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Abstract

The aim of this paper is to propose a new resolu-
tion framework for the SAT and MAX-SAT prob-
lems which introduces a third truth valueundefined
in order to improve the resolution efficiency. Using
this framework, we have adapted the classic algo-
rithms Tabu Search and Walksat. Promising results
are obtained and show the interest of our approach.

1 Introduction
The satisfiability problem (SAT)[Garey and Johnson, 1979]
consists in finding a truth assignment that satisfies a well-
formed Boolean expression. An instance of the SAT prob-
lem is then defined by a set of Boolean variables (also called
atoms)X = fx1; :::; xng and a Boolean formula�: IBn !IB. As usual, the formula� is supposed to be in conjunc-
tive normal form (CNF) (i.e., it is a conjunction of clauses
where a clause is a disjunction of literals1). The formula
is said to be satisfiable if there exists an assignment (i.e.,a
functionA:X ! IBn) satisfying� and unsatisfiable other-
wise. The search spaceS corresponds to the set of all possi-
ble assignments.� is obviously satisfied if all of its clauses are
satisfied. In this context, the maximum satisfiability problem
(MAX-SAT) corresponds to the minimization of the number
of false clauses.

Two classes of methods are used to solve SAT and MAX-
SAT problems, namely exact and approximate methods.

Exact methods are able to find all the solutions of an in-
stance or, if there is no solution, to prove its unsatisfiabil-
ity. These methods are generally based on the Davis-Putnam-
Logemann-Lovelandprocedure[Daviset al., 1962] which ex-
plores a binary search tree, building incrementally truth as-
signments. They provide very good results but are not suit-
able for the MAX-SAT problem. Other exact methods, gener-
ally based on Branch and Bound (B&B) algorithms[Borchers
and Furman, 1999] have been designed to handle MAX-SAT,
but their performances are often limited for large instances.

Approximate methods are mainly based on local search
and evolutionary algorithms. We focus here on local search
algorithms which have been widely studied in the SAT com-
munity [Selmanet al., 1992; 1994; Spears, 1996; Mazureet

1A literal is a variable or its negation.

al., 1997; Hirsch and Kojevnikov, 2001]. As usual, these
algorithms rely on the fundamental characteristics of local
search: the exploration of the search space is achieved by
moving from an element to one of its neighbors, these moves
being performed according to specific heuristics. Therefore,
they expect to minimize, on the assignments space, a function
corresponding to the number of false clauses. They are thus
naturally designed for the MAX-SAT problem and allow one
to handle large instances.

The efficiency of such algorithms is strongly related to their
capacities to finely exploit specific areas of the search space
when needed (i.e., intensify the search) and to widely explore
the space by moving to different promising areas (i.e., diver-
sify the search). These aspects are controlled through param-
eters to ensure a good tradeoff between diversification and
intensification. But, actually these two notions are not really
well defined and therefore, parameters tuning remains a key
point when using such algorithms.

We should remark that exact and approximate methods
do not use the same representations for their search space.
Their hybridizations[Mazureet al., 1998; Prestwich, 2000;
Habetet al., 2002; Prestwich, 2004] are not trivial since ex-
act methods work on partial assignments incrementally com-
pleted by the resolution process while approximate algo-
rithms explore the set of all possible complete assignments.
A partial assignment is an assignment where some variables
are not yet valued and can be thus considered as the represen-
tation of a set of complete assignments. From a local search
point of view, the use of such partial assignments could lead
to new diversification and intensification processes. Indeed,
the diversification of the search could be achieved by mov-
ing over large sets of complete assignments induced by given
partial assignments, while the valuation of some variablesof
such partial assignments could be considered as a way to fo-
cus on a more restricted part of the search space.

The purpose of this paper is to define a uniform model for
these two types of assignments in order to precisely define
and study the fundamental mechanisms of local search for
SAT and MAX-SAT resolutions. This framework allows us to
propose a new local search scheme which provides a uniform
control of the search and which can be introduced in well
known local search procedures: Tabu Search and Walksat.



2 A 3-Valued Framework
We propose a new resolution framework for the SAT and the
MAX-SAT problems which introduces a third truth valueun-
definedin order to improve the resolution efficiency. Within
this framework, local search methods will be extended in or-
der to take into account partial assignments and, therefore,
several notions and logical rules have to be redefined.

2.1 Standard Local Searches
In the classic SAT and MAX-SAT context, the search spaceS is the set of all possible complete truth assignments. The
objective function to maximize corresponds to the number of
satisfied clauses given by thestandard eval function:standard eval: S ! INA 7! jf
jsat(A; 
) ^ 
 2 �gj
wheresat(A; 
) means that the clause
 is satisfied by the
assignmentA 2 S andjEj is the cardinality of the setE.

The moves are clearly possible flips of the values of a given
assignment. The flip of a variablei in an assignmentA is the
swap of its truth value (T (true)to F (false)orF toT). The best
flip is selected thanks to astandard 
hoose function which
returns the variable whose flip provides the best improvement
(i.e., maximizes the number of false clauses which become
true after the flip minus the number of satisfied clauses which
become false).

A naive local search algorithm for SAT and MAX-SAT
consists in selecting the best move at each step (usingstandard 
hoose). It stops either when a solution is found or
when a maximum number of steps has been reached. Then,
it returns the best assignment found (w.r.t.standard eval).
Specific control heuristics can be added to improve the effi-
ciency of the search, such as random walks and other noise
strategies[Selmanet al., 1994].

2.2 Introducing an undefinedValue
Our purpose is to provide a uniform framework to represent
complete and partial assignments. Concerning complete as-
signments, with classicaltrue andfalse values, the logical
interpretation rules are well-known but, with partial assign-
ments, non valued variables appear and we decide to intro-
duce a third truth value to represent them.

We add a truth valueU(undefined)and consider the set of
truth valuesT = fU; T; Fg in our3-valued framework. This
new value induces some changes in the standard logical inter-
pretation rules. Two approaches can be used to define these
rules: an optimistic approach and a pessimistic approach.� Theoptimistic approachis the most commonly used. In-

deed, all the exact methods exploring a search tree are
based on this approach. A clause is considered unde-
fined if none of its literals is true and at least one of its
literals is undefined. This approach corresponds to the
following simplification rules:T _ U ! TF _ U ! UU _ U ! U

� We propose here an alternativepessimistic approach
which relies on the fact that as soon as a clause has a
false literal and no true literal, it is considered as false.
An undefined clause must have all its literals set to unde-
fined. This approach corresponds to the following rules:T _ U ! TF _ U ! FU _ U ! U

Our search structure is now defined and we may study the
precise behavior of local search algorithms on this structure
with three truth values.

2.3 Local Search Transitions
We define a partial orderA on the setT such asU A T
andU A F . In this context, given a SAT problem withn
variables, our search space will be the setT n. The ordering
relationA can be naturally extended toT n: (x1; � � � ; xn) A(y1; � � � ; yn) if and only if 9i; xi A yi and �j; yj A xj .
We consider the partial ordering(T n;A) with the great-
est element> = (U; � � � ; U). This structure will now be
used to precisely describe the behavior of local search algo-
rithms. We consider a basic local search move2 as a tran-
sition A ! A0 whereA;A0 2 T n. Since we only con-
sider here a classical neighborhood we require that transi-
tions (x1; � � � ; xn) ! (y1; � � � ; yn) satisfy9i; xi 6= yi and8j 6= i; xj = yj . This neighborhood corresponds to a ham-
ming distance equal to 1 between two neighbors, which is
related to theflip function.

On the one hand, we first consider the assignment land-
scape point of view. The 3-valued framework allows us to
handle both partial and complete assignments and, as men-
tioned above, a partial assignments is seen as a representation
of a set of smaller assignments (w.r.t.A). Therefore, diversi-
fication consists in considering larger sets of elements of the
search space while intensification focus on fewer elements.
The transition corresponds to a layer exploration when the
number of undefined variables remains the same.

- Diversification: A! A0 with A0 A A
- Intensification: A! A0 with A A A0
- Layer Exploration: A! A0 with A 6A A0 andA0 6A A
On the other hand, we have to take into account the evalu-

ation of the assignments. The introduction of the third truth
value requires us to redefine thestandard eval function and
thestandard 
hoose function of section 2.1, since the num-
ber of undefined clauses must be taken into account. The new
evaluation functioneval returns the number of true clauses as
well as the number of undefined clauses. In this context, an
assignment is better than another if it satisfies more clauses.
If the number of true clauses is equal for two assignments, the
one generating the greatest number of undefined clauses will
be considered as the best assignment.eval: S ! (IN; IN)A 7! (jf
jsat(A; 
) ^ 
 2 �gj;jf
jundefined(A; 
) ^ 
 2 �gj)

2With three truth values, the concepts of flip is not valid anymore.
We prefer to use the concept of move, step or transition.



whereundefined(A; 
) means that the clause
 is undefined
by the assignmentA 2 S.

Using this function, we may defineSol�, the set of all the
solutions for a formula�: Sol� = fAjeval(A) = (k; 0); A 2T ng with k = jf
j
 2 �gj.

We define the order>eval as the lexicographic extension(>;>) of the order> on the pair constructed by theeval
function. We may now consider the transitions from this
evaluation point of view.

- Improve: A! A0 with A0 >eval A
- Deteriorate: A! A0 with A >eval A0
- Preserve:A! A0 with eval(A0) = eval(A)
Using these concepts, a move is now characterized from

each point of view: for instance, a given move may corre-
spond to a diversification and improve transition.

These notions are illustrated in example 1. Indeed, in our
3-valued framework, both exact and approximate methods
can be modeled. The search trees used by Davis-Putnam-
Logemann-Loveland like procedures are sets of intensifi-
cation and diversification transitions whereas classic local
search algorithms perform sets of improving, deteriorating
and preserving transitions at the lowest layer (with no unde-
fined value).

Example 1: (a _ b) ^ (:a _ b) ^ (a _ :b)
UU

UF UT TU

diversification

deteriorate improve

intensification

FU
((1,2);(1,0)) ((1,2);(1,0)) ((2,1);(2,0))((2,1);(2,0))

(2,0) (2,0) (2,0) (3,0)

(0,3)

TTFF FT TF

Figure 1: The 3-valued framework. All the elements ofT n
are represented w.r.t. the ordering relationA. A diversifi-
cation transition increases the number of undefined variables
whereas an intensification transition decreases this number.
In this scheme, complete assignments are at the bottom and> = (UU) is on top. When the number of undefined vari-
ables remains stable, the elements are sorted by the order>eval. The valuations of theeval function are given as a
couple (v1;v2) wherev1 (resp.v2) corresponds to the evalua-
tion of the current assignment under the optimistic (resp. pes-
simistic) approach. This couple is reduced to a single evalua-
tion if v1 = v2. The best element is on the right side and the
worst on the left side. Therefore, in this figure, best solutions
are on rightmost bottom positions.

At this stage, one has to consider possible combinations
of these transitions, issued from these two points of view, to
build a general local search process.

The purpose of the search process is to increase the number
of true clauses. When this is not possible, it is then preferable
to increase the number of undefined clauses and thus to re-
duce the number of false clauses. We propose a new
hoose
function which selects a variable and a change of its value
which maximizes the number of true clauses and minimizes
the number of false clauses (increasing the number of unde-
fined clauses if necessary).

At this step, the main components of a local search algo-
rithm have been described. We will now study their behaviour
and combination.

2.4 Evaluation of the Logical Rules
We want to measure the effect of the logical interpretation
rules, presented in section 2.2, on the search process. As de-
scribed before, a 3-valued local search (3LS) algorithm may
return now partial assignments which represent indeed sets
of assignments. To evaluate the quality of these partial as-
signments, it is necessary to explore exhaustively the corre-
sponding subset in order to find the best complete assignment
that it contains. This can be achieved thanks to a Branch
and Bound procedure (B&B) which performs an exhaustive
search by exploring a restricted search tree whose root is the
partial assignment provided by the 3LS algorithm.

Table 1 compares the effects of the different logical rules.
Tests are realized on standard random 3-sat instances with
500, 1000 and 2000 variables (F500.cnf, F1000.cnf and
F2000.cnf). The 3LS algorithm used for these tests is a 3-
valued Tabu Search (3TS-BB, see next section). The algo-
rithm runs until 5000 iterations are performed. The number
of undefined variables (nb: var: U ), the number of clauses
with one, two and three undefined variables ((U;UU;UUU))
and the quality ((T; U; F ) after 3TS-BB) are memorized
for the last partial assignment found. To estimate the po-
tential quality of the partial assignment found by 3TS-BB,
a B&B algorithm is executed and provides the best complete
assignment ((T; F ) after B&B) by assigning the undefined
variables.

Inst. Observations Optimistic Pessimistic

50
0

va
r. (T,U,F) after 3TS-BB (2139,1,10) (2145,0,5)

nb. var. U 20 18
(U,UU,UUU) (188,2,0) (177,4,0)
(T,F) after B&B (2140,10) (2145,5)

10
00

va
r. (T,U,F) after 3TS-BB (4227,5,18) (4233,0,17)

nb. var. U 33 40
(U,UU,UUU) (356,5,0) (394,16,0)
(T,F) after B&B (4232,18) (4234,16)

20
00

va
r. (T,U,F) after 3TS-BB (8455,1,44) (8465,0,35)

nb. var. U 69 78
(U,UU,UUU) (662,16,0) (774,20,0)
(T,F) after B&B (8456,44) (8465,35)

Table 1: Comparisons between the two approaches.

Table 1 shows a clear dominance of the pessimistic inter-
pretation. The quality of the partial assignment found during



the 3TS-BB is better since the number of true clauses found
after B&B is greater than the corresponding number obtained
with the optimistic interpretation.

2.5 Impact of Transitions in the Search Process
The optimistic and the pessimistic interpretations do not in-
volve the same behaviour w.r.t. the different combinationsof
transitions characterizing a move, as described in section2.3.
Table 2 presents the evolution of the number of true, unde-
fined and false clauses (T,U,F) for the optimistic (opt.) and
the pessimistic (pes.) approaches and all the combinations
of transitions excepted for the “preserve” transition since no
change is performed in this case.

Diversification Intensification Layer exploration
T U F T U F T U F

Imp. (opt.) = > < > � � � s s
(pes.) = > < > � � > = <

Det. (opt.) < � � = < > � s s
(pes.) < � s = < > < = >

Table 2: Possible evolutions of the number of true, undefined
and false clauses (T,U,F) due to the different combinationsof
transitions. (>: increase,�: increase or remain stable,=:
remain stable,�: decrease or remain stable,<: decrease ands: increase, decrease or remain stable)

We may assess common properties for the optimistic and
pessimistic approaches. When applying an intensification
transition, it is neither possible to create undefined clauses
nor to delete true clauses. Concerning the diversification tran-
sition, true clauses cannot be created and undefined clauses
cannot be deleted. Specific properties related to the optimistic
and pessimistic interpretations can also be depicted: using the
optimistic approach, false clauses cannot be generated during
a diversification transition while in the pessimistic case,unde-
fined clauses cannot be created nor deleted during the “Layer
exploration”.

3 3-valued Framework used in Well-known
Algorithms

Tabu Search (TS)[Glover and Laguna, 1997; Mazureet al.,
1997] and Walksat[Selmanet al., 1994] are two well-known
local search algorithms for SAT and MAX-SAT. To show the
interest of the 3-valued framework, we have adapted these
two algorithms in order to obtain 3TS-BB and 3Walksat-BB.
The
hoose and theeval functions (2.3) were used to trans-
form the two algorithms in their 3-valued versions.

3.1 3TS-BB
The 3-valued Tabu Search (3TS-BB) is a local search meta-
heuristics based on standard Tabu Search. Its aim is to maxi-
mize the number of true clauses and minimize the number of
false clauses. The exploration of the search space is achieved
by moving from an assignment to an other selected by the
hoose function. These moves are guided by theeval func-
tion which evaluates their benefit. In order to avoid problems
induced by local optima, 3TS-BB uses a tabu list containing
informations on previously visited configurations to forbid
some possible loops in the search process. The length of the

tabu list is set to 10% of the number of variables (empirical
result inspired by[Mazureet al., 1997]). One expects 3TS-
BB to return a complete assignment to answer to the MAX-
SAT problem. Then, we decide to regularly complete the par-
tial assignments with a B&B procedure in order to generate
a complete assignment. This completion is realized everys
moves (empirically fixed to 5000). To reduce the execution
time, B&B must not be used when there are too many unde-
fined variables in the partial assignments. We impose that the
maximum number of unassigned variables should not to be
greater than a boundb (empirically fixed to 100). The search
stops when a solution is found or when106 moves are exe-
cuted.

3.2 3Walksat-BB
The general process of the 3-valued Walksat (3Walksat-BB)
uses similar principles. Like the standard Walksat, 3Walksat-
BB is a randomized local search algorithm, which tries to
determine the best move by randomly choosing an unsatisfied
clause and selecting one of its variable thanks to the
hoose
function. We use as basis the version v41 of Walksat. The
search is composed of10 tries. Each try starts with a random
assignment and after105 moves, the best assignment found
is completed with a classic B&B, if it is not a complete
assignment. When a solution is found, the search stops. Like
Walksat, 3Walksat-BB uses the “novelty” heuristic[Selman
et al., 1994] with a noise set to 0.5 (its default value).

Remark: It is important to note that, contrary to the standard
local search algorithms, the 3-valued algorithms may start
their searches with the> assignment(U; � � � ; U). The in-
fluence of the initial assignment in the results is then avoided.

4 Experimental Results
Due to the approximate and non-deterministic nature of TS,
3TS-BB, Walksat and 3Walksat-BB, each algorithm runs 20
times on each benchmark. Tests are realized on a cluster with
Linux and Alinka (5 nodes each of them with 2 CPU Pen-
tium IV 2.2 GHz and 1 Gb of RAM) used sequentially. The
maximum number of allowed local search steps is106. For
our algorithms, we consider that a backtrack performed dur-
ing the B&B procedure has the same cost than a local search
step.

All studied instances (Table 3) have been used for SAT
competition 2003[Simonet al., 2003] and contain satisfiable
and unsatisfiable instances. They come from different fami-
lies of instances.

To study the four algorithms we present two tables (Tables
4 and 5): the first one is a comparison between TS and 3TS-
BB and the second one between Walksat and 3Walksat-BB.
Two criterions are used: the number of false clauses (fc.) and
the number of steps (including local search moves and B&B
backtracks) to obtain the best result (steps). For these two
criterions we present the average (avg.) and its standard de-
viation (s.d.). Another interesting value is proposed in the
last column: the percentage of improvement of the 3-version
v.s the standard version, w.r.t. the average number of false
clauses.



Families Instances sat03 var. cl.

comb
comb1 419 5910 16804
comb3 421 4774 16331

des-encryption
cnf-r4-b1-k1.1-comp 416 2424 14812
cnf-r4-b1-k1.2-comp 417 2424 14812

ezfact-64

ezfact642 1518 3073 19785
ezfact643 1519 3073 19785
ezfact646 1522 3073 19785
ezfact647 1523 3073 19785

kukula
am 6 6 362 2269 7814
am 7 7 363 4264 14751

markstrom
mm-1x10-10-10-s.1 1488 1120 7220
mm-2x2-5-5-s.1 1497 324 2064

okgen
okgen-c1935-v450-s569787048 1704 450 1935
okgen-c2025-v450-s1380514806 1705 450 2025

Parity-32
par32-5-c 1539 1339 5350
par32-5 1540 3176 10325

purdom
10142772393204023fw 1661 9366 37225
10142772393204023nc 1662 8372 33248
10142772393204023nw 1663 8589 34117

pyhala-braun

pyhala-braun-unsat-35-4-03 1543 7383 24320
pyhala-braun-unsat-35-4-04 1544 7383 24320
pyhala-braun-unsat-40-4-02 1546 9638 31795
pyhala-braun-unsat-40-4-03 1547 9638 31795

qwh
qwh.40.544 1653 2843 22558
qwh.40.560 1654 3100 26345

unif
unif-r4.25-v500-c2125-02-S1567634734 1111 500 2125
unif-r4.25-v500-c2125-03-S948115330 1112 500 2125

Table 3: Instances selected from the SAT2003 competi-
tion. (sat03! SAT2003 instance number, var.!variables,
cl.!clauses)

Tables 4 and 5 show that the 3-valued framework permits
to boost classic local search methods like TS and Walksat. In-
deed, 3TS-BB provides an improvement which can be some-
times weak and exceptionally negative (�1:92% for ez-
fact64 3) but often really more significant for most of the
instances (+93:71% for par32-5) and all the families. For
Walksat, the improvement is less important with the 3-valued
framework. However, 3Walksat-BB provides interesting re-
sults because 8 families are improved (4 more than 15%) and
only 2 families are deteriorated (never more than -5%).

It is interesting to remark that the 3TS-BB and 3Walksat-
BB results are better while the search power represented by
the number of steps is in the same order of magnitude. Exe-
cution time is not mentioned in the tables but remains approx-
imatively the same with and without the 3-valued framework.

5 Discussion and Conclusion
Our 3-valued framework allows us to handle partial assign-
ments and, thanks to these partial assignments, some charac-
teristics of the formula, like the backbone[Dubois and De-
quen, 2001], can be easily defined. The backbone of a sat-
isfiable formula� is the set of entailed literals. A literall is
entailed by� if and only if � ^ (:l) is unsatisfiable. In the
3-valued framework, the backbone is the elementA 2 Sol�
such that�A0 A A;A0 2 Sol�.

In this paper, we have proposed a new resolution frame-
work for SAT and MAX-SAT problems which includes a
third truth valueundefined in order to handle both partial
and complete assignments. We have precisely studied the
extension and behavior of local search algorithms using this
third truth value. Two possible logical interpretations have
been considered and it appears that the pessimistic approach
provides better results than the optimistic approach.

We have then introduced this 3-valued framework inside
Tabu Search and Walksat algorithms and the results are very

promising. Our future works will consist in developing new
specific heuristics using this 3-valued framework and in ex-
tending other well known algorithms in a 3-valued version.
This framework could also serve as basis for full hybridiza-
tions of complete and incomplete resolution techniques.
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1497 6.08 0.78 359.18 266.21 7.75 1.59 102.11 198.37 +21.55

okgen
1704 4.33 1.04 306.77 249.03 4.58 1.20 340.69 283.10 +5.46 +5.73
1705 5.17 0.52 315.29 173.85 5.50 0.87 361.38 250.97 +6.00

Parity-32
1539 9.67 0.81 488.20 290.15 65.58 1.23 173.14 213.85 +85.25 +89.48
1540 9.75 1.09 509.59 225.89 155.00 1.68 192.88 262.24 +93.71

pyhala-braun

1543 239.00 3.00 92.11 20.37 377.00 0.00 269.85 30.10 +36.60 +34.171544 197.00 3.74 355.73 304.16 347.00 3.00 617.31 373.33 +43.23
1546 342.50 10.50 25.80 4.98 464.00 0.00 571.45 0.03 +26.19
1547 330.00 4.00 53.95 7.58 476.00 0.00 294.21 0.04 +30.67

qwh
1653 125.67 9.67 52.49 63.89 130.08 10.03 33.86 60.82 +3.39 +0.95
1654 132.00 9.05 56.67 69.93 130.08 10.84 48.06 119.94 �1.48

unif
1111 2.75 0.44 283.00 310.58 3.58 1.26 289.46 343.48 +23.18 +45.44
1112 1.75 0.60 379.46 353.53 5.42 1.43 135.37 81.25 +67.71

Table 4: Comparisons between TS and 3TS-BB.

3Walksat-BB Walksat Imp.
Instances sat03 fc. steps(�103) fc. steps(�103) fc.

avg. s.d. avg. s.d. avg. s.d. avg. s.d. %

purdom
1661 372.45 12.65 635.00 270.69 412.05 12.77 487.16 248.84 +9.61 +21.611662 327.85 14.54 455.00 257.83 374.55 8.45 508.58 295.37 +12.47
1663 353.00 15.70 540.00 281.78 393.70 9.07 656.23 247.86 +10.34

kukula
362 1.10 0.44 333.41 265.67 1.80 2.38 409.08 263.57 +38.89 +23.42
363 71.80 14.85 519.66 292.22 78.00 14.95 555.39 304.03 +7.95

des-encryption
416 24.55 2.42 337.15 288.45 23.70 1.76 419.57 257.28 �3.59 �4.87
417 23.95 1.66 551.11 322.33 23.35 1.68 458.96 295.70 �2.57

comb
419 69.35 5.96 548.77 303.13 70.45 7.07 569.64 273.53 +1.56 +0.33
421 39.60 4.09 452.94 309.93 39.25 5.62 527.25 338.57 �0.89

ezfact-64

1518 70.95 3.92 544.84 279.54 86.95 4.69 393.75 280.57 +18.40 +18.431519 72.70 4.56 629.37 294.40 90.40 3.57 520.31 276.70 +19.58
1522 73.95 4.24 518.53 284.14 88.60 2.62 308.05 267.34 +16.53
1523 72.55 3.93 548.05 280.23 89.80 3.67 587.71 287.36 +19.21

markstrom
1488 10.70 1.49 570.15 239.46 11.45 1.63 400.54 269.03 +6.55 +2.75
1497 4.85 0.57 423.88 302.64 4.80 0.51 214.27 240.11 �1.04

okgen
1704 3.00 0.00 51.10 31.28 3.00 0.00 48.65 36.04 0.00

0
1705 4.00 0.00 147.20 140.04 4.00 0.00 191.90 168.66 0.00

Parity-32
1539 13.80 1.89 500.11 276.64 13.85 1.68 486.16 278.46 +0.36 +0.1
1540 15.10 2.07 349.38 267.51 15.05 2.18 493.77 284.38 �0.33

pyhala-braun

1543 175.85 7.27 452.92 302.98 216.70 11.33 505.76 300.51 +18.85 +19.481544 172.10 7.63 555.63 293.43 215.90 10.19 542.80 313.90 +20.29
1546 238.90 9.32 660.00 259.62 293.25 9.15 551.42 280.12 +18.53
1547 239.70 10.85 625.00 289.61 300.55 8.69 552.30 263.27 +20.25

qwh
1653 138.40 4.42 509.55 267.21 138.75 3.24 402.36 239.36 +0.25 +0.63
1654 135.70 4.75 527.37 281.81 137.10 4.58 535.02 270.60 +1.02

unif
1111 1.55 0.50 240.75 292.05 1.45 0.50 252.81 255.21 �6.90 �3.45
1112 1.00 0.00 21.61 19.49 1.00 0.00 21.20 17.01 0.00

Table 5: Comparisons between Walksat and 3Walksat-BB.
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