. For high values of TSML (against Tabu list size), Tabu search based
mutation leads to premature convergence of the search.

Figure 7, presenting the evolution profiles of GTS with different values of TSML
parameter, confirms this hypothesis. In fact, the curve corresponding to TSML values
200 shows a fast and premature convergence of search (at generation 1000). The
figure shows also that the best solutions are obtained for average values of TSML,
which allows a better evolution. Notice that the convergence phenomenon of search is
not clearly observable because x-axe and y-axe are scaled in log. Despite of this, one
may still observe the difference among the evolution curves at the first generations of
the search.

The values of standard deviation given in Tables 1 and 2 indicate the relative sta-
bility of the GTS algorithm, since the average deviation of the results doesn’t exceed
5.8% in the worst case.

In Fig. 8, we underline the existing relationship between Tabu search length and
Tabu list size. The horizontal axe represents the average quality on 30 runs of obtained
solutions. The average is calculated using the same values of the parameters TLS
and TSML. Each pair of bars in the histogram corresponds to the values of the two
parameters TLS and TSML chosen for the corresponding experience.

We can observe, for example, that for TLS = 500, the ideal value of TSML is 100,
whereas the ideal value is about 200 or 500 when TLS = 2000. Therefore, the choice
of best values of the two analyzed parameters must obey to a certain rule of propor-
tionality. This proportionality must be made in such a manner to allow the sharing of
experience between population individuals, experience sharing being ensured by the
Tabu list mechanism.
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Fig. 8 Quality F in function of Tabu list size and Tabu search length. Abscises correspond to the average
cost obtained by each pair of parameters values over 30 runs. Tests are carried out on the B_63_1 instance

8.1.2 Comparison with TS, GLS and GTS_NCL

The performance of the Genetic Tabu Search (GTS) algorithm is evaluated on the
nine problem instances described before. The results are compared with those ob-
tained by Tabu search algorithm (Sect. 5), Genetic Local Search (Sect. 6) and Ge-
netic Tabu search without common Tabu list (Sect. 7). Table 3 gives for each instance
and for each algorithm the quality of obtained results over 30 runs. The column VC
corresponds to the average number of violated co-station and co-site constraints. The
columns AVG, MIN and SD represent the average, the minimum and the standard
deviation of the sum F1 + F2 + F3. On the other side, TS algorithm implements de-
terministic procedures and therefore only one run is performed on each instance. The
performances of the algorithm are represented by the columns VC and F1 +F2 +F3.

The first remark is that the Genetic Local Search algorithm performs the worst.
For the nine instances it doesn’t satisfy even the hard constraints. This shows clearly
the importance of Tabu list mechanism. Tabu search alone achieves better solutions
but these results are considerably improved by introducing Tabu search mechanisms
into a genetic search.

Therefore, GTS and GTS_NCL prove their efficiency compared with the com-
peting methods. At the same time, we observe that GTS algorithm performs better
than GTS_NCL. This shows the interest of the common Tabu list with respect to the
individualized Tabu list as in GTS_NCL. The experimental parameters for the nine
experiments are: Population size = 10, TSML = 30, TLS = 500, Pc = 0,3.

Finally, notice that GTS, GLS and GTS_NC have the same time complexity even
if GLS requires less memory given that it doesn’t require a tabu list.

8.2 Dynamic modeling performances

The purpose of this section is to compare our dynamic scheme of fixed channel as-
signment with the classical scheme based on 2BH traffic data from an operational
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Table 3 Comparison over 30 runs (10 runs for the instance D) of solutions given by GTS with common
Tabu list, GTS with no common Tabu list, GLS and Tabu search for nine problem instances. For each
method, we give the average number of violated costation and cosite constraints (VC) as well as the
average (AVG), the standard deviation (SD) and the minimum (MIN) of the sum F = F1 + F2 + F3

GTS_CL GTS_NCL

VC AVG MIN SD VC AVG MIN SD

B_63_1 0 548327 503832 27052 0 555786 518789 24692

B_63_2 0 489856 423864 25522 1.4 605308 538202 66235

D 0 1393268 1339886 30862 0 1402166 1351928 42117

B_63_1_log 0 20022 19688 215 0.3 20246 19241 1119

B_63_2_log 0 19590 19246 270 0 19447 18678 439

RGG_50_1 0 12202501 11903538 1273441 0 12102330 11940577 1106978

RGG_50_2 0 6546256 6358412 130154 0 6565898 6373658 122767

RGG_50_3 0 4784705 4625048 98654 0 4810656 4650450 110548

RGG_50_4 0 8964372 8452504 157898 0 9161055 9132544 121230

GLS TS

VC AVG MIN SD VC F1 + F2 + F3

B_63_1 1.3 713941 610576 81311 1 518558

B_63_2 1.5 781175 550439 291000 0 510530

D 2.3 2710251 2388847 61911 0 1624301

B_63_1_log 1 21648 20309 661 0 19720

B_63_2_log 1.1 21376 20421 701 0 18300

RGG_50_1 0 12261814 12135588 1183420 0 12452360

RGG_50_2 0 6575387 6367725 141153 0 6570951

RGG_50_3 0 4965218 488056 128845 0 4973022

RGG_50_4 0 9361770 9220254 184200 0 9046809

point of view. Comparison between dynamic traffic modeling and 2BH modeling is
made on the basis of lost traffic, measured in Erlang, one Erlang corresponding to
one hour of communications. We use quality evaluator of PARCELL©2 to measure
the lost traffic produced by a given frequency plan. More precisely, given the stations
parameters, geographical database, traffic data and a frequency plan, the quality eval-
uator calculates the lost traffic quantity on each station. Loss in traffic is measured in
terms of FER (Frame Erasure Rate). The communication is considered bad if this rate
exceeds a given threshold. According to the required radio quality, we distinguish 3
different thresholds: 2%, 4% and 7%.

The classical static model 2BH uses a single interference graph G2BH where the
weights are calculated on the basis of 2BH traffic data. The objective function corre-
sponds then to satisfy the imperative constraints and minimizes inter-site interference.

2Engineering tool for design of mobile radio network, ORANGE all rights reserved.
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Table 4 Results of classical and dynamic traffic modeling for network D_639_1

Lost traffic at 2%
FER (Erl)

Lost traffic at 4%
FER (Erl)

Lost traffic at 7%
FER (Erl)

Period Traffic Classical Dynamic Classical Dynamic Classical Dynamic

7:00–8:00 504.11 5.16 4.58 2.91 2.45 1.62 1.32

8:00–9:00 1170.02 16.74 16.06 9.39 8.57 5.06 4.47

9:00–10:00 1747.71 31.14 31.04 17.47 16.65 9.37 8.93

10:00–11:00 2017.26 37.80 36.69 21.38 19.58 11.57 10.29

11:00–12:00 2177.03 42.14 42.42 23.92 22.56 12.95 11.67

12:00–13:00 2104.73 39.05 39.14 21.97 20.81 11.89 10.81

13:00–14:00 1863.42 32.94 32.95 18.43 17.98 10.13 9.36

14:00–15:00 1953.59 36.20 35.90 20.26 19.17 10.91 10.05

15:00–16:00 1984.12 38.46 37.66 21.81 20.39 12.01 10.60

16:00–17:00 2174.47 44.67 44.03 25.14 23.80 13.96 12.50

17:00–18:00 2521.20 52.77 52.87 29.37 29.35 16.37 15.00

18:00–19:00 2792.91 62.51 62.05 34.98 34.74 19.50 17.85

19:00–20:00 2743.83 54.97 54.93 30.65 30.03 16.93 15.72

Total 490.46 488.62 275.24 264.49 151.41 137.66

Communication gain 1.84 10.75 13.75

Maximum per period 62.51 62.05 34.98 34.74 19.50 17.85

Maximum per station 18.31 16.99 12.86 13.35 9.57 8.14

We give in (12) the objective function used in 2BH model.

F2BH = ω

⎛
⎜⎜⎜⎜⎝

N∑
i=1

MAi−1∑
k=1

MAi∑
p=k+1

C1(i, k,p) +
N−1∑
i=1

N∑
j=i+1
i,j∈

same site

MAi∑
k=1

MAj∑
p=1

C2(i, j, k,p)

⎞
⎟⎟⎟⎟⎠

+
∑

(Si ,Sj )
i<j∈[1..N]

∑
(fi,k,fj,p)

k∈[1..MAi ]
p∈[1..MAj ]

B2BH
i,j,|fi,k−fj,p | (12)

Table 4 shows computational results of classical and dynamic traffic modeling on
the real world problem D. To obtain this table, we generate two frequency plans using
the GTS algorithm. The first is built on the basis of classical traffic modeling (12).
The second is built on the basis of our dynamic traffic modeling (7). The perfor-
mance of each frequency plan, in terms of lost traffic, is estimated for each period
using PARCELL© simulator. We present also at the lower part of the table: the total
lost traffic (column Total), the communication gain (difference between classical and
dynamic model), the maximum lost traffic for one time period (robustness criteria)
and finally the maximum lost traffic for one cell. Information is given for each of the
three quality thresholds (2%, 4% and 7%).



504 H. Mabed et al.

The experiments were carried out using the same parameters of the GTS algo-
rithm: 100,000 generations for a population of 8 solutions with a crossover rate of
0.3 and Tabu search length of 30. From Table 4, we notice that the dynamic model
gives better frequency plans both in terms of global traffic capacity and robustness.
Indeed, for the three thresholds, we get a gain of communication ranging from 1.84
and 13,75 Erlang.

9 Conclusions

This paper proposed an in-depth study for the channel assignment problem from both
a modelling and solution point of view. The contribution of this paper is twofold.
First, we proposed a dynamic traffic model for the fixed channel assignment prob-
lem. Contrary to classical models such as 2BH that consider the traffic as static data,
the proposed model takes into account both temporal and spatial evolution of traffic,
leading thus to a much more accurate and robust characterization of traffic. This dy-
namic model allowed us to introduce two new optimization criteria: frequency plan
robustness and spatial repartition of interference, in addition to the classical interfer-
ence criterion. The proposed model gives a new basis for developing more effective
solution methods.

For the solution purpose, we developed a powerful Genetic Tabu search algo-
rithm, which is mainly characterized by a problem specific crossover, an effective
Tabu search mutation and a Tabu list shared by the individuals of the population. Ex-
tensive studies were carried out to study the behavior of this hybrid algorithm and
the influence of its parameters. Based on fictitious and real data, experiments were
realized to assess the performance of the genetic Tabu search algorithm and its un-
derlying dynamic traffic model. Computational results show that using the proposed
traffic model, the Genetic Tabu search algorithm gives better frequency plans in terms
of the three quality criteria used. The gain of communications was also measured,
showing a clear decrease of traffic lost. Finally, Genetic Tabu search was shown to
dominate (unsurprisingly) the Tabu search algorithm alone and the hybrid algorithm
with no shared Tabu list.

This proposed model introduces three optimization criteria. In this work, we used
a simple penalty-based approach to deal with these criteria. An interesting alternative
worth of investigation is the multi-criteria approach that is gaining recently much
research efforts. Finally, the model itself may be further enriched to give different
priority to periods (professional and private communication).

Acknowledgements We are grateful to the referees for their highly insightful comments and sugges-
tions, which help us to improve the presentation of the paper. This work is partially supported by France
Telecom R&D (Orange), which is acknowledged.

References

1. Aardal, K.I., van Hoesel, C.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.: Models and solution
techniques for the frequency assignment problem. J. 4OR 1(4), 261–317 (2003)



Genetic Tabu search for robust fixed channel assignment 505

2. Brélaz, D.: New methods to color vertices of graph. Commun. ACM 22, 251–256 (1979)
3. Chan, T.H., Palaniswani, M., Everitt, D.: Neural network-based dynamic channel assignment for cel-

lular mobile communication systems. IEEE Trans. Veh. Technol. 43(2), 279–288 (1994)
4. Chang, K.-N., Kim, S.: Call blocking performance of new dynamic channel assignment scheme in

cellular radio networks. In: Proc. of IEEE VTC, pp. 198–202 (1996)
5. Chen, L., Yoshida, S., Murata, H.: A dynamic channel assignment algorithm for voice and data inte-

grated TDMA mobile radio. In: Proc. of IEEE VTC, pp. 213–217 (1996)
6. Colombo, G.: A genetic algorithm for frequency assignment with problem decomposition. Int. J. Mob.

Netw. Des. Innov. 1(2), 102–112 (2006)
7. Crescenzi, P., Gambosi, G., Penna, P.: On-line algorithms for the channel assignment problem in

cellular networks. Discrete Appl. Math. 137, 237–266 (2004)
8. Eisenblatter, A., Grotschel, M., Koster, A.: Frequency planning and ramifications of coloring. ZIB-

Report 00-47, December (2000)
9. Fischetti, M., Lepschy, C., Minerva, G., Romanin-Jacur, G., Toto, E.: Frequency assignment in mobile

radio systems using branch-and-cut techniques. Eur. J. Oper. Res. 123, 241–255 (2000)
10. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. In: Laporte, G., Osman,

I.H., Hammer, P.L. (eds.) Annals of Operations Research. Metaheuristics in Combinatorial Optimiza-
tion, vol. 63 (1996)

11. Galinier, P., Hao, J.-K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4),
379–397 (1999)

12. Gamst, A.: A resource allocation technique for FDMA systems. Alfa Freq. 57(2), 89–96 (1988)
13. Ghosh, S.C., Sinha, B.P., Das, N.: Channel assignment using genetic algorithm based on geometric

symmetry. IEEE Trans. Veh. Technol. 52, 860–875 (2003)
14. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Boston (1997)
15. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-

Wesley, Reading (1989)
16. Hale, W.K.: Frequency assignment: theory and application. Proc. IEEE 68(12), 1498–1514 (1980)
17. Hao, J.K., Dorne, R., Galinier, P.: Tabu search for frequency assignment in mobile radio networks.

J. Heuristics 4(1), 47–62 (1998)
18. Hellebrabdt, M., Lambrecht, F., Mathar, R., Niessen, T., Starke, R.: Frequency allocation and linear

programming. In: Proc. of IEEE VTC, vol. 48, pp. 617–621 (1999)
19. Horng, J.-T., Jin, M.-H., Kao, C.-Y.: Solving fixed channel assignment problems by an evolutionary

approach. In: Proc. of GECCO-2001, pp. 351–358 (2001)
20. Hurley, S., Whitaker, R.M., Smith, D.H.: Channel assignment in cellular networks without channel

separation constraints. In: Proc. IEEE VTC, vol. 50, pp. 1714–1718 (2000)
21. IBM Corp. User Guide IBM Prospect 8.0. IBM, Raleigh (2009)
22. Jaimes-Romero, F.J., Muñoz-Rodrìguez, D.: Channel assignment in cellular systems using genetic

algorithms. In: Proc. IEEE VTC, pp. 741–745 (1996)
23. Katzela, I., Naghshineh, M.: Channel assignment schemes for cellular mobile telecommunication

systems: a comprehensive survey. IEEE Pers. Commun. (June), 10–31 (1996)
24. Lee, W.: Mobile Communications Design Fundamentals. Wiley Series in Telecommunications. Wiley,

New York (1992)
25. Lee, Y., Kang, H.G.: Cell planning with capacity expansion in mobile communications: a Tabu Search

Approach. IEEE Trans. Veh. Technol. 49(5), 1678–1691 (2000)
26. Lee, Z.J., Lee, C.Y.: A hybrid search algorithm with heuristics for resource allocation problem. Inf.

Sci. 173, 155–167 (2005)
27. Leese, R., Hurley, S. (eds.): Methods and Algorithms for Radio Channel Assignment. Oxford Lecture

Series in Mathematics and its Applications. Oxford University Press, Oxford (2002)
28. Luna, F., Alba, E., Nebro, A.J., Pedraza, S.: Evolutionary algorithms for real-world instances of the

automatic frequency planning problem in GSM networks. In: Seventh European Conference on Evo-
lutionary Computation in Combinatorial Optimization (EVOCOP 2007). Lecture Notes in Computer
Science, vol. 4446, pp. 108–120. Springer, Berlin (2007)

29. Mac Donald, V.: Advanced Mobile Phone Service: The Cellular Concept. BELL Syst. Tech. J. (Janu-
ary), 15–41 (1979)

30. Mandal, S., Saha, D., Mahanti, A.: A real-time heuristic search technique for fixed channel allocation
(FCA) in mobile cellular communications. Microprocess. Microsyst. 28, 411–416 (2004)

31. Matsui, S., Watanabe, I., Tokoro, K.: In: A Parameter-free Genetic Algorithm for a Fixed Channel As-
signment Problem with Limited Bandwidth. LNCS, vol. 2439, pp. 789–799. Springer, Berlin (2002)



506 H. Mabed et al.

32. Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the quadratic assign-
ment problem. IEEE Trans. Evol. Comput. 4(4), 337–352 (2000)

33. Murray, K., Pesch, D.: Adaptive radio resource management for GSM/GPRS networks. In: First Joint
IEI/IEE Symposium on Telecommunications Systems Research, 27 Nov. (2001)

34. Renaud, D., Caminada, A.: Evolutionary methods and operators for frequency assignment problem.
SpeedUp J. 11(2), 27–32 (1997)

35. San José-Revuelta, L.M.: An heuristic search technique for fixed frequency assignment in non-
homogeneous demand systems. Signal Process. 88(6), 1461–1476 (2008)

36. Sastry, K., Goldberg, D.E.: Modeling tournament selection with replacement using apparent added
noise. In: Proc. of the Genetic and Evolutionary Computation Conference (2001)

37. Taillard, A., Glover, F., De Werra, D.: A User’s Guide to Tabu Search. Ann. Oper. Res. 41, 3–28
(1993)

38. Tajima, J., Imamura, K.: A strategy for flexible channel assignment in mobile communication systems.
IEEE Trans. Veh. Technol. 37(2), 92–103 (1988)

39. Vasquez, M., Hao, J.-K.: A heuristic approach for antenna positioning in cellular networks. J. Heuris-
tics 7(5), 443–472 (2001)

40. Wille, V., Multimaki, H., Irons, S.: A practical approach to channel borrowing for microcells in GSM
systems. In: Proc. IEEE VTC, pp. 144–148 (1998)

41. Zander, J.: Radio resource management in future wireless networks: requirements and limitations.
IEEE Commun. Mag. 30–36 (1997)


	Genetic Tabu search for robust fixed channel assignment under dynamic traffic data
	Abstract
	Introduction
	Fixed channel assignment in GSM networks
	Fixed channel assignment model
	Genetic Tabu search for FCA (GTS)
	Individual representation and fitness evaluation
	General scheme of the GTS algorithm
	Selection and replacement operators
	Crossover operator
	Tabu search based mutation
	Synergy between Tabu search based mutation and crossover

	Tabu search for FCA (TS)
	Initial solution
	Neighborhood

	Genetic local search for FCA (GLS)
	Genetic Tabu search with no common list for FCA (GTS_NCL)
	Experimental results
	Genetic tabu search performance
	Influence of search parameters
	Comparison with TS, GLS and GTS_NCL

	Dynamic modeling performances

	Conclusions
	Acknowledgements
	References


