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Abstract: We provide a method for efficiently evaluating moves that 
complement values of 0–1 variables in search methods for binary unconstrained 
quadratic optimisation problems. Our method exploits a compact matrix 
representation and offers further improvements in speed by exploiting sparse 
matrices that arise in large-scale applications. The resulting approach, which 
works with integer or real data, can be applied to improve the efficiency of  
a variety of different search processes, especially in the case of commonly 
encountered applications that involve large and sparse matrices. It also enables 
larger problems to be solved than could previously be handled within a given 
amount of available memory. Our evaluation method has been embedded in  
a tabu search algorithm in a sequel to this paper, yielding a method that 
efficiently matches or improves currently best-known results for instances from 
widely used benchmark sets having up to 7,000 variables. 
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1 Introduction 

The binary unconstrained quadratic programming problem may be written as: 

oUQP: Minimise x xQx
x binary

=
 (1) 

where Q is an n by n matrix of constants and x is an n-vector of binary (0–1) variables. 
The UQP formulation is notable for its ability to represent a wide range of important 
problems, including those from social psychology (Harary, 1953), financial analysis 
(Laughunn, 1970; McBride and Yormark, 1980), computer aided design (Krarup and 
Pruzan, 1978), traffic management (Gallo et al., 1980; Witsgall, 1975), machine 
scheduling (Alidaee et al., 1994), cellular radio channel allocation (Chardaire and Sutter, 
1994) and molecular conformation (Phillips and Rosen, 1994). Moreover, many 
combinatorial optimisation problems pertaining to graphs such as determining maximum 
cliques, maximum cuts, maximum vertex packing, minimum coverings, maximum 
independent sets and maximum independent weighted sets are known to be capable of 
being formulated by the UQP problem as documented in papers of Pardalos and  
Rodgers (1990) and Pardalos and Xue (1994). A review of additional applications and 
formulations can be found in Kochenberger et al. (2004). 

Our purpose in this note is to provide a more effective method for updating 
evaluations in search processes that operate by complementing (flipping) values of the  
0–1 variables, which are used by the current state-of-the-art methods for solving the 
UQP. We propose a design that improves on the customary mechanism (see, e.g., Glover 
et al., 1998a; Merz and Freisleben, 2002) by introducing rules for taking advantage  
of a lower triangular matrix representation and sparse matrix structures. The resulting 
procedure offers appreciably greater efficiency for the case where the Q matrix contains 
numerous 0 entries, as typically occurs in large problems. In such applications, our 
approach requires fewer operations than the method customarily used in previous 
applications and also allows problems of greater size to be handled within a given 
computer memory limit. 

2 Notation and conventions 

Let N = {1, …, n} denote the index set for components of the x vector and the rows and 
columns of Q. We assume the Q matrix is preprocessed to put it in lower triangular form 
by redefining (if necessary): 
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ij ij ji jiQ : Q Q  followed by Q : 0 for all i,  j N such that j i= + = ∈ >  (2) 

Thus, for example, a UQP problem for n = 5 with a lower triangular Q matrix has the 
structure: 

1 2 3 4 5

1 11

2 21 22

3 31 32 33

4 41 42 43 44

5 51 52 53 54 55

     x  x   x   x   x
  ---------------------------------------

x Q 0 0 0 0
x Q Q 0 0 0
x Q Q Q 0 0
x Q Q Q Q 0
x Q Q Q Q Q

 

The variables x1 to x5 associated with the rows and columns give a convenient way to 
represent the objective function xQx, which arises by multiplying each Qij entry shown 
by the associated row and column variables xi and xj and then summing. (Hence, in the 
present case, the objective function is given by x1Q11x1 + (x2Q21x1 + x2Q22x2) + (x3Q31x1 
+ x3Q32x2 + x3Q33x3) + … .) The indicated preprocessing step to create the lower 
triangular structure does not change the problem, since xixj = xjxi. 

For our subsequent purposes, we find it useful to factor out the row variables xi and to 
write xo = xQx in the form: 

( )( )( )o i ij j iix x Q x : j N,  j i Q : i N= ∈ < + ∈∑ ∑  (3) 

The diagonal coefficient Qii can be separated from the off-diagonal coefficients Qij for  
j < i in the preceding expression since the fact that xi is a 0–1 variable which implies 
xiQiixi = xiQii. 

3 Key result 

Let x′ and x″ represent two binary solutions where x″ is obtained from x′ by flipping the 
value of a single variable xk from 0 to 1 or from 1 to 0 (according to whether xk′ is 0  
or 1). Define xo′ = x′Qx′ and xo″ = x″Qx″. Then, the value Δxo(k) = xo″ – xo′, which 
depends on the choice of the variable xk, discloses whether the move that replaces x′ by 
x″ will cause xo to improve or deteriorate (respectively, decrease or increase) relative to 
the minimisation objective. The ability to make such an evaluation rapidly affects the 
efficiency of search methods that takes account of changes in xo when selecting a variable 
xk for the purpose of changing its value. 

We first specify a rule for quickly identifying Δxo(k) for each k ∈ N without 
undertaking to exploit the sparseness of Q. Then, we describe the implementation of this 
rule that takes advantage of sparse matrices. 

Define RowValue(i) and ColValue(j) as a function of a current solution x′ by: 

( )ij jRowValue(i) Q x : j N,  j i′= ∈ <∑  (4) 
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and 

( )ij iColValue( j) Q x :i N,  i j′= ∈ <∑  (5) 

By convention, RowValue(i) = 0 when i = 1 and ColValue(j) = 0 when j = n. 
During the examination of different alternatives for the choice of xk, the quantities 

RowValue(i) and ColValue(j) remain constant for all i, j ∈ N, so that they may be 
accessed by a simple look up operation without requiring any computation to obtain 
them. Subsequently, once a particular variable xk is selected and a move is executed that 
replaces xk′ by xk″, the quantities RowValue(i) and ColValue(j) will be updated by an 
operation that involves a single pass of the indexes from 1 to n and performing a simple 
addition (or subtraction) for each of them. The rule that achieves this is as follows. 

3.1 Evaluation and updating rule 

Let δ = 1 if xk′ = 0 and let δ = –1 if xk′ = 1. Then: 

o kkx (k) RοwValue(k) + ColValue(k) + Q ).Δ = δ(  (6) 

Upon executing the move that replaces xk′ by xk″ to yield the solution x″, the new 
quantities RowValue(i) and ColValue(j), for the specific indexes over which these 
quantities change, are given by: 

ikRowValue(i) : RowValue(i) Q  for i N,  i k= + δ ∈ >  (7) 

kjColValue( j) : ColValue( j) Q  for j N,  j k= + δ ∈ <  (8) 

The use of δ = 1 or –1 is not to literally perform a multiplication, but simply to identify a 
sign to be attached to a specified quantity. 

3.2 Justification of the rule 

We rewrite the expression (3) for xo by decomposing it in the following manner: 

( )( )( )i ij j iix Q x : j N,  j i,  j k Q : i N,  i k∈ < ≠ + ∈ ≠∑ ∑  (9.1) 

( ) )k ij k kk x Q x : j N,  j k Q+ ∈ < +∑  (9.2) 

( )( ) )i ik k ii x Q x : k i Q : i N+ < + ∈∑  (9.3) 

Note that (9.3) can also be written as: 

( )( ) ( )k ik i ii i x Q x : i N,  i k Q x : i N,  i k+ ∈ > + ∈ >∑ ∑  (9.4) 

Given that xi″ = xi′ for all i ≠ k, it follows that Δxo(k) can be reduced to: 

( ) ( )( )i i ij k kk ik ix x Q x : j N,  j k Q ((Q x : i N,  i k)))′′ ′− ∈ < + + ∈ >∑ ∑  (10) 
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From the definitions, we see that δ = xi″ – xi′ and the summation terms within (10) (which 
exclude Qkk) equal RowValue(k) and ColValue(k). This establishes the validity of the 
expression (6) for Δxo(k). The updated forms of RowValue(i) and ColValue(j) given in 
(7) and (8) follow by a corresponding analysis. 

4 Exploiting sparseness 

To exploit sparseness using the expressions (7) and (8) for updating RowValue(i) and 
ColValue(j), we introduce the following data structures: ‘successive indexes h = 1, 2, …, 
hLast are assigned to the non-zero off-diagonal entries of Q, where each such non-zero 
Qij for i > j is recorded by setting Q(h) = Qij and simultaneously recording Row(h) = i  
and Col(h) = j. The diagonal Qii values for i ∈ N are recorded separately by setting  
Qo(i) = Qii. 

This data structure is additionally augmented to include linked lists that make it 
possible to access the entries Q(h) either of two ways: by row or by column. For this, we 
introduce two arrays RowFirst(i) and ColFirst(j) for i, j ∈ N, which are initialised by 
setting all their entries to 0. Then, each time a new entry Q(h) is entered via the input 
data, we refer to the associated values i = Row(h) and j = Col(h) and set: 

RowNext(h) RowFirst(i)
RowFirst(i) h
ColNext(h) ColFirst( j)
ColFirst( j) h.

=
=
=
=

 

By making use of these records, upon the conclusion of the input process, all non-zero 
entries of row i can be traced by the sequence: 

ij

h RowFirst(i)
While h 0:

Q(h) is a non-zero entry Q  of  Q,  where i Row(h) and j Col(h)

h : RowNext(h)
EndWhile

=
≠

= =

=

 

All non-zero entries of column j can be traced in a similar manner by replacing 
RowFirst(i) with ColFirst(j) and replacing RowNext(h) with ColNext(h). 

The entries of a given row or column accessed in this fashion will be encountered in 
the reverse order from the sequence of the input data. We note that this order is irrelevant 
from the standpoint of applying the evaluation and update rule embodied in the 
expressions (6), (7) and (8). 

If the input data do not initially provide the entries of Q in lower triangular form, then 
an associated preprocessing operation is required as previously noted. The extra memory 
for such a step depends on the protocol used for entering the data (e.g., whether all entries 
of each row or of each column appear in a single block). 

The use of additional memory can be avoided by performing a further step for each 
non-zero entry Qij encountered, as follows. 
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a If i > j, the linked sequence of h values starting with h = RowFirst(j) (and proceeding 
with h := RowNext(h)) is scanned to see if i = Col(h) is encountered as a column 
entry. 
1 if i = Col(h) is found in this fashion, augment Q(h) by setting Q(h) := Q(h) + Qij 
2 otherwise, if i is not found in the array Col(h) for the values of h traced, then 

record Qij as a new Q(h) value by setting: 

hLast : hLast 1
Row(hLast) j and Col(hLast) i.

= +
= =

 

b If i < j, likewise check whether a value for Qij was previously recorded (since it may 
have been produced by the process just described). In this case, the trace is initiated 
starting with h = RowFirst(i) (and proceeding with h := RowNext(h)) to see if  
j = Col(h) is encountered. 
1 if j = Col(h) is found in this fashion, augment Q(h) by setting Q(h) := Q(h) + Qij 
2 otherwise, if j is not found in the array Col(h) for the values of h traced, then 

record Qij as a new Q(h) value by setting: 
hLast : hLast 1
Row(hLast) i and Col(hLast) j.

= +
= =

 

By means of this data structure, the updating specified in (7) and (8) proceeds as follows: 

ik

h RowFirst(i)
While h 0:

RowValue(i) : RowValue(i) Q
h : RowNext(h)

EndWhile

=
≠

= + δ
=

 

Although these processes are somewhat more complex than those customarily used to 
perform updating operations in solving 0–1 UQP problems, the potential for solving large 
and sparse problems with significantly greater efficiency makes them attractive for 
inclusion within future search methods for UQP. 

5 Concluding remarks 

The fast evaluation strategy introduced here has been integrated in a recent tabu  
search algorithm for the binary unconstrained quadratic programming problem (Glover  
et al., 2009). Thanks to this strategy, the algorithm is able to efficiently examine, at  
each iteration, a large number of neighbouring solutions defined by the one-flip move. 
Combined with an extended memory-based diversification strategy, the proposed 
algorithm proves to be highly effective in solving a range of benchmark instances from 
the literature. For example, for the well-known UQP instances (up to 2,500 variables) 
introduced in Glover et al. (1998b) and Beasley (1998) and used by many published 
papers, this algorithm reaches the best-known objective values on average in less than 
one minute on a PC with Pentium 2.66 GHz CPU and 512 M RAM, representing a 
decrease of at least 40% compared with previous implementations. Moreover, tested on 
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the set of 21 large instances with 3,000 to 7,000 variables introduced in Palubeckis (2004, 
2006), the algorithm is able to equal or even improve the previously best results. 

Furthermore, we note that the one-flip move evaluation introduced in this note can 
also contribute to the specification of a fast evaluation strategy for more sophisticated 
moves such as two-flip moves. Such a perspective is particularly useful for establishing 
complementary and combined neighbourhood relations that are indispensable for solving 
larger and more diverse classes of UQP instances. 

Finally, a more explicit analysis of improvements in computation time and memory, 
as described in the Glover et al.’s (2009) paper, constitutes an interesting direction for 
future work. 
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