
Tabu Search with Consistent Neighbourhood

for Strip Packing

Giglia Gómez-Villouta, Jean-Philippe Hamiez�, and Jin-Kao Hao

LERIA, Université d’Angers, 2 Bd. Lavoisier, 49045 Angers (France)
{gomez,hamiez,hao}@info.univ-angers.fr

Abstract. This paper introduces a new tabu search algorithm for a
strip packing problem. It integrates several key features: A consistent
neighborhood, a fitness function including problem knowledge, and a di-
versification based on the history of the search. The neighborhood only
considers valid, sometimes partial, packings. The fitness function incor-
porates measures related to the empty spaces. Diversification relies on a
set of historically “frozen” objects. Experimental results are shown on a
set of well-known hard instances and compared with previously reported
tabu search algorithms as well as the best performing algorithms.

Keywords: Tabu search, strip packing, consistent neighborhood.

1 Introduction

This paper is dedicated to the regular, non-guillotine, and without rotation two-
dimensional Strip Packing Problem (2D-SPP): Given a finite set of rectangular
objects, pack all of them in a strip of fixed width while minimizing its height.
2D-SPP is a NP-hard problem with a number of practical applications [1,2,3,4].

Given the NP-hard nature of 2D-SPP, many (meta)heuristic procedures have
been tried: Greedy randomized adaptive search procedure (GRASP) [5], intensi-
fication / diversification walk (IDW) [6], simulated annealing [7,8], tabu search
(TS) [7,9,10,11], genetic algorithms [8,11,12], hybrid (meta)heuristics [8,11], and
hyper-heuristics [13]. Exact algorithms have also been considered but they are
usually limited to “small” instances [14,15].

In this paper, we present CTS (for “Consistent Tabu Search”), a new TS algo-
rithm dedicated to 2D-SPP. Computational results suggest that CTS may be of
great interest to efficiently solve 2D-SPP.

In the next section, the 2D-SPP is formally stated. Section 3 is devoted to
the detailed presentation of our dedicated TS algorithm for the 2D-SPP. Exper-
imental results are finally shown in Sect. 4.

2 Problem Formulation

A strip is a 2D vertical space with fixed width W and infinite height. The
bottom-left (BL) corner of the strip stands for the (0, 0) point of an xy-plane
� Contact author.

N. Garćıa-Pedrajas et al. (Eds.): IEA/AIE 2010, Part I, LNAI 6096, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 G. Gómez-Villouta, J.-P. Hamiez, and J.-K. Hao

where the x-axis (respectively y-axis) is the direction of the width (resp. height).
The set R, for “Rectangles”, of n ≥ 2 objects to be positioned in the strip is
R = {r1, . . . , rn} where the weight (resp. height) of each r1≤i≤n is 0 < wr

i ≤W
(resp. hr

i > 0). The 2D-SPP is then to determine the (xr
i , y

r
i) coordinates of the

BL corner of all ri ∈ R so as to minimize the height H of the resulting packing:

Minimize: H = max
1≤i≤n

{yr
i + hr

i } (1)

Subject to: 0 ≤ xr
i ≤W − wr

i ∧ yr
i ≥ 0 (2)

∧(xr
i ≥ xr

j + wr
j ∨ xr

i + wr
i ≤ xr

j (3)
∨yr

i ≥ yr
j + hr

j ∨ yr
i + hr

i ≤ yr
j) . (4)

where (2) forces each ri to be inside the strip and (3–4) specify that any two ri

and rj �=i objects must not overlap neither horizontally nor vertically, respectively.

3 CTS: A Consistent Tabu Search for 2D-SPP

Tabu search is an advanced metaheuristic designed for tackling hard combinato-
rial optimization problems [16]. We first introduce here the way the problem is
addressed (Sect. 3.1). Next sections (3.2–3.7) describe then the problem-specific
components of CTS, where all p variables (with subscripts) are parameters whose
values will be given in the experimentation part (Sect. 4.1). The general CTS pro-
cedure is finally summarized in Sect. 3.8.

3.1 Solving Scheme

Let 2D-SPPk>0 be the following satisfaction problem: Is there a solution s to
2D-SPP such that H(s) ≤ k? Obviously, 2D-SPP is equivalent to find the lowest
k such that 2D-SPPk holds.

CTS treats the 2D-SPP optimization problem (minimizing H) as successive
2D-SPPk. Starting from a complete packing s0 of height H(s0), e.g. obtained
with a greedy method (see Sect. 3.3), CTS tackles 2D-SPPk with decreasing
values of H(s0) for k. To be more precise, if CTS finds a solution s to 2D-SPPk,
it then tries to solve 2D-SPPH(s)−pH

(pH > 0, for decrement of the height).

3.2 Search Space: A Direct Representation

Many approaches for the 2D-SPP consider a search space S composed of the
set of all permutations of the objects, see [11] for instance. More precisely, a
permutation π of [1, . . . , n] is used to introduce an order for all the objects
which is followed by a given placement heuristic φ (or “decoder”). In other
words, given (π, φ), one can pack all the objects using φ and according to the
order indicated by π. Based on this permutation representation, several greedy
placement heuristics have been investigated for the 2D-SPP. “Bottom Left Fill”
(BLF, shortly described in next section) is such a heuristic [17].

Tabu Search with Consistent Neighbourhood for Strip Packing 3

CTS does not code packings with permutations but adopts a direct represen-
tation where a 2D-SPPk packing s ∈ S (optimal or not, possibly partial) is a
{L, E} set:

– L ⊆ R is the set of rectangles properly Located in the strip, i.e. ri verifies (2)
with yr

i + hr
i ≤ k ∀ri ∈ L and (ri, rj) verifies (3–4) ∀(ri, rj �=i) ∈ L × L. So,

let L← R\L be the set of “free” objects, i.e. rectangles not (yet) located.
– E is a set of rectangular Empty spaces in the strip. Each ei ∈ E is charac-

terized by the coordinates (xe
i , y

e
i) of its BL corner, a width 0 < we

i ≤ W ,
and a height 0 < he

i ≤ k, with 0 ≤ xe
i ≤W − we

i and 0 ≤ ye
i ≤ k − he

i .
Each ei ∈ E is a maximal rectangle1, i.e. ∀(ei, ej �=i) ∈ E×E, xe

i < xe
j ∨xe

i +
we

i > xe
j + we

j ∨ ye
i < ye

j ∨ ye
i + he

i > ye
j + he

j (ei is not included in ej).

3.3 Initial Configuration

CTS uses the BLF procedure [17] to construct an initial configuration s0 ∈ S,
where the π permutation orders all ri ∈ R first by decreasing width, secondly
by decreasing height (when wr

i = wr
j �=i), randomly last if necessary (hr

i = hr
j �=i).

Basically, BLF places each object at the left-most and lowest possible free area.
It is capable of filling enclosed wasted areas. Notice that, according to the way
BLF is implemented, its worst time complexity goes from O(n3) [19] to O(n2) [20]
for a permutation of n objects. We employed this decoder / order since previous
experiments suggested that the BLF placement algorithm usually outperforms
other decoders, see [19,21] for instance.

s0 is a solution to 2D-SPPk ∀k ≥ H(s0). So, s0 provides a trivial upper bound
for 2D-SPP: HOPT ≤ H(s0), where HOPT is the OPT imum value of (1).

3.4 Fitness Function

This measure, also called “evaluation” or “cost” function, is a key component
of TS because it guides the choices of the algorithm at each iteration. CTS uses
the following f function (for “f itness”, to be minimized) to evaluate a (possibly
partial) 2D-SPPk packing s ∈ S:

f(s) =
{

MwMhα if E = ∅
MwMhαδ

Ma
otherwise .

(5)

where Mw = maxri∈L wr
i (Maximum width of free rectangles), Mh = maxri∈L hr

i

(Maximum height of free rectangles), α = |{ri ∈ L/wr
i = Mw}| (number of free

objects with width Mw), δ =
∑

ej∈E(W −xe
j)(k−ye

j)
2, and Ma = maxej∈E we

jh
e
j

(Maximum area of empty spaces).
Roughly speaking, the f(s) value measures the quality of s with respect to

2D-SPPk, the current satisfaction problem considered:
1 The notion of “maximal rectangular empty space” is called “maximal area” in [18]

and “maximal hole” in [7]. |E| is at most in O(n2) [18].
2 δ measures the density of s. Indeed, a “small” δ value indicates that (almost) all ej

are concentrated close to the top-right corner of the strip.

4 G. Gómez-Villouta, J.-P. Hamiez, and J.-K. Hao

– f(s) = 0 (or L = ∅ equivalently) signifies that s is a solution to 2D-SPPk,
i.e. that H(s) ≤ k. In this case, s is an optimal solution to 2D-SPP (i.e.
2D-SPPk′ admits no solution ∀k′ < k) if E = ∅: HOPT = k.

– f(s) > 0 (or L �= ∅) indicates a partial packing. Here, E = ∅ means that
2D-SPPk′ have no solution ∀k′ ≤ k and that a trivial lower bound has been
found for 2D-SPP: HOPT > k.

f is used to compare any (s1, s2) ∈ S×S: With respect to 2D-SPPk, s1 is better
than s2 if f(s1) < f(s2). However, note that it is inadequate when s1 and s2

are both solutions to 2D-SPPk, i.e. when f(s1) = f(s2) = 0. In this case, s1 is
better than s2 if H(s1) < H(s2).

3.5 Neighborhood and Search Strategy

The neighborhood N is another key element of TS. It defines a structure of the
search space S and determines the paths the algorithm will follow to explore
S. At each iteration, a best neighbor s′ ∈ N(s) is sought to replace the current
configuration s even if s′ does not improve s in terms of the fitness function f . To
be more precise, a neighborhood N over S is any function that associates to each
individual s ∈ S some solutions N(s) ⊂ S. A solution s is a “local optimum” if
s is the best (with respect to N and f) among the solutions s′ ∈ N(s) ∪ {s}.
The notion of neighborhood can be explained in terms of the “move” operator.
Typically, applying a move μ to a solution s changes slightly s and leads to a
neighboring solution s′ ∈ N(s). This transition from a solution s to a neighbor
s′ is denoted by s′ = s⊕ μ. Let Γ (s) be the set of all possible moves which can
be applied to s, then the neighborhood N(s) of s can formally be defined by:
N(s) = {s⊕ μ/μ ∈ Γ (s)}.

The main goal of the CTS neighborhood is to empty L. Basically, it moves
one rectangle ri from L to L, at the BL corner either of an empty space ej ∈ E
(defining a sub-neighborhood NE) or of another rj ∈ L (defining NL). This
location for ri may generate overlaps with a set Li ⊆ L of other rectangles:
Li = {rj �=i ∈ L/xr

i < xr
j + wr

j ∧ xr
i + wr

i > xr
j ∧ yr

i < yr
j + hr

j ∧ yr
i + hr

i > yr
j }. All

rj ∈ Li are thus removed from L and added to L to repair these overlaps. This
principle, known as “ejection chains”, is used to make s′ consistent with respect
to (3–4). Finally, notice that locating ri in the strip and the possible deletion
of all rj ∈ Li imply updates of E. This is done using the efficient “incremental”
procedures introduced in [7].

Let s∗ be the overall best complete packing, according to (1), found by CTS
at iteration m∗ (initially s∗ ← s0 and m∗ ← 0). Each time a move is performed
from s to s′, at iteration m, s∗ and m∗ are updated (s∗ ← s′ and m∗ ← m) once
L = ∅ ∧ f(s′) ≤ f(s∗).3

NE: Consider First the Empty Spaces. CTS examines two cases here, with
two different objectives.
3 f(s′) = f(s∗) may occur only after diversification DT described in Sect. 3.7. In this

particular case, s∗ and m∗ are updated according to some probability p≈.

Tabu Search with Consistent Neighbourhood for Strip Packing 5

N
|L|
E : Reduce |L|. All ri ∈ L are tried to be located in the strip to the BL corner

of all ej ∈ E/xe
j + wr

i ≤ W ∧ ye
j + hr

i ≤ k ∧ we
j ≥ wr

i ∧ he
j ≥ hr

i (ri fits entirely

in ej). This generates |L| sets N
|L|
E (s, i) of neighbors for s, some possibly empty:

N
|L|
E (s) = ∪ri∈LN

|L|
E (s, i).

Note that N
|L|
E (s) �= ∅ means that there is at least a (ri, ej) ∈ L × E such

that ri fits in ej, i.e. that |L| can be reduced. Furthermore, in this case, locating
ri will generate no overlap (Li = ∅), hence no repair is needed.

Let �N |L|
E (s)� ⊆ N

|L|
E (s) be the set of the best evaluated neighbors s′ of s:

�N |L|
E (s)� = {s′1 ∈ N

|L|
E (s)/∀s′2 ∈ N

|L|
E (s), f(s′1) ≤ f(s′2)}. If �N |L|

E (s)� �= ∅∧L =

∅ ∀s′ ∈ �N |L|
E (s)�, select randomly one s′ ∈ �N |L|

E (s)� minimizing (1) to become
the new starting configuration for the next 2D-SPPH(s′)−pH

problem (s′ is a

solution to 2D-SPPk) and possibly update s∗ and m∗. Otherwise, if �N |L|
E (s)� �=

∅, select randomly a s′ ∈ �N |L|
E (s)� minimizing (5) and make s← s′.

ND
E : Make the Packing Denser. This case occurs only if N

|L|
E is not applicable

from s, i.e. when N
|L|
E (s) = ∅ (|L| cannot be reduced).

Here again, all ri ∈ L are tried to be located to the BL corner of all ej ∈ E
but the previous condition on ej and ri is relaxed to xe

j + wr
i ≤W ∧ ye

j + hr
i ≤ k

since we now know that no ri can fit entirely in a ej (so, overlaps will temporarily
appear and be repaired).

Note that ND
E (s) = ∅ means either, ∀(ri, ej) ∈ L × E, that all ej are located

rather to the right of the strip with xe
j + wr

i > W or to its top with ye
j + hr

i > k,
or that it is forbidden to remove all rectangles overlapping with ri (see Sect. 3.6).

Let �ND
E (s)� be defined similarly to �N |L|

E (s)�. If �ND
E (s)� �= ∅, select ran-

domly one s′ ∈ �ND
E (s)� minimizing (5) to become the new “current” configu-

ration for the next iteration (s← s′).

NL: Possibly Consider All rj ∈ L. This second sub-neighborhood is ex-

plored only if NE is not applicable from s, i.e. when N
|L|
E (s) = ND

E (s) = ∅.
From the current s, all ri ∈ L are tried to be located to the BL corner of

all rj ∈ L/(wr
i �= wr

j ∨ hr
i �= hr

j) ∧ xr
j + wr

i ≤ W ∧ yr
j + hr

i ≤ k (ri and rj

have different sizes). This generates |L| sets NL(s, i) of neighbors for s with
0 ≤ |NL(s, i)| ≤ |L|: NL(s) is the union of these sets.

Similarly to ND
E , note that NL(s) = ∅ means that all rj ∈ Li cannot be

removed from the strip (see Sect. 3.6).
Let �NL(s)� ⊆ NL(s) be the set of the best evaluated neighbors of s according

to (5): �NL(s)� = {s′1 ∈ NL(s)/∀s′2 ∈ NL(s), f(s′1) ≤ f(s′2)}. If NL(s) �= ∅,
choose s′ ∈ �NL(s)� at random for the next iteration.

A Worst Case. If neither NE nor NL is applicable from s, i.e. N(s) = N
|L|
E (s) =

ND
E (s) = NL(s) = ∅, apply diversification (see Sect. 3.7).

6 G. Gómez-Villouta, J.-P. Hamiez, and J.-K. Hao

3.6 Tabu List

To avoid the problem of possible cycling and to allow the search to go beyond
local optima, TS introduces the notion of “tabu list”, one of the most impor-
tant components of the method. A tabu list is a special short term memory
that maintains a selective history, composed of previously encountered solutions
or more generally pertinent attributes (or moves) of such solutions. A simple
TS strategy based on this short term memory consists in preventing solutions
previously visited from being reconsidered for the next pτ iterations (integer pτ ,
called “tabu tenure”, is problem dependent). Now, at each iteration, TS searches
for a best neighbor from this dynamically modified neighborhood.

At current iteration m, since a CTS move from s to a neighbor s′ ∈ N(s)
consists in locating one ri ∈ L in the strip, it seems quite natural to forbid ri

leaving the strip from s′. This “reverse” move will then be stored in the tabu
list τ for a duration 0 < pτ ≤ n to indicate that ri cannot be removed from the
strip at least up to iteration m + pτ : τ ← τ ∪ {(i, m + pτ)}.

Note that τ is made empty at the beginning of the search or when CTS finds
a solution s for 2D-SPPk, i.e. if L = ∅.

3.7 Diversification

When N(s) = ∅ (s has no neighbor) or s∗ keeps unchanged for a number p∗ > 0
of iterations (integer p∗), CTS first resets τ and reloads s∗: τ ← ∅, s ← s∗. This
new current complete packing s is then perturbed according to two different
Diversification schemes called DI (for “Interchange”, performed with probabil-
ity pD) and DT (for “T etris-like”, probability 1 − pD). After perturbation, p∗
supplementary moves are given to CTS to update s∗.

DI : A Basic Perturbation. L and L are first built according to 2D-SPPk

with k = H(s) − pH : L ← {ri ∈ R/yr
i + hr

i ≤ k}, L ← R\L. DI considers then
all (ri, rj) ∈ L × L/(wr

i �= wr
j ∨ hr

i �= hr
j) ∧ xr

i + wr
j ≤ W ∧ yr

i + hr
j ≤ k (ri and

rj have different sizes). It simply interchanges two such rectangles (randomly
selected) and makes rj tabu. Note that swapping ri with rj may cause overlaps
for rj . In this case, Lj is repaired like in Sect. 3.5.

DT : A Perturbation Based on the History. During the overall search
process, CTS keeps for each ri ∈ R the number Fi (for “F requency”) of times ri

leaved the strip.4 DT considers a πF permutation that orders all ri ∈ R first by
increasing frequencies, secondly by decreasing widths (when Fi = Fj �=i), then
by decreasing heights (wr

i = wr
j �=i), randomly last if necessary (hr

i = hr
j �=i). Let

the set �F � be composed of the first pτ elements of πF .
All ri ∈ �F � are first temporarily removed from the strip and their frequencies

are updated.5 Then, the partial packing is pushed down to the basis of the strip,
4 F1≤i≤n = 0 at the beginning of the search.
5 Fi ← 2Fi is used here to avoid considering (almost) the same �F � set in next

applications of DT while Fi ← Fi + 1 is applied when performing a move.

Tabu Search with Consistent Neighbourhood for Strip Packing 7

like in the famous Tetris game. Finally, all ri ∈ �F � are sorted like in Sect. 3.3
and relocated in the strip with BLF.

CTS deals now with 2D-SPPH(s)−pH
: L← {ri ∈ R/yr

i +hr
i ≤ H(s)−pH}, L←

R\L. This means that CTS possibly considers 2D-SPPk with k ≥ H(s0) ≥ H(s∗).

3.8 CTS: The General Procedure

The CTS algorithm begins with an initial complete packing (Sect. 3.3). Then it
proceeds iteratively to solve a series of 2D-SPPk satisfaction problems. If CTS
finds a solution s to 2D-SPPk, it then tries to solve 2D-SPPH(s)−pH

.
While it is not mentioned here for simplicity, note that CTS can also end (see

Step 3 below) before reaching the Maximum number of allowed moves pM ≥ 0
(integer). This may occur each time s∗ is updated whenever the optimum height
HOPT (or an upper bound) is known and H(s∗) ≤ HOPT .

1. Initialization. Build s using BLF, m← 0, s∗ ← s, m∗ ← m.
2. Generation of the starting configuration for the next 2D-SPPk.

L← {ri ∈ R/yr
i + hr

i ≤ H(s)− pH}, L← R\L.
3. Stop condition. If m = pM Then: Return H(s∗) and s∗.
4. Exploration of the neighborhood. If N(s) = ∅ Then: Go to step 5.

m← m + 1. Update s according to N(s).
If s∗ is replaced by s or L = ∅ Then: Go to step 2.
If (m−m∗) mod p∗ �= 0 Then: Go to step 3.

5. Diversification. Modify s using DI or DT according to pD. Go to step 3.

4 Experimentations

We used the set of 21 well-known hard instances defined in [19].6 The main
characteristics of this benchmark are given in the 4 first columns of Table 1,
each of the 7 categories “Cat.” being composed of 3 different instances.

4.1 Experimentation Conditions

The comparison is based on the percentage gap γ of a solution s from the opti-
mum: γ(s) = 100 ∗ (1 −HOPT /H(s)). For CTS, mean gap γ (resp. best gap γ∗)
is averaged over a number of 5 runs (resp. over best runs only) per instance.

The CTS parameters are: pH = 1 (to build the starting configuration of 2D-
SPPk, the current satisfaction problem considered), p≈ = [0.4, . . . , 0.8] (prob-
ability that a complete packing s replaces s∗ whenever f(s) = f(s∗)), pτ =
[2, . . . , 6] (tabu tenure), p∗ = [200, . . . , 500] (maximum number of moves to
update s∗), pD ∈ [0.7, . . . , 1] (probability to apply diversification DI), pM ∈
[1 000 000, . . . , 20 000 000] (maximum number of allowed moves per run).

CTS is coded in the c programming language (gcc compiler). All computa-
tional results were obtained running CTS on a Bull NovaScale R422 server (2.83
Ghz quad-core Intel R© Xeon R© E5440 processor, 8 Gb RAM).
6 They are available e.g. from the “PackLib2” benchmarks library, see
http://www.ibr.cs.tu-bs.de/alg/packlib/xml/ht-eimhh-01-xml.shtml

http://www.ibr.cs.tu-bs.de/alg/packlib/xml/ht-eimhh-01-xml.shtml

8 G. Gómez-Villouta, J.-P. Hamiez, and J.-K. Hao

4.2 Computational Results

CTS is compared in Table 1 with the previously reported TS algorithms, denoted
as TS1 [11], TS2 [10], and TS3 [9], and the best performing approaches: GRASP [5]
and IDW [6].7

In Table 1, “–” marks and the absence of γ or γ∗ values for TS1, TS2, and
IDW mean either that γ or γ∗ cannot be computed or that the information is not
given in [6,10,11].

Table 1. Mean and best percentage gaps (γ and γ∗ resp.) on instances from [19]

Instances CTS TS1 [11] TS2 [10] TS3 [9] GRASP [5] IDW [6]

Cat. W n HOP T γ γ∗ γ∗ γ∗ γ γ∗ γ γ∗ γ

C1 20 16–17 20 0 0 7.65 0 1.59 0 0 0 0
C2 40 25 15 0 0 2.08 0 0 0 0 0 0
C3 60 28–29 30 0.87 0 7.14 0 1.08 1.08 1.08 1.08 2.15
C4 60 49 60 1.64 1.64 4.75 – 1.64 1.64 1.64 1.64 1.09
C5 60 73 90 1.74 1.46 4.91 – 1.1 1.1 1.1 1.1 0.73
C6 80 97 120 2.17 1.91 3.74 – 1.37 0.83 1.56 0.83 0.83
C7 160 196–197 240 2.15 2.04 – – 1.23 1.23 1.36 1.23 0.41

According to Table 1, TS1 is the worst performing (TS) approach for the
benchmark tried. Indeed, all other approaches (except TS1) solved the C1 and
C2 instances, see lines C1–C2 where γ∗ = 0 or γ = 0.

To our knowledge, only TS2 (and the exact algorithm from [14]) solved all
the 9 smallest instances (C1–C3). CTS is the first method reaching the same
qualitative results, see lines C1–C3 where γ∗ is always 0 just for TS2 and CTS.
Furthermore, note that CTS achieves here the lowest γ values compared with
GRASP, IDW, and TS3.

CTS compares also well with the competitors if one considers the 3 instances
from category C4. Indeed, line C4 indicates the same γ∗ values (1.64) for CTS,
TS3, and GRASP.

CTS obtains worst γ∗ or γ values than those of the best-known approaches
(GRASP and IDW) on the largest 3 categories of instances (C5–C7).

5 Conclusions

In this paper, we presented CTS, a Consistent Tabu Search algorithm for a 2D
Strip Packing Problem. CTS treats the initial 2D-SPP optimization problem
(minimizing the height H) as a succession of 2D-SPPk>0 satisfaction problems:
Is there a solution s to 2D-SPP such that H(s) ≤ k? Starting from a complete
packing s0, CTS tackles 2D-SPPk with decreasing values of H(s0) for k.
7 For indicative purpose, the mean running time of CTS ranges from less than a second

(for the smallest instances) to about 33 hours (for the largest instances). The mean
computation time of the competing methods varies from less than a second to about
45 minutes.

Tabu Search with Consistent Neighbourhood for Strip Packing 9

The key features of CTS include a direct representation of the search space
which permits inexpensive basic operations, a consistent neighborhood, a fitness
function including problem knowledge, and a diversification based on the history
of the search. The performance of CTS was assessed on a set of 21 well-known
hard instances. The computational experiments showed that CTS is able to reach
the optimal values for the first 9 problem instances (categories C1–C3) and to
match the best results for the next 3 instances (C4). Nevertheless, CTS does
not compete well with the best performing algorithms on the largest problems
(C5–C7), which constitutes the topic for future investigations.

Acknowledgments. This work was partially supported by three grants from
the French “Pays de la Loire” region (MILES, RadaPop, and LigeRO projects).
The first author is supported by a Chilean CONICIT scholarship. We would like
to thank the reviewers of the paper for their useful comments.

References

1. Dowsland, K., Dowsland, W.: Packing Problems. Eur. J. Oper. Res. 56(1), 2–14
(1992)

2. Fowler, R., Paterson, M., Tanimoto, S.: Optimal Packing and Covering in the Plane
are NP-Complete. Inf. Process. Lett. 12(3), 133–137 (1981)

3. Wäscher, G., Haußner, H., Schumann, H.: An Improved Typology of Cutting and
Packing Problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007)

4. Garey, M., Johnson, D.: Computers and Intractability – A Guide to the Theory of
NP-Completness. W.H. Freeman and Company, San Francisco (1979)

5. Alvarez-Valdes, R., Parreño, F., Tamarit, J.: Reactive GRASP for the Strip-
Packing Problem. Comput. Oper. Res. 35(4), 1065–1083 (2008)

6. Neveu, B., Trombettoni, G.: Strip Packing Based on Local Search and a Ran-
domized Best-Fit. In: 5th International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems
– 1st Workshop on Bin Packing and Placement Constraints (2008)

7. Neveu, B., Trombettoni, G., Araya, I.: Incremental Move for Strip-Packing. In:
Avouris, N., Bourbakis, N., Hatzilygeroudis, I. (eds.) ICTAI 2007, vol. 2, pp. 489–
496. IEEE Computer Society, Los Alamitos (2007)

8. Zhang, D., Liu, Y., Chen, S., Xie, X.: A Meta-Heuristic Algorithm for the Strip
Rectangular Packing Problem. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC
2005. LNCS, vol. 3612, pp. 1235–1241. Springer, Heidelberg (2005)

9. Hamiez, J.P., Robet, J., Hao, J.K.: A Tabu Search Algorithm with Direct Repre-
sentation for Strip Packing. In: Cotta, C., Cowling, P. (eds.) EvoCOP 2009. LNCS,
vol. 5482, pp. 61–72. Springer, Heidelberg (2009)

10. Alvarez-Valdes, R., Parreño, F., Tamarit, J.: A Tabu Search Algorithm for a Two-
Dimensional Non-Guillotine Cutting Problem. Eur. J. Oper. Res. 183(3), 1167–
1182 (2007)

11. Iori, M., Martello, S., Monaci, M.: Metaheuristic Algorithms for the Strip Packing
Problem. In: Pardalos, P., Korotkikh, V. (eds.) Optimization and Industry – New
Frontiers. Appl. Optim., vol. 78, pp. 159–179. Springer, Heidelberg (2003)

12. Bortfeldt, A.: A Genetic Algorithm for the Two-Dimensional Strip Packing Prob-
lem with Rectangular Pieces. Eur. J. Oper. Res. 172(3), 814–837 (2006)

10 G. Gómez-Villouta, J.-P. Hamiez, and J.-K. Hao

13. Araya, I., Neveu, B., Riff, M.C.: An Efficient Hyperheuristic for Strip-Packing
Problems. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel
Metaheuristics. Stud. Comput. Intell, vol. 136, pp. 61–76. Springer, Heidelberg
(2008)

14. Kenmochi, M., Imamichi, T., Nonobe, K., Yagiura, M., Nagamochi, H.: Exact
Algorithms for the Two-Dimensional Strip Packing Problem with and without
Rotations. Eur. J. Oper. Res. 198(1), 73–83 (2009)

15. Martello, S., Monaci, M., Vigo, D.: An Exact Approach to the Strip Packing Prob-
lem. INFORMS J. Comput. 15(3), 310–319 (2003)

16. Glover, F., Laguna, M.: Tabu Search. Kluwer, Dordrecht (1997)
17. Baker, B., Coffman Jr., E., Rivest, R.: Orthogonal Packings in Two Dimensions.

SIAM J. Comput. 9(4), 846–855 (1980)
18. El Hayek, J.: Le Problème de Bin-Packing en Deux-Dimensions, le Cas Non-

Orienté : Résolution Approchée et Bornes Inférieures (in French). PhD thesis,
Université de Technologie de Compiègne, France (2006)

19. Hopper, E., Turton, B.: An Empirical Investigation of Meta-Heuristic and Heuristic
Algorithms for a 2D Packing Problem. Eur. J. Oper. Res. 128(1), 34–57 (2001)

20. Chazelle, B.: The Bottom-Left Bin-Packing Heuristic – An Efficient Implementa-
tion. IEEE Trans. Comput. 32(8), 697–707 (1983)

21. Imahori, S., Yagiura, M., Nagamochi, H.: Practical Algorithms for Two-Dimen-
sional Packing. In: Gonzalez, T. (ed.) Handbook of Approximation Algorithms
and Metaheuristics. Chapman & Hall / CRC Comput. & Inf. Sc. Ser, vol. 13, ch.
36. CRC Press, Boca Raton (2007)

	Tabu Search with Consistent Neighbourhood for Strip Packing
	Introduction
	Problem Formulation
	CTS: A Consistent Tabu Search for 2D-SPP
	Solving Scheme
	Search Space: A Direct Representation
	Initial Configuration
	Fitness Function
	Neighborhood and Search Strategy
	Tabu List
	Diversification
	CTS: The General Procedure

	Experimentations
	Experimentation Conditions
	Computational Results

	Conclusions
	References

