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1 Introduction

The multiple depot multiple vehicle type scheduling problem can be defined as
follows. We are given a set of trips and a set of vehicles housed in several depots
of limited capacity. The fleet is heterogenous such that each vehicle belongs to a
type: urban, articulated, scholarly, sub-urban, etc. In each depot, the available
vehicles for each type are specified. A trip must be served by a certain type of
vehicle. Upgrades may be allowed or not. The goal is to assign a vehicle to each
trip such that the resulting schedule satisfies a set of constraints and minimises a
cost function (e.g. the number of scheduled vehicles).

The MDVSP is a key step in the operational planning process of public transport
companies. However, it is a challenging problem, shown to be NP-hard when two
depots at least are considered Bertossi et al (1987). The complexity of the instances
depends on several identified factors Kliewer et al (2006), such as:

e the number of timetabled trips,
e the number of depots,
e the integration or not of different types of vehicles.

Given its economic importance, the MDVSP has been studied for more than
three decades now (Bodin et al (1983); Ribeiro and Soumis (1994); Forbes et al.
(1994)). Because of the challenges evoked just before, it still arouses the com-
munity’s interest. Until now, mathematical programming methods (Gintner et al
(2005); Kliewer et al (2006); Hadjar et al (2006); Oukil et al (2007)) were mainly
employed but metaheuristic algorithms gradually earn their respect (Pepin et al
(2008); Laurent and Hao (2008)). The literature on the general MDVSP is surveyed
in Section 3. We can already say that whatever their nature, exact or heuristic,
many existing studies adopt simplifying hypotheses (e.g. homogeneous fleet) which
do not match the typical real situations. Indeed, considering a heterogeneous fleet
in the MDVSP is a challenging issue. In particular, it leads to an explosive size
increase for models that consider explicit connections between trips. In the case of
metaheuristic methods, even generating an initial solution remains a difficult task.

The real-world application that motivated our work combines some practical,
yet difficult features. First, the number of depots is very high (> 60). Second, we
must integrate many categories (> 8) of vehicles (heterogeneous fleet) with special
relations between them. Finally, the number of trips to be planned is large (at least
several hundreds).

To deal with this challenging problem, we introduce a new formulation of the
multiple depot multiple vehicle type scheduling problem as a list-graph colouring
problem, denoted L£-GCP hereafter. Since graph colouring problems have been
extensively studied, we benefit from an appealing framework that comprises the-
oretical results and effective algorithms. Based on the formulation, we propose a
solution procedure using Iterated Tabu Search able to rapidly generate good quality
solutions with respect to the number of vehicles.

The remainder of this article is structured as follows. After a description of
the MDVSP, we review the main works conducted on this problem in Section 3.
In Section 4, we present a formulation of the MDVSP as a list-graph colouring
problem. Then, we describe the main components of our Iterated Tabu Search
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algorithm. Section 6 is dedicated to computational experiments. The last section
discusses several aspects related to the real tests that were conducted.

2 Multiple Depot Vehicle Scheduling Problem

In this section, we present the MDVSP, which has the following input data:

e Trips: a set of n commercial trips, each one being characterized by an origin

and a destination with associated starting and ending times; each trip needs
to be covered by exactly one vehicle belonging to the required type (see next
points). Two trips are said compatible if after serving the first one, a vehicle
has enough time to reach the beginning of the second one. Without loss of
generality, we assume that the trips are ordered by increasing starting time.

Vehicles and depots: a fleet of p vehicles housed in m depots (1 < m < n)
of limited capacity. Each vehicle will be assigned a duty, i.e. a sequence of
consecutively compatible trips.

Categories: a vehicle belongs to a given category (or type) regarding its equip-
ments, degree of comfort and number of seats. There exists relations between
categories that govern the possible substitution of a vehicle by another one to
operate a trip. We assume a common speed for all vehicles, i.e. travel times
do not depend on the category.

Trips without passengers: before or after a commercial trip, a vehicle may
perform a connection without passengers. The trip leaving a depot to reach
the first trip of the duty is called a pull-out trip. Its symmetrical counterpart
is called a pull-in trip. The connections between consecutive trips are called
deadhead trips.

A wvalid vehicle schedule must satisfy the following five constraints:

1.

Complete cover constraints: all the trips must be covered by exactly one
vehicle.

. Category constraints: each trip must be handled by a vehicle of the re-

quired type. Substitutions are possible if they satisfy the relations among
vehicle categories.

. Feasible sequence constraints: two consecutive trips covered by a vehicle

must be compatible.

. Depot attachment constraints: the vehicles return to the depot they start

from.

. Depot capacity constraints: the number of vehicles used in each depot

does not exceed the depot capacity.

Moreover, a valid vehicle schedule needs to minimize an objective function,
composed of fixed and operational costs.
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1. Fixed cost related to scheduled vehicles: each scheduled vehicle repre-
sents a fixed and important cost.

2. Operational costs: these costs are induced by non-commercial trips, i.e.
pull-in, pull-out and deadhead trips.

The multiple depot multiple type vehicle scheduling problem consists in deter-
mining a vehicle schedule that satisfies the set of imperative constraints 1)-5) while
minimizing the objective function. The cost structure reflects the major importance
accorded to the minimisation of the number of vehicles compared to the operational
costs. Consequently, we restrict ourselves to the first objective in this paper.

3 Related Works

The literature on the MDVSP offers a range of solution methods developed in
the last three decades. These methods can be classified in two main categories:
those which assume a homogeneous fleet and those which consider different types
of vehicles.

3.1 Homogeneous Fleet

The early works on this problem focus on heuristic algorithms (see for instance
Bodin et al (1983); Carraresi and Gallo (1984); Rousseau et al (1988)). Two main
approaches coexist essentially. The first one consists in clustering the trips and
assigning them to the depot first, and then scheduling the vehicles in each depot
separately. In the second approach, the whole fleet is first scheduled as if there
were only one depot and then the resulting schedules are assigned to each depot.
This latter idea is still employed in recent studies (Pepin et al (2008); Laurent and
Hao (2008)).

Since the end of the 80’s, several exact algorithms have been proposed. The
models employed belong to one of the three following categories:

e single-commodity flow formulations (e.g. Carpenato et al. (1989); Fischetti
et al (2001)),

e multicommodity flow formulations (e.g. Forbes et al. (1994); Lobel (1997)),

e set partitioning formulations (e.g. Ribeiro and Soumis (1994); Hadjar et al
(2006); Oukil et al (2007)).

A detailed description of these models is beyond the scope of this paper. We
refer interested readers to Desaulniers and Hickman (2007) and Ceder (2007) for a
general presentation of transportation issues, including vehicle scheduling problems.
For a dedicated and up-to-date survey on vehicle scheduling models, the reader is
referred to Bunte et al (2006).

Integer linear programming remains undoubtedly the most popular approach to
the MDVSP. Metaheuristic algorithms appeared very recently: Large Neighbour-
hood Search (LNS) and Tabu Search (TS) in Pepin et al (2008) and Iterated Local
Search (ILS) in Laurent and Hao (2008). These two articles reported comparisons
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between different heuristics including these metaheuristic algorithms, a heuristi-
cally applied CPLEX MIP solver, a Lagrangian heuristic and a column generation
heuristic. Both studies showed a dominance of the column generation heuristic in
terms of solution quality. Nevertheless, when a compromise between quality and
computation time is aimed, metaheuristics become a very competitive alternative.

Figure 1 Unfeasible block

3.2  Heterogeneous Fleet

Most of the foregoing papers assume a homogeneous fleet such that trips can
be performed by any vehicle. On the one hand, this assumption does not hold in
practical situations. On the other hand, allowing a heterogeneous fleet increases
the problem complexity. As already identified in Lobel (1998), obstacles may arise
in the construction of initial solutions by means of early heuristics. Suppose for
example that we are given three trips, t;,t; and ¢, and two vehicles v and v'. We
shall assume that ¢; can only be performed by v, t; only by v’, while no restriction
is imposed upon ¢;. A schedule first - cluster second approach reduces the multiple
depot formulation to a single-depot relaxation. Since it only considers feasible
links between trips, it could produce the infeasible solution depicted in Figure 1.
Splitting such infeasible blocks into feasible parts can lead to suboptimal solutions.

The book of Ceder (2007) contains a heuristic proposal to cope with different
types of vehicles. However, it assumes the existence of a total order relation between
types, which is not always the case in practice (including this study). In general, the
consideration of heterogeneous types of vehicles greatly increases the complexity
of the trip-connection-based models. As a consequence, an approach commonly
observed aims at heuristically reducing the number of connections. In Haghani
and Banihashemi (2002) for instance, an assumption is made that no evening trip
will be served directly after a morning trip, resulting in a reduction of the model
size of up to 40% without sacrificing optimality. Another response to the explosive
increase of the model size avoids the explicit consideration of all the connections
(see Kliewer et al (2006)). The proposed modeling approach relies on a time-space
based network. Coupled with a fix-and-optimize heuristic in Gintner et al (2005),
this approach is able to solve real-world problem instances with up to thousands of
trips and twelve vehicle types. In a nutshell, a series of subproblems is first solved
to identify stable chains of trips, i.e. trips that fit well together. These stable
chains are subsequently aggregated to form a single trip in the general problem. It
should be noted that these instances possess a special structure. The time-space
network is especially relevant when the number of locations (stations) involved in
the problem is low compared to the number of trips. Unfortunately, this is not the
case in our encountered inter-city scenarios.
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4 Formulation as a List Graph Colouring Problem
In this section, we formulate the MDVSP as a list graph colouring problem

(L-CGP). This formulation leaves aside the secondary objectives to focus on the
number of scheduled vehicles. Beforehand, we introduce some needed notations.

4.1 Notations
e n, p: the number of trips and vehicles.

o T ={t1,ta,...,tn}: the set of n trips, ordered by increasing starting times.

(8, €i): the starting and ending times of a trip t; € 7.

Tij, ,J € {1...n}, i # j: the transfer time from the end of trip ¢; to the start
of trip t;.

V ={1,2...,p}: the fleet of p vehicles.

IL; C V: the set of vehicles that can handle trip t; € 7.

The depots do not appear explicitly here. Actually, their role lies in the defini-
tion of the available fleet V, done with regards to the capacities.

4.2 List Graph Colouring Problem

Generally speaking, a list graph colouring problem is an extension of the well-
known graph colouring problem (GCP). It arises when each vertex has associated
specifications on the colours that are admissible Tuza (1997). This problem is also
designated in the literature under the term restricted graph colouring problem De
Werra (1997).

Formally, given an undirected graph G = (V,E) where V = {1,...,n} and
E C V2 are the sets of vertices and edges respectively, a set of colours I, and a list
of sets of colours £ = (Ly,...,Ly,) with L; C T, 1 < i < n, we seek for a vertex
colouring ¢ such that:

o ¢(i) € L;j,Vi € {1,...,n} and
o ¢(i) # ¢(4),V (i,j) €E.

The L-GCP is NP-complete in the general case, since it reduces to the k-
colouring problem if L; =T for each i € {1,...,n}.

In order to model MDVSP, we can define an undirected incompatibility graph
G = (V, E) such that:

e the vertex set V matches the trips in 7,

e the pre-specified set of colours L; for each vertex ¢ corresponds to the vehicles
that can handle trip ¢;, i.e. L; =L,
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e a pair of vertices (i,7) € V?,i < j are joined by an edge in E, if e; + 7;; > s;
or L; NL; = (. In other words, two trips t;,t; are incompatible if there is
no sufficient time for a vehicle to reach the start location of t; when ¢; is
achieved. Furthermore, ¢; and t; are necessarily incompatible if they have no
vehicle in common in their list.

Notice that the proposed translation of the MDVSP into a list graph colour-
ing problem captures a decision problem that can be stated as follows: given an
available fleet of vehicles (= the set of colours I'), one aims to find a schedule (= a
colouring) that satisfies all the constraints with at most these colours.

To deal with the optimisation version of the original problem (i.e. vehicle min-
imisation), we introduce an upper bound UB on the maximal number of vehicles
(= the number of colours) that can be used, thus defining the UB — £L-GCP. The
management of U B is discussed in Section 5.1. An alternative solution would have
been the elimination of a colour each time a proper list-colouring is found. Such
an approach is commonly used for solving the conventional GCP, however, we did
not retain this idea since the choice of the colour to be removed is a problem itself
(see Section 6.4 for more details).

Figure 2 illustrates the transformation of a small MDVSP, implying 4 trips
and 3 vehicles, into a £-GCP. The original problem is represented by a directed
graph where the vertices labeled {1,2,3} are the vehicles and trips are labeled by
{t1,t2,t3,t4}. Two trips joined by an arc are compatible, whereas a vehicle can
perform a trip if and only if there is an arc between them. The figure shows the
undirected graph resulting from the translation. Two possible solutions are finally
displayed depending on the value of UB.

5 Solution Approach

In this section, we propose an Iterated Tabu Search (ITS) algorithm dedicated
to the £L-GCP. Contrary to many approaches that consider complete but often
infeasible configurations, our algorithm evolves within a search space of partial but
feasible colourings.

5.1 Iterated Tabu Search Algorithm

The general idea of our algorithm consists in solving a series of list colouring
problems with a fixed number UB of colours.

Our ITS algorithm follows the scheme of Iterated Local Search (see Lourengo
et al (2002)). It begins with an initial solution and then alternatively repeats an
intensification phase and a diversification phase. The intensification phase, as-
sured by a Tabu Search procedure Glover and Laguna (1997), improves the current
solution s by iteratively replacing s by a neighbouring solution s’ taken from a
given neighbourhood relation. When 7 iterations without strict improvement have
elapsed, the diversification phase is triggered with the goal of leading the search to
a new promising area of the search space. Diversification is realized here by ran-
domly perturbing the best solution found during the previous intensification phase.
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Figure 2 Transformation of the MDVSP into a £ — GC'P

An acceptation test is finally carried out to decide whether the so-far best solution
should be updated.

The management of UB is performed at the highest level of ITS, the role of the
Tabu Search procedure being the resolution of the UB — L-GCP. More precisely,
the functioning of ITS is the following:

1. Initially, set UB to the number of available vehicles: UB = p.

2. Seek a U B-list-colouring using TS, i.e. find a schedule with the UB given
vehicles.

3. If a proper U B-list-colouring is found at Step 2), UB = UB — 1. Otherwise,
U B remains unchanged.

4. Apply a diversification mechanism (see Section 5.6): basically a subset of
colours is chosen, and all vertices receiving these colours are uncoloured. Goto
Step 2.

5. Once a stopping criterion is met (see Section 5.7), report the best solution
found so far.

We detail hereafter the elementary components of the ITS algorithm: search
space, neighbourhood, evaluation function, perturbation and acceptation criterion.
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5.2 Search Space and Initial Configuration

A configuration o in the unconstrained search space ¥ represents a (possibly
partial) assignment of colours to vertices: o : V. — {1,...,p} U{e}, where €
indicates an uncoloured vertex. If a configuration o contains at least one € value,
then it is a partial colouring; otherwise, it is said complete. Associated to o, we
define the set of non-coloured vertices: Vyne = {i € V' | 0(i) = €}.

The search is confined within the subspace 2 C ¥ of feasible colourings:

Q={oeX[(o(i) #a(j)) V (0(i) =€) V (0(j) =€), Y(i,j) € E and
(o(i) € L; vV (c(i) =€), Vie{l,...,n}}

It is clear that €2 contains both the complete and partial colourings. The word
solution is used to designate any complete colouring of 2. Note that the idea
of using partial configurations was also recently reported in other studies (see for
instance, Vasquez (2002), Blochliger and Zufferey (2008)).

The empty colouring has no coloured vertex and clearly constitutes a trivial
feasible configuration. Our ITS algorithm uses this colouring as its initial configu-
ration. In other words, no vehicle is assigned at the beginning of the search. The
rest of the algorithm constantly maintains the exploration within the subspace 2.

5.8  FEwaluation Function

Like any local search algorithm, our I'TS algorithm needs an evaluation function
to estimate the quality of the configurations visited during the search. Along with
the neighbourhood structure, the evaluation function is of paramount importance
for the performance of our ITS algorithm.

Starting from an empty colouring, I'TS aims at finding a feasible complete colour-
ing. For this purpose, ITS dynamically colours and uncolours vertices until a com-
plete and feasible colouring is found. So for a given configuration o, one can evaluate
the quality of o by the number of uncoloured vertices:

f1(0) = Vuneil

Intuitively, this evaluation function may not be informative enough; it simply
cannot distinguish many equally valued configurations. Indeed, this function has
only |V| different values while the number of configurations in the search space 2
is much larger.

As an alternative, we devise a second evaluation function:

falo) =Y (wx |Lif +6(0))

1€ Viunel

where w is a parameter (set to 10000 in our experiments) and 6(¢) is the degree of
vertex i. fo tends to favor the colouring of vertices of smaller domains (ties being
broken according to the degree).

The relative pertinence of both functions is evaluated in Section 6.2.
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5.4 Neighbourhood Structures

The neighbourhood used by ITS is a simple form of ejection chains. The algo-
rithm also embeds a candidate list L.qnd C Vune containing the most promising
vertices, i.e. a subset of the non-coloured vertices, the domain of which is small (ties
being again broken according to the degree). The idea underlying the candidate
list is to allow the search to focus on critical movements (see Section 6.2). Its size
is parameterized by «:

‘£Cand| = min(a X |V|a |Vuncl|)

The mechanism designed to generate a neighbour o’ of the current configuration
o follows the scheme sketched in Algorithm 1. A non-coloured vertex belonging to
the candidate list ¢ € Logng is selected. If the number of colours already used
nbe (o) in o is strictly inferior to the upper bound U B, a colour is randomly chosen
from the list L;. Otherwise, the colour is selected from L; N Uy (o) where Uy (o)
is the set of colours in use®. The assignment of ¢l to i becomes effective even if it
leads to conflicts. In case some conflicts occur, we try to assign to each conflicting
vertex j a new colour taken from IL; N Uy(o). If the attempt fails, j is uncoloured
and inserted in Vi,c1. Loang 18 updated if needed.

Algorithm 1 Pseudo-code for the generation of neighbouring configurations

Require: a configuration o, the set of used colours U (o)

i — rand(Lcoand)
if (nbq(o) < UB) then
cl — rand(Ug(0))
else
el — rand(L;, N Uy (o))
end if
o(1) «—cl

{Repair attempt}
for all j such that o(j) = ¢l do
if ((4,7) € E) then
c’ «— repair_attempt(j,nby (o), UDB)
if c¢l’ # () then
jecl
else
joee
Vuncl — Vuncl U {J}
update(Lcand)
end if
end if
end for

aIfL; NUg (o) = 0, a new vertex is selected. When no vertex can be coloured, the Tabu Search
phase is halted. We do not mention these cases in the algorithm for the sake of simplicity.
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5.5 Tabu List and Tabu Tenure

The name of the Tabu Search method refers to the short term memory that
keeps track of the attributes of configurations previously visited or of the movements
recently applied. Here, a movement is composed of a set of (vertex, colour) pairs.
It is considered as tabu if the exact corresponding set appears in the tabu list.

The tabu tenure indicates the number of iterations during which a movement
is proscribed. In our case, the tabu tenure varies from (3 to 23 where [ is a user
parameter (see Section 6.2). Once the tenure has elapsed, the movement is again
accessible. Note that we also use an aspiration criterion that overrules the tabu
restriction of a movement when it improves the best configuration encountered so
far.

5.6 Perturbation Mechanisms and Acceptance Criterion

In order to escape from local optima and to explore new regions of the search
space, ITS applies perturbations to the best local minimum. Our perturbation
mechanism randomly destroys a fraction « of the best configuration, subsequently
rebuilt during the Tabu Search phase. Despite its apparent simplicity, this pertur-
bation furnishes satisfactory results.

The acceptance criterion plays a role in the balance between intensification
and diversification. Our acceptance criterion clearly privileges intensification since
the best solution resulting from a Tabu Search phase is accepted if and only if it
improves the best overall solution.

5.7 Stopping Criterions
Our ITS algorithm is halted when one of the two criteria is met:
e the maximal allowed time has elapsed (set to n/10 seconds),
e a lower bound is reached.

Before actually running the algorithm, we solve a max-clique problem on the
relaxed £-GCP, i.e. without taking into account the list of allowed colours. For this
purpose, we implemented an efficient algorithm given in Pullan and Hoos (2006).
The size of the maximum clique w(G) constitutes a lower bound for the chromatic
number x(G) of the GCP. This number is also a lower bound for the number of
colours of the £-GCP.

6 Experimental Results

6.1 Benchmarks

The experiments that we carried out rely on 7 instances coming from a real-

world situation for inter-city transport. To our knowledge, the literature does not

bThese instances are defined using the DIMACS format and available upon request
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offer freely available benchmarks integrating different types of vehicles. The prob-
lem instances all contain 683 vertices (or trips). The number of initially available
colours (vehicles) amounts to 182.

The vehicles belong to 8 categories grouped into 3 levels. There exists complex
relations among these categories which are depicted in Figure 3. The numbers
between brackets indicate the available seats in buses. The vertical arrows imply
allowed upgrades between categories while horizontal ones model possible substi-
tutions within one level. In this case, the restrictions are due to a lack of seats or
equipments. For example, schol and schol_dis both belong to the same level. The
latter category contains buses specially equipped for disabled passengers. There-
fore, a trip requiring a schol bus can be a fortiori handled by a bus of schol_dis
category. The opposite cannot be operated. As shown in Figure 4, the numbers of
available vehicles in each level form a pyramid: the higher the level is, the smaller
the number of vehicles is.
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The instances full_upgrades.col, 1_upgrade.col and no_upgrade.col correspond to
the respective cases where all upgrades, one level of upgrade and no upgrades are
allowed. The incidences on the degrees of the vertices and their domain size can be
viewed in Table 1. As expected, the more constrained the problem is, the smaller
the domains and the higher the degrees are.

The travel times between pairs of locations have been pre-computed by means
of a Geographical Information System (GIS). However, we wished to examine the
sensitivity of the problem to speed variations. In the instances full_upgrades_0-8.col,
full_upgrades_0-9.col, full upgrades_1_1.col and full_upgrades_1_2.col, we multiplied
these travel times by a factor of 0.8, 0.9, 1.1 and 1.2 respectively.

Name Density  Vehicles/Trip

(%) ~—Avg  Sd
no_upgrade.col 56.6 85.58  47.08
1_upgrade.col 42.3 109.34  62.66
full_upgrades.col 29.8 121.68 69.18

full_upgrades_0_8.col 28.3 — —
full_upgrades_0_9.col 29.1 — —
full_upgrades_1_1.col 30.3 — —
full_upgrades_1_2.col 30.9 — —

Table 1 Characteristics of the instances

In terms of size, these instances are comparable to those mentioned in previous
studies (see Section 3). They correspond to a typical extra-urban situation in
France: some 62 depots are spread over the considered geographic area. Most of
them are actually car-parks or domiciles of drivers. This situation can be seen
on Figure 5: on the distribution of the vehicles among depots, a large number of
them have less than 5 vehicles. Because of the considered numbers of depots and
categories, these instances may cause great difficulties for classical trip-connection-
based models.

6.2 Settings and Parameters

Our ITS algorithm was coded in C++, compiled with VC++ 8.0 (flag -03), on
a laptop equipped with a 2 Ghz T7200 Intel Core and 2Gb RAM running Windows
XP. Due to the stochastic nature of the algorithm, 10 runs on each instance were
performed.

In order to conceive the best performing algorithm, we applied a 2-level full
factorial experiment (see the book of Montgomery (2004) for a survey on the design
of experiments) to determine the influence of the following components:

e the pertinence or not of using a neighbourhood with repair attempts,

e the decision to employ the evaluation function fi(0) = |Vyna| or fa(o) =
Yiev,., wx [Lil + (i),

e the ratio of destruction « for the perturbation moves,

From this experiment, the type of neighbourhood reveals to be a significant
factor. A Student t-test rejected the null-hypothesis at a 0.1 threshold. The evalu-
ation function and the ratio of destruction seem less significant. We do not retain
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f2 in the algorithm since its use appears counterproductive: it prevents the search
from attaining the best known solution for the instance full upgrades_0_8.col (134
colours instead of 133). A possible explanation is that f, does not sufficiently
maintain randomness in the algorithm. Furthermore, it may be redundant with
the candidate list. For a definite conclusion about its relevance, some additional
data and experiments would be needed. The use of a partial destruction (y = 0.5)
slightly improves the results even if it is not significant statistically speaking.
In our ITS algorithm, three parameters need to be tuned:

e the size of the candidate list «,
e the size of the tabu list 3,
e the number of non-improving moves n before halting the tabu search.

The size of the candidate list clearly influences the computation time. Figure
6 represents the average time needed to attain the best solution. From this figure,
one observes that a strong intensification accelerates the search. As a consequence,
«a was assigned the value 0.01.

The last two parameters, 8 and 1 were set to |L.qna| and 100 respectively.

6.3 Results

Table 2 gathers the results of the experiments carried out on the 7 instances
and the obtained results. As mentioned in Section 5.7, we first solved a max-clique
problem to get a lower bound on the required number of colours (see column Lower
Bound). In order to check the validity of this lower bound, we solved a relaxed
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Figure 6 Influence of parameter a on the computation time

problem in parallel, i.e. without taking into account the resources limitations ( Un-
limited Resources). The last four columns of this table deal with the Best value
(Min), the worst value (Maz), the average value (Avg) and the average time in
seconds (Time (s)) to find the best solution.

Name Lower Unlimited Min Max Avg Time
Bound Resources (s)
no_upgrade. col 159 159 159 159 159.0 0.6
1_upgrade.col 135 135 135 135 1350 7.3
full_upgrades.col 133 133 135 135 135.0 4.7
Sfull_upgrades_0_8.col 129 129 133 134 1334 54
Sfull_upgrades_0_9.col 132 132 135 135 135.0 2.3
Sfull_upgrades_1_1.col 134 134 137 138 1371 7.0
Sfull_upgrades_1_2.col 138 138 141 141 141 4.0

Table 2 Results of the ITS algorithm in terms of quality and response time

We can make several comments from this table. First, the size of the maximum
clique w(G) is always equal to x(G) the chromatic number of the relaxed £-GCP.
This demonstrates the validity of the lower bound. It also means that the graphs
encountered are 1-perfect. This feature is consistent with observations reported by
other authors about real-world graphs Couder (1997).

The second comment concerns the quality of the solutions. For the instances
no_upgrade.col and 1_upgrade.col, an optimal solution is reached. For the remaining
cases, the gap with the lower bound never exceeds 4 % in the worst case. Even if it
is not provable, we can reasonably assume that these gaps are due to the limitations
on the available vehicles. The algorithm appears robust on these instances since
the average value always reaches the best value in 5 cases over 7. As expected, the
different scenarios in travel speed cause minor alterations in densities (see Table 1)
but significant increases in the number of vehicles. Finally, despite the size of the
instances, the computation time remains very short.
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6.4 Discussions

In this section, we first discuss a path that was also explored for solving the £L-
GCP: we attempted to further transform the problem into a classical GCP. We also
give more details about the real data we used for our experimentations. Finally, we
consider an over-constrained scenario which may arise if a lack of resources occurs.

When considering its decision version, the £-GCP can be reduced in two steps
into a classical GCP. Proposed in Bir¢ et al (1992), the reduction first transforms the
L-GCP into a precolouring extension problem (i.e. a GCP on an already partially
coloured graph), which is subsequently reduced to a GCP. Since many effective
algorithms are available for the GCP, such a reduction seems appealing at first
sight, but is actually not applicable in our case. A classical approach to handle the
optimisation version of a colouring problem consists in solving a series of decision
problems with a decreasing number of colours. For the £-GCP however, the choice
of the colour (= vehicle) to be removed at each iteration is a problem itself since
each vehicles has a different status.

The original data actually contain 921 trips, 235 vehicles and 15 categories.
However, the set of trips can be split to form several subproblems completely insu-
lated from each other. The case study corresponds to a mixed urban/extra-urban
situation: some vehicles are especially dedicated to urban areas while others only
deal with extra-urban trips. We only extracted the largest subproblem to simplify
the presentation but the algorithm can address the whole problem at once.

In these benchmarks, the number of available vehicles exceeds the needs (182
available vehicles against 159 used in the worst case). The explanation is the
following: every day, additional punctual trips must be inserted in the regular
schedule. If an over-constrained situation happens, i.e. the vehicles resources are
not sufficient to face the workload, the model presented in this paper would be
appropriate since it natively manages a list of uncoloured vertices.

7 Conclusion

The Multiple Depot Vehicle Scheduling Problem is of paramount importance in
the operational planning process of public transport systems. Despite the abundant
literature on this topic, many papers adopt simplifying hypothesis, rendering the
methods hardly applicable in real situations.

In this paper, we dealt with a real-world MDSVP with heterogeneous fleet of ve-
hicles and complex relations among vehicle categories. We introduced a new model
for the MDVSP using list graph colouring with the goal of minimising the scheduled
vehicles. Associated to this model, we proposed an Iterated Tabu Search integrat-
ing some original features: an efficient neighbourhood scheme, a dynamic candidate
list strategy and a simple but effective destruction perturbation mechanism.

We assessed the practical effectiveness of the algorithm on 7 real-world bench-
marks. The experiments showed its capacity in yielding fast and high quality solu-
tions regarding the number of vehicles. Thanks to these interesting properties, the
algorithm can be used by various metaheuristics to generate good initial solutions.
Finally, let us mention that the algorithm described in this work is part of a real
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vehicle scheduling system that handles both fixed costs related to the scheduled
vehicles and operational costs.
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