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Abstract al., 1997; Hirsch and Kojevnikov, 2001 As usual, these
i , ) algorithms rely on the fundamental characteristics of lloca
The aim of this paper is to propose a new resolu-  gearch: the exploration of the search space is achieved by

tion framework for the SAT and MAX-SAT prob-
lems which introduces a third truth valuadefined
in order to improve the resolution efficiency. Using

moving from an element to one of its neighbors, these moves
being performed according to specific heuristics. Theeefor

_ _ they expect to minimize, on the assignments space, a functio
this framework, we have adapted the classic algo-  ¢orresponding to the number of false clauses. They are thus

rithms Tabu Search and Walksat. Promising results  a1yrally designed for the MAX-SAT problem and allow one
are obtained and show the interest of our approach. 4 handie large instances.

. The efficiency of such algorithms is strongly related totthei
1 Introduction capacities to finely exploit specific areas of the searchespac
The satisfiability problem (SAT)Garey and Johnson, 1979 when needed (i.e., intensify the search) and to widely eeplo
consists in finding a truth assignment that satisfies a wellthe space by moving to different promising areas (i.e.,rdive
formed Boolean expression. An instance of the SAT probsify the search). These aspects are controlled througipara
lem is then defined by a set of Boolean variables (also calledters to ensure a good tradeoff between diversification and
atoms)X = {z;,...,x,} and a Boolean formulg: B" — intensification. But, actually these two notions are notlyea
IB. As usual, the formul@ is supposed to be in conjunc- well defined and therefore, parameters tuning remains a key
tive normal form (CNF) (i.e., it is a conjunction of clauses point when using such algorithms.
where a clause is a disjunction of litergls The formula _
is said to be satisfiable if there exists an assignment g.e., We should remark that exact and approximate methods
function A: X — IB") satisfying¢ and unsatisfiable other- do not use the same representations for their search space.
wise. The search spacecorresponds to the set of all possi- Their hybridizationdMazureet al, 1998; Prestwich, 2000;
ble assignments.is obviously satisfied if all of its clauses are Habetet al, 2002; Prestwich, 20Q4re not trivial since ex-
satisfied. In this context, the maximum satisfiability peshl ~ act methods work on partial assignments incrementally com-
(MAX-SAT) corresponds to the minimization of the number pleted by the resolution process while approximate algo-
of false clauses. rithms explore the set of all possible complete assignments
Two classes of methods are used to solve SAT and MAXA partial assignment is an assignment where some variables
SAT problems, namely exact and approximate methods. ~ are notyet valued and can be t_hus considered as the represen-
Exact methods are able to find all the solutions of an intation of a set of complete assignments. From a local search
stance or, if there is no solution, to prove its unsatisfiabil Point of view, the use of such partial assignments could lead
ity. These methods are generally based on the Davis-Putnarif new diversification and intensification processes. Iddee
Logemann-Loveland procedui@aviset al., 1964 which ex- f[he diversification of the search co_uld be ac_h|eved by mov-
plores a binary search tree, building incrementally trigh a ing over large sets of complete assignments induced by given
Signments_ They provide very good results but are not Suitpartlal aS_Slgnm(f,'ntS, while the Valua“on_of some variabfes
able for the MAX-SAT problem. Other exact methods, gener-such partial assignments could be considered as a way to fo-
ally based on Branch and Bound (B&B) algorithfB®rchers ~ cus on a more restricted part of the search space.
and Furman, 199%ave been designed to handle MAX-SAT,
but their performances are often limited for large instance
Approximate methods are mainly based on local searc
and evolutionary algorithms. We focus here on local searc
algorithms which have been widely studied in the SAT com-
munity [Selmanet al, 1992; 1994; Spears, 1996; Mazuae

The purpose of this paper is to define a uniform model for
II.'hese two types of assignments in order to precisely define
@nd study the fundamental mechanisms of local search for
AT and MAX-SAT resolutions. This framework allows us to
propose a new local search scheme which provides a uniform
control of the search and which can be introduced in well
A literal is a variable or its negation. known local search procedures: Tabu Search and Walksat.



2 A 3-Valued Framework e We propose here an alternatip@ssimistic approach
which relies on the fact that as soon as a clause has a
false literal and no true literal, it is considered as false.
An undefined clause must have all its literals set to unde-
fined. This approach corresponds to the following rules:

We propose a new resolution framework for the SAT and the
MAX-SAT problems which introduces a third truth value-
definedin order to improve the resolution efficiency. Within
this framework, local search methods will be extended in or-

der to take into account partial assignments and, therefore v —>T
several notions and logical rules have to be redefined. FVvU—F
UvU -U

2.1 Standard Local Searches Our search structure is now defined and we may study the
In the classic SAT and MAX-SAT context, the search spacerecise behavior of local search algorithms on this stnectu
S is the set of all possible complete truth assignments. Thevith three truth values.

objective function to maximize corresponds to the number of

satisfied clauses given by the&undard_eval function: 2.3 Local Search Transitions
We define a partial orden on the set7 such asU O T
standard_eval: S — IN andU 3 F. In this context, given a SAT problem with
A = |{c[sat(A,c) Ac € B} variables, our search space will be the’8&t The ordering

: - relation can be naturally extended ©7: (21, -, z,) 3
wheresat(A, ¢) means that the clauseis satisfied by the (y1,--,yn) if and only if 3i,z; 7 y; and ), y; 7 ;.

assignment! € S and|E| is the cardinality of the sel. ~—  \yg' consider the partial ordering/ ™, 1) with the great-
The moves are clearly possible flips of the values of a givenyg; alementr = (U,---,U). This structure will now be

assignment. The flip of a variabien an assignment is the ;56 tg precisely describe the behavior of local search algo

swap of its truth valueT( (frue)to F (false)or F toT). The best iy ms - \we consider a basic local search nfoss a tran-
flip is selected thanks to &andard_choose function which  giion 4 — 4’ where A, A’ € T". Since we only con-

returns the variable whose flip provides the bestimprovemery;je; pere a classical neighborhood we require that transi-
(i.e., maximizes the number of false clauses which becomg o (z1, - 2n) = (y1,--,yn) satisfyJi,z; # y; and
true after the flip minus the number of satisfied clauses whicky; , . _’y," This neighb’orrﬁood corres:p(;nds {0 a ham-

[ A

become false). _ ming distance equal to 1 between two neighbors, which is
A naive local search algorithm for SAT and MAX-SAT | q|ated to theflip function.

consists in selecting the best move at each step (using o the one hand, we first consider the assignment land-
standard_ch(_)ose). It stops either when a solution is found or scape point of view. The 3-valued framework allows us to
when a maximum number of steps has been reached. Theflangle both partial and complete assignments and, as men-
It returns the best assignment found (W'Mmdard—e”“l)' tioned above, a partial assignments is seen as a représentat
Specific control heuristics can be added to improve the effiyt 5 set of smaller assignments (w.c). Therefore, diversi-
ciency of the search, such as random walks and other noisgation consists in considering larger sets of elementaef t
strategiesSelmaret al, 1994. search space while intensification focus on fewer elements.
. . The transition corresponds to a layer exploration when the
2.2 Introducing an undefinedvalue number of undefined variables remains the same.

Our purpose is to provide a uniform framework to represent

complete and partial assignments. Concerning complete as- - Diversification: A — A’ with A’ 7 A

signments, with classicatue and false values, the logical - Intensification: A — A’ with A 7 A’

interpretation rules are well-known but, with partial assi - Layer Exploration; A — A’ with A Z1 A’ andA' 2 A
ments, non valued variables appear and we decide to intro-

duce a third truth value to represent them. On the other hand, we have to take into account the evalu-

We add a truth valu&(undefinediand consider the set of ation of the assignments. The introduction of the thirdrrut
truth valuesT = {U, T, F'} in our 3-valued frameworkThis  value requires us to redefine thindard_eval function and
new value induces some changes in the standard logical intethe standard_choose function of section 2.1, since the num-
pretation rules. Two approaches can be used to define theber of undefined clauses must be taken into account. The new
rules: an optimistic approach and a pessimistic approach. evaluation functiorval returns the number of true clauses as
« Theoptimistic approaciis the most commonly used. In- /!l 35 thetnungbtetr o{hundefmtehd CI.?‘.JtseSt'. 'ff‘ this con(t:(z(t, an
deed, all the exact methods exploring a search tree ar%s&gnmen IS betler than another it it salislies more csause
the number of true clauses is equal for two assignmergs, th

based on this approach. A clause is considered unde- ina th ber of undefined cl il
fined if none of its literals is true and at least one of its "¢ generating the greatest number of undefined clauses wi

literals is undefined. This approach corresponds to thge considered as the best assignment.

following simplification rules: eval: § — (IN,IN)
A = (|{c|sat(A,c) Ac € @},
rvu—T {c|lundefined(A,c) A c € ¢}|)
FvU—-U EENY T

2With three truth values, the concepts of flip is not valid anyen

UvU —=U We prefer to use the concept of move, step or transition.



At this stage, one has to consider possible combinations
of these transitions, issued from these two points of view, t
build a general local search process.

whereunde fined(A, ¢) means that the claugds undefined
by the assignment € S.

Using this function, we may defingoly, the set of all the o
solutions for a formula: Sols = {Aleval(A) = (k,0), A € The purpose of the search process is to increase the number
77} with k = [{c|c € ¢}]. of true clauses. When this is not possible, it is then préfera

We define the order.,.; as the lexicographic extension [0 increase the number of undefined clauses and thus to re-
(>,>) of the order> on the pair constructed by theal duce the number of false clauses. We propose adi@wse

function. We may now consider the transitions from thisfunction which selects a variable and a change of its value
evaluation point of view. which maximizes the number of true clauses and minimizes

the number of false clauses (increasing the number of unde-
fined clauses if necessary).

At this step, the main components of a local search algo-
rithm have been described. We will now study their behaviour
and combination.

- Improve: A — A’ with A" >, A
- Deteriorate: A — A’ with A >, A’
- Preserve: A — A’ with eval(A") = eval(A)

Using these concepts, a move is now characterized frord.4 Evaluation of the Logical Rules

each point of view: for instance, a given move may correqye want to measure the effect of the logical interpretation
spond to a diversification and improve transition. rules, presented in section 2.2, on the search process.-As de

These notions are illustrated in example 1. Indeed, in ouscribed before, a 3-valued local search (3LS) algorithm may
3-valued framework, both exact and approximate methodgeturn now partial assignments which represent indeed sets
can be modeled. The search trees used by Davis-Putnarof assignments. To evaluate the quality of these partial as-
Logemann-Loveland like procedures are sets of intensifisignments, it is necessary to explore exhaustively theseorr
cation and diversification transitions whereas classi@lloc sponding subset in order to find the best complete assignment
search algorithms perform sets of improving, deterioatin that it contains. This can be achieved thanks to a Branch
and preserving transitions at the lowest layer (with no undeand Bound procedure (B&B) which performs an exhaustive
fined value). search by exploring a restricted search tree whose rooeis th
partial assignment provided by the 3LS algorithm.

Table 1 compares the effects of the different logical rules.
Tests are realized on standard random 3-sat instances with
500, 1000 and 2000 variables (F500.cnf, F1000.cnf and
F2000.cnf). The 3LS algorithm used for these tests is a 3-
valued Tabu Search (3TS-BB, see next section). The algo-
rithm runs until 5000 iterations are performed. The number
of undefined variablesnp. var. U), the number of clauses
with one, two and three undefined variablds,(UU, UUU))
and the quality (T, U, F') after 3T'S-BB) are memorized
for the last partial assignment found. To estimate the po-
tential quality of the partial assignment found by 3TS-BB,
a B&B algorithm is executed and provides the best complete
assignment((", F') after B& B) by assigning the undefined

Example L (a Vb) A (ma VvV b) A (aV —b)

variables.

Inst. Observations Optimistic || Pessimistic
(2.0) (2.0 (2.0 (3.0 = | (T.U,F) after 3TS-BB|| (2139,1,10)[| (2145,0,5)
; nb. var. U 20 18
Figure 1: The 3-valued framework. All the elements7of 3 (U,UU,fltJUU) (18820)[| (177,40
are represented w.r.t. the ordering relation A diversifi- _ (1.F) after B&B (2140,10) (2145,5)
cation transition increases the number of undefined vagabl | (TvafF) e:jter 3TS-BB (4227757%2) (423310:‘118)

whereas an intensification transition decreases this numbe| o |0 var

: X S

In this scheme, complete assignments are at the bottom and S Eg 'FU)‘;ﬁUe lrJlé?&B (%53?2’51’2; %%%161’2;
T = (UU) is on top. When the number of undefined vari- — T’U TR RS 1’44 T 0, =
ables remains stable, the elements are sorted by the ordegr S E]b \}azabef - ( , ’69) ( , '78)
>eval- The valuations of thewval function are given as a 8 (U'UU .UUU) (662.16.0) [ (774.20,0)
couple ¢1;v2) Wherev; (resp.vs) corresponds to the evalua- Q (T,'F) afier B&B (8456,44) (8465,3;5)

tion of the current assignment under the optimistic (regs- p
simistic) approach. This couple is reduced to a single evalu
tion if v; = vo. The best element is on the right side and the
worst on the left side. Therefore, in this figure, best sohai
are on rightmost bottom positions.

Table 1: Comparisons between the two approaches.

Table 1 shows a clear dominance of the pessimistic inter-
pretation. The quality of the partial assignment found igiri




the 3TS-BB is better since the number of true clauses founthbu list is set to 10% of the number of variables (empirical
after B&B is greater than the corresponding number obtainedesult inspired byfMazureet al, 1997). One expects 3TS-

with the optimistic interpretation. BB to return a complete assignment to answer to the MAX-
. . SAT problem. Then, we decide to regularly complete the par-
2.5 Impact of Transitions in the Search Process tial assignments with a B&B procedure in order to generate

The optimistic and the pessimistic interpretations do net i a complete assignment. This completion is realized every
volve the same behaviour w.r.t. the different combinatioihs moves (empirically fixed to 5000). To reduce the execution
transitions characterizing a move, as described in segtn time, B&B must not be used when there are too many unde-
Table 2 presents the evolution of the number of true, undefined variables in the partial assignments. We impose tleat th
fined and false clauses (T,U,F) for the optimistic (opt.) andmaximum number of unassigned variables should not to be
the pessimistic (pes.) approaches and all the combinatiorgreater than a bourid(empirically fixed to 100). The search
of transitions excepted for the “preserve” transition simo  stops when a solution is found or wh&a% moves are exe-

change is performed in this case. cuted.
Diversification || Intensification || Layer exploration 3.2 3Walksat-BB
| I I
mp o =151 <> <1551~ ~ The general process of the 3-valued Walksat (3Walksat-BB)
Pes) || = | > | < || >|<|>]>]=] < uses similar principles. Like the standard Walksat, 3\Watiks
el NN N I SRS B N B N BB is a randomized local search algorithm, which tries to

determine the best move by randomly choosing an unsatisfied

i ) _clause and selecting one of its variable thanks tocth®se
Table 2: Possible evolutions of the number of true, undefined,nction. We use as basis the version v41 of Walksat. The

and false clauses (T,U,F) due to the different combinaiins  seaych is composed 06 tries. Each try starts with a random
transitions. t: increase>: increase or remain stables: assignment and aftdi0® moves, the best assignment found
remain stable<: decrease or remain stable; decrease and g completed with a classic B&B, if it is not a complete
~: increase, decrease or remain stable) assignment. When a solution is found, the search stops. Like
We may assess common properties for the optimistic an¥Valksat, 3Walksat-BB uses the “novelty” heurisielman
pessimistic approaches. When applying an intensificatiogt al, 1994 with a noise set to 0.5 (its default value).
transition, it is neither possible to create undefined @aus
nor to delete true clauses. Concerning the diversificateont Remark: Itis important to note that, contrary to the standard
sition, true clauses cannot be created and undefined claus@sal search algorithms, the 3-valued algorithms may start
cannot be deleted. Specific properties related to the ogtfimi  their searches with the assignmentU,---,U). The in-
and pessimistic interpretations can also be depictedgusa  fluence of the initial assignment in the results is then aagid
optimistic approach, false clauses cannot be generatétdur
a diversification transition while in the pessimistic casede- 4 Experimental Results

fined clauses cannot be created nor deleted during the “Layer . L
exploration”. Due to the approximate and non-deterministic nature of TS,

3TS-BB, Walksat and 3Walksat-BB, each algorithm runs 20
; times on each benchmark. Tests are realized on a cluster with

3 3-va|ged Framework used in Well-known Linux and Alinka (5 nodes each of them with 2 CPU Pen-

Algorithms tium IV 2.2 GHz and 1 Gb of RAM) used sequentially. The
Tabu Search (TS)Glover and Laguna, 1997; Mazue¢al,  maximum number of allowed local search step$($. For
1997 and WalksaiSelmaret al., 1994 are two well-known  our algorithms, we consider that a backtrack performed dur-
local search algorithms for SAT and MAX-SAT. To show the ing the B&B procedure has the same cost than a local search
interest of the 3-valued framework, we have adapted thesstep.
two algorithms in order to obtain 3TS-BB and 3Walksat-BB. All studied instances (Table 3) have been used for SAT
The choose and theeval functions (2.3) were used to trans- competition 2003Simonet al, 2003 and contain satisfiable

form the two algorithms in their 3-valued versions. and unsatisfiable instances. They come from different fami-
lies of instances.
31 3TS-BB To study the four algorithms we present two tables (Tables

The 3-valued Tabu Search (3TS-BB) is a local search meta4 and 5): the first one is a comparison between TS and 3TS-
heuristics based on standard Tabu Search. Its aim is to maxX8B and the second one between Walksat and 3Walksat-BB.
mize the number of true clauses and minimize the number ofwo criterions are used: the number of false clauses (fd) an
false clauses. The exploration of the search space is azhievthe number of steps (including local search moves and B&B
by moving from an assignment to an other selected by théacktracks) to obtain the best result (steps). For these two
choose function. These moves are guided by thal func-  criterions we present the average (avg.) and its standard de
tion which evaluates their benefit. In order to avoid proldem viation (s.d.). Another interesting value is proposed ia th
induced by local optima, 3TS-BB uses a tabu list containindast column: the percentage of improvement of the 3-version
informations on previously visited configurations to fatbi v.s the standard version, w.r.t. the average number of false
some possible loops in the search process. The length of treauses.
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3TSBB TS imp.
Families sat03 fc. stepsf 10%) fc. steps 10°) fc.
avg. | sd. avg. | sd. avg. | s.d. avg. | s.d. %
1661 || 304.00 | 4.00 | 665.05| 23.72 || 497.50 | 16.50 | 273.81 | 172.52 | 138.80
purdom 1662 || 256.33 | 9.00 | 462.10 | 300.75 || 350.00 | 3.00 | 401.52 | 259.26 || 426.76 | +33.39
1663 || 247.50 | 1.50 | 663.28 | 122.31 || 378.00 | 10.00 | 669.85 | 60.97 || +34.52
\ukula 362 || 2258 | 236 | 34657 | 29114 || 48.00 | 8.72 | 803.18 | 225.66 || +5296 | o, oo
363 || 53.33 | 2.93 | 353.74 | 282.04 || 113.00 | 16.20 | 720.32 | 178.27 || +52.81
des-encryption| 416 || 3575 | 283 [ 37287 19730 ([ 5333 | 229 | 132 | 027 | 43296 | ooy
417 || 36.42 | 2.38 | 202.87 | 258.25 || 50.67 | 4.38 | 66.50 | 216.62 || +28.12
comb 419 || "123.90 | 579 | 14310 | 14553 || 160.20 | 870 | 328.83 | 233.63 || +2266 | 0 1
421 || 79.33 | 501 | 243.34 | 190.96 || 110.42 | 4.83 | 156.43 | 87.09 || +28.16
1518 || 105.00 | 3.37 | 463.88 | 299.16 || 104.58 | 18.72 | 631.44 | 333.80 || —0.40
esfact.64 1519 || 102.00 | 447 | 38821 | 209.20 || 100.08 | 11.21 | 669.38 | 315.35 || —1.92 | . oo
1522 || 108.83 | 5.26 | 383.12 | 319.05 || 112.33 | 10.92 | 672.35 | 249.31 || +3.12
1523 || 110.00 | 4.64 | 488.94 | 287.57 || 113.42 | 15.67 | 623.18 | 276.93 || +3.02
markstom 1488 || 992 | 082 | 38226 | 255.60 || 16.08 | 512 | 304.65 | 303.00 | #3831 | oo
1497 || 6.08 | 078 | 350.18 | 266.21 || 7.75 | 1.59 | 102.11 | 198.37 || +21.55
okgen 1704 ||~ 433 | 104 | 306.77 | 24903 || 458 | 120 | 340.69 | 28310 || +546 | Lo
1705 || 517 | 052 | 31529 | 17385 || 550 | 0.87 | 361.38 | 250.97 || 46.00
Parity-32 1539 || 9.67 | 081 | 48820 29015 || 6558 | 1.23 | 173.14 | 21385 | +8525 | om0
1540 || 9.75 | 1.09 | 500.59 | 225.89 || 155.00 | 1.68 | 192.88 | 262.24 || +93.71
1543 || 239.00 | 3.00 | 92.11 | 20.37 || 377.00 | 0.00 | 269.85 | 30.10 || +36.60
pyhalabraun | 1544 || 197.00 | 374 | 35573 | 304.16 || 347.00 | 300 | 617.31 | 37333 || +4323 | ., ,;
1546 || 342.50 | 1050 | 25.80 | 4.98 || 464.00 | 0.00 | 571.45| 0.03 | +26.19
1547 || 330.00 | 4.00 | 53.95 | 7.58 || 476.00| 0.00 | 29421 | 0.04 | +30.67
quh 1653 || 12567 | 967 | 5249 | 63.89 || 130.08 | 10.03 | 3386 | 60.82 || +339 | _ oo
1654 || 132.00 | 9.05 | 56.67 | 69.93 || 130.08 | 10.84 | 48.06 | 119.94 | —1.48 :
it 11T ||~ 275 | 04%4 | 283.00| 31058 || 358 | 1.26 | 269.46 | 343.48 || +23.8 | 0,
1112 || 175 | 0.60 | 379.46 | 35353 || 542 | 1.43 | 13537 | 81.25 || +67.71 :
Table 4: Comparisons between TS and 3TS-BB.
3Walksat-BB Walksat Imp.
Instances sat03 fc. steps 10) fc. steps 10%) fc.
avg. | sd. avg. | sd. avg. | s.d. avg. | s.d. %
1661 || 372.45 | 12.65 | 635.00 | 270.60 || 412.05 | 12.77 | 487.16 | 248.84 || 19.61
purdom 1662 || 327.85 | 14.54 | 455.00 | 257.83 || 374.55 | 8.45 | 508.58 | 295.37 || +12.47 | +21.61
1663 || 353.00 | 15.70 | 540.00 | 281.78 || 393.70 | 9.07 | 656.23 | 247.86 || +10.34
kil 362 110 | 0.44 | 33341 | 265.67 || 1.80 | 238 | 40008 | 26357 || +38.89 | | .o .
363 || 71.80 | 14.85 | 510.66 | 292.22 || 78.00 | 14.95 | 555.39 | 304.03 || +7.95
| 416 || 2455 | 2.42 | 337.15 | 288.45 || 23.70 | 1.76 | 41957 | 257.28 || —3.59
des-encryption| 417 || 2395 | 166 | 55111 | 322.33 || 2335 | 168 | 458.96 | 20570 | —257 | 487
comb 419 || 76935 | 596 | 548.77 | 303.13 || 70.45 | 7.07 | 560.64 | 27353 | +156 | L=
421 || 39.60 | 4.09 | 452.94| 309.93 | 39.25 | 5.62 | 527.25| 338.57 || —0.89 :
1518 || 70.95 | 3.02 | 544.84 | 279.54 || 86.95 | 4.60 | 393.75 | 280.57 || 118.40
esfact.64 1510 || 7270 | 456 | 62037 | 294.40 || 90.40 | 357 | 520.31 | 276.70 || +19.58 | ;o ,q
1522 || 73.95 | 4.24 | 518.53 | 284.14 || 88.60 | 2.62 | 308.05 | 267.34 || +16.53
1523 || 72.55 | 3.93 | 548.05| 280.23 || 89.80 | 3.67 | 587.71 | 287.36 || +19.21
arkstrom 1288 |[710.70 | 149 | 570.15| 23946 || 1145 | 163 | 40054 | 269.03 | +655 | o
1497 || 485 | 057 | 423.88| 302.64 || 4.80 | 051 | 21427 | 240.11| —1.04 :
okgen 1704 || 3.00 | 0.00 | 5110 | 31.28 || 3.00 | 0.00 | 48.65 | 36.04 0.00 0
1705 || 4.00 | 0.00 | 147.20| 140.04 | 4.00 | 0.00 | 191.90 | 168.66 | 0.00
Parity-32 1539 || 13.80 | 189 | 50011 | 27664 || 13.85 | 1.68 | 486.16 | 27846 | +036 | _ o,
1540 || 15.10 | 2.07 | 349.38 | 267.51 | 15.05 | 2.18 | 493.77 | 284.38 || —0.33
1543 || 175.85 | 7.27 | 452.92 | 302.98 || 216.70 | 11.33 | 505.76 | 300.51 || 118.85
1544 || 172.10 | 7.63 | 555.63 | 293.43 || 215.90 | 10.19 | 542.80 | 313.90 || +20.29
pyhala-braun | 95,6 11 535'90 | 932 | 660.00 | 259.62 || 293.25 | 9.15 | 551.42 | 28012 || +18553 | T1948
1547 || 239.70 | 10.85 | 625.00 | 289.61 || 300.55 | 8.69 | 552.30 | 263.27 || +20.25
qun 1653 || 13840 | 442 | 50955 | 267.21 || 138.75 | 3.24 | 402.36 | 239.36 || +0.25 | _ o
1654 || 135.70 | 4.75 | 527.37 | 281.81 || 137.10 | 4.58 | 535.02 | 270.60 || +1.02 :
it IT11 ([ 155 | 050 | 240.75| 29205 || 145 | 050 | 25281 | 25521 || —6.90 | o .o
1112 || 100 | 000 | 2161 | 19.49 || 1.00 | 0.00 | 2120 | 17.01 0.00 :

Table 5: Comparisons between Walksat and 3Walksat-BB.
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