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efgoeffon,ri
her,hao??g�info.univ-angers.frAbstra
t. Four lo
al sear
h algorithms are investigated for the phylo-geneti
 tree re
onstru
tion problem under the Maximum Parsimony 
ri-terion. A new subtree swapping neighborhood is introdu
ed and studiedin 
ombination with an e�e
tive array-based tree representation. Com-putational results are shown on a set of randomly generated ben
hmarkinstan
es as well as on 8 real problems (sequen
es of phytopathogen 
-proteoba
teria) and 
ompared with two referen
es from the literature.1 Introdu
tionPhylogeny 
on
erns the re
onstru
tion of the evolutionary history of a set ofspe
ies identi�ed by their nu
lei
 a
id (DNA) or amino a
id (AA) sequen
es,also 
alled taxa. The evolutionary relationships between spe
ies are representedby a tree, 
alled a phylogeneti
 tree, whose bran
hes re
e
t histori
al relation-ships. The appli
ations of phylogeny range from 
lassi�
ation and taxonomy tomole
ular epidemiology [5℄.The problem of phylogeny re
onstru
tion 
an be addressed using severalmethods. The distan
e-based approa
h 
omputes a distan
e matrix from the taxaand tries to �nd a tree that approximates this matrix. Agglomerative 
lusteringalgorithms su
h as NJ (Neighbor-Joining) [11℄ and BIONJ [8℄ are well-knownexamples. The 
hara
ter-based approa
h sear
hes through tree topologies to �ndthe best tree a

ording to an optimality 
riterion. The widely used MaximumParsimony 
riterion [3℄ is su
h an example whi
h states that the tree requir-ing the fewest number of 
hanges (mutations) should be preferred. This Maxi-mum Parsimony Problem (MPP) is known to be NP-Hard [7℄. Therefore, severalheuristi
s have been developed, in
luding bran
h-swapping used in PHYLIP [4℄and PAUP [12℄, simulated annealing [2℄ and other metaheuristi
s [1℄. MaximumLikelihood is yet another approa
h for the inferen
e of phylogeny using proba-bilisti
 estimation.In this paper, we are interested in studying Lo
al Sear
h algorithms for theMPP and studying two important elements: the neighborhood relation and theinternal tree representation. We evaluate a new neighborhood 
alled SubtreeSwapping Neighborhood (SSN) as well as an array-based tree representation.?? Corresponding author



2 The Maximum Parsimony ProblemDe�nition 1 (Phylogeneti
 tree). A phylogeneti
 tree is a dire
ted graphshowing the relationships between a group of 
ontemporary taxa (labels of theleaves) and their hypotheti
al 
ommon an
estors (internal nodes labeled by 
on-sensus sequen
es). If a rooted tree is used, the root is the 
ommon an
estor ofall the 
ontemporary taxa.De�nition 2 (Consensus sequen
es). Given two sequen
es S1 and S2 oflength k: S1 =< x11; x12; � � � ; x1k >, S2 =< x21; x22; � � � ; x2k > with xji taken fromsome alphabetP, the 
onsensus sequen
e S
 (parent node in a phylogeneti
 tree)is obtained from S1 and S2 by:8i; 1 � i � k; x
i = �x1i [ x2i ; if x1i \ x2i = ;x1i \ x2i ; if x1i \ x2i 6= ;The 
ost of the 
onsensus sequen
e S
 is de�ned by:f(S
) = kXi=1 
i where 
i = �1; if x1i \ x2i = ;0; otherwiseDe�nition 3 (Parsimony s
ore of a phylogeneti
 tree). Given a phyloge-neti
 tree t and V a set of nodes whose leaves are labeled with the sequen
es ofan initial set S, the parsimony s
ore of t is given by :f(t) = Xv2V nS f(Sv
 )where Sv
 are the 
onsensus sequen
es asso
iated to the internal nodes of t.The goal of the Maximum Parsimony Problem is then to �nd a tree t� 2T with the lowest parsimony s
ore f(t�), T being the set of all the possiblephylogeneti
 trees for a given set of taxa S.3 Lo
al Sear
h for the Maximum Parsimony ProblemGiven the NP-hardness of the MPP, lo
al sear
h (LS) heuristi
s have been mas-sively used to �nd approximate phylogeneti
 trees. In this Se
tion, we study fourLS algorithms using a new neighborhood. First, the basi
 and 
ommon elementsof these LS algorithms are introdu
ed.3.1 Tree representation and evaluationOne important issue of LS algorithms for the MPP 
on
erns the way the trees arerepresented and evaluated. Here, we use an array-based representation (Fig. 1).Ea
h node is identi�ed by a number (N), asso
iated with its left (L) and right(R) son, the parent (P) and the 
ost (C) of the node. This representation is par-ti
ularly suitable for applying 
hanges in the SSN neighborhood and 
onvenientfor 
omputing the 
ost of ea
h neighboring tree.
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6Fig. 1. Tree representation3.2 NeighborhoodNeighborhood is a 
riti
al element of lo
al sear
h algorithms. The literature o�ersthree major neighborhoods for trees: NNI (Nearest neighborhood inter
hanges)[14℄, SPR (Subtree pruning and Regrafting) and TBR (Tree Bise
tion Re
on-ne
tion) [13℄. NNI is a restri
ted neighborhood whi
h 
onsists in swapping twoadja
ent bran
hes. SPR removes a subtree and reinserts it in other bran
hes ofthe tree. TBR breaks the initial tree into two subtrees whi
h 
an be re
onne
tedto any bran
hes of one another. It is easy to see that NNI � SPR � TBR.In this study, we introdu
e a new neighborhood, that we 
all SSN (for SubtreeSwapping Neighborhood). SSN 
onsists in swapping two subtrees of a tree. LetSSNX;Y (t) be the tree obtained by ex
hanging the subtrees with roots X andY of tree t su
h that Y (resp. X) must not be 
ontained in the subtree rootedfrom X (resp. from Y ). Then the SSN neighborhood N 
an be formally de�nedas follows N : T ! 2T is su
h that for ea
h t =<N; V >2 T , a tree t0 2 T isa neighbor of t, i.e. t0 2 N (t), if and only if 9(X;Y ) 2 V � V , SSNX;Y (t) = t0where V is the set of nodes. As shown later, SSN, 
ombined with our internaltree representation, 
ontributes greatly to the eÆ
ien
y of our LS algorithms.3.3 Implemented Lo
al Sear
h algorithmsPure Des
ent (PD) The Pure Des
ent (PD) algorithm a

epts only betterneighboring solutions. A neighboring tree t0 is a

epted to repla
e the 
urrenttree t only if f(t0) < f(t) (t0 is more parsimonious than t). This algorithmneeds no parameter and stops automati
ally when a lo
al optimum (minimum)is en
ountered. The pure des
ent is very fast and may serve as a baseline referen
efor evaluating other algorithms.Random Walk Des
ent (RWD) This algorithm 
ombines the pure des
entwith the random walk strategy to a

ept from time to time a random neighbor(whi
h is not ne
essarily better). At ea
h iteration, with probability p 2 [0; 1℄,



a neighbor is taken randomly from the neighborhood to repla
e the 
urrentsolution regardless of its 
ost; with probability 1 � p, a pure des
ent iterationis 
arried out. Here, p = 1�:jSj2 , � taking values from 1 to 10 and jSj being thenumber of spe
ies of the problem instan
e.Iterative Lo
al Sear
h (ILS) ILS uses the pure des
ent to rea
h a �rstlo
al optimum and then perturbs this lo
al optimum by 
arrying out a limitednumber of random walks. This leads to a new solution whi
h is then used bythe pure des
ent to seek another lo
al optimum. The two-steps pro
ess Des
ent- Perturbation is repeated until a prede�ned stop 
ondition is met.Simulated Annealing (SA) At ea
h iteration, a neighbor t0 is taken randomlyfrom N (t) of the 
urrent tree t. t0 is a

epted to repla
e t if t0 is better than t.Otherwise, t0 is a

epted with a probability e� f(t0)�f(t)� where f is the evaluation(
ost) fun
tion given in Se
tion 2 and � is the temperature parameter whi
his de
reased by a simple linear fun
tion. The algorithm stops when the 
urrentsolution is not repla
ed for a �xed number of iterations.4 Experimental ResultsIn this se
tion, we 
ompare the four LS algorithms presented above and as-sess their performan
es with respe
t to two referen
es: DNAPARS of PHYLIPpa
kage [4℄ and LVB (both fast and slow versions) [2℄. Implemented in C++,PD, RWD, ILS and SA are 
ompiled using the -O2 optimization option of theg

/g++ 
ompiler and run on Sun Fire V880 with 8 GBytes of RAM.4.1 Ben
hmarksOur ben
hmarks in
lude problems having 100 to 180 sequen
es of a length of 100nu
leotides and were generated with Dnatree [10℄ and the Kimura two-parametermodel [9℄ with a transition/transversion ratio �xed to 2, and an evolution rate of0.05. We used also 8 real instan
es from plant pathology, 
omposed of 69 to 95sequen
es of phytopathogen 
-proteoba
teria (denoted by phyto here) with 409to 645 sites and report only here the results on one real instan
e sin
e we observedvery similar behavior on these instan
es. To run the programs, an initial tree isgenerated either with a random 
onstru
tion (Rand) or with a distan
e-basedmethod (Dist). Ea
h algorithm is run 20 to 50 times.4.2 Comparison of PD, RWD, ILS and SATable 1 shows the 
omparative results of (PD, RWD, ILS and SA) on �ve 
lassesof random instan
es and the phytopathogen instan
e, with the following infor-mation: the best 
ost found (fb), the average 
ost (fm), the standard deviationof the 
ost (�) and the average 
omputing time (time).



Algorithm fb fm � time Algorithm fb fm � time100.100 160.100PD 419 420,9 1,5 3m30 PD 655 658,9 2,6 13mRWD 419 420,1 1,4 30m RWD 655 656,6 1,9 1h20ILS 419 419,0 0 20m ILS 655 655,5 0,7 1hSA 419 419,0 0 30m SA 654 654,0 0 1h10DNAPARS 419 419 � 4m DNAPARS 654 654 � 65hLVB Slow 420 420 � >2h LVB Slow 655 655 � >3hLVB Fast 421 421 � >2h LVB Fast 655 655 � >3h120.100 180.100PD 495 495,8 1,4 6m PD 753 755,4 1,8 15mRWD 495 495 0 40m RWD 752 754,0 1,3 1h40ILS 495 495,3 0,6 30m ILS 752 753,0 1,4 1h20SA 495 495,0 0 40m SA 751 751,0 0 1h40DNAPARS 495 495 � 40h DNAPARS 751 751 � 1h20LVB Fast 496 496 � >1h LVB Slow 752 752 � >3hLVB Slow 496 496 � >1h LVB Fast 752 752 � >3h140.100 phytoPD 683 684,6 1,2 8m PD 731 734,8 2,6 6mRWD 682 683,6 1,0 1h RWD 730 731,0 1,1 40mILS 683 684,2 1,1 40m ILS 731 732,8 1,5 30mSA 682 682,0 0 50m SA 729 729,8 0,7 40mDNAPARS 682 682 � 51h DNAPARS 731 731 � 14hLVB Slow 683 683 � >5h LVB Slow 764 764 � >4hLVB Fast 685 683 � >4h LVB Fast 740 740 � >4hTable 1. Comparison of PD, ILS, RWD, SA, DNAPARS and LVBFrom Table 1, one observes that PD is able to �nd good solutions with veryshort 
omputation times 
ompared with other algorithms. RWD �nds a littlebetter solutions, but needs more 
omputation time. We suspe
t that exe
utingRWDmore times may lead to even better solutions. ILS, even with a long 
ompu-tation time, is not 
ompetitive. This is somewhat unexpe
ted given that it usesa perturbation te
hniques to re-start PD. One possible explanation would bethat the simple re-start te
hnique used by PD (re
all that PD was run 5 times)is more appropriate than re-starting PD with a solution near a lo
al optimum.Finally, SA is the most powerful algorithm, able to �nd the most parsimonioustrees with reasonable 
omputation times.4.3 Comparisons of LS algorithms with LVB and DNAPARSFrom Table 1, one observes �rst that in terms of solution quality, SA and DNA-PARS �nd the same results for random instan
es, and SA �nds better solutionsfor the real instan
e. However, SA is mu
h faster than DNAPARS to �nd solu-tions of the same quality. This is parti
ularly true when the problem instan
eis of larger size. Indeed for still larger instan
es (with more than 200 sequen
es,not reported here), DNAPARS did not �nish after 2 days of 
omputation whileSA needs 1 to 2 hours to obtain near-optimal solutions. For the phytopathogeninstan
e, our SA algorithm obtains better result than DNAPARS (with a 
ostof 729 against 731). If we 
onsider the results of LVB, one observes easily thatboth the fast and slow versions of LVB are often dominated by our algorithms,both in terms of solution quality and 
omputation time.



5 Con
lusionAn empiri
al study of four lo
al sear
h algorithms is 
arried out for the phylo-geneti
 tree re
onstru
tion with the Maximum Parsimony 
riterion. These algo-rithms are tested on both random instan
es and real problems. They are also
ompared with two referen
es from the literature, showing 
ompetitive results.This study 
on�rms that lo
al sear
h remains a very promising approa
h for theMaximum Parsimony Problem. This study has allowed us to assess the proposedSSN neighborhood and the array-based tree representation. Based on the results,we are investigating an improved lo
al sear
h algorithm using an evolutionarySSN neighborhood 
ombined with a noisy evaluation fun
tion. Experimental val-idations are on the way by using very large instan
es (up to 500 taxa and 2 000sites, in
luding the Zilla data set).A
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