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Abstract. We present a simultaneous approach to solve the integrated
vehicle and crew scheduling problem in an extra urban context. We con-
sider the single depot case with a heterogeneous fleet of vehicles. We pro-
pose a constraint based model which is subsequently solved by a Greedy
Randomized Adaptive Search Procedure. The construction phase of each
initial solution relies on constraint programming techniques, while the
local search phase exploits a powerful neighborhood exploration mecha-
nism. The computational experiments conducted on real-world instances
show the effectiveness and the flexibility of the approach compared with
the classical sequential vehicle and crew scheduling.

1 Introduction

Crews and vehicles are the main resources to provide services in transport sys-
tems. The way these resources are employed directly impacts the quality of ser-
vice and the cost of the whole transport system. It is thus primordial to optimize
the utilization of these resources in any transportation scheduling systems.

The conventional crew and vehicle scheduling process is the sequential ap-
proach which determines first the vehicles schedule and then the crews schedule.
This separation is mainly due to the complexity of each sub-problem. Indeed,
the Multi-Depot Vehicle Scheduling Problem (MDVSP) is known to be NP-
hard. The Bus Driver Scheduling Problem (BDSP) is usually modeled as a Set
Covering or Set Partitioning Problem, both being NP-hard.

In the early 1980s, Ball et al. criticized this sequential approach [1], but the
first real integrated solutions, in which vehicles and crews are simultaneously
scheduled, were only developed in 1995 [5]. This integrated management of both
resources demonstrated its efficiency in [6] where relief locations, i.e. places where
a driver can be relieved by a colleague, are spatially distant. Integration is also
profitable when a driver is not allowed to change from one vehicle to another.

The most popular approach to tackle the integrated scheduling problem is un-
doubtedly integer linear programming (ILP). In [5], Freling et al. suggest, for the
single depot case, an ILP formulation comprising a quasi-assignment structure
for the vehicle scheduling, a set partitioning model for the crew scheduling, and
a set of binding constraints. The solution approach is an approximated method
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combining Lagrangian heuristics and column generation. The first exact algo-
rithm is described in [9]. Both aspects, crew and vehicle, are modeled by a set
partitioning formulation. However, the branch-and-cut-and-price algorithm pro-
posed can only solve small instances up to 20 trips. Another interesting exact
solution for the single depot case is presented by Haase et al. in [8] where sce-
narios up to 150 trips are solved. For larger problems, a heuristic is employed to
solve scenarios of 350 trips within 3 hours of CPU time.

Gaffi and Nonato in [6] were the first to address the integrated VCSP in the
multiple-depot case. Like Freling and coauthors, they make use of Lagrangian
relaxation and column generation. Once again, they confirmed the dominance of
the simultaneous scheduling of crews and vehicles over the sequential approach
on scenarios of Italian public transit operators. However, they observed that
computational time remained a critical issue: it takes more than 24 hours to
solve an instance of 257 trips. Recently, in [I1], the models and algorithms in-
troduced in [4] were successfully extended to tackle the integrated vehicle and
crew scheduling problem with multiple depots.

The simultaneous approach begins to cover the gap between the academic
world and the business world. It is now included in commercial packages like
Hastus’ suite (see [3]) or Microbus 2 (see [2]).

Although efficient and flexible solutions based on metaheuristics were success-
fully developed to deal with vehicle or driver scheduling separately, to the best
of our knowledge, no similar study is reported in the literature for the integrated
driver and vehicle scheduling problem.

In this paper, we propose a new heuristic approach for the simultaneous vehi-
cle and crew scheduling problem. In our situation, all vehicles are parked within
the same depot. However, the problem is more general than the usual single de-
pot case which imposes a homogeneous fleet of vehicles. Here, the vehicles may
belong to different categories. The first contribution of this work is the intro-
duction of a new model relying on the constraint satisfaction and optimization
problem. This constraint based model has the main advantage of being intu-
itive and natural. It also offers much flexibility in terms of solution approaches
since various metaheuristics can be developed. For the solution purpose, we im-
plemented a Greedy Randomized Adaptive Search Procedure (GRASP) which
constitutes, to our knowledge, the first application of metaheuristics to this prob-
lem. Within our GRASP algorithm, constraint programming techniques are used
to build initial solutions. Improvements of these solutions are achieved with a
local search algorithm which embeds a powerful ”ejection chain” neighborhood
exploration mechanism. The whole approach is assessed on a set of 7 real-world
instances and compared with the conventional sequential methodology, clearly
showing the superiority of the simultaneous scheduling approach.

2  Vehicle and Crew Scheduling: Problem Presentation

Given a set of trips within a one-day horizon, a set of drivers, a fleet of vehicles
parked at a given depot, a set of workday types, the Vehicle and Crew Scheduling
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Problem consists in determining a minimum cost schedule for crews and vehicles,
such that generated duties are feasible and mutually compatible.

The trips are characterized by starting and ending locations with correspond-
ing times. Each trip must be served by certain types (categories) of vehicles.
Travel times between all pairs of locations are also known. The transfers with-
out passengers between trips, or either coming from or returning to the depot
are called deadheads. The other inputs concern the availability of vehicles in
each category. Similar bounds exist for the crews. The workday types are de-
fined by labor regulations. As mentioned in the introduction, crews and vehicles
are supposed to share the same depot where all duties start and end.

The vehicle part of the problem consists in assigning a vehicle to each trip
while satisfying the following constraints:

— Category constraints. The vehicle must belong to the required category
(type). A hierarchy between types is defined so as to allow upgrades if no
vehicle of the required type is available.

— Feasible sequences constraints. each vehicle must have enough time be-
tween consecutive trips to move from one to the other.

A sequence of compatible trips starting and ending at the depot, thus per-
formed by the same vehicle, defines a vehicle block. Along these blocks, relief op-
portunities are time-place pairs defining when and where a driver can be relieved
by a colleague. A portion of work between two relief points is thus necessarily
accomplished by the same crew and defines a task, a piece of work being a se-
quence of tasks without interruption on a single vehicle. In our case, reliefs take
place at the depot. In this context, pieces of work and vehicle blocks coincide.

The tasks from the vehicle scheduling phase are then assigned to crew mem-
bers to compose crew duties. The following constraints must be satisfied (only
a subset is presented here for the purpose of simplicity):

— Maximum spread time. For crew members, the duration between the
pick-up time of the first trip and the drop-down time of the last one, must
be less than or equal to the maximum spread time allowed.

— Maximum working time. For crew members, the total working time,
corresponding to driving and possibly maintenance tasks, does not exceed
the bound specified in each driver’s contract.

— Changeovers. Depending on the companies, drivers are allowed or not to
change from a vehicle to another during their duty.

Like many previously studied crew and vehicle scheduling problems, the cost
structure for our problem is composed of fixed and operational costs. For evi-
dent economic reasons, the most important objective is to reduce the number of
working drivers and running vehicles. In order to further reduce costs, it is also
useful to minimize idle time and deadheads. For simplicity reasons, we do not
mention these latter objectives in the rest of the paper.
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3 Problem Formulation

In this part, we introduce an original formulation inspired by the study re-
ported in [I2] relying on a constraint satisfaction and optimization model. This
constraint-based formulation offers a natural modeling of the initial problem and
provides a flexible basis to implement various metaheuristics.

Notations. Let 7 be the set of trips, numbered according to increasing starting
time. The bounds for the vehicles and for each workday types being provided,
we can define D and V the sets of drivers and vehicles respectively. Let T, D
and V be the associated cardinalities. Given t € 7, d € D, v € V, we define the
notations figuring in Table [l to formalize the constraints and objectives.

Table 1. Notations

Cat(t) |set of categories (types) of vehicle that can serve trip ¢
cat(v) category (type) of vehicle v
st(t), et(t) respectively start and end time of trip ¢
Smax(d) maximum spread time allowed for driver d
Winax(d) maximum working time allowed for driver d
VCmax(d)| maximum number of vehicle changes for driver d

We also use the following notations to handle ”driver-vehicle to trip”
assignments:

— wd(d) = 1 & d is assigned to at least one trip,
— vu(v) = 1 & v is assigned to at least one trip,
— Seq(d) is the set of pairs (¢, t;) that d € D handles consecutively.

Finally, dh’'(tg,t;), wt'(tr,t;) and Seq'(d) are similar to dh(tg,t;), wt(ty,t;)
and Seq(d) respectively, except that they take into account a stop at the depot
between trips.

3.1 Decision Variables and Domains

In our problem, we aim to simultaneously assign a couple (driver and vehicle)
to each trip. Therefore, we define the set of decision variables as the set of trips
7. Naturally, the associated value domain Z; for each variable corresponds to
driver-vehicle pairs. Initially, all domains Zj, are equal to Z = D x V. The set of
constraints is exposed in section B2, the pursued objectives in section 3.3

3.2 Constraints
This section provides a mathematical definition of the types of constraints.

Category constraints

VteT,YveV, t=(,v), CATEGORY (t,v) < cat(v) € Cat(t)
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Feasible sequences constraints

Vde D,V (tk,tl) S 72, tr = (d, .), t = (d, .), tr <ty

compat(te,t) N (tk, 1) € Seq(d)
FEASIBLE_D(ty,t1,d) < { V
compat’ (g, t)

Similar constraints exist for the vehicles.
Maximum spread time constraints
VdeD,V (tr, t1) € T2, ty, = (d,.), t1 =(d,.), tr <t
MAX_SPREAD(tk, ti, d) =4 (et(tl) — St(tk)) < Smax(d)

Maximum working time constraints

Vde D,MAX_WORK(tk,tl,d) =4

ST (etlte)—stt))+ Y. dhltet)+ > dB (tkt) < Winax(d)

tr€T, tr=(d,.) (tx,t1)€ Seq(d) (tk,t1)€ Seq’(d)
Changeovers constraints
VdeD, CHANGEOVERS & |[{v €V |3ty € T,tx = (d,v)}| < VCiax(d)
Constraints will be used to pre-process the value domains of the variables and
to build the initial schedules.
3.3 Objectives

The following two objectives are considered: minimization of the number of work-
ing drivers and vehicles.

fi=Min}  cpwd(d) and fo = Min)_, ., vu(v)
These objectives will be combined into a weighted evaluation function which

is used by the GRASP algorithm (see section [A.4]).

4 Solution Approach

4.1 Constraint Based Pre-processing

The number of potential assignments is exponential subject to the cardinality
of the set of decision variables and to the cardinality of the domains. To reduce
this number, we borrow filtering techniques from constraint programming [I4].
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The node consistency property allows to remove from domains all values that
are inconsistent with at least one constraint. Let us consider, for example, the
CATEGORY constraints:

Vi € T,V (d,v) € Z, cat(v) ¢ Cat(ty),= (d,v) ¢ Iy

For a given trip, all pairs including vehicles forbidden for category reasons are
removed from the trip’s domain.

4.2 General Algorithm

GRASP is a multi-start metaheuristic for combinatorial problems, in which each
iteration consists basically of two phases: construction and local search. The
skeleton of the procedure is described in Algorithm [Il Our construction phase,
detailed in subsection 3] relies on constraint programming techniques. The re-
sulting solution is then improved by a local search algorithm (see subsection 4]
embedding a powerful neighborhood exploration mechanism.

Algorithm 1: Greedy randomized adaptive search procedure

Data : f evaluation function, it,,., maximum number of iterations, restricted
candidate list

Result : Best solution found f*

begin

/* z* is the best solution found so far and f* = f(z*)*/ ;

[T o0

while it < ityqe. do

/* Generate a greedy randomized solution x */ ;

x «— greedy_rand() /* See Section 4.3 */;

/* Apply a local search algorithm, z; is a local minimum */ ;

x; < descent() /* See Section 4.4 */;

/* Record best solution */ ;

if f(z) < f* then

fr=f(@);
xt — xp
end
/* Increment number of iterations */ ;
it—ait+1;
end
end

4.3 Initial Schedule

The initial solution aims to find a feasible crew and vehicle schedule by assigning
a driver-vehicle pair to each decision variable (trip) while satisfying all the con-
straints. For this purpose, we developed a constructive greedy heuristic sketched
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hereafter. The strategy employed here is similar to the Best Fit Decreasing Strat-
egy developed for the Bin Packing Problem [13].

At each step of the greedy construction step, a trip is picked from a restricted
candidate list of fixed size. This list contains the most-constrained trips. The
selected trip is then assigned a value (a driver-vehicle pair) that can handle it.

After each assignment, a forward checking procedure is applied to prevent
future conflicts. It performs arc consistency between the currently instantiated
variable and the not-yet instantiated ones. Considering the MAX_SPREAD con-
straints for example, when a driver-vehicle pair (dj,vy) is assigned to a variable
ti, all pairs including dj are removed from the domain of the variables bound
to tx within constraints of type MAX_SPREAD.

Vi €T, (et(tr) — st(t;) > Smaa(di)) = Yv €V, (di,v) €T,

This forward-checking process is similarly applied to the other constraints.

4.4 Improvement by Local Search

Search Space. A configuration o is a consistent assignment of ” driver-vehicle”
pairs in Z to trips in 7. The search space (2 is then defined as the set of all such
assignments. Notice that our representation remedies in essence, i.e. without any
additional constraint, some drawbacks raised by set partitioning or set covering
models largely used for the Crew Scheduling Problem. The former is rather hard
to solve and is often relaxed in the set covering formulation while the latter can
lead to over-covered trips (see [10] for instance).

Evaluation Function. In order to guide the algorithm to visit the search space,
one needs a function to evaluate the configurations. The quality of a configuration
o is estimated through a weighted aggregation of the different objectives.

Vo € 2, f(o)=w1x fi(o) +wa x f2(0)

w; > 0 (i=1,2) are the weights associated to the two vehicle and driver objectives.

Neighborhood Operator. The neighborhood is one of the most important
component of any local search algorithm. In our case, we have experimented
several neighborhoods using different principles such as one-change (changing
the value of a variable), swap (exchanging the values of two variables), change-
and-repair and ejection chain. Among these alternatives, the neighborhood based
on ejection chain proves clearly to be the most powerful.

The principle of ejection chains was introduced in [7] and defined in a very
general way. An ejection chain is initiated by selecting a set of elements to
undergo a change of state. The result of this change leads to identifying a col-
lection of other sets, with the property that the elements of at least one must
be ”"ejected from” their current state. In our case, we devised an ejection chain
as follows:
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1. pick a trip (variable) at random,

2. pick a new driver-vehicle pair,

3. if assigning the pair to the trip does not create any conflict,
the assignment becomes effective, otherwise, a new driver-
vehicle pair is assigned to all the trips in conflict if a consis-
tent assignment is possible. As a last resort, these conflicting
variables are unassigned.

5 Computational Experiments

In this section, we assess the usefulness of our integrated approach and com-
pare it with the conventional sequential approach. For this purpose, we carry
out a series of experimentations using a set of data instances coming from real
situations.

5.1 Data and Experimental Settings

Computational experiments were based on 7 real-world instances representing
different workloads. The main characteristics of these instances are shown in
Table [2 (Left Part), namely, the number of scheduled trips, available drivers
and vehicles. Notice that the size of these instances are comparable to those
mentioned in previous studies (see Section [).

In our experimentations, all drivers are subjected to the same rules, namely a
maximum working time of 9:00 and a maximum spread time of 12:00.
Changeovers are not allowed. Two types of vehicles are considered with the
following hierarchy: vehicles of type 2 can handle trips of type 1 or 2, whereas
vehicles of type 1 are dedicated to type 1 only.

Our search procedures were coded in C++, compiled with VC++ 8.0 (flag
-03), on a PC running Windows XP (1Go RAM, 2.8Ghz). For the sequential
approach, we developed a Branch & Bound algorithm on a multi-commodity
flow model for the vehicle part and on a set covering model for the crew part
(see [10]). For our GRASP procedure, 20 independent runs were carried out on
each instance with different random seeds, each run being limited to 10 minutes
of CPU time.

Concerning the tuning of GRASP, after some preliminary experimentations,
we obtained the best results with the following set of parameters: 10 iterations
(itmaz=10 in Algorithm 1), a size of 5 for the restricted candidate list, a stop
criterion for each local search set to 100 x T iterations without improvement.

5.2 Comparison between Sequential and Integrated Scheduling

The right part of Table[2ldisplays the results of the sequential and the integrated
approach on the 7 data sets. For each instance, we report the number of required
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drivers and vehicledl. Figures for the simultaneous approach correspond to the
best solution over the 20 runs (mean and standard deviation between brackets).

From Table 2, we can make two main comments. First, one observes that the
integrated approach always outperforms the sequential one except for 2 instances
where both approaches furnish equivalent results. In particular, the savings in
terms of number of drivers are significant with up to 5 in two cases (cor-67
and dij_159). The sequential approach provides a lower bound for the number of
vehicles that is always reached in the integrated solutions. Across the 7 instances,
the results are also quite stable with very small standard deviations.

Second, the integrated approach is more powerful than the sequential one in
the sense that the sequential approach failed to solve the instance ”opt_-215”
while solutions are possible when crews and vehicles are considered simultane-
ously. Indeed, when the sequential scheduling is applied to this instance, the
vehicle phase results in a schedule with no relief opportunity along one bus duty
and consequently leads to an insolvable problem for the driver scheduling part.

Table 2. Comparison between sequential and simultaneous scheduling

Trips Drivers  Vehicles Sequential Simultaneous
type 1 type 2 | drivers vehicles drivers vehicles
bea 59 | 59 20 11 5 18 16 16 (16.0, 0.0) 16 (16.0, 0.0)
cor67 | 67 20 18 0 20 15 15 (15.8, 0.4) 15 (15.0, 0.0)
cha_105| 105 25 14 10 22 22 22 (22.0, 0.0) 22 (22.0, 0.0)
sem_151| 151 30 18 12 27 27 27 (27.0, 0.0) 27 (27.0, 0.0)
dij_159 | 159 36 20 20 34 29 29 (29.0, 0.0) 29 (29.0, 0.0)
otp_215| 215 50 50 0 - 48 49 (49.0, 0.0) 49 (49.0, 0.0)
aux_249| 249 50 35 12 48 44 46 (46.8, 0.4) 44 (44.0, 0.0)

These results show the dominance of the integrated approach over the sequen-
tial one. A more complete assessment would compare the results with tight lower
bounds, which are unfortunately unavailable yet.

6 Conclusion

In this paper, we proposed a new heuristic for a simultaneous drivers and vehi-
cles scheduling problem in an extra-urban area. The assumptions retained are
suitable to tackle practical problems in rural areas. The ability of managing a
heterogeneous fleet for a given depot is thus especially relevant.

The problem formulation as a constraint satisfaction and optimization model
proves to be a very flexible framework for designing heuristic algorithms. From
this model, we developed a solution procedure relying on a Greedy Randomized
Adaptive Search Procedure which integrates constraint programming techniques
and a powerful neighborhood based local search. This proposed approach con-
stitutes the first application of metaheuristics to this difficult application.

! Information related to the total duration of deadheads and idle periods is also avail-
able, but not reported here.
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The computational study carried out on a set of real-world instances clearly
shows the dominance of the integrated approach over the conventional sequential
one. In particular, a simultaneous schedule of drivers and vehicles achieves better
utilization of both resources. Moreover, in some cases, the integrated approach
is indispensable, especially when relief opportunities are rare.

Finally, let us mention that the general solution approach shown in the pa-
per is also suitable for dynamic adjustment of schedules by local re-optimization.

Acknowledgments. This work was partially supported by the French Ministry
for Research and Education through a CIFRE contract (number 176/2004). The
reviewers of the paper are greatly acknowledged for their helpful comments.

References

1. Ball, M., Bodin, L., Dial, R.: A matching based heuristic for scheduling mass transit
crews and vehicles. Transportation Science 17, 4-31 (1983)

2. Borndoerfer, R., Loebel, A., Weider, S.: A bundle method for integrated multi-
depot vehicle and duty scheduling in public transit. TR 04-14 (2004)

3. Dallaire, A., Fleurent, C., Rousseau, J.M.: Dynamic Constraint Generation in Cre-
wOpt, a Column Generation Approach for Transit Crew Scheduling. In: Vof3, S.,
Daduna, J.R. (eds.) Computer-Aided Scheduling of Public Transport (CASPT),
pp. 73-90. Springer, Berlin (2004)

4. Freling, R.: Models and Techniques for Integrating Vehicle and Crew Scheduling.
PhD thesis, Tinbergen Institute, Erasmus University Rotterdam (1997)

5. Freling, R., Boender, G., Paixdo, J.M.P.: An integrated approach to vehicle and
crew scheduling. Technical Report 9503/A, Economie Institute, Erasmus University
Rotterdam, Rotterdam (1995)

6. Gaffi, A., Nonato, M.: An integrated approach to the extra-urban crew and vehicle
scheduling problem. In: Wilson, N.-H.M. (ed.) Computer-Aided Transit Scheduling,
pp. 103-128. Springer, Berlin (1999)

7. Glover, F.: Ejection chains, reference structures and alternating path methods for
traveling salesman problems. Discrete Applied Math. 65(1-3), 223-253 (1996)

8. Haase, K., Desaulniers, G., Desrosiers, J.: Simultaneous vehicle and crew scheduling
in urban mass transit systems. Transportation Science 35(3), 286-303 (2001)

9. Haase, K., Friberg, C.: An exact branch and cut algorithm for the vehicle and crew
scheduling problem. In: Wilson, N.-H.M. (ed.) Computer-Aided Transit Scheduling,
pp. 63-80. Springer, Berlin (1999)

10. Huisman, D.: Integrated and Dynamic Vehicle and Crew Scheduling. PhD thesis,
Tinbergen Institute, Erasmus University Rotterdam (2004)

11. Huisman, D., Freling, R., Wagelmans, A.P.M.: Multiple-depot integrated vehicle
and crew scheduling. Trans. Sci. 39, 491-502 (2005)

12. Laurent, B., Hao, J.K.: Simultaneous vehicle and driver scheduling: a case study in
a limousine rental company. Computers & Industrial Engineering 53(3), 542-558
(2007)

13. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, New York (1990)

14. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)



	Introduction
	Vehicle and Crew Scheduling: Problem Presentation
	Problem Formulation
	Decision Variables and Domains
	Constraints
	Objectives

	Solution Approach
	Constraint Based Pre-processing
	General Algorithm
	Initial Schedule
	Improvement by Local Search

	Computational Experiments
	Data and Experimental Settings
	Comparison between Sequential and Integrated Scheduling

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


