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ABSTRACT

This paper presents a study of Evolutionary Algorithms (EAs) for a real application: the
Frequency Assignment Problem (FAP) in Cellular Radio Networks. This problem is of great
importance both in practice and in theory. In practice, solving this problem efficiently will allow
the telecommunications operator to manage larger and larger cellular networks. In theory, the
simplification of FAP is reduced to the graph coloring problem which is NP-complete. In our
work, we take a progressive approach: first, we study separately the different components of
EAs in order to understand the interest of each of them for our application; then, we design
hybrid EAs which integrate efficient techniques (local search, constraint programming, etc.) into
evolutionary operators. Experiments using our approach on real-size FAP instances (up to 300
cells and 13000 constraints) give very encouraging results. Direct comparison of our approach
with simulated annealing (SA), constraint programming (CP) and graph coloring algorithms
on the same set of tests shows the strong interest of our hybrid evolutionary approach for this

application.

1. Introduction

The Frequency Assignment Problem (FAP) in Cel-
lular Radio Networks is a very complex application
in the field of telecommunications. The main goal
is to serve the maximal number of network users
with limited transmission resources. The transmis-
sion resource is an available radio spectrum which
consists of a limited number of frequencies (or chan-
nels). FAP consists in assigning frequencies to each
radio cell in such a way that a set of constraints
is satisfied. These constraints can be classified into
three categories defined as follows:

1. The limited number of available frequencies in
the radio spectrum.

2. The traffic constraints corresponding to the
minimum number of necessary frequencies in-
dispensable for covering communications be-
tween mobiles moving on this cell.

3. The interference constraints among cells clas-
sified into two categories:

Adjacent channel constraints: the frequencies
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assigned to two adjacent cells must be suffi-
ciently separated in the frequency domain. T-
wo cells are adjacent if they emit within a com-
mon area even if they are not geographically
adjacent.

Co-cell constraints: any pair of frequencies as-
signed to a cell must have a certain distance
between them.

The global technique comes down to finding a good
frequency assignment to favor the same frequency
reuse by sufficiently distant cells which allows the
number of communications over the network to be
maximized with a limited number of frequencies.
Different optimization versions of FAP could be
developed such as maximizing the total traffic, min-
imizing the number of frequencies used and mini-
mizing the interferences over the network.

The satisfiability of this problem can be shown
to be NP-complete because it is reduced to the
graph k-coloring problem [10]. Many methods have
been proposed to solve FAP, including 1) classic
methods: graph coloring algorithms [10, 9] and in-
teger programming; 2) heuristic methods: neural
networks [17, 8], genetic algorithms (GAs) [4, 16],
local search such as simulated annealing (SA) [6, 1]
and Tabu search [13], and constraint programming



(CP) [3].

In this paper, we present a hybrid evolutionary
approach combined with local search. Our hy-
brid methods have been tested on real-size FAP
instances (up to 300 cells and 13000 constraints)
and give very encouraging results. Direct compari-
son of our approach with SA; CP and graph coloring
algorithms on the same set of tests shows the strong
interest of our hybrid evolutionary approach for this
application.

The paper is organized as follows. In Section 2,
FAP is modelled as an optimization problem. In
Section 3, we deal with the representation issues
and the evolution mechanisms. In Section 4, experi-
mental results are presented and compared with SA
and CP. Future work and perspectives are discussed
in the last section.

2. Frequency Assignment Problem

Modelling

Given N the number of cells, NBfreq the number of
available frequencies in the spectrum, NBinter the
total number of interference constraints defined for
each pair of adjacent cells, FAP can be modelled
with a quadruple <X,D,C,F> representing a con-
strained optimization problem (COP) with:

X = {Ci | Ciis a cell of the network, i € [1..N]}.
D = {Fi | Fi is an available frequency of the spec-
trum, i € [1..NBfreq]}.

C=TuUl

T = {Ti | Ti minimal number of frequencies nec-
essary for Ci, i € [1..N]}.

I = {Ii | Ti interference constraints between two
cells, i € [1..NBinter]}.

F = fitness function of a frequency assignment of
the network.

2.1. Constraints

The traffic constraint of each cell is represented by
Ti which is an integer coding the minimal number of
frequencies necessary for Ci to cover its maximum
traffic communications. In reality, this maximum
traffic value 1s defined by an estimation of the max-
imum number of mobiles which can move at the
same time within this cell.

The interference constraints are represented by
a matrix M of N*N and with fi,n corresponding to
the n'® frequencies of Ci, each element of M defines
the set of constraints as follows:

e MJi,j] with i # j represents the minimal number
of channel separations required to satisfy the
adjacent channel constraints between the cells
Ci and Cj.
¥V ne[l..Ti], V me[1..Tj], |fi,n - fj,m| >M][i,j]

e M]i,i] represents the channel separations nec-
essary to satisfy the co-cell constraints:
Vnm e [1.Ti],n #m, | fi;n - fim | > M[i,i]
e M[i,j]=0 means there is no constraint between

the cells Ci and Cj.

3. Evolutionary Approach for FAP

EAs include algorithms based on a population of
individuals and on a set of evolution operators
[15, 12]. This class contains, among others, Genet-
ic Algorithms (GAs) [14, 11], Evolution Strategies
(SE) [2], and Evolutionary Programming (EP) [7].
Although EAs are general search methods applica-
ble to many domains, it is generally recognized that
it 1s both necessary and beneficial to combine EAs
with other efficient search methods and integrate
special knowledge into EAs whenever possible [5].
For our application, we take a progressive approach:
first, we study separately the different components
of EAs in order to understand the interest of each
of them for our application; then, we design hybrid
EAs which integrate efficient techniques into evolu-
tionary operators.

3.1. Chromosome Representation

One chromosome corresponds to a complete fre-
quency assignment and one gene to one frequency
of a cell. The length of a chromosome is thus equal
to the total traffic of all the cells in the network (see
fig. 1).

C1 c2 Cc3
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Fig. 1: Chromosome representation

Other representations are possible. For instance,
one may use a NBfreq*N boolean matrix, each el-
ement of the matrix indicating if a frequency is
assigned to a cell. One may also use a heteroge-
neous 2 dimensional representation where to each
cell corresponds a number of frequency values equal
to its traffic.

The chosen representation (see fig. 1) has some
desirable properties compared with other represen-
tations. First, the number of genes in a chromo-
some 1s minimized. Second mutation operators can
be directly applied. Third, crossover operators can
be applied with a minimum constraint of choosing
crossover points at the beginning of the genes of
each cell.



3.2. Evaluation of Frequency Assignments

The fitness function F: P — [0...NBinter] associates
with each chromosome of a population P (the set
of frequency assignments), an integer correspond-
ing to the number of unsatisfied interference con-
straints. For any p of P, F(p) is the total number
of unsatisfied interference constraints for the assign-
ment p. Therefore, a chromosome p is a solution (a
frequency assignment without interference) if and
only if F(p) = 0. Different assignments could be a
solution of the problem and the telecommunications
operator can choose one of them with other criteria
such as the real interference cost, or the maximum
reuse of each frequency value, and so on.

3.3. Evolution Mechanisms

The complexity in finding an efficient evolutionary
algorithm lies in the difficulty of combining its dif-
ferent components well. Indeed, the simultaneous
application of the operators of selection, crossover
and mutation to a population becomes so complex
that we cannot determine which operator is really
efficient or not. For this reason, we take a step-by-
step approach. We begin with a very simple EA
which does not use all the genetic operators. We
then slowly add another evolutionary component
to the EA, keeping in mind the objective of un-
derstanding the interactions between these different
elements.

3.3.1. Mutation & Selection With a Popula-
tion of One Chromosome

Our first mechanism is a largely simplified one with
no crossover and it manipulates a population of only
one chromosome. This algorithm allows us to study
the different possibilities of the mutation operator
and to select the most efficient one. Its generation
cycle is described as follows:

generate(P); // random population having 1 individual
evaluate(P);
while ( not(stop condition) ) do {

choose(T) in P; // I is unique

I’= Mutation(I);

if ((T’ better than I) or (probability(q) verified))

// ¢ = probability of deterioration
then P=I’;
else P=I; }

The first mechanism uses a selection operator
which 1s controlled by a deterioration probability.
The mutation is traditionaly considered as a ran-
dom operator of local change with a low rate [14].
Our objective is to include in this operator some
special knowledge about the application and some

controls. Our mutation operator is composed of

three steps: the selection of a cell, the selection of
a frequency (gene) for the cell, then the selection
of a value (allele) for the frequency of the cell (see
fig. 2). For each step, several heuristics have been
developed and are described below:

Selection of a cell: one cell chosen randomly a-
mong all the cells; one cell chosen randomly
among the cells in conflict. A cell is in conflict
if at least one of its frequencies does not verify
all interference constraints.

Selection of a frequency: randomly among al-
| the frequencies of the cell; randomly among
all the frequencies in conflict of the cell.

Selection of a frequency value:
randomly; best value; best value different from
the current one.

Cell choice

c1 c2 c3
Frequency

W choice=3,3

[fi]r2]r1]B1]R2]33]R4]

Value choice = k

f3,3=k
Fig. 2: Decomposition of mutation operator

We use special knowledge about FAP to deter-
mine a cell in conflict, and then a value for this cell
from its frequency domain.

All the possible combinations have been tested
and results will be reported elsewhere. Suffice it
to say that the combination “conflict cell/conflict
frequency /best different value” outperforms other
ones. And it is this combination that is used in our
experiments.

Note that this single chromosome algorithm re-
sembles a stochastic hill climber such as SA with a
fixed schedule and a different neighbourhood func-
tion. However they are different in that our al-
gorithm uses a controlled three steps selection s-
trategy which is a priori more intelligent than pure
random choices used by SA.

3.3.2. Mutation & Selection With a Popula-
tion of N Chromosomes

The notion of population is now added to the pre-
vious mechanism and the selection operator plays
a more 1important role. The selection is composed
of the choice of chromosomes and the acceptance
conditions of these chromosomes in the next popu-
lation.



generate(P); // random population having N individuals
evaluate(P);
while ( not(stop condition) ) do {
while ( not (P’ filled) ) do {
choose(T) in P;
I’ = mutation(T);
if (I’ better than T) or (probability(q) veri-
fied))
then add I’ to P’ }
P=P’; }

The use of a population is justified by the im-
provements we may get when a set of individuals is
running in competition. Indeed by selecting well-
fitted individuals, the population will be directed
to local or global optima faster than a set of in-
dividuals running independently. Furthermore, to
escape from a local optimum, one individual uses
only one exploring path whereas a population with
several paths has a greater chance of continuing its
search towards a global optimum. The selection
mechanism favors the individuals which still have
a fitness increase compared with those which are
already 1n a local optimum. This helps the EA
to converge more rapidly. Note however that the
selection may prevent the population from escaping
from local optima.

4. Experimental Results

Our approach has been tested with a set of 18 FAP
instances provided by the French National Research
Center on Telecommunications. The traffic for all
the cells is limited to one frequency and the min-
imum distance between two frequencies of a pair
of adjacent cells is fixed to one. It is easy to see
that these tests are isomorphic to the graph coloring
problem.

The names of the instances consist of three num-
bers nf.nc.d which are respectively the minimum
number of frequencies needed to find an optimal
solution (an assignment without interference), the
number of cells and the density of interference con-
straints over the network. For example, 8.150.30
defines a problem composed of 150 cells with 8
available frequencies in the spectrum and 30 % of
150*%(150-1)/2 the total constraints. For large prob-
lems having a high density we obtain up to 13000
constraints.

Table 1 gives comparative results of our approach
with SA [1] and CP [3] which both are shown to be
more efficient than classic graph coloring method-
s [1]. Two comparative criteria are used and ex-
plained below: the number of frequency excess and
timing. Other criteria such as the evaluation num-
ber of the fitness function would have been more
interesting, however such data are not available for

SA and CP.

Excess (of frequencies): the number of frequen-
cies added to the minimum of the optimal so-
lution. For instance, for the problem 8.150.20,
an excess of 2 frequencies of a method mean-
s that the method can only find a satisfying
assignment without interference by adding 2
extra frequencies.
because adding even one frequency may make
the initial problem much easier.

This criterion 1s essential

Time: the average time in seconds for one suc-
cessful run. Our tests have been carried out
on SUN SPARCI10 stations, whereas those of
SA [1] and CP [3] have been run on computers
considered to be at least 3 times faster.

% success: success rate over 10 runs.

The characteristics of our two algorithms are given
below.

o Mutation & Selection with 1 individual

(M&S (1))

Selection: With a rate of deterioration deter-
mined empirically
Mutation:
Selection of a cell: Randomly among the cells
in conflict
Selection of frequency: The only possible fre-
quency (traffic = 1)
Selection of value: Best value different from the
current one
Population: 1 individual
Stop cond.: A limited number of generations

o Mutation & Selection with 20 individuals
(M&S (20))

Selection: The best and a rate of deterioration
determined empirically

Mutation: Idem above

Population: 20 individuals

Stop cond: A limited number of generations

Among the 18 FAP instances, four are very diffi-
cult (in bold) for all the methods. The results of CP
presented are the synthesis of a set of complete con-
straint methods using classic heuristic techniques to
choose variables and values [3]. For each problem
we reported the best result obtained by at least one
of these heuristics. CP never finds the global opti-
mum for the four hard instances of FAP and needs
an excess of up to 10 frequencies to solve 15.300.30.
To better understand the influence of the excess of
frequencies on the complexity of the tests, it will
be sufficient to make a parallel with graph coloring
problems. Indeed, coloring a graph with n+k (k>1)
colors is really much easier than coloring one with
n colors. For example, with 4 extra frequencies for



problems CP SA M&S(1) M&S(20) problems M&S(1) M&S(20)

Excess Excess Excess Excess Nb eval. per ind. Nb eval. per ind.

/time /time /time /time / % success / % success
17510 T0/1 077 +0/1.3 10/4.65 8.150.10 1526 / 100% 945 / 100%
4.75.20 +0/1 +0/7 +0/2.6 +0/14.31 8.150.20 || 299180 / 100% 173124 / 10%
4.75.30 +0/1 +0/4 +0/1.9 +0/11.75 8.150.30 25466 / 100% 9427 / 100%
8.75.10 +0/1 +0/4 +0/0.08 | 40/1.06 15.150.10 || 868 / 100% 742 / 100%
8.75.20 +0/1 +0/8 +0/0.27 | 40/3.2 15.150.20 1862 / 100% 1479 / 100%
8.75.30 +0/1 +0/20 +0/3.7 +0/15.84 15.150.30 || 28000 / 100% 4227 / 100%
8.150.10 +0/1 +0/15 +0/0.96 | +0/10.24 15.300.10 || 3332 / 100% 2961 / 100%
8.150.20 +2/13 +1/7237 +0/330 +0/7707 15.300.20 957894 / 100% 275793 / 10%
8.150.30 +6/1 +0/33 +0/21.85 +0/143.24 15.300.30 1011724 / 60% 275563 / 100%
15.150.10 | +0/1 +0/7 +0/0.35 | +0/5.49 30.300.10 || 3538 / 100% 3229 / 100%
15.150.20 | +0/1 +0/23 +0/97 +0/14.33 30.300.20 || 6728 7 100% 5697 / 100%
15.150.30 +0/1 +0/40 +0/18.87 +0/51.36 30.300.30 64728 / 100% 11387 / 100%
15.300.10 | +0/1 +0/61 +0/2.4 +0/39.81
15.300.20 +3/1 +1/9190 +0/920 +0/12277 . . : .
15.300.30 +lé/1560 +4§10945 +0§1243 +0512562 Table 2: Comparison of the two evolutive mechanisms
30.300.10 | 4+0/1 +0/68 +0/2 +0/31
30.300.20 | 4+0/1 +0/66 +0/6.33 | +0/84
30.300.30 | - +0/840 +0/70 +0/223 lems. This is true in particular for the 15.300.30

Table 1: Comparison with SA and CP

15.300.30, our algorithm M&S(1) find an optimal
solution in 483 sec. with a success rate of 100%. CP
shows its limits when the number of constraints be-
gins to be high (density = 30%) and then needs an
excess of 6 frequencies to solve the 8.150.30 whereas
all the other methods easily find a global optimum
without excesses. This fact proves the interest of
having an incomplete approach for FAP.

SA cannot solve 3 of 4 hard instances without
excesses'. This method has better results than CP
with a lower number of excesses but still needs 4
extra frequencies for 15.300.30, which remains very
high.

Our methods show their efficiency on all the test-
s and find optimal solutions without any excess
of frequency even for the hard instances 8.150.20,
15.300.20, 15.300.30. Our results are clearly better
than those of SA which are nevertheless close to
our M&S(1). We think this is partially due to our
techniques in choosing cells in conflict and values of
frequency, which are more intelligent than random
choices as used in SA.

Running times are close to CP for small instances
and remain clearly faster than those of SA even for
M&S(20) which manipulates nevertheless a popu-
lation.

To compare the efficiency of M&S(1) and
M&S(20), we use as the main criterion the number
of evaluations needed per individual to obtain an
optimal solution over 10 runs. This criterion allows
the performances of a population of N individuals
to be compared with those of N independent runs
of only one individual without punishing the pop-
ulation for its higher running time. Table 2 shows
the effects of populations on the performances.

As can be seen from table 2, the EA with a re-
al population seems more efficient in terms of the
number of evaluations needed to solve all the prob-

1 According to a personal communication, a recently im-
proved SA managed to solve these instances.

for which it obtains a success rate of 100 % with
only 275563 evaluations compared with a success
rate of 60 % and over 1 000 000 evaluations using
M&S(1). However, M&S(1) has a better success
rate than M&S(20) for 8.150.20 and 15.300.20. The
exact reason for this is not clear, but the following
observations may help explain this point.

The competition among individuals may be a
double-side knife. On the one hand, a good com-
petition mechanism helps the EA to converge more
efficiently and more precisely. On the other hand, it
may constitute an obstacle for an EA to escape from
local optima. Indeed, all the individuals which are
trying to escape from a local optimum are in com-
petition with those close to a local optimum and
having thus a better fitness. By consequence, the
selection mechanism may abandon the individuals
escaping from local optima and therefore may force
the population to stay at the same set of local op-
tima found so far. This may be what happens with
M&S(20) on the instances 8.150.20 and 15.300.20.
We think that there are some deep local optima in
these 2 difficult instances which need many large
oscillations. In the case of M&S(1), there is no
individual competition, and the single individual
can deteriorate and therefore realize the required
oscillations to reach global optima.

It is interesting to determine the real influence
of the population on the performance of our EAs.
Limited tests were carried out with populations of
50 and 100 individuals using different selection op-
erators. We noticed that in terms of evaluation
number, bigger populations do give better results
for easy instances. But for difficult instances, no
improvement is observed. However, more work is
needed to confirm or disconfirm these observations.

5. Conclusions

In this paper, we have presented two classes of evo-
lutionary mechanisms without crossover for the fre-
quency assignment problem. In particular, we have
studied different controlled mutation and selection
operators for our application. We have shown once



again that the integration of local search and special
knowledge about the given application into these
operators can largely speed up the performance of
EAs. Experiments with real-size test instances give
very encouraging results and show clearly the inter-
est of a hybrid evolutionary approach for this ap-
plication. Also we think the techniques developed
here can be easily adapted to many optimization
applications.

6. Future Work

Currently, we are working on several points. First,
we are investigating other selection operators which
will permit to escape more easily from local optima.
Also, we are studying the influence of population
using various selection mechanisms for solving diffi-
cult problems. Second, we are testing different clas-
sic crossovers such as monopoint, uniform and de-
veloping specialized crossovers to our problem. At
this time we don’t have enough interesting results
but we think that crossover, which carries out the
information exchange among individuals, may have
some advantages over the other operators. In par-
ticular, for highly constrained optimization prob-
lems like FAP, crossover may help to escape from
local optima and introduce a better exploration of
the search space. This may lead to better results
both in quality and in solving speed. Third, we
are working on more difficult FAP instances which
have the following features: the traffic of a cell may
be greater than one and the distance between two
assigned frequencies is no longer limited to only one
frequency. The results on these instances will be
reported in the near future.

Finally, we plan to use the methods described
in this paper to tackle other difficult constrainted
optimisation problems.
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