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Abstract—The balanced graph partitioning consists in dividing
the vertices of an undirected graph into a given number of
subsets of approximately equal size, such that the number of
edges crossing the subsets is minimized. In this work, we present a
multilevel memetic algorithm for this NP-hard problem that relies
on a powerful grouping recombination operator and a dedicated
local search procedure. The proposed operator tends to preserve
the backbone with respect to a set of parent individuals, i.e.
the grouping of vertices which is same throughout each parent
individual. Although our approach requires significantly longer
computing time compared to some current state-of-art graph
partitioning algorithms such as SCOTCH, METIS, CHACO,
JOSTLE, etc., it competes very favorably with these approaches
in terms of solution quality. Moreover, it easily reaches or
improves on the best partitions ever reported in the literature.

Index Terms—Graph partitioning, grouping recombination
operator, local search, backbone.

I. INTRODUCTION

Graph partitioning is probably one of the most studied com-
binatorial optimization problems, which is widely applicable
to many areas including VLSI design, data mining, image
segmentation, etc. Since this problem is NP-complete [5],
many heuristic methods have been devised to address this
problem. These methods can be classified as move-based ap-
proaches, approaches based on meta-heuristics, and clustering
algorithms. For a detailed description and comparison of these
approaches, see the survey by Alpert and Kahng [1].

In the field of combinatorial optimization, hybrid evolu-
tionary algorithms often produce very competitive results, for
example for the graph coloring problem [11], [13], traveling
salesman problem [4], and even the graph partitioning problem
[14]. In general, these hybrid algorithms give better results if
high quality solutions, produced by an efficient local search
approach, are recombined in a meaningful manner.

In this work, we report on an original recombination op-
erator specially devised for the partitioning problem. It is
motived by the observation that, given a certain number of high
quality solutions of a graph instance, there is always a very
big number of vertices which are grouped together throughout
these solutions. The proposed recombination, combined with a
multilevel algorithm based on hill climbing with periodic per-
turbations, leads to a very effective algorithm. Indeed, exper-
iments on a collection of representative benchmark instances
from the Graph Partitioning Archive show that our multilevel
memetic algorithm easily reaches or improves almost all the

best known results reported so far. Moreover, even compared to
the imbalanced partitions obtained by two of the most effective
approaches, the balanced partitions produced by our approach
remain competitive.

This paper is organized as follows. In Section 2, we pro-
vide the formal graph partitioning description and notations
employed throughout this paper, and present the benchmark
graphs used in this work. In Section 3, we briefly describe
the multilevel paradigm and the general multilevel memetic
algorithm. In Section 4, we present the proposed memetic
refinement approach as well as the new recombination op-
erator. Finally, in Section 5, we show computational results
and comparisons.

II. GRAPH PARTITIONING

A. Problem description and notation

Given an undirected graph G(V,E), V and E being the set
of vertices and edges respectively, and given a fixed number
k of subsets, a balanced k-partition of G can be defined as
a mapping π : V → {1, 2, ..., k}, which distributes vertices
among k disjoint subsets S1 ∪ S2 ∪ ... ∪ Sk = V of roughly
equal size (i.e. weight).

Throughout this paper, we only work on graphs that have
both vertices and edges of a unit cost weight. However, vertex
and edge weights vary during the execution of a multilevel
approach (see Section III). Let |v| denote the weight of a vertex
v ∈ V . Then, the weight W (Si) of a subset Si is equal to the
sum of weights of the vertices in Si, W (Si) =

∑
v∈Si
|v|.

The function π induces a graph Gπ = Gπ(S,Ec), where
S = {S1, S2, ..., Sk} and an edge {Sx, Sy} ∈ Ec exists if
there are two adjacent vertices v1, v2 ∈ V mapped to different
subsets, v1 ∈ Sx and v2 ∈ Sy . The set Ec corresponds to
the set of cutting edges (i.e. edges that have endpoints in two
different subsets).

There is often a trade-off between partition quality and
imbalance, since allowing more imbalance may lead to parti-
tions of better quality, i.e. partitions with a smaller number of
cutting edges. An optimal subset weight is defined by Wopt =
d|V |/ke, where dxe is the ceiling function returning the first
integer ≥ x. In some applications, a small partition imbalance
ε is allowed, and can be defined as the maximal subset weight
divided by the optimal weight, ε = maxi∈{1..k}W (Si)/Wopt.

In this work, we aim to find partitions of perfect balance
(ε = 1.00), while minimizing the sum of the edge weights in



Ec.

B. Benchmarks

To evaluate our approach, we use all the graph instances
from a set of benchmark graphs employed in [14]. These
instances can be downloaded from the Graph Partitioning
Archive http://staffweb.cms.gre.ac.uk/∼c.walshaw/partition/,
which is maintained by the University of Greenwich. Table I
gives the main characteristics of the graphs. Computational
results and comparisons on these graphs are reported in
Section V.

III. THE GENERAL MULTILEVEL ALGORITHM

The basic idea of a multilevel approach, as proposed in
[2], [7], is to match pairs of vertices to form clusters that
define a new smaller graph (coarsening phase). This matching
procedure is recursively applied until the graph size falls
below a certain threshold. Afterwards, an initial partition of
the coarsest graph is generated (initial partitioning phase),
and then successively projected towards the original graph,
followed by partition refinement (uncoarsening phase). Our
multilevel approach that employs memetic partition refinement
is presented in Algorithm 1.

Creating a coarser graph Gi+1(Vi+1, Ei+1) from Gi(Vi, Ei)
(lines 1–5 of Algo. 1) consists in finding an independent subset
of graph edges, and then collapsing vertices that are incident
on each edge. A set of edges is independent if no two edges in
the set share the same vertex, which implies that exactly two
vertices are collapsed during the matching. If a vertex is not
incident on any edge of the matching, it is simply copied over
to Gi+1. When vertices v1, v2 ∈ Vi are collapsed to form a
(clustered) vertex vc ∈ Vi+1, the weight of the resulting vertex
vc is set equal to the sum of weights of vertices v1 and v2,
while the edge that is incident to vc becomes the union of all
the edges incident to v1 and v2, minus the edge {v1, v2} ∈ Ei.
So, the weight of a (clustered) vertex vc (edge ec respectively)
in a coarse graph represents the number of vertices (edges)
of the initial graph G0 it aggregates in vc (ec respectively).
Most of the multilevel approaches for graph partitioning use
the same heuristics in the coarsening phase. For details on
different coarsening schemes see [10].

To create each individual of the initial population in the
second phase (line 6 of Algo. 1), we first assign randomly
the vertices of the coarsest graph G(Vm, Em) to subsets Si ∈
{S1, S2, ..Sk}, such that the number of clustered vertices in
each subset is evenly balanced, i.e. the number n of vertices
in each subset Si is n ≤ d|Vm|/ke. Afterwards, we apply
a short run of local search to improve all individuals of this
initial population (see Section IV-D), followed by the memetic
refinement which is described in Section IV (lines 7–8 of Algo.
1).

The partition projection from a graph Gi(Vi, Ei) onto a
partition of the parent graph Gi−1(Vi−1, Ei−1) (line 11 of
Algo. 1) is a trivial process. If a vertex v ∈ Vi is in subset
Sm, then the matched pair of vertices v1, v2 ∈ Vi−1 which
represents vertex v ∈ Vi will also be in subset Sm. Before

projecting a partition on to the next level, we first apply
a short run of local search to improve all the individuals
of population POP , which is immediately followed by the
memetic refinement (lines 12–13 of Algo. 1).

Algorithm 1 The general scheme of the proposed multilevel
algorithm
Require: An undirected graph G0(V0, E0) and the number of

subsets k
Ensure: A partition of G0

1: i := 0
2: while |Vi| > coarsening threshold do
3: Gi+1 = Coarsen(Gi)
4: i := i+ 1
5: end while
6: POPi = Initial Partition(Gi)
7: POPi = Short Hill Climbing(POPi) {Section IV-D}
8: POPi = Memetic Refinement(POPi) {Section IV}
9: while i > 0 do

10: i := i− 1
11: POPi = Project(POPi+1, Gi)
12: POPi = Short Hill Climbing(POPi)
13: POPi = Memetic Refinement(POPi)
14: end while

IV. THE MEMETIC REFINEMENT

The proposed memetic algorithm incorporates a powerful
recombination operator, which takes into consideration the
backbone with respect to a subset of individuals from the
population. After each recombination, an efficient local search
with periodic perturbations is applied to the newly formed
individual. Finally, we apply a replacement strategy that
considers both the partition quality and the distance between
individuals in the population. In this section, we describe the
main components of the proposed memetic algorithm.

A. Encoding and fitness function

Given a graph G = (V,E) and a number of subsets k (num-
bered from 1 to k), an individual I corresponds to a partition
of V into k disjoint groups or subsets I = {S1, S2, ..., Sk},
such that Si consists of all the vertices that are assigned to
the ith subset.

The optimization objective of our k-partitioning problem is
to minimize the sum of edge weights in Ec, while maintaining
the best possible balance between partition subsets. Therefore,
we use two fitness functions during the search.

The first function f1(I) is the initial optimization objective,
i.e. the minimization of the weighted edges of Ec. Let |V0| be
the number of vertices in the original graph G0(V0, E0). The
second fitness function f2(I) evaluates the partition imbalance
as follows:

f2(I) =
{ ∑k

i=1 abs(W (Si)− |V0|/k), |V0| even;∑
Si∈{S|W (S)6=d|V0|/ke} abs(W (Si)− |V0|/k), otherwise.

(1)



TABLE I
THE LIST OF BENCHMARK GRAPHS TOGETHER WITH THEIR CHARACTERISTICS

Size Degree
Graph |V | |E| Max Min Avg Type
uk 4824 6837 3 1 2.83 2D dual graph
add32 4960 9462 31 1 3.82 32-bit adder
crack 10240 30380 9 3 5.93 2D nodal graph
wing-nodal 10937 75488 28 5 13.80 3D nodal graph
vibrobox 12328 165250 120 8 26.81 Sparse matrix
4elt 15606 45878 10 3 5.88 2D nodal graph
cti 16840 48232 6 3 5.73 3D semi-structured graph
bcsstk32 44609 985046 215 1 44.16 3D stiffness matrix
cs4 22499 43858 4 2 3.90 3D nodal graph
t60k 60005 89440 3 2 2.98 2D dual graph
wing 62032 121544 4 2 2.57 3D dual graph
brack2 62631 366559 32 3 11.71 3D nodal graph

Then, individual IA is considered better than individual IB

if f1(IA) < f1(IB) and f2(IA) ≤ f2(IB).

B. Distance measure

To determine the distance between two individuals IA =
{SA1 , SA2 , .., SAk } and IB = {SB1 , SB2 , .., SBk }, we use the
well-known set-theoretic distance [6] (call it d), which is
the minimum number of one-move steps needed to transform
IA to IB , i.e. d(IA, IB) = |V | − sim(IA, IB), where
sim(IA, IB) is the similarity function.

Given the partition encoding from Section IV-A, the similar-
ity function sim(IA, IB) is defined as maxσ∈Γ

∑k
i=1Mi,σ(i),

where Γ is the set of all the possible permutations of
{1, 2, .., k} and M a matrix with elements Mi,j = |SAi ∩SBj |.
This function sim(IA, IB), which reflects structural similarity,
corresponds to the number of elements that do not need to be
moved to transform IA to IB .

C. The recombination operator

1) Notion of backbone and motivation for the proposed
operator: For optimization and approximation problems, the
term backbone is used to define a set of variables B having the
same value throughout each solution from the set of all the
global optima Sopt, while the backbone size corresponds to
the number of elements in B. Then, in the graph partitioning
problem, the backbone is the set of vertices which are grouped
together throughout each solution of Sopt.

Since it is impossible to determine the exact backbone even
for the smallest instances of graph partitioning, for this work
we use a more relaxed notion of backbone, which is defined by
the set of vertices that are grouped in the same way throughout
each high quality solution.

The new recombination operator is based on the observation
that, given a set Q of high quality partitions of a graph
instance, the backbone size can sometimes even exceed 90% of
the total number of vertices. If there is a significant number of
vertices that are grouped together throughout each high quality
solution, there is a strong chance that they are also grouped
together in the globally optimal solution. Therefore, the idea
of our proposed operator is to preserve vertex grouping that
is common to a number of population individuals, and perturb

TABLE II
BACKBONE SIZE FOR 7 GRAPHS EXPRESSED AS A PERCENTAGE OF |V |.

Graph 4 8 16 32
data 95.2 64.7 42.2 50.9
3elt 97.3 69.6 77.2 61.5
uk 68.4 51.4 30.0 61.5
crack 98.9 95.4 79.6 33.8
wing-nodal 91.5 96.0 33.2 15.5
fe-4elt2 88.0 62.4 73.5 34.3
vibrobox 40.7 52.4 7.5 3.2

(with a certain probability) only vertices that do not belong to
this grouping.

Table II reports for seven graphs of different types from
the Graph partitioning archive, the backbone size with respect
to the best known solution and best local optima found after
1500 independent runs of an effective iterated tabu search
algorithm. The backbone size is expressed as the percentage
of the number of vertices |V |.

2) Backbone-based recombination operator (BRO): Given
a number of individuals p (p ≥ 2) which take part in the
recombination process, we select a subset P of size p from
population POP with the tournament selection strategy. Let λ
be the size of the tournament pool. We select each individual
Ii ∈ P in the following way: randomly choose λ individuals
from POP ; among the λ chosen individuals, place the best
one into subset P if it is not already present in P . We then
set the pth individual to be the reference individual IR =
{SR1 , SR2 ...SRk } for the recombination operator which follows.

Given the partition encoding from Section IV-A, BRO
can be formally described as follows. Let

∏
=

{
∏

1,
∏

2, ...,
∏
p−1} be the set of vertex subsets, where

each element
∏
i, i = 1, 2, .., p − 1, contains the largest

number of vertices that are shared by IR and individual
Ii = {Si1, Si2...Sik} ∈ P, Ii 6= IR, i.e.∏

i = {{SR1 ∩ Siσ(1)} ∪ {S
R
2 ∩ Siσ(2)} ∪ ... ∪ {S

R
k ∩

Siσ(k)}|maxσ∈Γ

∑k
j=1 |SRj ∩ Siσ(j)|},

where Γ is the set of all the possible permutations of
{1, 2, ..., k}, and |SRj ∩Siσ(j)| is the number of elements shared
by two subsets of individuals IR and Ii. Then, the subset of
vertices B ⊂ V which are grouped together throughout each



Fig. 1. Recombination with four individuals

individual of P is B =
∏

1 ∩
∏

2 ∩... ∩
∏
p−1.

Let Sm be the subset of vertex v in the reference individual
IR. If v ∈ B, then v will automatically be placed to subset
Sm of the offspring individual IO. Otherwise, it will be placed
to subset Sm of IO if c/p − 1 is greater than or equal to
some random real number in the range of [0, 1], where c is
the number of subsets of

∏
in which v occurs.

If after this procedure, a vertex v is left unassigned, it is
placed to a random subset Sr of IO such that W (Sr∪{v}) ≤
Wopt.

The complexity of the proposed recombination operator is
O(p ∗ k ∗ |V |).

An example of recombination with four individuals is given
in Fig. 1. Note that in the new offspring individual IO, vertices
from B are placed into the same subset as in IR. The rest of
the vertices in IO, i.e. vertices {3, 4, 8, 9, 12} will be assigned
to the same subset as in IR with a certain probability as
previously described.

D. Local search improvement
To improve the newly generated offspring, we apply local

search which is based on two neighborhood relations (call
them N1 and N2) combined in a token-ring way, i.e. one
neighborhood search is applied to the local optimum produced
by the previous one. We also periodically apply a simple
perturbation mechanism to bring some diversification into the
search.

1) Neighborhood relations: Given a subset Si, the basic
idea of the neighborhood relations is to move a vertex v to
Si only if v is a border vertex relative to Si. v /∈ Si is a
border vertex relative to subset Si if and only if v has at least
one adjacent vertex in Si. Note that in this way, the size of
the neighborhoods is largely reduced, since the set of border
vertices relative to Si is generally of small size. In addition,
the search is concentrated only around these critical vertices.

The key concept related to the two neighborhoods is the
move gain, which represents the change in the optimization

objective. It expresses an estimate on how much a partition
could be improved if a vertex v is moved to another subset
Sn. Given a vertex v from subset Sc, the gain g(v, n) can be
computed for every other subset Sn, n 6= c. The selection of
a vertex with the highest gain is achieved efficiently by using
an adaptation of bucket sorting that was originally proposed
in [3] for graph bisection.

Let I = {S1, S2, ..., Sk} be a k-partition, V (Si) the
set of border vertices relative to subset Si, Smax =
{Si|maxi∈{1..k}{W (Si)}} the subset with the maximum ver-
tex weight. The neighborhood relations N1 and N2 can be
explained by the two following move operators.

Move 1: Move one highest gain vertex vm. Choose ran-
domly a subset Sm ∈ {S1, S2, ..., Sk} − {Smax}. Then,
select a highest gain vertex vm ∈ V (Sm) whose current
subset is Sc, such that Sc ∈ {S ∈ I|W (S) > W (Sm)}.
Move the selected vertex vm to subset Sm.
Move 2: Move two highest gain vertices vm and vn.
Choose vertex vm and its new subset Sm as in the first
move operator. Choose randomly a new subset Sn ∈
{S1, S2, ..., Sk} − {Smax, Sm}. Then, select a highest
gain vertex vn ∈ V (Sn) whose current subset is Sc, such
that Sc ∈ {S ∈ I|S 6= Sn}. Move vm to Sm, and vn to
Sn.

Let Vcand ⊂ V (Sm) be the set of highest gain vertices
which are considered for migration to subset Sm. Among the
vertices from Vcand, we use two criteria to select a vertex
which is moved to Sm. These two criteria are move frequency
and vertex weight. We first give priority to a vertex which
has been moved less often. Let Vf ⊂ Vcand be the subset of
vertices with the same move frequency. Then, we select vertex
v ∈ Vf which, when moved to subset Sm, minimizes the
weight imbalance between Sm and the subset Sc from which
v is moved, i.e. minv∈Vf

{abs(W (Sm) + 2 ∗ |v| −W (Sc))}
where |v| is the weight of vertex v.



2) Perturbation mechanism: Since our local search proce-
dure focuses its search only around border (critical) vertices,
it can easily get trapped in a local optimum. Therefore, we
periodically apply a simple perturbation which consists in
moving a fixed number of vertices γ, including non border
ones, in the following way.

Let Smax be the subset of vertices with the maximum vertex
weight, Smax = maxi∈{1..k}{W (Si)}. Randomly select a
subset Sm ∈ {S1, S2, ..., Sk} − {Smax}. Then, randomly
choose a vertex vm whose current subset is Sc, such that
Sc ∈ {S ∈ I|W (S) > W (Sm)}. Move the selected vertex vm
to subset Sm. This operation is repeated γ times (perturbation
strength γ is set in this paper to 2% of the total number of
vertices).

E. Pool replacement strategy

When an offspring I0 is obtained with the recombination
operator, we improve it with the local search algorithm from
Section IV-D, and then decide whether I0 should be inserted
into the population pool. To base this decision, our algorithm
uses the ideas presented in [13] and [11].

Given a population POP = {I1, I2, ..., Im} of size m,
and the distance di,j (see Section IV-B) between any two
individuals Ii and Ij , (i, j = 1...m and i 6= j), the minimum
distance between Ii and any other individual in POP is given
by:

Di,POP = min{di,j |Ij ∈ POP, j 6= i}

Offspring I0 is inserted into POP if it is of the best quality
relative to the population, or if D0,POP > min(Di,POP ), i.e.
the minimum distance between I0 and any other individual in
the population is greater than the minimum distance between
any two individuals in the population. This idea was originally
proposed in [13], and has been shown to be very effective in
ensuring the population diversity.

As proposed in [11], we take into consideration the good-
ness score for population when choosing an individual Ii ∈
POP , which is to be replaced by I0. This score is based both
on solution quality and minimum distance:

hi,POP = f1(Ii) + β/Di,POP ,

where f1 is the first evaluation function defined in Section
IV-A and β a parameter set to β = 0.08 ∗ |V |.

V. EXPERIMENTAL RESULTS

A. Experimental protocol

Our partition algorithm is programmed in C++, and com-
piled with GNU gcc on a Xeon E5440 with 2.83 GHz and
8GB. We test our approach on the same set of benchmark
graphs described in Section 2, which was also used in [14]
for evaluating one of the currently most effective graph par-
titioning algorithms. As in [14], we report results with the
number of partition subsets k set to 4, 8, 16 and 32. To
evaluate the performance of the proposed multilevel memetic
algorithm we perform two comparisons. The first comparison
is with two state-of-art graph partitioning packages (METIS

[9] and CHACO [8]). In the second one, we compare the
partitions generated by the proposed approach with the best
partitions reported in the literature. In addition, we compare
our partitions that are (usually) of perfect balance (ε = 1.00),
with the imbalanced partitions obtained by two of the currently
most powerful graph partitioning algorithms reported in [14]
and [12]. It is very important to mention that allowing a larger
degree of imbalance usually leads to partitions of better quality
in terms of the number of cutting edges |Ec|.

The parameter settings used in both comparisons are re-
ported in Table III.

B. Comparison with state-of-art partitioning packages

For this comparison, we use the latest versions (METIS-
4.0, CHACO-2.2) available at the time of writing. For METIS,
we use the multilevel pMetis algorithm, and for CHACO we
choose the multilevel KL algorithm with recursive bisection
and a coarsening threshold of 100. Since pMetis and CHACO
do not allow repeating runs in a randomized way, we execute
our algorithm only once even though multiple runs would
generate improved results.

Table IV reports the partition quality obtained by pMetis,
CHACO, and our multilevel memetic approach (MMA). We
also indicate the time (in seconds) required by MMA to reach
the reported partitions. The last row with heading ‘Total’
shows the number of times each approach produced the best
partition.

From Table IV, we observe that the computation time of our
approach is quite longer compared to those of the partitioning
packages, which is often less than a second. However, in terms
of partition quality, it performs far better than pMetic and
CHACO.

As k increases, the proposed approach and pMetis in some
cases fail to generate partitions of perfect balance. Next to
the imbalanced partitions, we indicate the degree of imbal-
ance in parentheses. Our approach sometimes requires more
computing time to establish good balance. On the other hand,
CHACO always generates perfectly balanced partitions since
it uses recursive bisection.

C. Comparison with the best partitions and partitioning ap-
proaches reported in the literature

The best reported partitions generated with the proposed
approach are obtained after 20 executions of our algorithm,
within the time limit of 90 minutes for the largest instance
(i.e. brack2). Before each recombination, the number of parent
individuals is chosen randomly from a range [2,6]. In this
section, we compare these partitions with the best known bal-
anced partitions (ε = 1.00) reported at the Graph Partitioning
Archive, which are obtained by several different algorithms.
Unfortunately, the conditions used to obtain these results, such
as the number of algorithm executions or running time, are not
reported. In addition, we compare our balanced partitions with
the imbalanced ones generated with the two effective graph
partitioning approaches proposed by Osipov and Sanders [12],
and Soper et al. [14].



TABLE III
SETTINGS OF IMPORTANT PARAMETERS FOR THE FIRST COMPARISON FROM SECTION V-B AND THE SECOND COMPARISON FROM SECTION V-C.

Parameters Description Values for Comp. 1 Values for Comp. 2
k number of partition subsets [4, 8, 16, 32] [4, 8, 16, 32]

POPs size of population 10 40
p number of parents involved in recombination 4 random(2, 6)
λ size of tournament pool 6 6
θ number of recombination operations 10 20
br number of LS iter. before recombination |V | 10 ∗ |V |
ar number of LS iter. after recombination 5 ∗ |V | 100 ∗ |V |
ct coarsening threshold 100 100
pstr perturbation strength 0.02 ∗ |V | 0.02 ∗ |V |
γ non-improvement LS iter. before perturbation 0.01 ∗ |V | 0.01 ∗ |V |

TABLE IV
COMPARISON BETWEEN THE STATE-OF-ART PACKAGES AND OUR PROPOSED MULTILEVEL MEMETIC APPROACH FOR CARDINAL NUMBERS OF 4, 8, 16

AND 32.

k = 4 k = 8
Graph pMETIS CHACO MMA Time(sec) pMETIS CHACO MMA Time(sec)
uk 67 69 44 6.4 101 119 103 5.1
add32 42 56 33 7.9 81 115 69 8.0
crack 382 445 376 15.5 773 777 703 15.1
wing nodal 4000 4022 3706 14.7 6070 6147 5500 17.7
vibrobox 21471 21774 19314 48.5 28177 33362 25014 38.6
4elt 406 433 339 24.7 635 688 573 25.3
cti 1113 1117 990 44.2 2110 2102 1961 29.0
cs4 1154 1166 1025 51.8 1746 1844 1582 51.2
bcsstk32 12205 15704 9935 186.5 23601 25719 23627 159.7
t60k 255 235 222 215.7 561 524 500 245.8
wing 2086 1982 1791 350.0 3205 3174 2706 322.8
brack2 3250 3462 3427 502.1 7844 8026 7601 369.8
Total 1 0 11 2 0 10

k = 16 k = 32
Graph pMETIS CHACO MMA Time(sec) pMETIS CHACO MMA Time(sec)
uk 189 211 178 5.2 316(1.01) 343 313(1.03) 5.5
add32 128 174 129 4.9 288(1.01) 303 – –
crack 1255 1253 1126 13.4 1890 1962 1730 15.5
wing nodal 9290 9273 8546 21.6 13237 13258 12089(1.01) 22.8
vibrobox 37441 43064 33645(1.02) 59.8 46112 51006 41276(1.02) 86.2
4elt 1056 1083 983 23.9 1769 1766 1606 28.4
cti 3181 3083 2950 27.9 4605 4532 4354 29.4
cs4 2538 2552 2234 37.4 3579 3588 3127 40.3
bcsstk32 43371 47829 39200 218.6 70020 73377 62577 238.7
t60k 998 977 903 207.6 1613 1594 1475 194.1
wing 4666 4671 4215 251.2 6700 6843 6024 308.5
brack2 12655 13404 12221 268.7 19786 20172 18425 305.2
Total 1 0 11 1 0 11

The recently proposed approach in [12] is a multilevel
algorithm based on the idea to contract only a single edge
on each level of the hierarchy, which results very few changes
between two levels. In addition, it employs very effective data
structures and fast local search improvement that can scale to
large graph inputs. However, it cannot handle cases with the
imposed perfect balance constraint. Therefore, we compare our
balanced partitions with the best ones reported in [12] having
1% imbalance (ε = 1.01), and which are obtained in a time
limit of one hour.

The approach reported in [14] combines an evolutionary
search approach with the JOSTLE multilevel procedure used
as a black box. Although it generates high quality partitions,
this approach requires very long run times (e.g. up to one
week), since each run consists of 50,000 calls to JOSTLE.
In [14], the authors report partitions with 3% of imbalance
tolerance (i.e. ε = 1.03). However, the exact running as well
as the number of execution used to attain the results are not
reported.

Table V shows the best know results reported at the Graph
Partitioning Archive, the results generated with the n-Level
graph partitioning algorithm from [12] (KaSPar), the results
obtained with the multilevel evolutionary algorithm presented
in [14] (ESA), and the results produced with our new multi-
level memetic algorithm 1 (MMA). The partitions produced by
KaSPar and ESA are with ε = 1.01 and ε = 1.03 imbalance
respectively. For MMA, the reported partitions are perfectly
balanced (ε = 1.00), except for three cases where an imbalance
of ε = 1.01 is indicated next to the objective value. Colon ‘Avg
(Std)’ provides the average value and standard deviation of the
results generated by our approach. The last row from Table
V shows the number of times each colon ‘Best’, ‘KaSPar’,
‘ESA’ report a partition that is better than our newly obtained
partition.

From the given results, we observe that the proposed
multilevel memetic algorithm improves on the best known
balanced partition in almost each case. Moreover, our bal-

1Results available at http://www.info.univ-angers.fr/pub/hao/MMA.html



TABLE V
A COMPARISON WITH THE BEST KNOWN BALANCED PARTITIONS AND TWO OF THE MOST EFFECTIVE GRAPH PARTITIONING ALGORITHMS REPORTED IN

THE LITERATURE, FOR k EQUAL TO 4, 8, 16 AND 32. THE BEST RESULTS ARE GIVEN IN BOLD.

k = 4 k = 8
Graph Best(1.00) KaSPar(1.01) ESA(1.03) MMA(1.00) Avg(Std) Best(1.00) KaSPar(1.01) ESA(1.03) MMA(1.00) Avg (Std)
uk 43 41 41 41 43.8 (0.87) 89 92 83 84 86.8 (1.98)
add32 34 33 33 33 34.8 (3.71) 75 66 69 66 69 (3.52)
crack 368 370 361 366 368.3 (2.76) 687 696 676 679 692.8 (7.53)
wing-nodal 3581 3609 3590 3576 3613.6 (29.7) 5443 5574 5424 5438 5457.8 (21.9)
vibrobox 19245 19267 19245 19119 19579.7 (342.54) 24715 25190 24874 24557 24798.4 (126.13)
4elt 326 325 320 326 333.8 (10.44) 548 561 532 545 550.9 (7.61)
cti 963 950 927 954 975.3 (21.86) 1812 1815 1716 1790 1841.0 (26.08)
cs4 964 970 936 961 982.9 (10.42) 1496 1520 1488 1465 1483.9 (11.26)
bcsstk32 9492 9247 9992 9318 9383.4 (53.0) 22757 20855 21307 21589 22123.7 (508.3)
t60k 213 213 215 216 220.9 (2.59) 476 470 469 474 483.3 (7.04)
wing 1666 1683 1672 1664 1703.0 (23.79) 2589 2616 2551 2553 2593.8 (31.21)
brack2 3090 3027 2873 3129 3203.9 (43.45) 7169 7144 7114 7225 7389.9 (95.31)
Total 2 5 5 1 3 9

k = 16 k = 32
Graph Best(1.00) KaSPar(1.01) ESA(1.03) MMA(1.00) Avg(Std) Best(1.00) KaSPar(1.01) ESA(1.03) MMA(1.00) Avg (Std)
uk 159 179 157 150 156.0 (3.19) 258 – 266 266(1.01) 273.0 (5.07)
add32 121 117 117 117 120.8 (5.53) 212(1.01) 212 212 212 (1.01) 215.6 (6.77)
crack 1108 1183 1083 1090 1108.7 (8.17) 1728 – 1699 1687 1704 (9.51)
wing nodal 8422 8624 8361 8348 8399.7 (39.8) 12080 – 12024 11863 11879.3 (22.6)
vibrobox 32167(1.01) 35514 33676 32154(1.01) 32587.6 (322.93) 42187 46331 43091 40085 41146.5 (403.56)
4elt 956 1009 916 939 950.8 (6.42) 1592 – 1540 1562 1572.4 (7.06)
cti 2909 3056 2859 2878 2922.4 (32.02) 4288 5044 4438 4142 4191.7 (48.19)
cs4 2206 2285 2204 2113 2129.3 (10.47) 3110 3521 3117 2970 3001.0 (19.26)
bcsstk32 38711 37372 38927 36518 37225.7 (506.1) 63856 72471 64433 61431 62263.8 (555.6)
t60k 866 866 886 868 884.5 (7.98) 1440 1493 1478 1421 1448.2 (12.02)
wing 4198 4147 5015 3945 4014.0 (39.45) 6009 6271 6039 5690 5740.6 (26.23)
brack2 12323 11969 12009 11760 11958.9 (126.35) 18229 18496 17952 17491 17780.7 (177.65)
Total 1 1 3 1 0 1

anced partitions are generally better than the imbalanced ones
reported in [12]. As it can be seen from Table V, n-Level
graph partitioning algorithm is sometimes unable to obtain
a feasible solutions for larger values of k (indicated by ‘-’).
When compared to the imbalanced partitions generated with
the evolutionary approach [14], our partitions are still better
in many cases, especially for larger values of k.

All these results suggest that the newly proposed multilevel
memetic algorithm is extremely effective when it comes to
generating high quality balanced partitions.

VI. CONCLUSION

We proposed an efficient multilevel algorithm with memetic
refinement for the balanced graph partitioning problem. It
integrates a new recombination operator based on the back-
bone with respect to a given number of parent individuals,
which is motivated by the fact that there is always a high
number of vertices that are grouped together throughout each
high quality solution. When an offspring is created with the
proposed operator, we refine it using local search with periodic
perturbation that concentrates only around critical (border)
vertices. Finally, to maintain a healthy population diversity,
the algorithm integrates a highly effective pool replacement
strategy, that takes into consideration both the solution qual-
ity and the distance between solutions. Although it requires
longer computing time compared to some current state-of-
art approaches, our algorithm is highly effective in terms
of solution quality. Indeed, experiments on a collection of
unweighted graph instances show that this multilevel memetic
algorithm easily reaches or improves on almost all the best
known balanced partitions reported so far. Moreover, it would

be interesting to verify the efficiency of the proposed approach
on a set of weighted benchmark graphs.
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