
Breakout local search for the vertex separator problem

Una Benlic and Jin-Kao Hao
LERIA, Université d’Angers

2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
{benlic,hao}@info.univ-angers.fr

Abstract
In this paper, we propose the first heuristic ap-
proach for the vertex separator problem (VSP),
based on Breakout Local Search (BLS). BLS is
a recent meta-heuristic that follows the general
framework of the popular Iterated Local Search
(ILS) with a particular focus on the perturbation
strategy. Based on some relevant information on
search history, it tries to introduce the most suitable
degree of diversification by determining adaptively
the number and type of moves for the next per-
turbation phase. The proposed heuristic is highly
competitive with the exact state-of-art approaches
from the literature on the current VSP benchmark.
Moreover, we present for the first time computa-
tional results for a set of large graphs with up to
3000 vertices, which constitutes a new challenging
benchmark for VSP approaches.
Keywords: vertex separator problem, breakout
local search, adaptive diversification mechanism,
meta-heuristic.

1 Introduction
A vertex separator in a graph is a set of vertices whose re-
moval disconnects the graph in at least two non-empty con-
nected components. More formally, given a connected undi-
rected graph G = (V,E), a cost ci associated to each ver-
tex i ∈ V , and an integer 1 ≤ b ≤ |V |, the vertex sep-
arator problem (VSP) is to find a partition of V into dis-
joint subsets A, B, C with A and B non-empty, such that
(i) there is no edge (i, j) ∈ E such that i ∈ A, j ∈ B, (ii)
max{|A|, |B|} ≤ b and (iii)

∑
{cj : j ∈ C} is minimized. A

andB are called shores of the separator C. A separator C is a
legal (feasible) solution if it satisfies the problem constraints
(i) and (ii), and is termed optimal if (i), (ii) and (iii) are met.
VSP is an NP-hard constraint problem [Bui and Jones, 1992;
Fukuyama, 2006] which can be used to test AI heuristics and
search methods. It is useful for many graph algorithms and
has a number of applications: VLSI design, communication
networks, bioinformatics (see [Balas and de Souza, 2005a]
for a survey of VSP applications).

Several exact algorithms have been proposed for solving
VSP [Balas and de Souza, 2005a; 2005b; Biha and Meurs,

2011; Cavalcante and de Souza, 2011]. These VSP algo-
rithms are able to find optimal results in a reasonable comput-
ing time (within 3 hours) for instances with up to 150 vertices,
and may fail to solve larger instances.

On the other hand, heuristic and meta-heuristic methods,
which have shown to be very useful for various NP-hard com-
binatorial optimization problems, have not been considered
up until now for VSP. Although such methods have no formal
performance guarantee, they have shown to be able to provide
solutions of acceptable quality with reasonable computing ef-
forts even for very large instances.

In this paper, we present the first heuristic algorithm for
VSP, based on Breakout Local Search (BLS). BLS is a re-
cent meta-heuristic which has been successfully applied to
several classic combinatorial optimization problems includ-
ing minimum sum coloring problem [Benlic and Hao, 2012],
maximum clique [Benlic and Hao, 2013a], quadratic assign-
ment [Benlic and Hao, 2013b] and maximum cut [Benlic
and Hao, 2013c]. Based on the framework of Iterated Lo-
cal Search (ILS) [Lourenco et al., 2003], BLS combines local
search (i.e., the steepest descent) with a dedicated and adap-
tive perturbation mechanism. For each perturbation phase,
BLS tries to establish the most suitable degree of diversifica-
tion by determining dynamically the number of perturbation
moves (i.e., the jump magnitude) and by adaptively choos-
ing between several types of perturbation moves of different
intensities. This is achieved through the use of information
from dedicated memory structures. In contrast with the BLS
approaches for the previously considered problems, the pro-
posed BLS for VSP incorporates a more advanced reactive
technique, based on the occurrences of cycles, to determine
the jump magnitude for the next perturbation phase. More-
over, it employs a novel mechanism to adaptively choose be-
tween two types of perturbation moves.

Tested on the set of 104 VSP benchmark instances from
the literature (with less than 200 vertices), the proposed BLS
easily attains an optimal solution for all these VSP instances.
Since heuristic methods are mainly conceived to tackle large
instances of NP-hard problems, we further present for the first
time computational results for 54 new and large graphs with
up to 3000 vertices.

2 Breakout Local Search (BLS) for VSP
2.1 General framework of BLS
BLS is a recent general stochastic local search method which
follows the basic scheme of the iterated local search (ILS).
Its basic idea is to use a descent-based local search proce-
dure to intensify the search in a given search space region,
and to apply effective perturbations to move to a new search
region once a local optimum is attained. BLS has a par-
ticular focus on the importance of the perturbation phase,
and uses an adaptive and multi-typed perturbation mecha-
nism to introduce a suitable degree of diversification at a
certain stage of search. A BLS algorithm requires four
procedures to be specified: GenerateInitialSolution gen-
erates a starting point for the search; DescentBasedSearch
is the descent/ascent local search procedure which searches
a defined neighborhood for a solution which is better
than the current solution, and terminates if such a solu-
tion is not found; DetermineJumpMagnitude determines
the number L of perturbation moves (“jump magnitude”);
DeterminePerturbationType determines the type T of per-
turbation moves among two or several alternatives of differ-
ent intensities. Once the number L and the type T of per-
turbation moves are selected, BLS calls the Perturb proce-
dure which applies L moves of type T to the current lo-
cal optimum (we say that the solution is perturbed). This
perturbed solution becomes the new starting point for the
next round of the descent-based local search. Alg. 1 gives
an algorithmic scheme for BLS. The history component in
DetermineJumpMagnitude, DeterminePerturbationType
and Perturb indicates that some relevant information on the
search history is used to influence the decisions made in these
procedures.

We next provide details on the four component procedures
of our BLS algorithm for VSP.

Algorithm 1 BLS general framework
1: p′ ← GenerateInitialSolution
2: L← L0 /*Initialize the number L of perturbation moves */
3: while stopping condition not reached do
4: p← DescentBasedSearch(p′)
5: L← DetermineJumpMagnitude(L, p, history)
6: T ← DeterminePerturbationType(p, history)
7: p′ ← Perturb(L,T , p, history)
8: end while

2.2 Initial solution
To generate an initial solution, we use a simple heuristic pro-
cedure which performs in two steps. First, it randomly places
vertices of V to either A or B such that 1 ≤ |A|, |B| ≤ b
(constraint (ii)), without caring about the problem constraint
(i) which requires that there is no edge (i, j) ∈ E such that
i ∈ A and j ∈ B. Second, constraint (i) is fulfilled by mov-
ing to the separator C either a vertex i ∈ A or j ∈ B if
(i, j) ∈ E. However, the resulting initial solution may still
be illegal since A or B can become empty in the second step,
even though |C| < |V |. This constraint is met during the
first iterations of BLS since the next move always involves

displacing a vertex of C to an empty shore subset, i.e., to
S ∈ {A,B}, |S| = 0.

2.3 Neighborhood and local search
To move from one solution to another in the search space,
BLS employs a move operator Move(v ,S) which selects
a vertex v from the separator C (v ∈ C) and moves it
to a shore subset S ∈ {A,B}. Afterwards, the resulting
solution is repaired by moving to C the adjacent vertices
w ∈ O, (w, v) ∈ E from the opposite shore subset O (i.e,
O 6= S 6= C). It is important to mention that a performed
move never violates the problem constraint (ii) which requires
that 1 ≤ |A|, |B| ≤ b. Indeed, a vertex v ∈ C is not con-
sidered for transfer to the shore subset S if |S| = b or if
all the vertices would have to be moved from the opposite
shore subset O to C to repair the resulting solution (i.e., if
(|O| − |{w : (v, w) ∈ E and w ∈ O, v ∈ S}|) = 0). The
neighborhood N(p) of a solution p = {A,B,C} can then
be defined as the set of all the solutions which can be ob-
tained with the move operator Move(v ,S) without violating
the problem constraints.

The key concept related to the defined neighborhood is the
move gain g(v, S), which represents the change in the opti-
mization objective. It expresses an estimate on how much a
solution could be improved if a vertex v ∈ C is moved to
the shore subset S. Given a vertex v ∈ C, we compute gains
g(v,A) and g(v,B) for moving v to shores A and B respec-
tively. The selection of the vertex with the highest gain, as
well as the updates needed after each move, are achieved ef-
ficiently with an adaptation of bucket sorting that has been
extensively used to speed up the performance of graph par-
titioning algorithms [Fiduccia and Mattheyses, 1982; Benlic
and Hao, 2011].

Each iteration of the descent-based local search phase con-
sists in identifying the best legal move (v, S) and applying
it to the current solution p = {A,B,C} to obtain a new
solution. This process is repeated until a local optimum is
reached. After each move, the bucket sort structure is updated
by recomputing gains for vertices affected by the move.

2.4 Adaptive diversification strategy
The perturbation mechanism plays a crucial role within BLS
since the descent-based local search procedure alone cannot
escape from a local optimum. The success of the described
method depends crucially on two factors. First, it is impor-
tant to determine the number L of perturbation moves (“jump
magnitude”) to be applied to change (i.e., perturb) the solu-
tion. Second, it is equally important to consider the type of
perturbation moves to be applied. While conventional per-
turbations are often based on random moves, more focused
perturbations using dedicated information could be more ef-
fective. The degree of diversification introduced by a pertur-
bation mechanism depends both on the jump magnitude and
the type of moves used for perturbation. If the diversification
is too weak, the local search has greater chances to end up cy-
cling between two or more locally optimal solutions, leading
to search stagnation. On the other hand, a too strong diversifi-
cation has the same effect as a random restart, which usually
results in a low probability of finding better solutions in the

following descent-based local search phase. The proposed
BLS for VSP employs directed and random perturbation op-
erators, the former being based on history information main-
tained in a recency based tabu list [Glover, 1989]. These two
types of perturbation introduce different degrees of diversifi-
cation into the search. To determine the most suitable number
and type of perturbation moves at a given stage of the search,
the proposed BLS for VSP takes advantage of the information
related to the occurrences of cycles. This information is based
on a number of most recently visited locally optimal solutions
stored in a hash table structure. We next provide some details
on hashing VSP solutions and storing relevant information
gained during the search. Afterwards, we describe in detail
the proposed diversification mechanism, along with the per-
turbation types used, and explain how the information from
the hash table memory is used to introduce a suitable amount
of diversification at a certain search stage.

Hashing function and hash table structure
Each time a local optimum p = {A,B,C} is attained after
the descent-based local search phase (see Section 2.3), we
store p in a hash table HT (if it is not already in HT), along
with the iteration number at which p was last visited.

More precisely, we first compute an index h into the hash
table, from which solution p = {A,B,C} can be found, by
mapping p = {A,B,C} to an integer value using the hash
function of the form [Woodruff and Zemel, 1993]

h = [
∑
i∈C

zi] mod [MAXHS + 1], (1)

where MAXHS is the size of the hash table
(MAXHS = 100000 in our experiments) and z is a
precomputed vector of pseudo-random integers in the range
[1..131072].

If there is no solution recorded at HTh , we store the local
optimum p and its related information in HTh . Otherwise, we
compare p with the solution stored at HTh . If these two local
optima are identical, a cycle is encountered and the relevant
information stored at HTh (i.e., the iteration number at which
p was previously visited) is used to determine the diversifica-
tion degree required to break the current cycle. If p and HTh

are not identical, we keep passing to the next location until the
identical solution is encountered or a free position is found to
place p along with its related information.

Once the number of local optima stored in HT exceeds
a given limit MAXSLO (MAXSLO = 500 in our experi-
ments), the least recently visited local optimum, as well as
all the information related to this local optimum, are removed
from HT to make place for the most recently visited local
optimum. In order to determine in O(1) this local optimum
to be removed from HT , we maintain the indicator set data
structure detailed in [Battiti and Protasi, 2001].

Determining jump magnitude
After a local optimum p is attained during the descent-based
local search phase, BLS determines a suitable number of per-
turbation moves for the next perturbation phase. This proce-
dure is given in Alg. 2.

BLS first calls a function PreviousEncounter (line 1 of
Alg. 2) which checks whether p is already in the hash ta-
ble memory (see the last sub-section). If p is not in HT , the
function PreviousEncounter returns -1, and p is inserted into
HT along with the descent-phase number itercur at which p
is visited. Otherwise, if p has previously been visited dur-
ing the search (i.e., p is already in HT), the record in HT
corresponding to the local optimum p is updated with the
current descent-phase number itercur, and the function re-
turns the descent-phase number prev visit at which p has
been encountered earlier. The information returned by the
PreviousEncounter function, stored in variable prev visit ,
is later used to determine the appropriate perturbation type
for the current state of the search.

If a cycle is encountered (i.e., prev visit 6= −1), BLS
increments the number of perturbation moves to increase
slightly the degree of diversification (line 4 of Alg. 2). Oth-
erwise, the number of perturbation moves is decreased if a
cycle has not been detected for at least wc · β descent phases,
where wc is the average number of descent phases between
two consecutive cycles and β a coefficient (lines 5-7 of Alg.
2). Finally, we limit the number of perturbation moves to take
values in the interval [LMIN , LMAX] (lines 9-12 of Alg. 2).

Algorithm 2 DetermineJumpMagnitude(L, p, HT , lc,
itercur)
Require: Local optimum p returned by DescentBasedSearch , cur-

rent jump magnitude L and history information including the
hash table HT of previously encountered local optima, the
descent-phase number lc when the last cycle was encountered,
and the total number of descent phases itercur

Ensure: Jump magnitude L for the next perturbation phase
/* Check whether p has previously been encountered (whether
p is in HT) */

1: prev visit ← PreviousEncounter(HT , p, itercur)
2: if prev visit 6= −1 then
3: lc ← itercur /* Update the descent-phase number at which

the last cycle is detected*/
4: L← L+ 1 /* Increment the jump magnitude*/
5: else if (itercur − lc) > wc · β then
6: /*A cycle has not been detected for at least wc · β descent

phases; wc is the average number of descent phases between
two consecutive cycles and β a coefficient*/

7: L← L− 1 /* Decrement the jump magnitude */
8: end if

/* Limit L to take values no larger than LMAX and no smaller
than LMIN */

9: if L > LMAX then
10: L← LMAX

11: else if L < LMIN then
12: L← LMIN

13: end if

Adaptive combination of two perturbation types
To perturb the current local optimum p, BLS adaptively
chooses between directed perturbation and random pertur-
bation.

The directed perturbation (DIRP) is based on the tabu
search principles [Glover, 1989]. It uses a selection rule that
favors the legal moves (see Section 2.3) which minimize the

degradation of the objective, under the constraint that these
moves are not prohibited by the tabu list. Move prohibition
is determined in the following way. Each time a vertex v is
moved from its current shore subset S ∈ {A,B} to C, it is
forbidden to place it back to S for γ iterations (called tabu
tenure), where γ takes a random value from a given range.
The information for move prohibition is maintained in the
matrix Hi,S , i ∈ V , S ∈ {A,B} where the element (i, S)
is equal to γ plus the iteration number when the vertex i was
last moved from its shore subset S to the separator C. The
tabu status of a move is neglected only if the move leads to a
new solution better than the best solution found so far. The di-
rected perturbation relies thus both on 1) history information
which keeps track, for each move, of the last time (iteration)
when it was performed and 2) the quality of the moves to be
applied for perturbation in order not to deteriorate too much
the perturbed solution.

The random perturbation (RNDP) performs random
moves that do not violate the problem constraint (ii) on the
resulting size of the shore subsets. In other words, it consists
in randomly selecting a vertex v ∈ C to be moved to a ran-
domly chosen shore subset S ∈ {A,B}, under the constraint
that 1 ≤ |A|, |B| ≤ b once the move is realized.

These two perturbation types do not introduce the same de-
gree of diversification into the search. It is obvious that DIRP
is more oriented towards search intensification than RNDP
since DIRP also relies on the quality of moves in order not to
degrade too much the resulting solution.

The proposed BLS considers the search history informa-
tion from the hash table structure to determine the most ap-
propriate perturbation type to be applied to the current lo-
cal optimum p. Let prev visit be the descent-phase number
at which the current local optimum has been previously at-
tained, the type of perturbation moves T is determined with
the following relations:

e =

{
αnc +

itercur−lc
maxinc if prev visit = −1

1− αc − itercur−prev visit
#lo in HT otherwise

(2)
and

T =

{
DIRP if e ≥ random(0, 0.01, 0.02, ..., 1)
RNDP otherwise

(3)
where itercur is the total number of performed descent

phases, lc the number of the last descent-phase which led to
a previous local optimum (see line 3 of Alg. 2), maxinc
the maximal number of consecutive descent phases without
returning to a previous solution, #lo in HT the number of
local optima stored in the hash table, and αnc and αc two
positive coefficients that take a real value in the range [0, 1].

The rationale of Eq. 2 is as follows. In the first case,
when p has not been visited recently (i.e., p is not in HT
and thus prev visit = −1), BLS determines the probabil-
ity of applying the directed over the random perturbation
moves depending on the difference itercur − lc, i.e., the
number of consecutive descent phases elapsed without re-
turning to a previous local optimum from HT . The larger
the difference itercur − lc is, the less the chance the search

is stuck in a cycle. Therefore, the larger the itercur − lc,
the higher the probability of using the directed perturbation
over the random one. In the second case, when the search
returned to the local optimum p from the hash table mem-
ory (i.e., when prev visit 6= −1), BLS determines the prob-
ability of using the directed perturbation depending on the
difference itercur − prev visit i.e., the number of descents
elapsed before returning to p. The larger the difference
itercur − prev visit is, the higher the chances the search is
stuck in a large cycle. Since large cycles are more diffi-
cult to break than small ones, Eq. 2 ensures that the larger
the itercur − prev visit , the larger the probability of per-
forming random perturbation moves which introduce more
diversification into the search. BLS exhibits a bias in fa-
vor of the directed perturbation with coefficient αnc when
prev visit = −1 , and is biased against the directed pertur-
bation moves with αc in case prev visit 6= −1. If e is
greater than a random real number selected from the range
[0, 1] (with a step of 0.01), BLS applies L moves of the di-
rected perturbation to the current solution p. Otherwise, it
performs L moves of the random perturbation (see Eq. 3).

3 Experimental results
3.1 Experimental protocol and benchmark

instances
Our BLS algorithm is programmed in C++ and compiled
with GNU g++ under GNU/Linux running on an Intel Xeon
E5440 with 2.83 GHz and 2 GB of RAM. Following the
DIMACS machine benchmark1, our machine requires 0.23,
1.42 and 5.42 CPU seconds for r300.5, r400.5, and r500.5 re-
spectively. In our experiments, we set the minimum LMIN

and the maximum LMAX number of perturbation moves to
0.05|C| and 0.25|C| respectively, and the coefficients αnc,
αc, β to 0.6, 0.2 and 4 respectively. The tabu tenure γ,
used for the directed perturbation, takes a random value in
the range [0.2|C|, 0.7|C|]. These parameter values are deter-
mined in a preliminary experiment.

We evaluate extensively the performance of our BLS al-
gorithm on the current VSP benchmark (104 instances in to-
tal)2 which consists of: intersection graphs obtained from the
coefficient matrices of linear equations (MatrixMarket (MM)
instances classified into three types: MM-I, MM-II and MM-
HD) and instances taken from the DIMACS challenge on
graph coloring. These graphs are of different densities with
|V | ≤ 191. The optimal solution is known for all these 104
VSP instances. Since BLS is able to attain, with a 100% suc-
cess rate, the optimal solution for the complete benchmark,
we further use a set of 54 more challenging graphs generated
by Helmberg and Rendl [Helmberg and Rendl, 2000]. This
benchmark3 consists of toroidal, planar, and random graph
instances ranging from |V | = 800 to 3000. For our experi-
ments on these graphs, all the vertices are given unit weights,
and b = b 1.05|V |2 c.

1ftp://dimacs.rutgers.edu in directory /pub/dsj/clique
2http://www.ic.unicamp.br/∼cid/Problem-

instances/VSP.html#VSP
3http://www.optsicom.es/maxcut/#instances

3.2 Computational results on existing benchmark
We compare our BLS algorithm with the current state-of-art
VSP approaches proposed in [Balas and de Souza, 2005b]
and [Biha and Meurs, 2011], using the existing VSP bench-
mark from the literature.

The results of the reference approaches are taken from the
corresponding papers. The results reported in [Balas and de
Souza, 2005b] were obtained on a desktop PC equipped with
a Pentium 4 processor, with 2.5 GHz and 2 GB of RAM. In
[Biha and Meurs, 2011], experiments were performed on a
Laptop Computer equipped with a Pentium M740 processor,
with 1.73 GHz and 1 GB of RAM. The maximum run-time
limit for BLS used in this experiments is 10 seconds. We use
the time required to reach the optimum as the main criterion
for this comparison. However, a completely fair compari-
son is impossible since we have a nondeterministic approach
(i.e., our approach) on the one hand and the deterministic ap-
proaches on the other hand. In addition, different computing
environments used constitute another major source of diffi-
culty for a fair comparison. Since no sufficient information
is available to benchmark the computers used in [Balas and
de Souza, 2005b] and [Biha and Meurs, 2011], the reported
times are only given for indicative purposes.

Table 1 summarizes the time requirements (in seconds)
for BLS and the reference algorithms. We provide for each
class of instances and each algorithm the average tavg, the
best tbest and the worst tworst average time requirement over
the given number of instances. For BLS, we take into ac-
count for each instance the worst case time needed to attain
an optimal solution over 100 runs. On the other hand, we
consider the best time among the five codes used in [Balas
and de Souza, 2005b] to report results obtained by Balas and
Souza. Moreover, we show for each approach the number of
instances from a given class that were solved to optimality
(row # solved inst.).

From Table 1, we observe that our BLS is highly competi-
tive with the reference approaches. Indeed, for all the types of
VSP instances, the average time tavg required by BLS is less
than 0.2 seconds, which is negligible compared to the time
required by the reference methods. The worst time for BLS,
shown in column tworst, does not exceed 3.1 seconds. As the
recent approach by Biha and Meurs, our algorithm is able to
attain the optimal solutions for all the MM-I, MM-II, MM-
HD and DIMACS instances with a 100% success rate. On
the other hand, the method by Balas and Souza fails to reach
the optimal solution for 7 out of the 104 instances within the
CPU time limit of 30 minutes which is fixed by the authors.

3.3 Computational results on new benchmark
In this section, we present computational results of BLS on
the set of 54 (new) large and challenging graphs (Table 2),
which can serve as a reference for other new VSP approaches.
To ease future comparisons, we make our results available at
http://www.info.univ-angers.fr/pub/hao/BLSVSP.html. An-
other goal of this section is to show the interest of BLS’s
adaptive and multi-typed perturbation mechanism by com-
paring BLS with three versions of iterated local search (de-
noted as ILS-I, ILS-II and ILS-III). These three ILS algo-
rithms are obtained with slight modifications of BLS. ILS-I

is obtained by fixing the probability of applying directed ver-
sus random perturbation to 0.95. ILS-II is obtained by fix-
ing both the number of perturbation moves (L = 0.15|C|)
and the probability of applying directed versus random per-
turbation (e = 0.95). ILS-III is the most basic version of
ILS which applies a fixed number (L = 0.02|C|) of random
perturbation moves once a local optimum is attained by the
descent phase. For these four algorithms (BLS, ILS-I, ILS-
II and ILS-III), we use the default parameter setting given in
Section 3.1. We run the four algorithms under the same com-
puting conditions, i.e., 100 executions per instance with the
time limit set to 1 hour.

The comparative results are provided in Table 2. The sec-
ond column gives the best objective value obtained by BLS
after fine-tuning its parameters. For each algorithm, we show
the best and average result (column best(avg)) over 100 ex-
ecutions, and the average time in seconds required to attain
the best result from best(avg). The last row shows, for each
algorithm, the number of instances for which the best-known
objective value (column best) is attained. We observe that
BLS attains the best-known result from column best for 53
out of the 54 instances while ILS-I, ILS-II and ILS-III fail
to reach the best-known result for 12, 11 and 47 instances
respectively. As expected, the most basic algorithm ILS-III,
which relies uniquely on random perturbations to diversify
the search, shows the worst performance compared to the
other three approaches. Moreover, we note that ILS-I outper-
forms ILS-II on 5 instances in terms of solution quality, and
is outperformed on 2 instances. This additionally confirms
the benefit of the adaptive combination of multiple perturba-
tion types based on the search history. To see whether there
exists significant performance difference in terms of solution
quality among BLS and the three ILS algorithms, we apply
the Friedman non-parametric statistical test followed by the
Post-hoc test on the results from Table 2. This test shows that
there is a significant performance difference among the com-
pared algorithms with a p-value less than 2.2e−16. The Post-
hoc analysis shows that BLS statistically outperforms ILS-III
with a p-value of 0.000 while its dominance over ILS-I and
ILS-II is less pronounced.

4 Conclusion

The presented BLS algorithm is the first meta-heuristic ap-
proach for the Vertex Separator Problem which is a NP-hard
constraint combinatorial search problem. BLS combines a
descent-based local search with an adaptive combination of
multi-typed perturbations to ensure a desired balance between
intensification and diversification of the search process. The
evaluation of BLS on the whole set of 104 current VSP in-
stances showed that BLS is able to attain, with a 100% suc-
cess rate and very quickly (generally in less than one second),
the optimal solution for the complete benchmark. This im-
plies that the commonly used VSP instances are easy for our
BLS algorithm. For this reason, we further presented com-
putational results of BLS on 54 large and challenging graphs
(with up to 3000 vertices). These results can serve as refer-
ences for future VSP approaches.

Table 1: Comparison of BLS with two exact algorithms presented in [Balas and de Souza, 2005b] and [Biha and Meurs, 2011]
on the current VSP benchmark (104 instances).

BLS Balas-Souza Biha-Meurs BLS Balas-Souza Biha-Meurs
MM-I instances MM-II instances
tavg(s) 0.02 48.46 7.87 tavg(s) 0.06 60.98 53.93
tbest(s) 0.00 0.02 0.00 tbest(s) 0.00 0.33 1.38
tworst(s) 0.36 1131.60 154.92 tworst(s) 0.09 443.49 580.80
solved inst. 24/24 24/24 24/24 # solved inst. 20/20 19/20 20/20

MM-HD instances DIMACS instances
tavg(s) 0.11 13.74 13.67 tavg(s) 0.14 168.95 609.37
tbest(s) 0.00 0.96 2.17 tbest(s) 0.00 0.00 0.00
tworst(s) 3.06 98.84 50.72 tworst(s) 2.44 1067.50 9783.08
solved inst. 39/39 39/39 39/39 # solved inst. 21/21 15/21 21/21

Table 2: Comparison of BLS with three variants of ILS on graphs generated by Helmberg and Rendl (54 instances).
BLS ILS-I ILS-II ILS-III

Name best best(avg) t(s) best(avg) t(s) best(avg) t(s) best(avg) t(s)
G1 257 257(257) 7.2 257(257) 1.9 257(257) 2.2 258(258.98) 21.2
G2 257 257(257) 8.7 257(257) 2.9 257(257) 2.0 258(258.99) 6.4
G3 257 257(257) 66.3 257(257) 15.0 257(257) 13.0 258(258.99) 12.8
G4 363 363(363.17) 936.4 363(363.05) 854.1 363(363.02) 977.4 367(367.1) 1176.3
G5 257 257(257) 65.9 257(257) 15.6 257(257) 18.7 259(259) 11.2
G6 257 257(257) 8.5 257(257) 2.0 257(257) 2.1 259(259) 14.0
G7 257 257(257) 10.0 257(257) 2.6 257(257) 2.6 259(259) 10.0
G8 257 257(257) 69.6 257(257) 13.4 257(257) 15.9 258(258.99) 9.5
G9 257 257(257) 34 257(257) 7.9 257(257) 14.2 258(258.99) 12.9
G10 257 257(257) 70.7 257(257) 19.0 257(257) 22.2 258(258.99) 4.8
G11 16 16(16) 0.0 16(16) 0.0 16(16) 0.1 16(16) 0.0
G12 32 32(32) 0.0 32(32) 0.0 32(32) 0.0 32(32) 0.0
G13 45 45(45) 0.2 45(45) 6.4 45(45) 10.4 48(49.91) 1.3
G14 146 146(146.88) 768.7 146(146.24) 1061.2 146(146.19) 1006.1 179(181.98) 1160.4
G15 144 144(144.02) 856.7 144(144) 25.1 144(144) 39.8 178(181.33) 875.2
G16 144 144(144) 188.6 144(144) 10.4 144(144) 9.8 177(181.22) 335.0
G17 144 144(144) 401.1 144(144) 31.1 144(144) 31.1 178(180.47) 1719.7
G18 146 146(146.88) 623.5 146(146.2) 1174.0 146(146.33) 1045.0 179(182.23) 1556.9
G19 144 144(144.1) 1085.8 144(144) 20.3 144(144) 25.6 176(181.2) 1619.6
G20 144 144(144) 353.2 144(144) 12.0 144(144) 16.2 176(181.39) 416.9
G21 144 144(144) 552.5 144(144) 31.3 144(144) 44.2 176(180.4) 2445.3
G22 588 588(588.82) 657.7 588(588.83) 569.1 588(588.86) 411.7 617(618.57) 857.8
G23 590 590(590.97) 310.4 590(590.99) 220.8 590(590.98) 1105.9 618(618.85) 1023.0
G24 589 589(589.87) 371.5 589(589.55) 746.8 589(589.58) 997.2 617(618.64) 796.5
G25 589 589(589.67) 832.5 589(589.82) 895.9 589(589.81) 663.0 617(618.78) 764.1
G26 587 587(588.16) 313.9 587(588.27) 199.3 588(588.16) 1272.7 617(618.75) 350.5
G27 820 820(820.67) 384.7 820(820.94) 622.4 820(821.09) 513.43 873(875.45) 960.3
G28 820 822(822.98) 310.7 823(823.73) 533.1 823(823.89) 412.9 874(875.73) 1718.2
G29 820 820(820.89) 591.4 820(821.1) 195.7 821(821.55) 878.2 873(875.38) 1195.9
G30 821 821(821.95) 70.8 822(822.32) 673.8 822(822.42) 1085.3 873(875.65) 480.3
G31 819 819(819.98) 705.2 820(820.75) 474.3 820(820.88) 1082.4 874(875.39) 857.6
G32 40 40(40) 0.3 40(40) 0.3 40(40) 0.3 40(40) 0.5
G33 50 50(50) 0.2 50(50) 0.1 50(50) 0.1 50(50) 4.9
G34 80 80(80) 20.3 80(81.8) 0.1 80(82.2) 0.0 80(81.07) 1541.0
G35 436 436(438.49) 408.9 439(440.24) 1571.9 439(440.81) 2192.9 606(615.47) 1862.3
G36 441 441(443.01) 2112.7 442(444.19) 734.3 442(445.21) 961.7 612(620.99) 463.6
G37 435 435(437.05) 858.4 436(438.99) 1065.2 437(439.26) 1457.2 608(616.04) 844.0
G38 439 439(441.22) 1232.0 441(443.38) 321.4 440(443.65) 65.5 608(618.98) 2438.7
G39 436 436(438.34) 90.8 438(440.26) 285.3 439(441) 920.2 606(615.46) 1838.8
G40 440 440(442.86) 2151.2 442(444.49) 972.7 442(445.01) 969.0 615(621.22) 1396.0
G41 435 435(436.94) 1343.9 437(439.2) 1172.9 437(439.4) 342.5 607(616.24) 835.1
G42 439 439(441.41) 991.7 441(443.51) 317.8 442(444.16) 1296.9 611(619.14) 2424.7
G43 411 411(411) 80.9 411(411.08) 875.3 411(411.16) 1151.4 434(435.22) 1171.5
G44 411 411(411.01) 759.3 411(411.12) 1072.6 411(411.32) 921.9 433(435.19) 1615.2
G45 410 410(410) 327.0 410(410) 342.1 410(410.01) 621.8 434(435.35) 191.2
G46 411 412(412) 7.9 412(412) 135.6 411(411.99) 77.3 434(435.68) 903.1
G47 411 411(411.98) 0.8 411(411.67) 664.5 411(411.9) 224.7 434(435.53) 433.0
G48 100 100(101.2) 53.0 100(101) 0.1 100(101.6) 0.1 101(104.93) 55.3
G49 60 60(60) 0.5 60(60) 0.4 60(60) 0.2 60(60) 88.9
G50 50 50(50) 1.3 50(50) 1.0 50(50) 0.5 50(50) 4.9
G51 224 224(224.66) 721.6 224(224.64) 672.4 224(224.75) 691.0 295(299.53) 1967.0
G52 223 223(224.32) 347.1 223(224) 914.7 223(223.99) 1144.9 294(300.05) 936.8
G53 221 221(222.09) 541.4 221(221.55) 901.8 221(221.6) 945.5 293(299.63) 1675.6
G54 219 219(219.31) 888.8 219(219) 437.2 219(219) 395.1 292(299.27) 2707.6
Total 53/54 42/54 43/54 7/54

Acknowledgment
We are grateful to the referees for their comments and ques-
tions which helped us to improve the paper. This work
was partially supported by the Region of “Pays de la Loire”
(France) within the RADAPOP and LigeRO Projects.

References
[Balas and de Souza, 2005a] E. Balas and C. C. de Souza.

The vertex separator problem: a polyhedral investigation.
Mathematical Programming, 103:583–608, 2005.

[Balas and de Souza, 2005b] E. Balas and C. C. de Souza.
The vertex separator problem: algorithms and computa-
tions. Mathematical Programming, 103:609–631, 2005.

[Battiti and Protasi, 2001] R. Battiti and M. Protasi. Reac-
tive local search for the maximum clique problem. Algo-
rithmica, 29(4):610–637, 2001.

[Benlic and Hao, 2011] U. Benlic and J.K. Hao. A multilevel
memetic approach for improving graph k-partitions. IEEE
Transactions on Evolutionary Computation, 15(5):624–
642, 2011.

[Benlic and Hao, 2012] U. Benlic and J.K. Hao. A study of
breakout local search for the minimum sum coloring prob-
lem. In SEAL-2012, Lecture Notes in Computer Science
7673:128–137, 2012.

[Benlic and Hao, 2013a] U. Benlic and J.K. Hao. Breakout
local search for maximum clique problems. Computers &
Operations Research, 40(1):192–206, 2013.

[Benlic and Hao, 2013b] U. Benlic and J.K. Hao. Breakout
local search for the quadratic assignment problem. Applied
Mathematics and Computation, 219(9):4800–4815, 2013.

[Benlic and Hao, 2013c] U. Benlic and J.K. Hao. Breakout
local search for the max-cut problem. Engineering Appli-
cations of Artificial Intelligence, 26(3):1162-1173, 2013.

[Biha and Meurs, 2011] M D. Biha and M.J. Meurs. An ex-
act algorithm for solving the vertex separator problem.
Journal of Global Optimization, 49(3):425–434, 2011.

[Bui and Jones, 1992] T.N. Bui and C. Jones. Finding good
approximate vertex and edge partitions is np-hard. Infor-
mation Processing Letters, 42(3):153–159, 1992.

[Cavalcante and de Souza, 2011] V. F. Cavalcante and C. C.
de Souza. Exact algorithms for the vertex separator prob-
lem in graphs. Networks, 57:212–230, 2011.

[Fiduccia and Mattheyses, 1982] C. M. Fiduccia and R. M.
Mattheyses. A linear-time heuristic for improving network
partitions. In Proceedings of the 19th Design Automation
Conference, pages 175–181. IEEE Press, 1982.

[Fukuyama, 2006] J. Fukuyama. Np-completeness of the
planar separator problems. Journal of Graph Algorithms
and Applications, 4:317–328, 2006.

[Glover, 1989] F. Glover. Tabu search - part i. ORSA Journal
on Computing, 1(3):190–260, 1989.

[Helmberg and Rendl, 2000] C. Helmberg and F. Rendl. A
spectral bundle method for semidefinite programming.
SIAM Journal on Optimization, 10:673–696, 2000.

[Lourenco et al., 2003] H.R. Lourenco, O. Martin, and
T. Stützle. Iterated local search, Handbook of Meta-
heuristics. Springer-Verlag, Berlin Heidelberg, 2003.

[Woodruff and Zemel, 1993] D. L. Woodruff and E. Zemel.
Hashing vectors for tabu search. Annals of Operations Re-
search, 41(2):123–137, 1993.

