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ABSTRACT 
This paper deals with a particular “packing” problem, namely the two dimensional strip 

packing problem, where a finite set of objects have to be located in a strip of fixed width and 

infinite height. The variant studied here considers regular items (they are rectangular to be 

more precise) that must be packed without overlap, rotations being not allowed. The 

objective is to minimize the height of the resulting packing. For this problem, we present a 

local search algorithm based on the well-known tabu search method. While tabu search is 

sometimes said to be a generic search engine (or “metaheuristic”), we reinforce two 

important components of our tabu search strategy to try to include problem knowledge: The 

fitness function incorporates a measure related to the empty spaces and diversification relies 

on a set of historically “frozen” objects. The resulting reinforced tabu search approach is 

evaluated on a set of well-known hard benchmark instances and compared with some state-

of-the-art algorithms. 
 

Keywords: Tabu search, strip packing, guided diversification 

1. INTRODUCTION 

In packing problems, “small” items (also called “boxes”, “modules”, “objects”, or “pieces” e.g.) of 
various shapes (regular or not) and dimensions have to be packed (i.e. located) without overlap, with 
rotation and “guillotine” cuts (see Figure 1) allowed or not, in other “larger” items of regular forms or 
not

1
. These larger objects are usually called “containers” or “pallets” for the three-dimensional cases 

(3D, all dimensions fixed or infinite height) and “bins”, “plates”, or “(stock) sheets” (all dimensions 
fixed) or “strips” (only width fixed, infinite height) in 2D. 

 
Objectives are, for instance, to minimize the number of containers or to maximize the material 

used (hence to minimize the “trim loss”, i.e. the wasted area). A huge number of practical or industrial 
applications are concerned, such as truck loading, cardboard packing, facilities, fashion, plant, 
machine, newspaper, or web page layout design, VLSI macro-cell placement, glass, cloth, metal, 
paper, or wood industries, dynamic memory allocation, meta-computing, multi-processor or publicity 
scheduling for instance. This may explain why (commercial) software packages exist, sometimes for a 
long time. See (Dowsland & Dowsland, 1992; Lodi et al., 2002; Wäscher et al., 2007) just to mention 
a few surveys. 

 

                                                 
* Corresponding author. 
1  Expressions like “(pallet) loading”, “containment”, “marker making”, “nesting”, “(layout) design”, 
“placement”, “(resource) allocation”, or “(stock) cutting” e.g. are also sometimes employed to refer to this type 
of problems. 
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These problems are usually generalizations or restrictions of the well-known NP-hard (or NP-
complete for decision variants) quadratic assignment, bin packing, knapsack, or quadratic set covering 
problems. Packing problems are thus optimization or satisfaction problems (sometimes with multiple 
objectives) that are NP-hard or NP-complete in the general case (Fowler et al., 1981; Garey & 
Johnson, 1979). 
 

  

Feasible Not feasible 

Figure 1. The guillotine constraint imposes a pattern where the items can be extracted by a sequence of “edge-
to-edge” cuts, i.e. the cutting tool cannot change of direction within the same cutting step (dark zones map 
wasted areas). 
 

This paper is dedicated to the NP-hard 2D Strip Packing Problem (2D-SPP) which can be 
informally stated as follows: Given a finite set of objects, pack all of them without overlap in one strip 
of an infinite height and fixed width (also called “basis”) while minimizing the height of the resulting 
packing. The guillotine constraint is not considered here. Furthermore, all objects are regular 
(rectangular to be more precise) and cannot be rotated, i.e. they have a fixed orientation. 
 

In this paper, we introduce CTS (for “Consistent Tabu Search”), a reinforced tabu search algorithm 
dedicated to the 2D-SPP. Compared with previous algorithms for the 2D-SPP, our CTS has several 
notable features. First, it handles a consistent neighborhood. Second, CTS evaluates packings, 
possibly partial, using problem knowledge. Finally, our algorithm includes a diversification 
mechanism relying on a set of historically “frozen” rectangles. Computational results suggest that 
CTS may be of great interest to solve the 2D-SPP. 
 

In the two next sections, the 2D-SPP is formally stated and a brief description of various existing 
methods is given. Section 4 is devoted to the detailed presentation of our dedicated tabu search 
algorithm for the 2D-SPP. Experimental results are finally shown in Sect. 5 on a set of well-known 
benchmarks and compared with previous attempts including best performing state-of-the-art 
algorithms. 

2. PROBLEM FORMULATION 

A “strip” is a 2D vertical space with fixed width W and infinite height, see Figure 2. The bottom-left 
(BL) corner of the strip stands for the (0, 0) point of an xy-plane where the x-axis (respectively y-axis) 
is the direction of the width (resp. height). 
 

 

Figure 2. A strip with basic notations. 
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The set of n ≥ 2 Rectangles to be positioned in the strip is R = {r1,…, rn} where the weight (resp. 

height) of each object r1≤i≤n is Ww
r

i ≤<0  (resp. 0>r

ih ). 

 

According to these notations, the 2D-SPP is then to determine the ( r

i

r

i yx , ) coordinates of the BL 

corner of all rectangles (i.e. the location of each ri ∈ R in the strip) so as to minimize the height of the 
resulting packing. This can be formally stated as follows: 

 

 

 
where (2) forces each rectangle ri to be inside the strip and (3–4) specify that any two ri and rj≠i 

objects must not overlap horizontally or vertically. 

3. LITERATURE REVIEW 

Only a few exact methods are available for 2D-SPP or closely related problems (see Sect. 3.1), while 
a wide range of approximate heuristics has been reported (Sect. 3.2). Among these strategies, the 
greedy randomized adaptive search procedure from Alvarez-Valdes et al. (2008) and the hybrid 
hyperheuristic + intensification / diversification walk strategy from Neveu et al. (2008) are probably 
the best performing ones for 2D-SPP (these two effective methods are briefly summarized in 
Sect. 3.2). 

3.1. Exact methods 

These approaches are often based on implicit enumeration of the search space. They are thus usually 
limited to small instances. However, given sufficient time, they can in theory either find a solution 
(optimal for optimization problems) or prove that none exists (for satisfaction problems). 
 

The branch-and-bound algorithm presented by Martello et al. (2003) relies on a 2D-SPP relaxation 

(basically, cutting each object ri ∈ R into items of height lower than r

ih ) that can be solved as a 

particular NP-hard one-dimensional bin-packing problem (with “side” constraints). This leads to a 
lower bound on fOPT, the OPTimum value of (1), better than those previously proposed. 

 
Recently, two branch-and-bound approaches faster than those from Martello et al. (2003) were 

designed by Kenmochi et al. (2009). Including many components, dynamic programming cuts for 
instance, the 2D-SPP optimization problem (as formally defined in Sect. 2) is reduced here to the 
“perfect packing problem” which is a satisfaction problem (determine if a packing without wasted 
space exists), sometimes by adding new objects. 

 
Other (recent) exact methods related to 2D-SPP, or bounds, can be found e.g. in (Belov et al., 

2009; Clautiaux et al., 2008; Soh et al., 2008). 

3.2. Approximate heuristics 

These approaches include e.g. “greedy” constructive strategies or “(meta) heuristics”. While they loss 
the completeness of exact methods, they can handle large instances and usually obtain good quality 
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solutions in reasonable time. In this section, we review two best-performing algorithms and discuss 
about other representative heuristics related to 2D-SPP. 
 

Alvarez-Valdes et al. (2008) proposed a Greedy Randomized Adaptive Search Procedure 
(GRASP) for 2D-SPP. It is a multi-start scheme that iteratively builds a feasible solution in a greedy 
way following various dynamic pseudo-random selection rules. This solution is then modified to try 
to correct previous wrong random choices, for use in the next greedy step, by different “simple local 
search” algorithms. 

 
Neveu et al. (2008) developed an hybrid approach combining a hyperheuristic (HH) with the 

intensification / diversification walk strategy (IDW). It starts (HH phase) with a greedy packing, 
where the selection rule possibly alternates between different criteria, e.g. in a round robin manner. 
This solution is then perturbed (IDW phase) by iteratively moving an object at the top of the strip 
below its current location. If such a perturbation generates overlaps, they are repaired using a greedy 
heuristic (possibly randomly chosen). 

 
Other representative approaches for 2D-SPP (or closely related variants) include, for instance: 
 
• Simulated annealing (Burke et al., 2009; Hopper & Turton, 2001; Soke & Bingul, 2006). 
• Tabu search (Alvarez-Valdes et al., 2007; BłaŜewicz et al., 2004; Hamiez et al., 2009; Iori et al., 

2003). 
• Iterated local search (Imahori et al., 2005, 2003). 
• Genetic and evolutionary algorithms (Beasley, 2004; Bortfeldt, 2006; Gómez-Villouta et al., 

2008; Gonçalves, 2007; Hopper & Turton, 2001; Iori et al., 2003; Soke & Bingul, 2006). 
• Hybrid (meta)heuristics (Beltrán Cano et al., 2004; Ibaraki et al., 2008; Iori et al., 2003; Mir & 

Imam, 2001; Neveu et al., 2008; Yeung & Tang, 2004). 
• Hyperheuristics (Araya et al., 2008; Garrido & Riff, 2007; Terashima-Marín et al., 2005). 

 
Note that polynomial-time approximation schemes with (asymptotic or absolute) performance 

guarantee are also available for these problems (Harren & van Stee, 2009; Jansen & van Stee, 2005). 

4. CTS: A CONSISTENT TABU SEARCH FOR 2D-SPP 

We first recall here the fundamentals of tabu search (Sect. 4.1) and how the problem is addressed 
(Sect. 4.2). Next sections (4.3–4.8) describe then the problem-specific components of our CTS, where 
all p variables (with subscripts) are parameters whose values will be given in the experimentation part 
(Sect. 5.1). The general CTS procedure is finally summarized in Sect. 0. 

4.1. A brief review of tabu search 

Tabu search is an advanced metaheuristic designed for tackling hard combinatorial optimization or 
satisfaction problems (Glover & Laguna, 1997). It relies on a neighborhood relation as well as some 
forms of memory and learning strategies to explore effectively a search space. Let (S, f) be our search 
problem where S and f are respectively the search space and the optimization objective. 
 

A “neighborhood” N over S is any function that associates to each individual s ∈ S some solutions 
N(s) ⊂ S. Any solution s’ ∈ N(s) is called a neighboring solution or simply a neighbor of s. For a 
given neighborhood N, a solution s is a “local optimum” with respect to N if s is the best among the 
solutions in N(s). The notion of neighborhood can be explained in terms of the “move” operator. 
Typically applying a move µ to a solution s changes slightly s and leads to a neighboring solution s’. 
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This transition from a solution to a neighbor is denoted by s’ = s ⊕ µ. Let Γ(s) be the set of all 
possible moves which can be applied to solution s, then the neighborhood N(s) of s can be defined by: 
N(s) = {s ⊕ µ: µ ∈ Γ(s)}. 

 
A typical tabu search algorithm begins with an initial configuration in S and proceeds iteratively to 

visit a series of locally best configurations following the neighborhood. At each iteration, a best 
neighbor s’ ∈ N(s) is sought to replace the current configuration s even if s’ does not improve s in 
terms of the cost function. 

 
To avoid the problem of possible cycling and to allow the search to go beyond local optima, tabu 

search introduces the notion of “tabu list”, one of the most important components of the method. A 
tabu list τ is a special short term memory that maintains a selective history composed of previously 
encountered solutions or, more generally, pertinent attributes (or moves) of such solutions. A simple 
strategy based on this short term memory consists in preventing previously visited solutions from 
being reconsidered for the next pτ iterations (pτ, called “tabu tenure”, is problem dependent). Now, at 
each iteration, tabu search searches for a best neighbor from this dynamically modified neighborhood. 

4.2. Solving scheme 

Let 2D-SPPk>0 be the following satisfaction problem: Is there a solution s to 2D-SPP such that 
f(s) ≤ k? Obviously, 2D-SPP is equivalent to find the lowest k such that 2D-SPPk holds. 
 

CTS treats the 2D-SPP optimization problem (minimizing the height f) as successive 2D-SPPk. 
Starting from a complete packing s0 of height f(s0), e.g. obtained with a greedy method (see Sect. 4.4), 
CTS tackles 2D-SPPk with decreasing values of f(s0) for k. To be more precise, if CTS finds a solution 
s to 2D-SPPk, it then tries to solve 2D-SPPf(s)-pf

 (pf > 0, for decrement of the height). 

4.3. Search space: A direct representation 

Some approaches for 2D-SPP, or closely related variants, consider a (quite natural or, at least, 
intuitive) search space S composed of the set of (all) permutations of the objects, see (Gómez-Villouta 
et al., 2008; Iori et al., 2003; Soke & Bingul, 2006; Yeung & Tang, 2004) for instance. 
 

More precisely, for a given n-set R of objects to be packed, a permutation s ∈ S of [1,…, n] is built 
(statically or dynamically) using a selection heuristic σ

2
 which is followed by a given placement 

heuristic φ (or “decoder”). In other words, given a selection operator σ and a φ decoder, one can 
locate all the objects using φ and according to the order imposed by σ, see Algorithm 1 where sρ is the 
element at rank ρ in permutation s. The problem is then to find a particular permutation s* ∈ S (from 
the n! available) such that the resulting packing is optimal, i.e. f(s*) = fOPT. 

 
Note that many (usually greedy) selection / placement heuristics have been investigated according 

to various criteria (Alvarez-Valdes et al., 2008, 2007; Aşik & Özcan, 2009; Burke et al., 2009). 
 
CTS does not code packings with permutations but adopts a direct representation where a 2D-

SPPk packing s ∈ S (optimal or not, possibly partial) is a {L, E} set
3
: 

 

                                                 
2 σ introduces then an order for all the objects. 
3 Other approaches that do not use permutations to model the problem, or closely related variants, can also be 
found e.g. in (Bortfeldt, 2006; Hamiez et al., 2009; Soh et al., 2008). 



A REINFORCED TABU SEARCH APPROACH FOR 2D STRIP PACKING 6 

• L ⊆ R is the set of rectangles properly Located in the strip, i.e. ri verifies (2) with khy
r

i

r

i ≤+  ∀ 

ri ∈ L and (ri, rj) verifies (3–4) ∀ (ri, rj≠i) ∈ L × L. Let the set of “free” objects, i.e. rectangles not 

(yet) located in the strip, be L  = R \ L. 
• E is a set of rectangular Empty spaces in the strip. Each empty space ei ∈ E is characterized by 

the coordinates ( e

i

e

i yx , ) of its BL corner, a width Ww
e

i ≤<0 , and a height kh
e

i ≤<0 , with 
e

i

e

i wWx −≤≤0  and e

i

e

i hky −≤≤0 . 

Each empty space ei ∈ E is a maximal rectangle
4
, i.e. ei is not included in another empty space 

ej: ∀ (ei, ej≠i) ∈ E × E, e

j

e

i xx <  ∨ e

j

e

j

e

i

e

i wxwx +>+  ∨ e

j

e

i yy <  ∨ e

j

e

j

e

i

e

i hyhy +>+ . 

 

Algorithm 1. The simplest greedy algorithm for 2D-SPP. 

Require: A selection operator σ and a placement heuristic φ 
 R’ ← R 
 for ρ = 1 to n do 
  Select a rectangle ri ∈ R’ according to σ 
  R’ ← R’ \ {ri} 
  sρ ← i 
  Locate the ri object in the strip according to φ 
 end for 

 return f(s) and s 

4.4. Initial configuration 

Tabu search needs an initial configuration s0 that specifies where the search begins in the search 
space S. CTS uses Algorithm 1 to construct s0, where the φ placement heuristic is the “Bottom Left 
Fill” procedure (BLF) from Baker et al. (1980) and the σ selection operator orders all rectangles 
ri ∈ R first by decreasing width, secondly by decreasing height (when two objects ri and rj≠i have the 
same width), randomly last if necessary (ri and rj≠i have the same width and height). 
 

  

Before BLF After BLF 

Figure 3. Basically, BLF places each object at the left-most and lowest possible free area. 

 

BLF is capable of filling enclosed wasted areas, see Figure 3 where rectangle r5 has to be packed. 
Notice that, according to the way BLF is implemented, its worst time complexity goes from O(n3) 

                                                 
4 The notion of “maximal rectangular empty space” seems to have been independently introduced in (El Hayek 
et al., 2008) (where it is called “maximal area”) and (Neveu et al., 2008) (“maximal hole”). |E| is at most (i.e. in 
the worst case) in O(n2) according to El Hayek et al. (2008). 
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(Hopper & Turton, 2001) to O(n2) (Chazelle, 1983) for a permutation of n objects. We employed this 
decoder / order since some previous experiments (Hopper & Turton, 2001; Imahori et al., 2007) 
suggested that the BLF placement algorithm usually outperforms other decoders

5
. 

 
Note that the initial packing s0 is a solution to 2D-SPPk ∀ k ≥ f(s0). So, s0 provides a trivial upper 

bound for 2D-SPP: fOPT ≤ f (s0). 

4.5. Cost function 

This measure, also called “evaluation” or “fitness” function, is a key component of tabu search 
because it guides the choices of the algorithm at each iteration. 
 

Let the Maximum width and height of free rectangles be respectively { }r

iLrw wM
i∈

= max  and 

{ }r

iLrh hM
i ∈

= max , the number of free objects with width Mw be { }w

r

ii MwLr =∈= :α , the 

“density” of a 2D-SPPk packing be )()( e

j

Ee

e

j ykxW
j

−−= ∑
∈

δ
6
, and the Maximum area of empty 

spaces be { }e

j

e

jEea hwM
j

⋅= ∈max . CTS uses the c function (for “cost”, to be minimized) formally 

defined by (5) to evaluate a (possibly partial) 2D-SPPk packing s ∈ S, see also Figure 4 for a 
numerical example. 

 

 
Roughly speaking, the value c(s) measures the quality of solution s with respect to 2D-SPPk, the 

current satisfaction problem considered: 
 
• c(s) = 0 signifies that s is a solution to 2D-SPPk. Furthermore, s is usually called a “perfect” 

packing if it does not include an empty space (E = ∅). In this case, s is an optimal solution to 
2D-SPP (i.e. 2D-SPPk’ admits no solution ∀ k’ < k): fOPT = k. 

• c(s) > 0 indicates a partial packing. Here, E = ∅ (no empty space) means that 2D-SPPk’ has no 
solution ∀ k’ ≤ k and that a trivial lower bound has been found for 2D-SPP: fOPT > k. 

 

  

 

s1 s2 s3 

Figure 4. Let r1 be the unit square (i.e. 111 == rr hw ) and k = 2. c(s1) = 9 since E ≠ ∅, 33 == r

w wM , 

13 == r

h hM , α = 1, δ = (3 - 1)(2 - 0) + (3 - 2)(2 - 0) = 6, and Ma = 2. Similarly, c(s2) = 1 since E ≠ ∅, Mw = 1, 

Mh = 1,  α = 1, δ = 1, and Ma = 1. c(s3) = 0 since E = ∅ and α = 0. 

                                                 
5 However, note that while BLF has an asymptotic performance of 3fOPT , other heuristics achieved better 
(asymptotic or absolute) performance ratio: 2.7 (Coffman Jr. et al., 1980), 2 (Schiermeyer, 1994), 1 + ε (Baker 
et al., 1981). 
6 A “small” δ value indicates that (almost) all empty spaces are concentrated close to the top-right corner of the 
strip. 
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The cost and objective functions, c (5) and f (1) respectively, are used to compare any two 
packings s1 and s2 (possibly partial): With respect to 2D-SPPk, s1 is said to be “better” than s2 if the 
evaluation of s1 is lower than that of s2, formally c(s1) < c(s2). However, note that the c fitness 
function is inadequate when s1 and s2 are both solutions to 2D-SPPk, i.e. when c(s1) = c(s2) = 0. In this 
case, s1 is better than s2 if f(s1) < f(s2). 

 
Other evaluation functions have been proposed for 2D-SPP. Neveu et al. (2007) consider the 

number u of “units filled by rectangles on the highest line of the strip” to define cN(s) = (f(s) - 1)W + 
u. Hamiez et al. (2009) proposed a similar fitness function, relying on the set R ⊆ R of rectangles at 

the top of the strip, formally defined by (6) where   { }H

r

i

r

ii pHhyRrR −>+∈= *: , pH is an 

integer parameter, and H* is the best height found, initially the height f(s0) of the starting solution s0. 

One can observe that cN and cH compute a measure solely based on rectangles at the top of the strip 
and do not consider what happens below these rectangles. Our c cost function seems thus more 
relevant since it precisely includes a measure (the δ component) related to this useful information. 

 

 

4.6. Neighborhood 

The neighborhood N is another key element of tabu search. It defines a structure of the search space S 
and determines the paths the algorithm will follow to explore S. 
 

The main goal of the CTS neighborhood is to empty the set of free objects, i.e. the set L  of 
rectangles not yet placed in the strip. Basically, it tries to locate a free rectangle ri in the strip (ri 
moves then from L  to L), at the BL corner either of an empty space (defining a sub-neighborhood NE, 
described in Sect. 4.6.1) or of another placed object (defining NL, Sect. 4.6.2). 

 
This location for object ri may generate overlaps with a set Li ⊆ L of other rectangles already in the 

strip: { }r

j

r

i

r

i

r

j

r

j

r

i

r

j

r

i

r

i

r

j

r

j

r

iiji yhyhyyxwxwxxLrL >+∧+<∧>+∧+<∈= ≠ : . All objects 

overlapping with the ri rectangle are thus removed from the strip to repair these overlaps (∀ rj ∈ Li, rj 
moves from L to L ). This principle, known as “ejection chains”, is used to make the neighboring 
configuration consistent with (3–4). 

 
Finally, notice that locating a rectangle in the strip and the possible ejection of all overlapping 

objects imply updates of the set of empty spaces (E). This is done using the efficient “incremental” 
procedures detailed in (Neveu et al., 2008). 

4.6.1 Neighborhood NE: Consider the empty spaces 

CTS examines two cases here, with two different objectives: To reduce the number of free rectangles, 

i.e. to minimize | L | (defining L

EN ), or to make the packing Denser ( D

EN ). 

 

The case of L

EN . E . All free objects ri ∈ L  are tried to be located in the strip to the BL corner of all 

empty spaces ej ∈ E such that ri fits entirely in ej. More formally, ri and ej must verify 
r

i

r

j

r

i

e

j

r

i

e

j

r

i

e

j hhwwkhyWwx ≥∧≥∧≤+∧≤+ . This generates | L | sets L

EN (s, i) of 
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neighbors for configuration s (some possibly empty), L

EN (s) being the union of these sets: 

),()( isNsN
Lr

L

E

L

E

i

U
∈

= . 

 

Note that L

EN (s) ≠ ∅ means that there is at least one free rectangle ri ∈ L  and one empty space 

ej ∈ E such that ri fits in ej, i.e. that the number of free objects can be reduced. Furthermore, in 
this case, locating ri will generate no overlap (Li = ∅), hence no repairing is needed. 
 

The case of 
D

EN . Here again, all free rectangles ri ∈ L  are tried to be located to the BL corner of all 
empty spaces ej ∈ E but the previous condition on ej and ri is relaxed to allow overlaps. More 

formally, ri and ej must only verify khyWwx
r

i

e

j

r

i

e

j ≤+∧≤+ . 

 

Note that D

EN (s) = ∅ means either, ∀ (ri, ej) ∈ L  × E, that the empty space ej is located rather 

to the right (top, respectively) of the strip and placing the ri rectangle in ej will violate (2) since 

Wwx
r

i

e

j >+  (resp. will not follow the definition of 2D-SPPk since khy
r

i

e

j >+ ) or that it is 

forbidden to remove at least one rectangle overlapping with the ri object (this is due to some 
restrictions described in Sect. 0). 

4.6.2 Neighborhood NL: Consider all rectangles already packed 

From the current configuration s, all free objects ri ∈ L  are tried to be located to the BL corner of all 
already packed rectangles rj ∈ L such that ri and rj have different sizes, locating ri will respect (2), and 
the resulting packings will follow the definition of 2D-SPPk. More formally, ri and rj must verify 

( ) khyWwxhhww
r

i

r

j

r

i

r

j

r

j

r

i

r

j

r

i ≤+∧≤+∧≠∨≠ . 

 
This generates | L | sets NL(s, i) of neighbors for the configuration s with 0 ≤ |NL(s, i)| ≤ |L|: NL(s) is 

the union of these sets. Similarly to D

EN , note that NL(s) = ∅ means that all overlapping objects 

cannot be removed from the strip (see Sect. 0). 

4.6.3 Search strategy 

Our neighborhood N is composed of the three sub-neighborhoods described above: L

EN  and D

EN  

(Sect. 4.6.1), and NL (Sect. 4.6.2). They are explored by CTS in a hierarchical way: L

EN  is always 

tried the first, then D

EN  is used only if L

EN  is not applicable (i.e. empty), NL being (possibly) 

considered the last. This scheme is more formally detailed in Algorithm 2. 
 

Algorithm 2. The neighborhood is explored in a hierarchical way. 

Require: A configuration s = {L, E} 

if L

EN (s) ≠ ∅ then return L

EN (s) 

else if 
D

EN (s) ≠ ∅ then return D

EN (s) 

  else if NL(s) ≠ ∅ then return NL(s) 
   else return ∅ 

 end if 
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Note that if configuration s has no neighbor, i.e. N(s) = L

EN (s) = D

EN (s) = NL(s) = ∅, no move is 

performed and diversification is invoked (see Sect. 4.8). 

4.7. Tabu list 

At current iteration m, since a CTS move from solution s to a neighbor s’ ∈ N(s) consists in locating 
one free rectangle ri ∈ L  in the strip, it seems quite natural to forbid object ri leaving the strip from 
configuration s’. This “reverse” move will then be stored in the tabu list τ for a duration 0 < pτ ≤ n 
(integer) to indicate that ri cannot be removed from the strip at least up to iteration m + pτ. 
 

Note that the tabu list τ is made empty at the beginning of the search or when CTS finds a solution 
to the current satisfaction problem considered (2D-SPPk), i.e. if there is no free rectangle at all 
( L  = ∅). 

4.8. Diversification 

Let s* be the overall best complete packing, according to (1), found by CTS at iteration m* (initially s* 
is the initial configuration s0 introduced in Sect. 4.4 with m* = 0). 
 

When a solution s has no neighbor (i.e. N(s) = ∅) or s* keeps unchanged for a number p* > 0 of 
iterations, CTS first resets the tabu list τ and reloads s* in s (s ← s*, τ ← ∅). This new current 
complete packing s is then perturbed according to two different Diversification schemes called DI (for 
“Interchange”, performed with probability pD) and DT (for “Tetris-like”, probability 1 - pD). After 
perturbation, p* supplementary moves are given to CTS to update the overall best complete 
packing s*. 

4.8.1 DI : A basic perturbation 

L and L  are first modified according to 2D-SPPk with k = f(s*) - pf: { }khyRrL
r

i

r

ii ≤+∈← : , 

L  ← R \ L. Diversification DI considers then all (ri, rj) ∈ L × L  such that the ri packed rectangle and 

the rj free object have different sizes, more formally ri and rj verify ( )r

j

r

i

r

j

r

i hhww ≠∨≠  ∧ 

khyWwx
r

j

r

i

r

j

r

i ≤+∧≤+ . It simply interchanges two such elements (randomly selected) and 

makes rj tabu. 
 

Note that locating the free object rj at the place of ri (i.e. swapping rj from L  to L and ri from L to 

L ) may cause overlaps. In this case, repairing is done like in Sect. 4.6. 

4.8.2 DT : A perturbation based on the history 

During the overall search process, CTS keeps for each rectangle ri ∈ R the number Fi (for 
“Frequency”) of times ri leaved the strip, i.e. the number of times ri swaps from L to L

7
. 

 
The DT diversification scheme considers a πF permutation that orders all objects ri ∈ R first by 

increasing frequencies, secondly by decreasing widths (when Fi = Fj≠i), then by decreasing heights 

( r

ij

r

i ww ≠= ), randomly last if necessary ( r

ij

r

i hh ≠= ). Let the set F be composed of the first pτ 

elements of πF. 
 

                                                 
7 F1 ≤ i ≤ n = 0 at the beginning of the search. 
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All rectangles ri ∈ F are first temporarily removed from the strip and their frequencies are 
updated

8
. Then, the partial packing is pushed down to the basis of the strip, like in the famous Tetris 

game. Finally, all objects ri ∈ F are sorted like in Sect. 4.4 and relocated in the strip with BLF, see 
Figure 5. 

 

   

Let F = {r1, r2, r3, r5} Unpack F and push down Repack F 

Figure 5. The DT diversification. Surprisingly, experiments showed that almost all rectangles with lowest 
frequency (Fi) were located close to the bottom of the strip. 

 

CTS deals now with 2D-SPPk with k = f(s) - pf: { }khyRrL
r

i

r

ii ≤+∈← : , L  ← R \ L. This 

means that CTS possibly considers 2D-SPPk problems with k ≥ f(s0) ≥ f(s*). 

4.9. CTS: The general procedure 

Algorithm 3. An overview of CTS. 

Require: A starting configuration s = {L, E} such that L = R // Hence ∅=L  
1. m ← 0, s* ← s, m* ← 0 // Initialization 
2. while m ≤ pM do 

3.  if ∅=L  then 
4.   if f(s) < f(s*) or (f(s) = f(s*) and some probability p≈ is verified) then s* ← s, m* ← m 

5.   { }f

r

i

r

ii psfhyRrL −≤+∈← )(: , L  ← R \ L 

6.   τ ← ∅ // Tabu list 
7.  if N(s) = ∅ then Div ← true // To Diversify 
8.  else 

9.   m ← m + 1 
10.   Let N(s) be the set of the best evaluated neighbors s’ of s according to (5): 

    { })()(),(:)()( '
2

'
1

'
2

'
1 scscsNssNssN ≤∈∀∈=  

11.   if c(s’) > 0 ∀ s’ ∈ N(s) then 
12.    if (m – m*) mod p* = 0 then Div ← true else Div ← false 
13.    Select s’ ∈ N(s) at random 
14.   else Div ← false, select s’ ∈ N(s) minimizing (1) at random 
15.  if Div then s ← s*, τ ← ∅, modify s using DI or DT according to pD // Diversification 
16.  else s ← s’, update τ 
17. return f(s*) and s* 

                                                 
8 Fi ← 2Fi is used here to avoid considering (almost) the same F set in next applications of diversification DT 
while Fi ← Fi + 1 is applied when performing a move. 
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The CTS procedure is summarized in Algorithm 3. It requires an initial complete packing (Sect. 4.4). 
Then CTS proceeds iteratively to solve a series of 2D-SPPk satisfaction problems. If it finds a solution 
s to 2D-SPPk (i.e. ∅=L ), it then tries to solve the next 2D-SPPf(s)-pf 

problem (see lines 3–6). Note 

that f(s) = f(s*) (line 4) may occur only after diversification DT (see Sect. 4.8) or at the beginning of 
the search process. 
 

While it is not mentioned here for simplicity, note that CTS can also end before reaching the 
pM ≥ 0 Maximum number of allowed moves (line 2). This may occur each time the overall best 
complete packing s* is updated (lines 1 and 4) whenever the optimum height fOPT (or an upper bound) 
is known and f(s*) ≤ fOPT. 

5. EXPERIMENTATIONS 

We use the complete set of the 21 well-known (perfect) instances defined in (Hopper & Turton, 
2001)

9
 to assess the performance of our CTS algorithm. These instances (or a subset of them) are 

largely studied in the literature. The main characteristics of these instances, including their known 
optimal height fOPT, are given in Table 1. 
 

Table 1. Main characteristics of the test problems defined in (Hopper & Turton, 2001). These instances are 
grouped by “categories” according to the fOPT value. 

 

 
Notice that the instances of categories C4–C7 are very difficult because, to our knowledge, none 

algorithm is known to be able to optimally solve them. Indeed, some studies don’t even report 
computational results for them, perhaps due to the (very) large size of these instances. Furthermore, 
the difficulty sometimes also hold for small size instances from categories C1–C3. In particular, 
various studies report more computational effort for C1P2, C2P2, or C3P2 or never reach (or are more 
distant from) an optimal solution for these three specific instances compared to the other similar 
instances within the same categories. 

5.1. Experimentation conditions 

CTS is coded in the C programming language (“gcc” compiler). All computational results were 
obtained running CTS on a computer equipped with a 2.83 Ghz quad-core Intel Xeon E5440 
processor and 8 Gb RAM

10
. The values of the CTS parameters are: 

 
• pf = 1. To build the starting configuration of 2D-SPPk, the current satisfaction problem 

considered. 
• p≈ ∈ [0.4, …, 0.8]. Probability that a complete packing s replaces the overall best complete 

packing s*, according to (1), whenever f(s) = f(s*). 

                                                 
9 They are available from the “PackLib2” benchmarks library e.g., see http://www.ibr.cs.tu-bs.de/alg/packlib/ 
xml/ht-eimhh-01-xml.shtml. 
10 For indicative purpose, the mean running time of CTS ranges from a few seconds (for the smallest instances) 
to about 33 hours (for the largest instances). 
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• pτ ∈ [2, …, 6]. Tabu tenure. 
• p* ∈ [200, …, 500]. Maximum number of moves to update s*. 
• pD ∈ [0.7, …, 1]. Probability to apply diversification DI. 
• pM ∈ [1 000 000, …, 20 000 000]. Maximum number of allowed moves per run. 
 
The comparison is based on the percentage gap γ of a solution s from the optimum or its best 

bound (fOPT): γ(s) = 100(1 - fOPT / f(s)). The lower is γ(s), the better is the solution s. For CTS, mean 

gap γ  (resp. best gap γ*) is averaged over 5 runs (resp. over best runs only). 

5.2. Computational results 

CTS is compared in Table 2 with five state-of-the-art algorithms that deal with the whole set of 
instances, or at least categories C1–C6. 
 

We consider two Tabu Search procedures, denoted as TS1 (Iori et al., 2003)
11

 and TS2 (Hamiez et 
al., 2009), one of the most effective Genetic Algorithm (GA) from Bortfeldt (2006), and two best 
performing state-of-the-art approaches: The Greedy Randomized Adaptive Search Procedure 
(GRASP) from Alvarez-Valdes et al. (2008) and the hybrid HyperHeuristic + Intensification / 
Diversification Walk strategy (HH+IDW) from Neveu et al. (2008). 

 
In Table 2, “–” marks (for HH+IDW, GA, or TS1) mean either that γ  or γ* cannot be computed or 

that we did not found the information in (Bortfeldt, 2006; Iori et al., 2003; Neveu et al., 2008). “Mean 
Ci” are averaged values on category Ci. The “C1–Cj” aggregated lines, reporting averaged values for 
all instances in categories C1 to Cj, can be used to identify up to which problem size a particular 
approach may be effective. The last line shows the number of instances optimally solved. 

 
According to Table 2, TS1 is the worst performing (tabu search) approach for the benchmark tried. 

Indeed, γ* = 0 only for C2P1 and C2P3 while the other methods (possibly except GA) always solved 
at least 8 instances. Almost all other approaches (except TS1 and GA) solved the C1 and C2 
instances, see line “C1–C2” where γ* = 0.00 or γ = 0.00. 

 
To our knowledge, the only approaches solving all the 9 instances C1P1–C3P3 are the tabu search 

from Alvarez-Valdes et al. (2007) and the recent exact procedures described in (Kenmochi et al., 
2009; Soh et al., 2008). In Table 2, CTS is the only method reaching the same qualitative results, see 
line “C1–C3” where γ* = 0.00 just for CTS. Furthermore, note that CTS achieves here the lowest γ  

value (0.29 < 0.36 < 0.89 < 1.64 < 2.69). 
 
Aggregated results show that CTS compares also well with the competitors if one considers 

instances up to C5. Indeed, line “C1–C4” indicates better CTS values for γ* (0.41 < 0.68 ≤ 0.68 ≤ 
0.68 < 2.38 < 5.40) and γ  (0.63 < 0.68 < 1.08 < 1.84 < 2.90). The same observation holds in line 
“C1–C5” only for γ* (0.62 < 0.76 ≤ 0.76 ≤ 0.76 < 2.20 < 5.31) but the difference is sharp between the 
best γ  (0.76 for GRASP) and that of CTS (0.85). 

 
CTS obtains worst γ* or γ  values than those of the two best-known state-of-the-art approaches 

considered here (GRASP and HH+IDW) only when adding the largest two categories of instances. 
For C1–C6, note, however, that the difference is still reasonable considering γ* (0.83 - 0.77 = 0.06). 

                                                 
11 TS1 is perhaps the first tabu search approach for 2D-SPP. 
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Table 2. Mean and best percentage gaps (γ  and γ* resp.) on instances from Hopper & Turton (2001). 

 

6. CONCLUSIONS 

In this paper, we presented CTS, a Consistent Tabu Search algorithm for the 2D Strip Packing 
Problem (2D-SPP). CTS includes some components already used by (or, at least, similar to) other 
approaches, such as the direct representation of the problem or the neighborhood mentioned e.g. in 
(Hamiez et al., 2009). Apart from these traditional components, our CTS approach was reinforced 
mainly by introducing two novel elements that, to our knowledge, were never tried for 2D-SPP: 
 

• A fitness function including a measure related to the empty spaces. This was motivated by the 
fact that most of the previous studies on 2D-SPP usually employ evaluation functions solely 
based on the rectangles. This is the case, for instance, in (Hamiez et al., 2009; Neveu et al., 
2008). Such an additional criterion may be helpful to guide more efficiently the search process. 

 
• A diversification scheme based on a frequency measure (DT). The motivation behind this 

component of the generic tabu search strategy, that can help to escape from local optima e.g., 
originates from running profile observations. Indeed, preliminary tests (without diversification 
DT) shown that some rectangles were almost always in the strip and, so, their location changed 
rarely. DT was thus designed to force these “frozen” objects, that may be considered as 
problematic (since, perhaps, they are not positioned there in optimal solutions), to leave the strip 
and to be packed at other locations. 
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These components proved to be quite useful for the effectiveness of the CTS algorithm. We 
believe that the basic ideas behind these components could be applicable to other optimization 
problems. 
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