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The capacitated location-routing problem involves determining the depots from a set of candidate capacitated

depot locations and finding the required routes for a fleet of vehicles starting from and ending at the selected

depots to serve a set of customers such that the solution minimizes a cost function that includes the cost of

opening the selected depots, the fixed utilization cost per vehicle used, and the total cost (distance) of the

routes. This paper presents a hybrid genetic algorithm with multi-population, which includes an effective

multi-depot edge assembly crossover to generate promising offspring from the perspective of both depot

location and route edge assembly, a neighborhood-based local search to optimize the routes of each offspring

solution, and a diversification-oriented mutation. Of particular interest is the multi-population scheme which

organizes the population into multiple subpopulations according to the depot configurations being explored.

Extensive experiments on four sets of 281 benchmark instances from the literature show that the algorithm

performs remarkably well. Additional experiments are presented to gain insight into the role of the key

elements of the algorithm.

Key words: Location-routing; Multi-population based search; Multi-depot edge assembly crossover;

Neighborhood search; Depot configurations.
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1. Introduction

Let I = {1, · · · ,m} be a set of depot locations (or depots), where each depot i ∈ I is asso-

ciated with a positive capacity wi and an opening cost oi. Each depot has an unlimited

fleet of vehicles. Each vehicle has a limited capacity Q and a fixed utilization cost F . Let

J = {1, · · · , n} be a set of customers, where each customer has a positive demand dj. The

capacitated location-routing problem (CLRP) is defined on a weighted and directed graph

G = (V,A) with vertex set V = I∪J and arc set A= {(i, j)|i∈ I, j ∈J }∪{(i, j)|i, j ∈J , i ̸=

j}∪ {(i, j)|i∈J , j ∈ I}. A is associated with a matrix C = (cij) where cij is a non-negative

value representing the distance on the arc (i, j). C is said to be symmetric if cij = cji, for

any (i, j)∈A and asymmetric otherwise. Let E be an edge set and E =A if G is undirected.

The CLRP problem involves determining the depots to open and the routes for a fleet of

vehicles starting from and ending at these depots to visit all customers under the following

constraints: (i) vehicle and depot capacities are respected; (ii) each vehicle ends at the depot

from which it originated; (iii) each customer is visited exactly once. The objective of the

CLRP is to minimize the total cost, including the cost of opening the chosen depots, the

fixed utilization cost per vehicle used, and the total cost (distance) of the routes.

The CLRP covers a variety of problems that arise in single and two-echelon distribution

networks in urban logistics (Prodhon and Prins 2014). On the one hand, the CLRP reduces

to the multi-depot vehicle routing problem (MDVRP) (Cordeau et al. 1997) once the opening

depots are fixed. On the other hand, locations in the CLRP correspond to satellites in

the two-echelon vehicle routing problem (2E-VRP) (Perboli et al. 2011). The relationship

between these three problems has been analyzed in Schneider and Löffler (2019) and Voigt

et al. (2022). Moreover, the CLRP represents a class of well-studied vehicle routing problems

(VRPs) in which decisions about depots and routes are associated. Many variations of the
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CLRP arise in freight distribution and urban logistics with the addition of specific constraints

that model practical scenarios (Drexl and Schneider 2015, Mara et al. 2021). See Baldacci

et al. (2011) for a mathematical formulation of the CLRP.

Given the computational challenge and practical relevance of the CLRP (Nagy and Salhi

2007), much effort has been devoted to the development of efficient solution methods to

better solve the problem. The three most representative exact algorithms (Baldacci et al.

2011, Contardo et al. 2014a, Liguori et al. 2023), based on the branch-and-cut-and-price

framework, are able to optimally solve instances with up to 200 customers and 10 depots

at the cost of high computational times (e.g., up to 176 hours for instances with up to

150/199 customers and 14 depots (Contardo et al. 2014a)). To handle larger instances, a

number of heuristic algorithms have been proposed that aim to find high-quality solutions

in a reasonable amount of time.

In this work, we propose an effective heuristic algorithm called hybrid genetic algorithm

with multi-population (HGAMP) to advance the state of the art for better solving large

CLRP instances by providing an original framework to effectively implement the integrated

approach. Thanks to this algorithm, we report 103 new upper bounds on the CLRP bench-

mark instances in the literature.

We summarize the main contributions as follows.

• The proposed algorithm uses an innovative multi-population scheme where each sub-

population contains a set of high-quality (or elite) solutions that share the same depot

configuration being explored. This multi-population scheme allows the algorithm to conve-

niently and simultaneously manage multiple promising depot configurations and multiple

solutions associated with these depot configurations, allowing for a better exploration of the

search space. Moreover, the multi-population scheme is general and can be applied to other

related two-level decision problems.
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• The proposed algorithm integrates an effective multi-depot edge assembly crossover,

which enables the generation of promising offspring solutions with new depot configurations

by recombining route edges associated with existing depot configurations. Combined with a

feasibility-restoring procedure and a diversification-oriented mutation, this crossover proves

to be highly useful for solving the CLRP. Moreover, the crossover can be applied to solve

other related routing problems with little or no modification, as we show by applying the

same crossover to solve the MDVRP.

• The improved best results (updated upper bounds) for 103 instances discovered by the

proposed algorithm are useful for future research on the CLRP. In addition, the publicly

available source codes of the algorithm can contribute to the practical solution of related

real-life applications that can be formulated as the CLRP.

The rest of the paper is organized as follows. Section 2 reviews the related studies in

the literature. Section 3 describes the proposed HGAMP algorithm. Section 4 evaluates the

performance of HGAMP. Section 5 presents an analysis to gain insight into the roles of the

main algorithmic components. The last section summarizes the contributions and provides

concluding remarks.

2. Literature review

This section reviews the representative heuristic algorithms for the CLRP. For a compre-

hensive presentation of the existing algorithms, the reader is referred to dedicated surveys

(Prodhon and Prins 2014, Schneider and Drexl 2017).

We organize the overview according to two solution approaches: the hierarchical approach

and the integrated approach. The hierarchical approach treats the CLRP in two sequential

steps, where the first step identifies promising depot configurations and the second step solves

the resulting MDVRP problems. The integrated approach treats the location decision and the
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Table 1 Representative heuristic algorithms for the CLRP.
Strategy CapacityReferences Matheuristics/Metaheuristics Approach Divided Simultaneous Routes Depots Instances

Tuzun and Burke (1999) Two phase tabu search Hierarchical X X × T
Prins et al. (2006b) GRASP + path relinking Hierarchical X X X T,P,B
Prins et al. (2006a) Memetic algorithm Integrated X X X T,P,B
Prins et al. (2007) Lagrangian relaxation and TS Hierarchical X X X T,P,B
Duhamel et al. (2010) GRASP+Evolutionary LS Integrated X X X T,P,B
Vincent et al. (2010) Simulated annealing Integrated X X X T,P,B
Hemmelmayr et al. (2012) ALNS Integrated X X X T,P,B
Ting and Chen (2013) Ant colony optimization Hierarchical X X X T,P,B
Escobar et al. (2013) Two phase hybrid heuristic Hierarchical X X X T,P,B
Escobar et al. (2014) Granular tabu search Integrated X X X T,P,B
Contardo et al. (2014b) GRASP + ILP Integrated X X X T,P,B
Lopes et al. (2016) Hybrid genetic algorithm Integrated X X X T,P,B
Quintero-Araujo et al. (2017) Biased randomized Hierarchical X X X P,B
Schneider and Löffler (2019) Tree-based search algorithm Hierarchical X X X T,P,B, S
Accorsi and Vigo (2020) AVXS Integrated X X × T
Akpunar and Akpinar (2021) Hybrid ALNS Integrated X X X T,P,B
Arnold and Sörensen (2021) Progressive filtering Hierarchical X X X T,P,B, S
Voigt et al. (2022) HALNS Integrated X X X T,P,B
Sobhanan et al. (2024) GA with neural cost predictor Hierarchical X X X T,B
This paper Hybrid genetic algorithm Mixed X X X T,P,B, S

route optimization together. Table 1 summarizes the most representative CLRP heuristics.

For each heuristic, we indicate the algorithmic framework (Matheuristics/Metaheuristics),

the solution approach used (Hierarchical or Integrated), the strategy for generating depot

configurations and routes, the presence of capacity constraints for routes and depots, and

the benchmark sets tested (see Section 4.1 for these sets).

2.1. Hierarchical approach

The hierarchical approach decomposes the CLRP into two subproblems, the facility loca-

tion problem (FLP) and the MDVRP, which are solved separately. This approach has the

advantage of allowing a direct application of many effective routing algorithms to solve the

MDVRP with a fixed depot configuration. However, it is a challenge to identify the best or

most promising depot configurations, although some advanced strategies such as the pro-

gressive filtering heuristic (Arnold and Sörensen 2021) have been proposed.

Tuzun and Burke (1999) introduced a pioneering hierarchical algorithm. This algorithm

uses a two-phase tabu search to make decisions: the first to determine the depot configuration

and the second to optimize routes for the chosen depot configuration. Experiments on 36

instances showed significant performance improvements over reference methods.

Schneider and Löffler (2019) proposed a tree-based search algorithm that systematically

explores depot configurations in a tree-like fashion. The algorithm alternates between a
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location phase and a routing phase. First, it uses minimum spanning trees to estimate the

approximated cost. Then, in the routing phase, it uses a dedicated tabu search algorithm to

improve the MDVRP solution. The algorithm matched or improved on the vast majority of

previous best-known solutions for the instances of the three classical sets, and demonstrated

the ability to efficiently solve newly generated large-scale instances.

Arnold and Sörensen (2021) developed a progressive filtering heuristic. The algorithm

begins by empirically estimating an upper bound on the depots and employs a heuristic

construction procedure to significantly reduce the number of promising configurations. Then,

a MDVRP heuristic is applied to evaluate each of these promising depot configurations.

Experimental results showed that the algorithm outperformed existing heuristics, especially

on the largest benchmark instances.

Sobhanan et al. (2024) proposed a deep learning based approach called genetic algorithm

with neural cost predictor to solve hierarchical vehicle routing problems, including the CLRP.

A pretrained graph neural network is used to learn the objective values of the open-source

HGS-CVRP package for solving the CVRP. Experiments have shown that the algorithm can

find good results quickly.

2.2. Integrated approach

The integrated approach considers the location decision and the routing problem simulta-

neously. Unlike the hierarchical approach, the integrated approach typically manipulates

solutions associated with different depot configurations and improves the routes by reassign-

ing customers and applying local optimization.

Prins et al. (2006a) introduced a memetic algorithm with population management. The

algorithm employs a two-part chromosome encoding to represent each solution and uses

the classical one-point crossover to generate offspring solutions combined with a customer
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reassignment procedure. The algorithm focuses on route recombination of the parent solu-

tions represented as two giant tours and customer reassignment. This pioneering algorithm

produced interesting results on the benchmark instances tested.

Lopes et al. (2016) presented an evolutionary algorithm, which uses a route copy crossover

to generate offspring solutions, allowing the discovery of new depot configurations during

the crossover, and applies a local search procedure to reduce the routing cost. The algorithm

reported competitive results on the benchmark instances tested.

Voigt et al. (2022) proposed a hybrid adaptive large neighborhood search algorithm

(HALNS) that uses a population of solutions generated via an adaptive large neighborhood

search algorithm (ALNS), similar to (Hemmelmayr et al. 2012). In particular, it uses ALNS,

instead of a crossover operator, to combine two solutions, while preserving selected parts

of those solutions. The algorithm explores depot configurations by removing, opening, and

swapping depots during the destroy/repair process. The algorithm performed very well by

finding new best solutions for three benchmark instances.

Our work is motivated by the following observations. First, the literature review shows that

promising depot configurations play a critical role in both the hierarchical and integrated

approaches. However, although several methods have been proposed for this purpose (Lopes

et al. 2016, Schneider and Löffler 2019, Arnold and Sörensen 2021, Voigt et al. 2022), there is

no proven method that can effectively recombine different depot configurations and assem-

ble route edges simultaneously. Second, in terms of solution methodology, hybrid genetic

algorithm (HGA) (also called memetic algorithm (Neri et al. 2012)) has shown excellent

performance in solving various vehicle routing problems including multi-depot and peri-

odic VRPs (Vidal et al. 2012), capacitated vehicle routing problem (CVRP) (Nagata and

Bräysy 2009), and split delivery vehicle routing problem (SDVRP) (He and Hao 2023). The
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HGA approach has also been applied to the CLRP (Prins et al. 2006a, Lopes et al. 2016)

with competitive results. However, the crossover used in Prins et al. (2006a) only assembles

route edges without considering depot configurations from parent solutions. The route copy

crossover used in Lopes et al. (2016) focuses on transferring routes to offspring and overlooks

the importance of constructing promising depot configurations from existing configurations.

In this work, we present an effective HGA with multi-population within the integrated

approach for better solving the CLRP. The algorithm is characterized by its multi-population

scheme, which organizes the population into subpopulations where each subpopulation is

composed of a set of high-quality solutions using the same depot configuration. Although

the idea of subpopulation is a well-known concept in population-based algorithms (Cochran

et al. 2003, Toledo et al. 2013), this is the first time that the multi-population scheme is

used to explicitly manage different depot configurations for solving the CLRP. In addition,

the HGAMP algorithm uses a powerful multi-depot edge assembly crossover (mdEAX),

which generalizes the crossovers in (Nagata and Bräysy 2009, He and Hao 2023), to gener-

ate new offspring solutions by mixing different depot configurations and assembling route

edges simultaneously. The crossover, combined with a feasibility recovery procedure and a

dedicated mutation, helps the algorithm to effectively explore the search space. Finally, the

proposed algorithm integrates a mixed strategy to generate good initial depot configurations

and applies classical routing heuristics to optimize the routes of offspring solutions.

3. Hybrid genetic algorithm with multi-population for the CLRP

This section first introduces the general approach of the HGAMP algorithm, and then

presents its main components.

3.1. General HGAMP procedure

The proposed HGAMP algorithm follows the general hybrid genetic search or memetic search

framework (Neri et al. 2012), which combines population-based search and neighborhood-
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Algorithm 1: Main framework of the HAGMP algorithm
Input: Instance I;

Output: The best solution φ∗ found so far;

1 begin

2 D= {D1,D2, · · · ,Dγ}←CRH(I); /* Search promising depot configurations, Section 3.2.1 */

3 P = {P1,P2, · · · ,Pγ ,Pγ+1}← PopInitial(D, I) /* Initialize population P, Section 3.2.2 */

4 φ∗← argmin{f(φ)|∀φ∈P}; /* Record the best solution found so far */

5 while Stopping condition is not met do

6 {φA,φB}←ParentSelection(P); /* Select two parent solutions, Section 3.3 */

7 {φ1
O,φ

2
O, · · · ,φβ

O}←mdEAX(φA, φB); /* Generate offspring solutions, Section 3.3 */

8 for i= 1 to β do

9 φi
O← Repair(φi

O); /* Restore feasibility, Section 3.4 */

10 φi
O← Mutation(φi

O); /* Generate mutation, Section 3.5.1 */

11 φi
O← LocalSearch(φi

O); /* Improve the offspring solution, Section 3.5.2 */

12 if f(φi
O)< f(φ∗) then

13 φ∗←φi
O;

14 end

15 {P,D}←ManagingPop(P,D,φi
O ,φ∗); /* Manage the population, Section 3.6 */

16 end

17 end

18 return φ∗;

19 end

based local optimization. Such a hybrid algorithm benefits from the complementary search

strategies of the two combined methods and is expected to achieve a balance between

exploitation and exploration of the given search space.

HGAMP, whose pseudo-code is illustrated in Algorithm 1, starts with an initial population

of solutions, which is generated in two steps (lines 2 and 3). The first step uses a mixed

strategy to find γ good and diverse initial depot configurations {D1,D2, · · · ,Dγ} (Section

3.2.1), while the second step uses each identified depot configuration Di (i= 1, . . . , γ) to build

a subpopulation Pi of solutions (Section 3.2.2). These γ subpopulations plus an additional
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Pγ+1 form the population P . Then the algorithm evolves the population P over a number of

generations using crossover, repair, mutation, local search, and population management (lines

5-17). In each generation, two solutions φA and φB are selected from two subpopulations (φA

and φB necessarily have two different depot configurations) and serve as parent solutions for

the mdEAX crossover. The crossover recombines route edges of φA and φB and the underlying

depot configurations to generate β offspring solutions {φ1
O,φ

2
O, · · · ,φ

β
O} (Section 3.3). If an

offspring solution violates capacity constraints, it is repaired to restore feasibility before

being mutated and optimized by local search (Sections 3.4 and 3.5). Each offspring solution

is then assigned to the subpopulation corresponding to its depot configuration (Section 3.6).

If a depot configuration associated with an offspring solution differs from the γ promising

depot configurations in the population, the solution is inserted into the subpopulation Pγ+1.

HGAMP stops and returns the best recorded solution φ∗ when the predefined stopping

condition is met (e.g., a maximum cutoff time or a maximum number of generations).

3.2. Initial population generation

This section illustrates the two-step process for generating the initial population with its

subpopulations: a mixed strategy for the identification of initial depot configurations and

the method for the generation of the corresponding subpopulations of solutions.

3.2.1. Mixed strategy for the identification of initial depot configurations. To iden-

tify a set of good and diverse initial depot configurations, we adopt a mixed strategy that

combines the progressive filtering of Arnold and Sörensen (2021) presented in Section 2 and

a new coverage ratio heuristic (CRH) introduced in this paper. Specifically, we use the pro-

gressive filtering to obtain M (0<M ≤ 20000) depot configurations, which are evaluated by

Clarke-Wright’s regret algorithm (Arnold and Sörensen 2021) to retain at most 100 promis-

ing depot configurations. We then merge these depot configurations with those from our

CRH to obtain the set D of depot configurations.
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CRH is composed of a preliminary filter and a secondary filter. The preliminary filter

identifies a set of depot configurations that strike a balance between estimated travel costs

and geographic dispersion of the candidate depots. To evaluate the costs without constructing

complete solutions, the most common way is to use the minimum spanning tree (MST) to

estimate the costs (Schneider and Löffler 2019). For this purpose, we use Prim’s algorithm

to construct a MST from each depot i ∈ I as the root node with respect to its capacity wi

and save the served customers in set Si. The estimated cost ui of depot i is the sum of the

open cost oi, the fixed cost of the vehicles needed to service the customers in Si, and the

total travel cost of the MST. The set Si can be thought of as the coverage area for depot

i. Then a new depot configuration is built from an empty set by adding greedily candidate

depots based on the estimated cost of each candidate depot and the overlap coverage ratio

between the candidate depot and the selected depots. From the set D of depot configurations

from the preliminary filter, the secondary filter identifies a reduced set of most promising

initial depot configurations. We use each depot configuration Di in D to generate a limited

number Nt (a parameter, fixed to 10) of solutions, which are improved by the local search

procedure of Section 3.5.2. The average cost of these Nt improved solutions is used to assess

the attractiveness of Di. Based on the attractiveness values, the top γ depot configurations

are retained in D and used to initialize the subpopulations of the population. More details

about CRH are given in the online supplement (He et al. 2025).

3.2.2. Subpopulation generation. From the γ promising depot configurations D =

{D1,D2, . . . ,Dγ}, a population P composed of γ+1 subpopulations is built. For each depot

configuration Di, a subpopulation Pi is created whose solutions are all based on this depot

configuration. An additional subpopulation Pγ+1 is also built to promote and maintain diver-

sity, containing solutions that are not related to any of the γ depot configurations.
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To build the subpopulation Pi for a given depot configuration Di, a random greedy heuris-

tic (RGH) is used to construct each solution, which is then improved by local search to

increase its quality. First, RGH randomly selects a depot from the given Di and uses the

cheapest customer to start a route. Second, it greedily inserts other unvisited customers into

the route based on the nearest neighbors rule (Section 3.5.2). When the capacity of the vehi-

cle is reached, RGH starts a new route. When the maximum capacity of the current depot is

exceeded, RGH selects a new depot from Di. RGH continues this process until all customers

are covered, resulting in a feasible initial solution.

Each initial solution is then improved by local search (Section 3.5.2) and added to sub-

population Pi. To ensure population diversity, we apply the technique in Vidal et al. (2012)

to obtain the final Pi. That is, we expand Pi until Pi reaches the maximum limit of µ+λ (µ

and λ are two parameters, see Section 3.6). Then we apply a distance-and-quality updating

strategy (described in Section 3.6) to retain µ solutions in Pi.

The last subpopulation Pγ+1 consists of solutions without fixed depot configurations. To

create a solution of Pγ+1, we start with all candidate depots i sorted in a list L with their

rough costs ui (see Section 3.2.1). We then use a random greedy method to iteratively add

depots from L to the depot configurations until the total capacity of the selected depots

covers the total demand of the customers. Unlike CRH, this method does not take into

account geographic dispersion of the candidate depots.

3.3. Multi-depot edge assembly crossover

A carefully designed crossover operator is a driving force of a successful hybrid genetic

algorithm. To be effective, the crossover must be designed to ensure the transmission of useful

building blocks (or solution patterns) from parents to offspring (Hao 2012). In addition, the

design of the crossover should ideally ensure the production of diversified offspring solutions.
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From the perspective of exploration and exploitation, such a crossover aims to play the role

of strategic diversification with the long-term goal of enhancing intensification.

Before applying the crossover operator, two parent solutions are selected in two steps. First,

two subpopulations are selected using the binary tournament strategy based on their average

objective values. Second, within each selected subpopulation, another binary tournament

selection is applied to obtain a parent based on its objective value. As a result, the two

parent solutions are necessarily based on two different depot configurations, and the mdEAX

crossover aims to generate offspring solutions by simultaneously considering the routes of

the parent solutions and their underlying depot configurations.

Similar to the crossovers for the CVRP (Nagata and Bräysy 2009) and the SDVRP (He

and Hao 2023), mdEAX is based on the general idea of the popular EAX crossover for the

traveling salesman problem (Nagata and Kobayashi 2013). However, unlike these studies,

mdEAX is designed to be able to consider routing solutions with different depot configura-

tions, which is not the case in the previous studies. Furthermore, mdEAX also differs from

the crossovers for the CLRP used in Prins et al. (2006a), Lopes et al. (2016), which focus

only on routes while overlooking the construction of new depot configurations.

Given two parent solutions φA and φB, we build two graphs GA = (VA,EA) and GB =

(VB,EB) where VA and VB are the sets of vertices representing the depots and customers

visited by φA and φB, respectively, and EA and EB are the sets of edges traversed by φA and

φB, respectively. Since each customer is visited exactly once, each customer vertex in GA and

GB has a degree of two. However, the vertices associated with the depots of φA and φB may

have different degrees because the parents use two different depot configurations. Following

(He and Hao 2023, He et al. 2023), we extend EA and EB by adding dummy loops so that

each vertex in GA has the same degree as in GB, resulting in the extended edge sets E ′
A and
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E ′
B. Then, the joint graph GAB = (VA ∪VB, (E

′
A ∪ E ′

B)\(E
′
A ∩ E ′

B)) is created and used by the

mdEAX crossover.

Specifically, from the parent solutions φA and φB, the mdEAX crossover generates β

offspring solutions (β is a prefixed threshold value) by the following steps.

1. Add dummy loops. Dummy loops are introduced to extend graphs GA and GB to ensure

that the degree difference becomes 0 for each depot belonging to VA ∪ VB, leading to two

extended graphs G ′
A = (VA,E

′
A) and G ′

B = (VB,E
′
B).

2. Build the joint graph GAB = (VA ∪VB, (E
′
A ∪E ′

B)\(E
′
A ∩E ′

B)) from G ′
A and G ′

B.

3. Construct AB-cycles from GAB. The edges in GAB are partitioned into disjoint AB-cycles

as follows. An AB-cycle is a cycle such that its edges alternate between edges of E ′
A and

edges of E ′
B. Because each vertex in GAB is connected to an even number of edges, and half

of these edges come from E ′
A, while the other half come from E ′

B, the edges in GAB can be

partitioned into AB-cycles accurately.

4. Generate E-sets. The AB-cycles are grouped into E-sets. If the number of E-sets exceeds

the threshold β, some E-sets are randomly merged to retain only β E-sets. By combining

AB-cycles that share common vertices into larger E-set, we ensure a sufficient diversity of

the routes in the offspring solutions (Nagata and Bräysy 2009).

5. Construct intermediate solutions. A random solution φ (φA or φB, say φA) is selected

first. For each E-set Es, we create an intermediate solution φ′ = (EA\(Es ∩ EA))∪ (Es ∩ EB),

where the added dummy loops are ignored.

6. Split mega tours. An intermediate solution may contain routes that visit more than

one depot (called mega tours). For these tours, we remove the extra depots by taking into

account the capacity of the opening depots. Specifically, for each mega tour with depots

i1, i2, . . . , ik (k > 1), we calculate the residual capacity (which can be negative) of each depot
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il (l = 1,2, . . . , k) and then keep only the depot with the largest residual capacity. For the

case of depots with unlimited capacity, we remove the extra depots, which lead to the largest

reduce of the travel cost.

7. Eliminate subtours. If an intermediate solution contains some isolated tours (called

subtours), the 2-opt* operator (Potvin and Rousseau 1995) is applied to link these isolated

subtours to other tours.

Because the complexity of splitting mega tours is limited to O(m), the time complexity

of mdEAX is O((n+m)×α), as other steps of mdEAX are the same as gEAX in He and

Hao (2023). Here, α is the number of nearest neighbors (see Section 3.5.2). Furthermore, the

space complexity is bounded by O(|E ′
A|), assuming that |E ′

A| ≥ |E ′
B|.

The mdEAX crossover not only extracts backbone information from parent solutions and

transmits it to offspring solutions, but also effectively promotes diversity. In addition, it can

generate new promising depot configurations when building new solutions. As such, it plays

a key role in our integrated approach, which simultaneously considers depot decision and

route optimization, and avoids the difficulty of the hierarchical approach, which requires the

prior determination of promising depot configurations.

3.4. Restore the feasibility of offspring individuals

The mdEAX crossover ignores capacity constraints, as a result, some offspring solutions may

be infeasible. To address this issue, we adopt a greedy procedure that uses a generalized cost

function to eliminate all violations of both depot and vehicle capacities.

Let φ be an offspring solution, let Tφ denote the cumulative depot capacity for the given

depot configuration Dφ and T denote the total demand of customers. Then Tφ <T or Tφ ≥ T .

In the first case, we need to select additional depots to expand Dφ. A customer is removed

from the route that violates the depot capacity and inserted into a new route with a new open
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depot with respect to travel costs, while ignoring the fixed depot and vehicle costs to improve

feasibility. This process stops when Tφ ≥ T . Then, we restore the capacity constraints for

both vehicles and depots. Four well-known inter-route neighborhood operators (Relocate and

Swap with single customers and 2-Opt* in Section 3.5.2) are used to explore the neighbor

solutions based on Eq. (1), where f(φ) denotes the objective function value of solution φ,

fl(φ) represents the cumulative overcapacity of depots, fr(φ) is the cumulative overcapacity

of routes, and pl and pr are penalty factors for overcapacity of depots and routes, respectively.

To avoid excessive iterations, we use a tabu list to prevent undoing a performed move. If

no feasible move can be found while the solution is still infeasible, we multiply the penalty

factors pl and pr by 10. This process continues until the solution becomes feasible. We set pl

and pr to 1 initially.

fg(φ) = f(φ)+ pl × fl(φ)+ pr × fr(φ) (1)

3.5. Mutation and local search

3.5.1. Mutation. When using mdEAX to generate offspring solutions, one faces the chal-

lenging problem that the edges of the offspring solutions are almost exclusively from their

parents, leaving little room for new edges in the solutions. To introduce diversity into the off-

spring solutions, we apply a mutation operator, based on an idea presented in Shaw (1998),

to modify each offspring solution with probability ζ.

At the beginning, a random customer j is chosen to initialize an empty list Q. The sim-

ilarity between customer j and every other customer (J \Q) is calculated based on their

distance in the distance matrix C (small distance means high similarity). The customers are

then sorted in ascending order, starting with the customer with the highest similarity. Next,

a customer is selected and added to Q using the roulette-wheel selection, and this process

is repeated until ξ× n customers (ξ is the mutation strength) are selected and added to Q



He, Hao, and Wu: Hybrid Genetic Algorithm with Multi-population for CLRP
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 17

(such that |Q|= ξ×n). Then the customers in Q are removed from the current solution and

added back to the solution as follows. For each customer j ∈Q, a vertex i from its α-nearest

neighborhood (Section 3.5.2) in V\Q is selected and customer j is inserted after vertex i,

subject to the capacity constraint and the objective value. The procedure ends when all cus-

tomers in Q are reinserted into the solution. The worst-case time complexity of the mutation

is bounded by O(ξ×n×α).

3.5.2. Local search. Local search ensures the key role of search intensification to obtain

high-quality solutions. HGAMP adopts ten commonly used neighborhood (or move) oper-

ators from (Duhamel et al. 2010, Schneider and Löffler 2019) and explores them with the

variable neighborhood descent method.

Let vertex v ∈ V be the α-nearest neighbor of customer u ∈ J , where α (α < |I|+ |J |)

is the granularity threshold that restricts the search to nearby vertices. Let r(u) and r(v)

denote the two routes that visit vertices u and v, respectively. Additionally, let x and y

represent the successors of u in r(u) and v in r(v), respectively.

If v = y and v ∈ I, then r(v) is an empty route. Let x+ denote the successor of x. Let

ub and vb be the first customer visited by routes r(u) and r(v), respectively, and let ul

and vl be the last customer visited by routes r(u) and r(v), respectively. Let (u,x) be the

substring from customer u to x and (v, y) be the substring from customer v to y. The ten

move operators used are defined as follows.

• M1: Customer u is removed from r(u) and inserted into r(v) after vertex v.

• M2: Two consecutive customers u and x are removed from r(u) and inserted into r(v)

after vertex v.

• M3: Two consecutive customers u and x are removed from r(u) and (x, u) is placed

before vertex v.
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• M4: Interchange the position of customer x and the position of customer v.

• M5: Interchange two consecutive customers (x, x+) and the position of customer v.

• M6: Interchange two consecutive customers (x, x+) and two consecutive customers (v,

y).

• M7: Interchange two consecutive customers (x+, x) and two consecutive customers (v,

y).

• M8: This is the 2-opt operator, which replaces (u,x) and (v, y) by (u, v) and (x, y) if

r(u) = r(v).

• M9: Interchange substring (x,ul) and substring (v, vl) if r(u) ̸= r(v). This is the 2-opt∗

operator with respect to different or same depots.

• M10: Interchange substring (x,ul) and substring (vb, v) if r(u) ̸= r(v). This is the 2-opt∗

operator with respect to different or same depots.

Due to the nearest neighbor rule, the time complexity of the move operators is bounded

by O((n+m)×α).

3.6. Population management

Population management aims to maintain a healthy diversity of the population P throughout

the search process. This involves two key tasks: 1) updating the depot configurations when

a better one is discovered, and 2) managing and updating each subpopulation.

The set of depot configurations D is updated each time the global best solution φ∗ is

replaced by the current solution φ whose corresponding depot configuration Dφ is not in set

D (Dφ /∈D). The worst subpopulation Pw is identified among the first γ subpopulations and

then discarded with its corresponding individuals. The new depot configuration Dφ is then

used to re-initialize the discarded subpopulation.

Furthermore, an advanced distance-and-quality updating rule (Vidal et al. 2012, He and

Hao 2023) is used to manage each subpopulation. Each new offspring solution is inserted
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into the corresponding subpopulation based on its depot configuration, and clones are not

permitted. If the depot configuration of an offspring solution is different from the γ promising

depot configurations, the solution is inserted into Pγ+1. For each subpopulation, when the

number of solutions reaches the maximum size µ+ λ (λ is the generation size), λ solutions

are removed based on a biased fitness. Specifically, we first compute the Hamming distance

between all pairs of solutions using the method of Prins et al. (2006b) and use this distance

to measure the contribution of each solution to the diversity of the subpopulation, where

the Hamming distance between two solutions is computed from the differences in terms of

routes, edges, and depots of the two solutions. Then, the biased fitness of each solution is

calculated with the weighted average of the objective value (fitness) rank and the diversity

rank in the subpopulation. The solution associated with the worst biased fitness is removed

and the biased fitness of the remaining solutions is updated accordingly. We repeat this

removal process until there are no more than µ solutions left in the subpopulation.

If the best solution found so far φ∗ cannot be improved for η successive invocations of the

local search (η is a parameter called the population rebuilding threshold), HGAMP restarts

by generating a completely new population. Finally, a large number of subpopulations slows

down the convergence of the algorithm. So, when the algorithm reaches half the total time

budget, we reduce the number of subpopulations by half, keeping only the most promising

subpopulations with respect to the average objective values.

3.7. Discussion

HGAMP enhances the canonical hybrid genetic algorithm framework with three key tech-

niques: the multi-population scheme, the mdEAX crossover, and the coverage ratio heuristic

CRH, distinguishing itself from existing HGAs for various VRPs (Prins et al. 2006a, Nagata

and Bräysy 2009, Vidal et al. 2012, He and Hao 2023).
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First, compared to the simple method of organizing the solutions of the population into

a single pool, the multi-population scheme systematically manages a set of elite solutions

associated with each promising depot configuration. As such, this scheme provides the algo-

rithm with an enhanced ability to consistently explore a number of candidate solutions of

interest and the underlying depot configurations. This allows the algorithm to achieve better

coverage of the search space and favors the discovery of high-quality final solutions.

Second, the mdEAX crossover provides a powerful means to recombine parent solutions

with different depot configurations. By inheriting meaningful route and depot building blocks

from elite parents, mdEAX is able to generate promising offspring solutions that may rely on

new depot configurations. Thus, the mdEAX crossover contributes to a meaningful search

diversification while ensuring a certain degree of search intensification.

Third, to identify initial depot configurations of interest, CRH uses both cost efficiency

and geographic distribution to strike a balance between these two factors, unlike previous

methods that divide the given area into an increasing number of isometric regions (Arnold

and Sörensen 2021). By considering both factors related to the depots, CRH helps to find

interesting depot configurations.

Finally, beyond the studied CLRP, the general approach to simultaneously explore

unknown depot configurations and new route solutions using the multi-population scheme

and the mdEAX crossover is general. This approach can be advantageously applied to solve

other related LRPs such as the 2E-VRP (Perboli et al. 2011) and the location arc routing

problem (Lopes et al. 2014). In this context, we show in the online supplement (He et al.

2025) how we apply HGAMP to the challenging MDVRP with very little change.

4. Experimental Evaluation and Comparisons

The purpose of this section is to evaluate the performance of HGAMP through experiments

and to compare its results with those of state-of-the-art algorithms.
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4.1. Benchmark instances

In the literature, there are three classical benchmark sets containing 79 small and medium

instances from Tuzun and Burke (1999), Prins et al. (2006b), and Barreto et al. (2007).

These sets, denoted as B,P,T, have been widely tested in the past, and their results are

difficult to further improve upon. In addition, Schneider and Löffler (2019) introduced a

rich and challenging set (denoted as S) of 202 instances with different characteristics and

sizes. The instances used in our experimentation and our solution files are available from

https://github.com/pengfeihe-angers/CLRP.git.

• Set B: This set contains 13 instances (7 with a proven optimal value) with 21 to 150

customers and 5 to 14 depots, and in most instances a depot capacity is imposed.

• Set P: This set contains 30 instances (20 with a proven optimal value) with 20 to 200

customers and 5 to 10 capacitated depots.

• Set T: This set contains 36 instances (6 with a proven optimal value) with 100 to 200

customers and 10 to 20 uncapacitated depots.

• Set S: This set is composed of 202 instances (64 with a proven optimal value) with

varying characteristics, such as the number of customers, depots, vehicle capacity, and depot

costs. The instances have 100 to 600 customers and 5 to 30 capacitated depots. The instances

are named in the format of n−m− tz, where n represents the number of customers, m is the

number of depots, t indicates the geographic distribution, and z denotes the vehicle capacity

and depot costs.

4.2. Experimental protocol and reference algorithms

4.2.1. Parameter setting. The HGAMP algorithm has six parameters: the minimum size

of each subpopulation µ, the generation size λ, the granularity threshold of nearest neigh-

bors α, the mutation probability ζ, the mutation strength ξ, and the population rebuilding
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threshold η. The automatic parameter tuning package irace (López-Ibáñez et al. 2016) was

used to calibrate these parameters. The tuning procedure was performed on 10 instances

with 100 to 300 customers. The tuning budget was set to be 2000 runs. Table 2 shows the

candidate values for the parameters and the final values suggested by irace. Finally, to get a

good compromise between search performance and computational effort, we empirically set

γ = 15, which corresponds to γ +1 subpopulations (in Section 5, we examine the influence

of γ). These parameter values represent HGAMP’s default settings, which are used in our

experiments (unless otherwise noted).

Table 2 Parameter tuning results.
Parameter Section Description Candidate values Final values
µ 3.6 minimal size of each subpopulation {10,20,30,40,50} 30
λ 3.6 generation size {10,20,30,40,50} 30
α 3.5.2 granularity threshold {5,10,15,20,25,30} 20
ζ 3.5.1 mutation probability {0,0.05,0.1,0.15,0.2,0.25,0.3} 0.15
ξ 3.5.1 mutation strength {0.05,0.1,0.15,0.2,0.25} 0.25
η 3.6 population rebuilding threshold {30000,50000,70000,90000} 70000

4.2.2. Reference algorithms. We adopt the following best CLRP heuristic algorithms as

well as the best known solutions BKS (best upper bounds) reported in the literature as the

references for comparative experiments.

• BKS. This indicates the best known solutions (upper bounds) that are summarized from

the state-of-the-art heuristic algorithms (Contardo et al. 2014b, Lopes et al. 2016, Schneider

and Löffler 2019, Arnold and Sörensen 2021, Voigt et al. 2022), and the exact approaches

(Baldacci et al. 2011, Contardo et al. 2014a, Liguori et al. 2023).

• AVXS (Accorsi and Vigo 2020). The algorithm was coded in C++ and executed on a

computer with a 3.7 GHz Intel i7-8700k CPU with 32 GB of RAM. One notices that the

algorithm only reported results on set T. The algorithm was executed 10 times on each tested

instance with distinct random seeds.
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• HALNS (Voigt et al. 2022). The hybrid adaptive large neighborhood search was imple-

mented in C++, running on a computer with a 3.8 GHz AMD Ryzen 9 3900X CPU with

32 GB of RAM. The algorithm reported results on the three classical sets B, P and T. The

algorithm was executed 10 times on each tested instance with distinct random seeds.

• PF (Arnold and Sörensen 2021). This algorithm was coded in Java and the experiments

were conducted on a computer with a 3.6 GHz Intel i7 4790 with 8 GB of RAM. The

algorithm reported results on the four sets of benchmark instances on a single thread. The

algorithm was executed one single time on each tested instance.

• TBSAbasic (Schneider and Löffler 2019). The algorithm, implemented in C++ and run

on a computer with a 2.6 GHz Xeon E5-2670 CPU with 32 GB of RAM, reported results

on the four sets of benchmark instances. The algorithm was executed 5 times on each tested

instance with distinct random seeds. TBSAbasic has a good trade-off between solution quality

and run time.

• TBSAquality (Schneider and Löffler 2019). This is the TBSAbasic algorithm that was run

for an increased granular threshold and increased number of iterations in the routing phase.

TBSAquality only reported results on the three classical sets B, P and T.

• GANCP+ (Sobhanan et al. 2024). This is the latest algorithm coded in Julia and run

on a computer with a 2.5 GHz Inter Core i9-11900H CPU and an NVIDIA GeForce RTX

3080 GPU with 8 GB. The algorithm was tested on B and T and only reported the best

result for each tested instance out of 5 independent runs.

4.2.3. Experimental setting and stopping criterion. The HGAMP algorithm was imple-

mented in C++ and compiled using the g++ compiler with the -O3 option. All experiments

were performed on a 2.5 GHz Intel Xeon E-2670 processor with 2 GB of RAM running Linux

on a single thread. The algorithm terminates after a maximum of 300,000 iterations (default



He, Hao, and Wu: Hybrid Genetic Algorithm with Multi-population for CLRP
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

termination condition), where one iteration means that one offspring solution is constructed

and subsequently improved by the local search. We report the best and average solution qual-

ity over 20 runs. We note that our default termination condition leads to runtimes similar

to those of TBSAquality (Schneider and Löffler 2019) and HALNS (Voigt et al. 2022).

4.3. Computational results and comparisons

In the following subsections, we present HGAMP’s results on the benchmark instances and

compare them to the reference algorithms.

4.3.1. Performance analysis on the three classical sets B, P and T. Table 3 summarizes

the results obtained by the HGAMP algorithm on the three classical sets, compared to

the reference algorithms. For each benchmark set, we show the number of instances where

our algorithm (HGAMP) has a better (Win), equal (Tie) or worse (Loss) result compared

to each reference, in terms of the best and average results. Wilcoxon signed-rank p-values

are also included. The ’-’ symbol indicates that the result is unavailable. Tables 2 and 3

in the online supplement (He et al. 2025) provide detailed results for these 79 instances.

In addition, Figure 1 illustrates the performance comparison over the sets B, P and T,

where we show the runtimes of the compared methods scaled with the Passmark scores

(https://www.cpubenchmark.net/singleThread.html), and the gaps of the methods to BKS

for each benchmark set. In Figure 1, we exclude the latest algorithm GANCP+ because it is

dominated by the other algorithms according to the results of Table 3.

For the 13 instances of set B, HGAMP achieves the same performance as BKS, HALNS,

and TBSAquality in terms of the best results, while reporting better results than GANCP+.

Moreover, our algorithm has a slight advantage over the reference algorithms in terms of

the average results. Because the instances in this set are rather small and state-of-the-art

algorithms produce identical results, this set may not be challenging enough to evaluate the
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performance of new algorithms. Figure 1(a) confirms that all the methods have the same

performance except for PF. However, our algorithm requires a longer scaled runtime. The

reason is that the population contains a relatively large number of solutions (≥ 30∗16 = 480),

which makes the algorithm take longer to converge.

For the 30 instances of set P, HGAMP improves upon one BKS with an improvement gap

of 0.03% (shown in bold, see the online supplement (He et al. 2025) for detailed information),

matches 24 BKS values, and misses 5 BKS values. Compared to the reference algorithms,

HGAMP achieves, in terms of the best values, results similar to HALNS, TBSAbasic, and

TBSAquality (without statistically significant differences), while reporting better results than

PF. For average results, HGAMP performs similarly compared to TBSAbasic, but worse than

HALNS and TBSAquality. From Figure 1(b), we see that TBSAbasic is already competitive

with the other algorithms, while TBSAquality (under the relaxed runtime condition) performs

even better compared to its competitors, although the performance differences are rather

small.

For the 36 instances of set T, HGAMP improves upon the BKS in two cases with an

improvement gap of 0.01% (shown in bold, see the online supplement (He et al. 2025) for

detailed information) and matches 23 BKS values, while missing 11 BKS values. It signifi-

cantly outperforms AVXS, PF, GANCP+, and TBSAbasic in terms of best results (p value

< 0.05), while performing slightly better than TBSAquality and slightly worse than HALNS

(p value > 0.05). For average results, HGAMP performs significantly better than AVXS and

marginally better than TBSAbasic, while being outperformed by HALNS and TBSAquality.

Furthermore, as shown in Figure 1(c), HALNS dominates the other algorithms for shorter

running times, and the differences in the average gap to BKS for most of the compared

algorithms remain marginal. HGAMP requires a longer scaled runtime due to the use of a

relatively large population.
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Table 3 Summary of the comparative results between HGAMP and the reference algorithms on the three

classical benchmark sets B, P and T.

Instances(#) Pair algorithms Best Avg.
#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

B(13)

HGAMP vs. BKS 0 13 0 >0.05 - - - -
HGAMP vs. PF 2 11 0 >0.05 - - - -
HGAMP vs. GANCP+ 6 7 0 <0.05 - - - -
HGAMP vs. HALNS 0 13 0 >0.05 1 11 1 >0.05
HGAMP vs. TBSAbasic 2 11 0 >0.05 4 8 1 >0.05
HGAMP vs. TBSAquality 0 13 0 >0.05 3 9 1 >0.05

P(30)

HGAMP vs. BKS 1 24 5 <0.05 - - - -
HGAMP vs. PF 12 16 2 <0.05 - - - -
HGAMP vs. HALNS 3 24 4 >0.05 4 15 11 >0.05
HGAMP vs. TBSAbasic 7 20 3 >0.05 8 14 8 >0.05
HGAMP vs. TBSAquality 4 22 4 >0.05 3 15 12 <0.05

T(36)

HGAMP vs. BKS 2 23 11 <0.05 - - - -
HGAMP vs. AVXS 17 13 6 <0.05 25 2 9 <0.05
HGAMP vs. PF 25 9 2 ≪0.05 - - - -
HGAMP vs. GANCP+ 31 4 1 ≪0.05 - - - -
HGAMP vs. HALNS 5 23 8 >0.05 6 4 26 ≪0.05
HGAMP vs. TBSAbasic 17 15 4 <0.05 21 2 13 >0.05
HGAMP vs. TBSAquality 14 16 6 >0.05 14 2 20 <0.05

(a) Set B (b) Set P (c) Set T

Figure 1 Performance comparison on the three classical sets with the average gap to the BKS for each method.

4.3.2. Performance analysis on the rich and challenging instance set S. We now eval-

uate the HGAMP algorithm on the 202 challenging instances of set S. We only compare our

results to the BKS, TBSAbasic, and PF because the other reference algorithms do not report

results on this set.

Table 4 summarizes the results and highlights the high performance of our algorithm,

and Tables 4 and 5 in the online supplement (He et al. 2025) show the detailed results

for each instance. HGAMP achieves an improvement over the BKS by achieving 100 new

upper bounds out of the 202 instances of set S (49.5%), while matching the BKS for 25
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other instances and missing the remaining BKS. Specifically, according to the detailed results

in the online supplement, for the 62 instances with 100 to 200 customers, our HGAMP

algorithm improves 5 best-known results (improvement from 0.002% to 0.07%). The results

become more significant for the 140 large instances with 300 to 600 customers, updating 95

best upper bounds (improvement from 0.003% (400-25-4b) to 1.45%, with an exceptional

improvement of 4.61% for 600-30-3e). Compared to the highly effective TBSAbasic, HGAMP

competes very favorably, achieving 144 better values in terms of the best and average results,

and losing 42 best and 56 average results, respectively. Compared to PF, HGAMP shows

a strong dominance with 185 superior best results and only 11 worse results. For the 140

largest instances with 300 to 600 customers, HGAMP outperforms TBSAbasic and PF on 112

and 129 instances, respectively, with improvements of up to 9.72% and 4.61%, respectively.

The differences between HGAMP and its competitors are statistically significant based on

the Wilcoxon signed-rank tests (p-values ≪ 0.05), except for the average result between

HGAMP and TBSAbasic. Overall, HGAMP performs very well on S set compared to the best

heuristic algorithms.

Table 4 Summary of the comparative results between HGAMP and the reference algorithms on the rich and

challenging benchmark set S (202 instances).

Pair algorithms Best Avg.
#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

HGAMP vs. BKS 100 25 77 ≪0.05 - - - -
HGAMP vs. TBSAbasic 144 16 42 ≪0.05 144 2 56 ≪0.05
HGAMP vs. PF 185 6 11 ≪0.05 - - - -

Figure 2 shows that HGAMP has a significant performance advantage over PF, although

it has a higher scaled runtime. We also see that HGAMP significantly dominates TBSAbasic

in performance, with a slightly longer scaled runtime. A closer inspection of Tables 4 and

5 in the online supplement (He et al. 2025) reveals that HGAMP requires more times to

solve small instances, e.g., 1070.08 seconds on instance 100-5-1c, while TBSAbasic quickly
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Figure 2 Performance comparison on the rich and challenging set S with the average gap to the BKS for each

method.

finds good enough solutions in 81.24 seconds. This difference is due to the relatively large

number of solutions in the HGAMP population, which causes the algorithm to take longer to

converge. Given a sufficient number of iterations, such as 300,000, HGAMP performs well on

both small and large instances, as shown in Tables 4 and 5 in the online supplement, while

TBSAbasic takes a considerable amount of time to solve large instances. From this figure, we

conclude that our algorithm has the desirable potential to find better results if given more

time.

5. Analysis of algorithmic components to understand their role

We now study the role of three critical algorithmic components: the initial depot configu-

rations, the multi-population scheme, and the mdEAX crossover operator. The experiments

are based on the 202 challenging instances of set S.

5.1. Influence of initial depot configurations

HGAMP uses a mixed strategy combining CRH of Section 3.2.1 and the progressive filtering

heuristic of Arnold and Sörensen (2021) to identify a set of promising depot configurations

for the generation of the initial population. To show the benefit of this mixed strategy, we

compare HGAMP with two variants HGAMPCRH , where only CRH is used, and HGAMPAS,

where only the progressive filtering heuristic is used.
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Table 5 Comparative results between HGAMP and two variants using different initialization methods (set S).

Pair algorithms Best Avg.
#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

HGAMP vs. HGAMPCRH 116 33 53 ≪0.05 132 12 56 ≪0.05
HGAMP vs. HGAMPAS 92 32 78 >0.05 110 10 81 <0.05

Table 5 summarizes the results of HGAMP and the two variants. HGAMP significantly

outperforms HGAMPCRH on both the best and average values. Specifically, HGAMP wins

116 instances and matches 33 instances for the best values. This indicates that the hybrid

strategy for creating the depot configurations for the initial population solutions is very ben-

eficial to the performance of the algorithm. In addition, compared to HGAMPAS, HGAMP

significantly performs better, winning 92 and 110 instances in terms of the best and average

values, respectively (p < 0.05). In summary, it is important for the HGAMP algorithm to

start its search with high-quality initial depot configurations, and the progressive filtering

and CRH together help to achieve this goal thanks to their complementary methods for

identifying interesting depot configurations.

5.2. Influence of the number of subpopulations

To evaluate the multi-population scheme, we vary the γ parameter (which indicates γ+1 sub-

populations): γ = 0 (corresponding to a single population where all solutions are included),

γ = 5, and 10, and we denote these HGAMP variants by HGAMP0, HGAMP5, and

HGAMP10, respectively. Recall that HGAMP uses the default value γ = 15. The results of

the comparison are summarized in Table 6.

Table 6 Summary of comparative results of HGAMP with the default γ = 15 and γ = 0,5,10 (set S).

Pair algorithms Best Avg.
#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

HGAMP vs HGAMP0 154 31 17 ≪0.05 189 4 8 ≪0.05
HGAMP vs HGAMP5 118 32 52 ≪0.05 165 8 29 ≪0.05
HGAMP vs HGAMP10 96 34 72 <0.05 136 9 57 ≪0.05

We see that the HGAMP algorithm with γ = 15 significantly outperforms HGAMP0,

HGAMP5 and HGAMP10 in terms of both best and average values. These results also indicate
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that a larger number of subpopulations leads to an improvement in performance. However,

we also observed that as the number of subpopulations increases beyond 15, the performance

improvement gradually becomes marginal. In conclusion, the multi-population scheme shows

a significant advantage over the classical single-population approach, and by varying the

number of subpopulations, one can expect different performance improvements.

5.3. Influence of the crossover

To evaluate the effectiveness of the mdEAX crossover, we create two HGAMP variants. The

first variant, HGAMPd, replaces mdEAX with the ChangeDepot operator. This operator

removes a depot from the current solution and then greedily adds the unvisited customers

back into the solution. Specifically, we select a solution φ from P , and then choose a depot

i∈Dφ based on the minimum capacity utility Ti/wi, where Ti =
∑

j∈Si
dj and Si is the set of

customers covered by depot i in solution φ. After deleting the depot i and the customers j ∈

Si, the removed customers are greedily reinserted back into the solution φ with respect to the

objective. The second variant, HGAMPc, replaces the mdEAX crossover with ChangeDepot

and the mutation operator of Section 3.5.1, and randomly selects one of these two operators

to generate new solutions in each generation. For this experiment, we again use HGAMP,

which uses the hybrid strategy to create the initial depot configurations. The results of this

comparison are summarized in Table 7.

Table 7 Summary of comparative results of HGAMP with two variants using different crossovers (set S).

Pair algorithms Best Avg.
#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

HGAMP vs HGAMPd 192 10 0 ≪0.05 200 1 1 ≪0.05
HGAMP vs HGAMPc 186 15 1 ≪0.05 198 2 2 ≪0.05

Table 7 clearly shows that HGAMP significantly outperforms HGAMPd and HGAMPc

in terms of both best and average values. One notes that HGAMPc shows a slightly better

performance than HGAMPd, but its results are still far behind those of HGAMP with the
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mdEAX crossover. This experiment demonstrates the critical role of the mdEAX crossover

in the performance of the HGAMP algorithm.

6. Conclusions

In this paper, we propose a hybrid genetic algorithm with multi-population (HGAMP) for

the capacitated location-routing problem. This approach maintains multiple subpopulations

where each subpopulation consists of a set of high-quality solutions that share the same

depot configuration. The algorithm uses a multi-depot edge assembly crossover (mdEAX) to

explore candidate solutions of interest with new emerging depot configurations and an effec-

tive neighborhood-based local optimization to perform route optimization. The algorithm

additionally applies a coverage ratio heuristic for initial depot configuration generation and

a special mutation to enhance diversity.

Computational experiments on four sets of 281 commonly used benchmark instances show

that the proposed algorithm is able to find 103 new best results (improved upper bounds) and

match the best-known results for 85 other instances. These new results can be valuable for

future research on the problem, especially for evaluating the performance of new algorithms

on instances with different characteristics, such as customer distribution density and depot

costs. In addition, we investigate the role and rationale of the multi-population scheme

and the mdEAX operator. Since the CLRP is a relevant model for a number of real-world

problems, our algorithm, whose code is publicly available, can be used to better solve some

of these practical applications.

The proposed framework using subpopulations and multi-depot edge assembly crossover is

general. In addition to the studied CLRP, it can be helpful for solving related problems where

both location and routing decisions need to be made, such as periodic location routing, two-

echelon vehicle routing, and location arc routing. We provided such an example in the online
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supplement to show how the HGAMP algorithm can be applied to the popular MDVRP with

little change to the algorithm. It would be interesting to investigate the usefulness of the

main ideas of this work for other location routing problems by effectively deciding locations

and route solutions simultaneously.
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1. Nomenclature

Table 1 summarizes the symbols used in the paper.

Table 1 Nomenclature
Parameter Description
I The set of depots
J The set of customers
V The set of vertices and V = I ∪J
E The set of edges in graph G
D The set of depot configurations
Di The ith depot configuration
Dφ The depot configuration associated with solution φ
P The population
Pi The ith subpopulation composed of solutions associated to the same depot configuration Di

γ The number of top promising depot configurations to initialize the population
Pγ+1 The last subpopulation whose solutions use depot configurations that are different from those of D
ui The rough cost of depot i, which is determined as the sum of the open cost oi, the fixed utilization cost per vehicle

used and the travel cost
L A list used to save depots and sorted by the rough costs of the depots
µ The minimal size of each subpopulation
λ The generation size of each subpopulation
α The granularity threshold
φ∗ The best solution found so far
φO An offspring solution
β The maximum number of offspring solutions generated by an application of the mdEAX crossover

2. Coverage ratio heuristic

The CRH uses two filters to find good initial depot configurations. The preliminary filter

identifies a set of depot configurations by considering estimated travel costs and geographic

dispersion of the candidate depots, from which the secondary filter retains a reduced set of

most promising configurations.

The preliminary filter uses minimum spanning trees (MST) to estimate the travel costs of

the candidate depots without constructing complete solutions (Schneider and Löffler 2019).

Specifically, Prim’s algorithm is used to build a MST from each depot i ∈ I (as the root

node) with respect to the capacity wi. The customers covered by the MST are saved in set

Si, which can be thought of as the coverage area for depot i. The rough cost ui of depot i

is determined as the sum of the open cost oi, the fixed cost of the vehicles needed to service

the customers in Si, and the total travel cost of the MST.
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To build a new depot configuration D′ , a random depot is used to initialize D′ . Let Ŝ =

∪j∈D′ Sj, which is the set of customers served by the currently selected depots. For a candidate

depot i, the overlap coverage ratio ri of depot i with respect to Ŝ is then calculated as the

proportion of customers that overlap between Ŝ and Si (ri = |Ŝ ∩ Si|/|Ŝ ∪ Si|). Intuitively,

balancing rough costs and geographic dispersion is essential for identifying promising depot

configurations that minimize depot costs and avoid repeatedly covering the same customers.

Ideally, the ratio should be as small as possible to avoid that the same customers are covered

by several selected depots. Each candidate depot i such that ri < rb is added to a list L,

sorted based on their rough costs, where rb = (rmax− rmin)× ((wi+Tc)/T )+ rmin, with rmin

and rmax being the minimum and maximum overlap coverage ratio, respectively, T being the

total demand of all customers, and Tc being the cumulative total capacity of the selected

depots increases. To extend the current depot configuration D′ , depots from L are greedily

added. The process stops when the total capacity Tc of the selected depots in D′ reaches

T and D′ is added to the set of promising depot configurations D. The preliminary filter

imposes a maximum limit of depot configurations (Dmax) to terminate the search. Without

loss of generality, all parameters are independent of the instance size. We set rmin = 0.1,

rmax = 0.6, Dmax = 1000. Based on our preliminary tests, the running time of the preliminary

filter is negligible.

The preliminary filter generates a large set D of depot configurations (|D| = Dmax =

1000). The secondary filter is used to identify a reduced set of most promising initial depot

configurations for the algorithm. Each candidate configuration Di is used to generate a

limited number Nt (a parameter, fixed to 10) of solutions, which are improved by the local

search procedure of Section 3.5.2. We then calculate the average cost of these Nt improved

solutions, which is used to assess the attractiveness of the depot configuration. Based on
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the attractiveness values, the first γ top depot configurations are retained in D and used to

initialize the subpopulations of the population.

3. Computational results
3.1. Results of the CLRP

This section presents the detailed computational results of the proposed HGAMP algorithm

for the three classic benchmark sets B, P, T, and the more recent set S, under the experi-

mental condition given in Section 4.2, together with the results of the reference algorithms

PF (Arnold and Sörensen 2021), GANCP+ (Sobhanan et al. 2024) (only on sets B and T),

HALNS (Voigt et al. 2022), TBSAbasic (Schneider and Löffler 2019), and TBSAquality (Schnei-

der and Löffler 2019) (only on sets B, P and T). Like Voigt et al. (2022), Schneider and

Löffler (2019), we report the following statistics, especially including the best and average

results in Tables 2-5. Column Instances indicates the name of each instance; column BKS

shows the best-known results (best upper bounds) summarized from the literature, including

both exact algorithms (Liguori et al. 2023, Contardo et al. 2014) and heuristics (Arnold and

Sörensen 2021, Voigt et al. 2022, Schneider and Löffler 2019); Best and Avg. are the best

and average results over multiple independent runs (except for PF, which was run only one

time per instance); Time indicates the average runtime in seconds of each algorithm.

Tables 2 and 3 show the results of the compared algorithms on sets B, P, and T. δ1(%) in

the last column is the gap of the best result of HGAMP to the BKS, which is calculated as

δ1 = 100× (fbest −BKS)/BKS, where fbest is the best objective value of HGAMP.

Tables 4 and 5 show the results on set S. In these tables, columns δ1, δ2 and δ3 indicate

the gap of our best result to the BKS, TBSAbasic and PF, respectively, which are calculated

as δ1 = 100 × (fbest − BKS)/BKS, δ2 = 100 × (fbest − f t
best)/f

t
best and δ3 = 100 × (fbest −

f p
best)/f

p
best, where fbest is the best objective value of HGAMP, f t

best and f p
best are the best

objective values of TBSAbasic and PF, respectively.
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In all tables, the Average row is the average value of a performance indicator over the

instances of a benchmark set. Improved BKS values (new upper bounds) are indicated by

negative δ1(%) values highlighted in bold. Except for set B in Table 2, for which most

algorithms achieve the same value for each instance, the dark gray color indicates that the

corresponding algorithm obtains the best result among the compared algorithms on the

corresponding instance; the medium gray color indicates the second best results, and so on.

Unavailable results are indicated by the ‘-’ symbol.

Comparing the results of HGAMP with the BKS and the results of the reference algorithms

shows that HGAMP performs very well on the four benchmark sets, especially on the most

difficult instances of set S. Remarkably, HGAMP finds improved best results (new upper

bounds) for one instance of set P, two instances of T, and 100 instances of S.

3.2. Results of applying the HGAMP algorithm to the MDVRP

To demonstrate the generality of the proposed HGAMP algorithm, we apply the algorithm

to the multi-depot vehicle routing problem (MDVRP) (Cordeau et al. 1997), which can be

considered as a special case of the CLRP when the opening cost of each depot is zero. All

depots are assumed to have unlimited capacity and each depot i ∈ I has a fleet of size ki

with the same capacity. There is no fixed utilization cost for the vehicles. The objective of

the MDVRP is to select a subset of vehicles for each depot and to construct routes of the

vehicles, while respecting the capacity and minimizing the total travel cost.

To solve the MDVRP, it is sufficient to make very small changes to the HGAMP algorithm.

In particular, CRH is discarded because there is no fixed cost of opening depots. Instead,

we use a simple greedy procedure to generate each initial solution. Customers are placed

on routes from different depots one at a time in such a way that the travel cost increases

the least. When all customers are inserted into routes, a solution is obtained and the depots



He, Hao, and Wu: Hybrid Genetic Algorithm with Multi-population for CLRP
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

associated with routes in the solution form the depot configuration. The initial solution

is then inserted into a subpopulation with respect to its depot configuration. Once the

number of depot configurations is greater than γ, the population management of Section

3.6 is triggered to update the depot configurations. The other components of the HGAMP

algorithm, including the mdEAX crossover, the repair procedure, the mutation operator, the

local search procedure, and the population management, remain unchanged.

The MDVRP has been extensively studied in the literature and many state-of-the-art

heuristics have been proposed, including HGSADC (Vidal et al. 2012), AVXS (Accorsi and

Vigo 2020), HALNS (Voigt et al. 2022), and the very recent GANCP+ (Sobhanan et al. 2024).

Following Accorsi and Vigo (2020), we test our HGAMP algorithm on the set of 11 instances

with 50-360 customers and 4-9 depots (https://neo.lcc.uma.es/vrp/vrp-instances/multiple-

depot-vrp-instances/). Note that among the MDVRP instances, only these 11 instances do

not impose a duration constraint on vehicle routes, as in the CLRP, while the route duration

constraint is imposed on the other instances. We run HGAMP 10 times to solve each instance

with the parameter settings shown in Section 4.2.1. Note that the compared algorithms

except GANCP+ can all achieve the best-known solutions (BKS) for these instances. So the

comparison focuses mainly on the average values.

The comparative results are shown in Table 6, where δ = 100× (fbest −BKS)/BKS for

GANCP+ indicates the gap of the best objective value fbest of GANCP+ to the BKS, and

δa = 100× (favg −BKS)/BKS for the other algorithms indicates the gap of the averaged

best objective value favg of each of these algorithms to the BKS. The results of the reference

algorithms are taken from the corresponding papers, and the runtimes are scaled by the

Passmark scores (https://www.cpubenchmark.net/singleThread.html), except for GANCP+,

which uses a GPU.
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From Table 6, we see that our HGAMP algorithm achieves the BKS for all 11 instances,

as do HGSADC, AVXS, and HALNS, while GANCP+ is dominated by the other algorithms.

For 9 instances, HGAMP achieves the BKS for each of its runs, versus zero instance for

GANCP+, 8 instances for HGSADC, 9 instances for AVXS and HALNS. HGAMP has the

same global average gap (0.03%) to the BKS as HGSADC, which is slightly worse than the

gap of AVXS (0.02%) and the gap of HALNS (0.01%). For 7 instances, HGAMP finds its

best results quickly (2 to 60 seconds), while for the remaining 4 instances it takes more

than 100 seconds (with an exceptionally long time of 5698 seconds for p21), leading to a

global runtime higher than the reference algorithms. In summary, although our algorithm is

not specifically designed to solve the MDVRP, it remains competitive with dedicated and

state-of-the-art MDVRP algorithms in terms of the best and average results.
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Table 4 Results for the CLRP on the instances of set S.
TBSAbasic PF HGAMPInstances BKS Best Avg. Time Best Time Best Avg. Time δ1(%) δ2(%) δ3(%)

100-5-1c 134516 134516.00 134603.80 81.24 134687 112.00 134516 134516.00 1070.08 0.00 0.00 -0.13
100-5-1d 275749 275749.00 275793.40 52.71 276154 122.00 275749 275749.95 949.90 0.00 0.00 -0.15
100-5-1e 292301 292311.00 292400.40 68.68 292565 159.00 292311 293223.90 1104.12 0.00 0.00 -0.09
100-5-2c 83855 83989.00 84234.20 67.20 85051 81.00 83855 83982.30 1069.67 0.00 -0.16 -1.41
100-5-2d 242105 242266.00 242411.40 52.39 242739 101.00 242105 242105.00 1099.48 0.00 -0.07 -0.26
100-5-2e 253888 253888.00 254063.80 65.86 254085 169.00 254025 254025.00 2170.79 0.05 0.05 -0.02
100-5-3c 87555 87555.00 87606.40 54.64 87555 66.00 87555 87555.00 949.37 0.00 0.00 0.00
100-5-3d 226634 226783.00 226846.00 48.91 226920 74.00 226752 226771.90 891.66 0.05 -0.01 -0.07
100-5-3e 252603 252603.00 252661.00 78.68 252677 119.00 252603 252634.95 1435.91 0.00 0.00 -0.03
100-5-4a 255853 255853.00 255892.00 52.14 255869 142.00 255853 255860.50 1087.49 0.00 0.00 -0.01
100-5-4b 214425 214425.00 214425.00 29.79 214531 107.00 214425 214425.00 1067.61 0.00 0.00 -0.05
100-5-4c 98104 98129.00 98187.60 52.91 98199 137.00 98104 98109.70 1091.08 0.00 -0.03 -0.10
100-5-4d 250301 250315.00 250778.60 45.68 251380 131.00 250921 250999.90 1061.54 0.25 0.24 -0.18
100-5-4e 211113 211159.00 211217.60 58.30 211444 205.00 211113 211251.25 1651.25 0.00 -0.02 -0.16
100-10-1c 92629 92629.00 92683.80 98.15 92979 77.00 92629 92629.00 1284.57 0.00 0.00 -0.38
100-10-1d 363930 363930.00 364172.00 60.95 363930 102.00 363930 363937.35 1132.06 0.00 0.00 0.00
100-10-1e 344322 344322.00 344583.00 60.10 344897 115.00 344322 344833.55 1113.86 0.00 0.00 -0.17
100-10-2c 84717 84717.00 84744.20 98.74 84817 86.00 84717 84717.60 1169.20 0.00 0.00 -0.12
100-10-2d 343252 343252.00 343252.00 55.86 343252 97.00 343252 343252.00 1254.75 0.00 0.00 0.00
100-10-2e 332900 332900.00 333181.20 60.66 333778 123.00 333599 333755.75 1000.13 0.21 0.21 -0.05
100-10-3c 85369 85618.00 85711.20 97.36 85369 79.00 85369 85371.20 1129.23 0.00 -0.29 0.00
100-10-3d 329990 329990.00 330025.20 51.56 329990 118.00 329990 330022.30 1160.81 0.00 0.00 0.00
100-10-3e 318109 318156.00 318270.20 63.86 318226 137.00 318109 318245.75 1185.29 0.00 -0.01 -0.04
100-10-4a 253471 253892.00 254207.40 47.77 253471 142.00 253471 253504.60 1333.12 0.00 -0.17 0.00
100-10-4b 211354 211354.00 211358.20 39.03 211361 125.00 211354 211354.00 1339.73 0.00 0.00 0.00
100-10-4c 86215 86215.00 86219.00 74.05 87277 104.00 86215 86215.00 1320.30 0.00 0.00 -1.22
100-10-4d 328181 328251.00 328344.00 63.21 328420 131.00 328231 328395.30 1381.03 0.02 -0.01 -0.06
100-10-4e 308757 308866.00 309298.60 71.84 310134 169.00 309126 309863.85 1320.10 0.12 0.08 -0.33
200-10-1c 156029 156087.00 156771.40 589.75 157428 199.00 156029 156173.70 3218.40 0.00 -0.04 -0.89
200-10-1d 638068 638452.00 640099.00 417.52 638372 249.00 638356 639304.15 2589.80 0.05 -0.02 0.00
200-10-1e 599069 599463.00 599708.20 463.54 600954 330.00 599719 601175.20 2520.99 0.11 0.04 -0.21
200-10-2c 144046 144337.00 144374.40 476.29 144666 185.00 144337 144351.90 2755.80 0.20 0.00 -0.23
200-10-2d 663154 663814.00 664241.20 342.97 664234 220.00 663509 664088.55 2801.01 0.05 -0.05 -0.11
200-10-2e 618858 619037.00 619162.00 318.10 619262 249.00 618932 619535.25 2834.42 0.01 -0.02 -0.05
200-10-3c 184783 184885.00 185913.80 588.15 186112 247.00 185681 186004.60 2650.80 0.49 0.43 -0.23
200-10-3d 640289 640357.00 640423.40 384.69 641424 248.00 640487 641420.95 2542.37 0.03 0.02 -0.15
200-10-3e 604480 604617.00 605285.60 388.10 606919 252.00 606211 606466.55 2509.29 0.29 0.26 -0.12
200-10-4a 452430 452870.00 453126.60 315.54 453435 297.00 452752 453020.30 2996.73 0.07 -0.03 -0.15
200-10-4b 369821 369951.00 370228.20 215.17 369821 271.00 369580 369964.50 3254.36 -0.07 -0.10 -0.07
200-10-4c 144013 144407.00 144607.80 611.48 144940 231.00 144326 144502.10 3322.80 0.22 -0.06 -0.42
200-10-4d 617932 618590.00 619015.80 369.70 618795 279.00 618116 618829.70 3105.39 0.03 -0.08 -0.11
200-10-4e 562854 562854.00 563419.80 403.10 564383 318.00 562843 563916.30 2959.38 0.00 0.00 -0.27
200-15-1a 460430 461203.00 461780.80 589.02 462359 236.00 460601 461951.50 2728.23 0.04 -0.13 -0.38
200-15-1b 366359 367397.00 367767.80 274.24 367330 232.00 366779 367018.95 2781.47 0.11 -0.17 -0.15
200-15-1c 148141 148218.00 149190.20 692.08 150091 215.00 148830 149129.30 3693.22 0.47 0.41 -0.84
200-15-1d 813576 813941.00 814570.00 593.25 814072 248.00 813576 814856.20 2754.53 0.00 -0.04 -0.06
200-15-1e 708585 708837.00 719810.80 623.89 709259 326.00 708855 709730.05 2833.86 0.04 0.00 -0.06
200-15-2a 513512 513893.00 514058.60 626.51 514199 265.00 513722 514267.30 3046.47 0.04 -0.03 -0.09
200-15-2b 406839 406843.00 407128.20 271.17 407449 265.00 406685 406911.60 3045.91 -0.04 -0.04 -0.19
200-15-2c 134779 135051.00 135505.60 466.28 135633 230.00 134871 135343.75 3598.71 0.07 -0.13 -0.56
200-15-2d 811361 811722.00 812486.20 543.50 813280 249.00 812721 813168.50 2854.02 0.17 0.12 -0.07
200-15-2e 712524 712524.00 713160.40 569.33 737081 1242.00 712978 714622.20 3325.88 0.06 0.06 -3.27
200-15-3a 455351 455676.00 456095.00 557.51 456081 258.00 455368 455655.10 2871.05 0.00 -0.07 -0.16
200-15-3b 356887 357086.00 357832.40 217.93 357233 249.00 356887 357262.05 2932.98 0.00 -0.06 -0.10
200-15-3c 140765 141129.00 141557.80 536.33 141703 223.00 140765 141105.45 3740.99 0.00 -0.26 -0.66
200-15-3d 877543 877638.00 878404.00 501.71 878358 242.00 877940 878403.10 2550.67 0.05 0.03 -0.05
200-15-3e 816129 816377.00 817017.00 524.26 816579 295.00 816001 816424.20 2722.50 -0.02 -0.05 -0.07
200-15-4a 432672 433268.00 433677.60 580.28 434165 362.00 432913 433342.25 3260.14 0.06 -0.08 -0.29
200-15-4b 349269 349269.00 349794.00 274.35 350509 339.00 349088 349575.35 3223.68 -0.05 -0.05 -0.41
200-15-4c 143052 143772.00 144072.80 558.34 144536 256.00 143517 143742.70 3806.64 0.33 -0.18 -0.71
200-15-4d 826829 828144.00 828332.80 546.97 828711 296.00 827346 827945.80 2947.43 0.06 -0.10 -0.16
200-15-4e 700013 700202.00 701066.60 743.54 701825 394.00 700521 701677.70 3050.35 0.07 0.05 -0.19
300-15-1a 854503 856267.00 857193.80 2084.63 856306 379.00 856023 857758.85 4775.71 0.18 -0.03 -0.03
300-15-1b 622412 622412.00 624326.40 1386.62 623644 399.00 621894 623318.80 5066.06 -0.08 -0.08 -0.28
300-15-1c 364979 366770.00 368123.00 1613.18 366675 455.00 365206 365627.15 6459.06 0.06 -0.43 -0.40
300-15-1d 1338255 1339010.00 1339804.40 1556.58 1341270 381.00 1337930 1339096.84 4299.79 -0.02 -0.08 -0.25
300-15-1e 1217690 1217690.00 1222415.80 1949.12 1219197 553.00 1218900 1220710.50 4739.73 0.10 0.10 -0.02
300-15-2a 757931 759999.00 760278.40 2135.43 762089 367.00 760081 760846.35 5264.95 0.28 0.01 -0.26
300-15-2b 557525 557912.00 559174.80 1250.03 557525 366.00 556948 557636.00 4935.24 -0.10 -0.17 -0.10
300-15-2c 310061 311558.00 312637.40 1465.10 312374 457.00 310673 311034.15 6298.85 0.20 -0.28 -0.54
300-15-2d 1301210 1301863.00 1303445.20 1578.69 1305933 352.00 1301720 1302798.50 4937.30 0.04 -0.01 -0.32
300-15-2e 1272700 1272700.00 1276006.40 1853.13 1276145 575.00 1275250 1276915.50 4914.91 0.20 0.20 -0.07
300-15-3a 776531 778023.00 778382.00 1896.65 778590 354.00 776857 778157.15 5245.62 0.04 -0.15 -0.22
300-15-3b 593892 594073.00 595017.80 1064.88 593892 348.00 593743 594004.10 4857.43 -0.03 -0.06 -0.03
300-15-3c 340155 341712.00 341939.40 1434.19 342206 360.00 341278 342180.70 6185.67 0.33 -0.13 -0.27
300-15-3d 1355955 1358223.00 1359934.00 1495.27 1355955 359.00 1355890 1357945.00 4594.51 0.00 -0.17 0.00
300-15-3e 1286877 1286877.00 1288553.40 2208.86 1289607 604.00 1287440 1289470.00 4778.26 0.04 0.04 -0.17
300-15-4a 746407 747730.00 748983.80 1976.41 750135 439.00 748474 749853.85 5756.94 0.28 0.10 -0.22
300-15-4b 559877 559877.00 560310.20 1291.47 560352 472.00 558831 559250.60 5235.91 -0.19 -0.19 -0.27
300-15-4c 302390 304254.00 304632.60 1842.92 303984 543.00 302676 303670.10 6658.45 0.09 -0.52 -0.43
300-15-4d 1285714 1288091.00 1289787.60 1779.44 1289757 458.00 1287110 1288907.50 4785.17 0.11 -0.08 -0.21
300-15-4e 1173516 1173516.00 1175283.60 1939.34 1174438 621.00 1172200 1173887.00 5073.71 -0.11 -0.11 -0.19
300-20-1a 945545 1009840.00 1011300.80 1612.80 945545 513.00 944798 948040.05 5097.99 -0.08 -6.44 -0.08
300-20-1b 739604 739604.00 755196.80 1408.82 740915 514.00 739410 741928.95 5251.51 -0.03 -0.03 -0.20
300-20-1c 361735 364096.00 364819.40 1554.02 364303 514.00 362460 362798.05 6815.62 0.20 -0.45 -0.51
300-20-1d 1572968 1575390.00 1577056.80 1625.01 1579766 401.00 1574820 1578889.00 5238.64 0.12 -0.04 -0.31
300-20-1e 1320811 1391567.00 1392971.00 1601.83 1320924 575.00 1316880 1320908.50 4772.42 -0.30 -5.37 -0.31
300-20-2a 909306 909306.00 910784.20 2044.26 909376 553.00 910162 912638.75 5634.41 0.09 0.09 0.09
300-20-2b 695155 695524.00 696328.80 1437.34 695155 558.00 694525 695945.60 5731.38 -0.09 -0.14 -0.09
300-20-2c 298522 299425.00 300442.80 1563.93 309529 470.00 298790 299538.85 6632.28 0.09 -0.21 -3.47
300-20-2d 1569042 1569139.00 1570655.00 1899.70 1571166 369.00 1570170 1572547.50 5864.49 0.07 0.07 -0.06
300-20-2e 1284831 1386386.00 1388265.00 2240.11 1284831 655.00 1282040 1284757.50 4994.35 -0.22 -7.53 -0.22
300-20-3a 927452 929901.00 930748.60 1779.00 930992 469.00 928706 930337.05 4923.79 0.14 -0.13 -0.25
300-20-3b 750844 751307.00 751886.20 1424.87 750844 489.00 750633 752352.25 4979.51 -0.03 -0.09 -0.03
300-20-3c 304269 305771.00 307195.00 1176.54 307684 488.00 304875 305550.95 6277.44 0.20 -0.29 -0.91
300-20-3d 1539008 1539008.00 1541074.60 1657.35 1541385 373.00 1538930 1541202.50 4735.57 -0.01 -0.01 -0.16
300-20-3e 1265041 1289734.00 1290731.60 2090.99 1265041 649.00 1261660 1263625.50 4501.11 -0.27 -2.18 -0.27
300-20-4a 859446 859474.00 860141.40 1992.62 859446 574.00 858649 859878.35 5834.96 -0.09 -0.10 -0.09
300-20-4b 687930 687930.00 689431.60 1333.38 688604 559.00 687179 688281.30 5951.58 -0.11 -0.11 -0.21
300-20-4c 299206 300285.00 301125.00 1677.81 301424 642.00 299157 299538.75 7350.46 -0.02 -0.38 -0.75
300-20-4d 1540194 1540194.00 1542447.80 1751.09 1542127 653.00 1539900 1542697.50 5910.55 -0.02 -0.02 -0.14
300-20-4e 1330488 1344056.00 1345433.00 2624.15 1330488 805.00 1322150 1324786.50 5383.62 -0.63 -1.63 -0.63
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Table 5 Results for the CLRP on the instances of set S.
TBSAbasic PF HGAMPInstances BKS Best Avg. Time Best Time Best Avg. Time δ1(%) δ2(%) δ3(%)

400-20-1a 1140605 1140605.00 1142848.60 5459.61 1140975 733.00 1139820 1142918.00 7167.78 -0.07 -0.07 -0.10
400-20-1b 876157 880393.00 881162.40 2844.00 876157 725.00 876842 878678.10 7833.38 0.08 -0.40 0.08
400-20-1c 467755 467755.00 470279.60 3935.31 471031 813.00 466857 468164.25 10503.38 -0.19 -0.19 -0.89
400-20-1d 1956824 1956824.00 1960789.40 3780.24 1957929 805.00 1962600 1966491.50 8333.51 0.30 0.30 0.24
400-20-1e 1645475 1748962.00 1750819.00 4669.29 1645475 701.00 1641880 1645169.50 6697.34 -0.22 -6.12 -0.22
400-20-2a 1053445 1053445.00 1055068.00 5849.92 1055570 671.00 1054500 1056902.00 8246.21 0.10 0.10 -0.10
400-20-2b 828932 829494.00 830091.20 2956.62 828932 636.00 827077 828305.30 7770.90 -0.22 -0.29 -0.22
400-20-2c 394712 394712.00 396074.80 3975.54 395668 647.00 394544 395798.40 10390.25 -0.04 -0.04 -0.28
400-20-2d 1875072 1875072.00 1877613.80 4029.08 1878113 546.00 1875310 1877750.50 8306.77 0.01 0.01 -0.15
400-20-2e 1562339 1608600.00 1610261.00 6084.98 1562339 776.00 1560160 1562185.00 6864.83 -0.14 -3.01 -0.14
400-20-3a 1098989 1098989.00 1100874.20 4704.81 1100714 828.00 1098670 1100114.50 7984.85 -0.03 -0.03 -0.19
400-20-3b 847618 849555.00 850730.40 2730.97 847618 640.00 847311 849163.35 7438.39 -0.04 -0.26 -0.04
400-20-3c 391928 391928.00 393227.60 2898.16 393648 647.00 390047 391164.25 9916.37 -0.48 -0.48 -0.91
400-20-3d 1929284 1929284.00 1930892.00 3356.00 1936927 517.00 1927290 1929653.00 7305.67 -0.10 -0.10 -0.50
400-20-3e 1679271 1778315.00 1780375.60 5251.94 1679271 714.00 1656860 1660426.00 6895.84 -1.33 -6.83 -1.33
400-20-4a 1081452 1081452.00 1083352.60 5802.08 1083252 706.00 1080890 1083175.50 8611.75 -0.05 -0.05 -0.22
400-20-4b 842078 842078.00 845150.80 3260.79 843238 717.00 841464 843201.05 9066.75 -0.07 -0.07 -0.21
400-20-4c 351715 351715.00 352200.60 2670.50 357250 776.00 350273 351572.95 10776.72 -0.41 -0.41 -1.95
400-20-4d 1834809 1834809.00 1836465.00 4318.18 1845315 544.00 1835540 1838164.50 9222.91 0.04 0.04 -0.53
400-20-4e 1558411 1620575.00 1621855.20 4993.24 1558411 818.00 1558920 1560822.50 8342.83 0.03 -3.80 0.03
400-25-1a 1156187 1156187.00 1156765.40 5401.22 1156802 507.00 1153960 1157421.50 7789.11 -0.19 -0.19 -0.25
400-25-1b 889828 890566.00 892176.80 2878.20 889828 501.00 889193 890514.90 7762.85 -0.07 -0.15 -0.07
400-25-1c 395268 395268.00 396632.40 3579.13 412212 609.00 393581 394741.30 12532.13 -0.43 -0.43 -4.52
400-25-1d 2341499 2341499.00 2343936.80 3281.81 2350173 650.00 2336630 2337907.50 7790.62 -0.21 -0.21 -0.58
400-25-1e 1890676 2053366.00 2058418.00 4180.70 1890676 730.00 1863200 1865231.00 6578.80 -1.45 -9.26 -1.45
400-25-2a 1091595 1091595.00 1092140.80 7027.44 1102122 490.00 1090120 1091785.00 8624.70 -0.14 -0.14 -1.09
400-25-2b 869254 869254.00 869963.20 3607.85 875593 508.00 867716 869317.15 8010.93 -0.18 -0.18 -0.90
400-25-2c 360923 360923.00 361783.60 3497.24 362684 644.00 359606 360481.00 11148.83 -0.36 -0.36 -0.85
400-25-2d 2351903 2351903.00 2353659.20 3709.96 2356224 699.00 2353260 2355954.00 7520.32 0.06 0.06 -0.13
400-25-2e 1910645 1954300.00 1983843.80 4964.71 1910645 870.00 1902730 1905257.00 7902.29 -0.41 -2.64 -0.41
400-25-3a 1105783 1105783.00 1106974.60 5606.25 1122031 454.00 1106300 1109104.50 8249.31 0.05 0.05 -1.40
400-25-3b 862180 862180.00 865586.40 3395.72 871206 477.00 861981 863888.35 8212.16 -0.02 -0.02 -1.06
400-25-3c 393783 393783.00 394555.40 2998.27 399436 706.00 392264 393142.95 9778.04 -0.39 -0.39 -1.80
400-25-3d 2321358 2321358.00 2324138.80 4211.50 2340658 527.00 2323480 2327336.50 7727.94 0.09 0.09 -0.73
400-25-3e 1901148 1946952.00 1950642.40 4098.50 1901148 878.00 1890950 1894935.50 6965.56 -0.54 -2.88 -0.54
400-25-4a 1015654 1015654.00 1016764.20 5539.99 1016670 546.00 1014350 1016874.50 8495.83 -0.13 -0.13 -0.23
400-25-4b 801722 801722.00 803138.40 3117.51 803237 532.00 801135 802199.45 9084.68 -0.07 -0.07 -0.26
400-25-4c 380824 380824.00 381782.80 3195.05 382491 736.00 378419 379026.60 11428.08 -0.63 -0.63 -1.06
400-25-4d 2362571 2362571.00 2364869.20 4334.50 2367103 719.00 2360020 2362993.00 8911.98 -0.11 -0.11 -0.30
400-25-4e 1942603 1992633.00 1993388.80 4204.16 1942603 913.00 1935600 1939077.00 7784.53 -0.36 -2.86 -0.36
500-25-1a 1773409 1773409.00 1774912.80 10864.49 1798898 705.00 1771040 1772769.50 10235.44 -0.13 -0.13 -1.55
500-25-1b 1331827 1331827.00 1334444.80 5803.00 1349058 709.00 1327800 1331534.50 10432.13 -0.30 -0.30 -1.58
500-25-1c 671756 673495.00 675806.80 6000.60 671756 1193.00 670025 672347.05 16214.14 -0.26 -0.52 -0.26
500-25-1d 3322248 3325312.00 3328954.60 6627.34 3322248 833.00 3321740 3324804.00 10119.59 -0.02 -0.11 -0.02
500-25-1e 2692197 2971616.00 2975454.60 7693.69 2692197 1322.00 2682740 2690438.00 9314.32 -0.35 -9.72 -0.35
500-25-2a 1619689 1619689.00 1622446.60 11998.29 1620927 713.00 1620140 1623115.00 12081.47 0.03 0.03 -0.05
500-25-2b 1251667 1252748.00 1254125.00 5212.56 1251667 681.00 1250270 1251370.00 9586.59 -0.11 -0.20 -0.11
500-25-2c 574794 574794.00 576678.00 5694.01 576080 856.00 571155 572426.75 14167.70 -0.63 -0.63 -0.85
500-25-2d 3338585 3338585.00 3340077.20 8014.10 3345184 834.00 3335790 3338640.50 10594.70 -0.08 -0.08 -0.28
500-25-2e 2729944 2802823.00 2862227.40 11992.46 2729944 1337.00 2725350 2728780.50 10784.34 -0.17 -2.76 -0.17
500-25-3a 1725918 1725918.00 1728825.20 13855.28 1756884 723.00 1724540 1728482.00 10791.69 -0.08 -0.08 -1.84
500-25-3b 1305521 1305521.00 1306926.20 5421.25 1314903 693.00 1302820 1305386.00 11221.64 -0.21 -0.21 -0.92
500-25-3c 580688 581425.00 583190.80 5098.87 580688 817.00 578519 579999.50 14532.09 -0.37 -0.50 -0.37
500-25-3d 3248557 3248557.00 3250056.20 6323.21 3249805 760.00 3253900 3255339.00 8733.39 0.16 0.16 0.13
500-25-3e 2697267 2768174.00 2795997.00 11756.12 2697267 1056.00 2681360 2685903.50 10271.55 -0.59 -3.14 -0.59
500-25-4a 1655310 1655514.00 1658637.00 13964.09 1655310 714.00 1653680 1657127.50 12930.89 -0.10 -0.11 -0.10
500-25-4b 1260960 1263496.00 1267151.40 6661.01 1260960 720.00 1259400 1262157.00 11869.51 -0.12 -0.32 -0.12
500-25-4c 664089 664089.00 667522.20 7012.11 669088 1229.00 665017 667099.50 14369.64 0.14 0.14 -0.61
500-25-4d 3362588 3362588.00 3364590.00 8393.65 3370668 967.00 3367700 3372920.00 12718.64 0.15 0.15 -0.09
500-25-4e 2630867 2630867.00 2698984.60 11932.18 2647733 1164.00 2625360 2629760.00 11267.73 -0.21 -0.21 -0.84
500-30-1a 1984150 1984150.00 1991223.20 11301.10 1999892 924.00 1991640 2001398.00 11687.61 0.38 0.38 -0.41
500-30-1b 1537821 1538027.00 1540872.60 6369.41 1537821 881.00 1532670 1538876.50 11862.10 -0.33 -0.35 -0.33
500-30-1c 614433 614433.00 618107.40 6388.81 630143 841.00 611584 612916.30 15735.55 -0.46 -0.46 -2.95
500-30-1d 3742922 3742922.00 3745969.00 6002.25 3762156 1061.00 3740220 3746680.50 12247.33 -0.07 -0.07 -0.58
500-30-1e 3246339 3485608.00 3488967.80 7835.62 3246339 986.00 3236740 3242864.00 11263.33 -0.30 -7.14 -0.30
500-30-2a 1820346 1820346.00 1822744.20 15907.97 1820556 899.00 1821340 1824145.50 12927.40 0.05 0.05 0.04
500-30-2b 1452028 1452171.00 1461842.20 6908.29 1452028 971.00 1452140 1455534.50 12417.00 0.01 0.00 0.01
500-30-2c 649471 649471.00 652143.60 5547.39 650913 1009.00 647932 649707.65 15833.36 -0.24 -0.24 -0.46
500-30-2d 3815306 3815306.00 3816129.20 8542.96 3819650 1234.00 3815210 3818836.50 11682.06 0.00 0.00 -0.12
500-30-2e 3249618 3293153.00 3344410.20 9894.94 3249618 1086.00 3218410 3224217.00 11131.64 -0.96 -2.27 -0.96
500-30-3a 1782554 1782554.00 1784835.00 9978.88 1788808 876.00 1781220 1783841.50 11986.08 -0.07 -0.07 -0.42
500-30-3b 1422148 1422148.00 1424048.80 5205.87 1424533 802.00 1417870 1420747.50 10956.50 -0.30 -0.30 -0.47
500-30-3c 570866 570866.00 573130.60 5936.08 571418 1036.00 567988 569645.65 12774.72 -0.50 -0.50 -0.60
500-30-3d 3690995 3690995.00 3695470.40 8057.93 3710414 1382.00 3697540 3706084.50 11605.87 0.18 0.18 -0.35
500-30-3e 3059470 3171977.00 3285552.20 10411.43 3059470 1111.00 3131950 3136709.00 10202.69 2.37 -1.26 2.37
500-30-4a 1716476 1716476.00 1722659.80 12070.89 1725178 1214.00 1717720 1722760.00 13180.76 0.07 0.07 -0.43
500-30-4b 1398401 1398401.00 1461336.80 6314.01 1402136 1155.00 1399990 1407113.50 13323.34 0.11 0.11 -0.15
500-30-4c 562542 562731.00 565040.00 9257.42 562542 1071.00 558398 560183.50 13567.86 -0.74 -0.77 -0.74
500-30-4d 3708479 3708479.00 3711494.60 8340.83 3710414 1382.00 3711620 3723293.50 14431.39 0.08 0.08 0.03
500-30-4e 3059470 3194234.00 3217200.80 9918.44 3059470 1111.00 3057950 3086177.00 11804.11 -0.05 -4.27 -0.05
600-30-1a 2198674 2198674.00 2200768.80 20140.67 2208578 1381.00 2197860 2203132.00 15026.22 -0.04 -0.04 -0.49
600-30-1b 1691805 1691805.00 1697677.40 10673.49 1697630 1346.00 1689980 1695922.00 15707.17 -0.11 -0.11 -0.45
600-30-1c 746485 748714.00 752951.00 10822.16 746485 1140.00 742450 745721.40 19931.45 -0.54 -0.84 -0.54
600-30-1d 4213337 4213337.00 4217214.00 14803.88 4214905 1564.00 4219390 4229457.50 16852.33 0.14 0.14 0.11
600-30-1e 3570518 3737075.00 3843513.00 15500.11 3570518 1380.00 3552440 3558027.00 14743.36 -0.51 -4.94 -0.51
600-30-2a 2017760 2017760.00 2019232.80 23638.81 2023484 1105.00 2015580 2018587.50 14461.08 -0.11 -0.11 -0.39
600-30-2b 1601675 1602833.00 1604821.00 10778.67 1601675 1019.00 1601140 1602709.50 14258.39 -0.03 -0.11 -0.03
600-30-2c 634787 634787.00 638360.20 10718.97 646907 1368.00 633935 635262.60 16477.06 -0.13 -0.13 -2.01
600-30-2d 4163772 4163772.00 4167031.80 15024.23 4201095 1493.00 4160240 4164647.50 15083.02 -0.08 -0.08 -0.97
600-30-2e 3572959 3682117.00 3714272.40 15009.62 3572959 1672.00 3563860 3585562.50 14761.36 -0.25 -3.21 -0.25
600-30-3a 2082824 2082824.00 2086671.80 24897.75 2103960 1168.00 2087280 2092834.50 15086.41 0.21 0.21 -0.79
600-30-3b 1615623 1615623.00 1620896.60 10761.47 1623113 1247.00 1612210 1616431.00 15230.77 -0.21 -0.21 -0.67
600-30-3c 662569 662569.00 664845.60 9549.06 683582 1311.00 658376 660757.80 18725.56 -0.63 -0.63 -3.69
600-30-3d 4068474 4068474.00 4071472.60 15657.11 4126907 1724.00 4079540 4086996.00 14432.48 0.27 0.27 -1.15
600-30-3e 3488544 3496852.00 3505305.40 15179.65 3488544 1526.00 3327790 3335378.00 12475.50 -4.61 -4.83 -4.61
600-30-4a 1940218 1940218.00 1943972.00 25360.71 1942190 1325.00 1938780 1942920.00 15595.75 -0.07 -0.07 -0.18
600-30-4b 1555080 1560237.00 1561534.00 11437.18 1555080 1366.00 1554350 1559693.00 15512.32 -0.05 -0.38 -0.05
600-30-4c 707288 707288.00 708463.60 14535.48 714196 1808.00 705601 707494.15 17901.53 -0.24 -0.24 -1.20
600-30-4d 4150775 4150775.00 4155109.00 17602.99 4164022 2391.00 4183040 4191568.00 18024.60 0.78 0.78 0.46
600-30-4e 3543712 3622885.00 3629323.20 18513.18 3543712 1890.00 3514040 3520449.50 14803.24 -0.84 -3.00 -0.84
Average 1181502.41 1192764.53 1197257.61 4473.96 1185090.37 633.32 1179988.97 1182327.72 7377.83 -0.08 -1.07 -0.43
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