
Grouping memetic search for the colored

traveling salesmen problem

Pengfei He a, Jin-Kao Hao a,∗, Qinghua Wu b

aLERIA, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers, France

bSchool of Management, Huazhong University of Science and Technology, No.

1037, Luoyu Road, Wuhan, China

Accepted to Information Sciences, April 2021

Abstract

The colored traveling salesmen problem is a node routing problem with multiple
salesmen, where the cities are divided into m exclusive city sets and one shared
city set. The objective is to minimize the total traveling distance of m Hamiltonian
circuits (routes) under the following constraints: each exclusive city is to be visited
by the corresponding salesman, while each shared city can be visited by any sales-
man. In this work, we present the �rst grouping memetic algorithm for solving this
challenging problem. The algorithm includes three main components: (i) a greedy
randomized heuristic for population initialization; (ii) a dedicated local search pro-
cedure for local optima exploration; (iii) a backbone-based crossover operator for
solution recombination. We show computational results on three sets of 65 popular
benchmark instances to demonstrate the competitiveness of our algorithm. We es-
pecially report improved upper bounds for 38 instances (for more than 58% cases).
We also present �rst computational results with the general CPLEX solver, includ-
ing 10 proven optimal solutions. Finally, we shed lights on the impacts of the key
components of the algorithm.

Keywords: Memetic algorithm; Local search; Colored traveling salesmen problem,
TSP and Multiple TSP.

1 Introduction

The colored traveling salesmen problem (CTSP) can be stated as follows [21].
Let G=(V,A) be a complete undirected graph, where V = {0, 1, 2, · · · , n} is

∗ Corresponding author.
Email addresses: pengfeihe606@gmail.com (Pengfei He),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao), qinghuawu1005@gmail.com
(Qinghua Wu).

Preprint submitted to Elsevier 30 April 2021

the set of nodes (or cities) and A = {{i, j} : i, j ∈ V, i 6= j} is the set of
edges. Each edge {i, j} ∈ A has a non-negative weight cij representing the
traveling distance between cities i and j. All cities are divided into m + 1
disjoint sets: m exclusive city sets {C1, C2, · · · , Cm}, and one shared city set
S such that ∪mk=1Ck ∪ S = V and ∩mk=1Ci ∩ S = ∅. The cities of an exclusive
set Ck (k = 1, 2, · · · ,m) are to be visited by salesman k only, while the shared
cities can be visited by any of the m salesmen. Besides, city 0 (the depot)
belongs to the shared city set S and is visited by all salesmen. CTSP is to
determine m shortest Hamiltonian tours (routes) starting from the depot and
ending at the depot such that each exclusive city in Ck is visited exactly once
by salesman k and each shared city is visited exactly once by one of the m
salesmen. A mathematical model of CTSP is provided in Appendix A.

CTSP generalizes a variant of the classical traveling salesman problem (TSP),
known as the multiple traveling salesmen problem (MTSP) where all cities are
shared [3,4]. Besides, if there is only one salesman (m = 1), CTSP becomes
TSP [1]. Given that CTSP generalizes these NP-hard problems, solving CTSP
is computationally challenging.

CTSP is a useful model for a number of practical problems [21]. For in-
stance, Li et al. [20] presented typical applications concerning multi-bridge
machining systems, i.e., a dual-bridge waterjet machining center and a dual-
manipulator hull welding system. In these systems, there are two indepen-
dent individual machines (cutting machines and manipulators) with their in-
dividual workspaces (exclusive cities) and a shared workspace (shared cities).
Finding a collision-free scheduling of these machines corresponds to solving
a CTSP with two salesmen. The rice harvesters problem studied in He et
al. [15,16] can be considered from the CTSP perspective. Rices from moist
�elds and non-moist �elds need to be harvested by harvesters (salesmen) such
that moist �elds (exclusive cities) can only be visited by crawler-harvesters,
while non-moist �elds (shared cities) can be visited by both crawler-harvesters
and wheelers-harvesters. Scheduling the harvesters comes down to solving the
CTSP problem.

Heuristics and metaheuristics are natural approaches for �nding sub-optimal
solutions of di�cult optimization problems that cannot be solved exactly. Un-
like the related MTSP for which numerous heuristics are available [31,37,4,30,36],
only six metaheuristic-based algorithms were studied for CTSP: genetic al-
gorithm [21], variable neighborhood search [24], arti�cial bee colony (ABC)
[28,9], ant colony optimization [8], and iterated two phase local search [14].
These algorithms have reported valuable computational results on various
benchmark instances. Meanwhile, it is observed that they lack robustness and
stability in particular when they are applied to solve large scale instances.

In this work, we investigate for the �rst time the powerful memetic algo-

2

rithm (MA) framework for solving CTSP and present a competitive grouping
memetic algorithm (GMA) dedicated to the problem. Indeed, e�ective MAs
have been proposed to solve the related MTSP [36,18,19,23] and several vehicle
routing problems [25,35,5,29]. However, most of these MAs are based on the
so-called giant tours and split algorithms, which are not suitable for CTSP due
to the presence of exclusive cities. We consider CTSP from the perspective of
grouping problems [10] and introduce an e�ective grouping memetic algorithm
(GMA). The proposed algorithm integrates two complementary key compo-
nents: an original local optima exploration procedure (to �nd high quality
local optima, Section 3.3) and a dedicated backbone-based crossover opera-
tor (to generate promising new o�spring, Section 3.4). As demonstrated by
the computational results shown in Section 4, the proposed algorithm com-
petes very favorably with the state-of-the-art CTSP algorithms on three sets
of benchmark instances.

The rest of this paper is organized as follows. Section 2 presents a litera-
ture review and related works. The proposed grouping memetic algorithm is
presented in Section 3. Computational results and comparisons with state-of-
the-art algorithms are presented in Section 4. In Section 5, the impacts of key
components of the algorithm are discussed. Section 6 presents conclusions and
future research directions.

2 Literature review and related works

Given the theoretical and practical signi�cance, CTSP has attracted consid-
erable attention in recent years and several heuristic methods have been pre-
sented. In this section, we review the existing solution approaches for CTSP
and related works.

In 2014, Li et al. [21] introduced the colored traveling salesmen problem to
optimize routes of a dual-bridge waterjet cutting machine tool. As solution
methods, they presented four genetic algorithms (basic GA, GA with greedy
initialization, hill-climbing GA and simulated annealing GA), where the dual-
chromosome encoding was used to represent the candidate solutions. The �rst
chromosome is a permutation of all cities except depot 0, while the second
chromosome assigns a salesman to each of the shared and exclusive cities in
the corresponding position of the �rst chromosome. They presented computa-
tional results on 20 small scale benchmarks created from existing symmetric
TSP instances (with up to 101 vertices). They showed that the hybrid al-
gorithm combining simulated annealing and GA dominated the three other
algorithms and their algorithms performed better than the general mixed in-
teger programming tool Lingo.

Then, in 2017, Meng et al. [24] proposed a variable neighborhood search (VNS)
which employs a direct-route encoding to represent the solutions. VNS consists

3

of two phases. The �rst phase perturbs the current solution by two shaking
operations (Interchange and Relocation), while the second phase improves the
perturbed solution by applying a local search based on two search operations
(neighborhood change and 2-opt). Compared with the four GAs [21], VNS
showed its competitiveness on the 20 benchmark instances.

Later, in 2018, Pandiri and Singh [28] presented an arti�cial bee colony (ABC)
based on the m-tour encoding. This encoding uses m arrays, and each array
includes all the cities visited by the corresponding salesman. They provided a
proof that the size of the solution space of CTSP with the m-tour encoding is
smaller than that of the dual-chromosome encoding. They showed that ABC
could match or update the best results reported in [21,24] on the 20 small scale
benchmark instances with very short cuto� times. Besides, they introduced 8
new medium scale instances (with 229-666 cities) and reported computational
results.

Also in 2018, Dong et al. [8] employed an ant colony optimization (ACO) with
multi-tasks learning for solving CTSP. The multi-task cooperative learning
was proposed to improve the e�ciency of ACO. To assess their algorithm,
they introduced 6 medium (with 202-431 cities) and 5 large instances (with
1002 cities) and showed the competitiveness of ACO compared with the four
GAs [21]. Nevertheless, this algorithm did not compete well with VNS [24] on
the 20 small scale instances in terms of the best and average results.

In 2019, Dong et al. [9] presented another arti�cial bee colony algorithm (ABC)
and reported computational results on 26 new large instances (with 2461-7397
cities). These new large scale instances could be used by subsequent studies
to evaluate their algorithms. However, this ABC algorithm performed worse
than the ABC algorithm of [28] on the 20 small scale instances.

Finally, He and Hao [14] proposed an iterated two-phase local search (ITPLS),
which is based on a new adjacency representation of the candidate solutions.
This representation relies on an array A[m,n + 1] such that for each route
r (r = 1, . . . ,m), A[r, i] = j (i, j = 0, . . . , n, i 6= j) if and only if the route
goes from city i to city j. ITPLS applies jointly inter-route optimization and
intra-route optimization for solution improvement, reinforced by a probabilis-
tic greedy perturbation strategy to diversify the search. Extensive computa-
tional results were reported on all the benchmark instances available in the
literature (a total of 65 instances), including 29 improved best known results.

According to the computational results reported in the literature, we identify
ABC [28] and ITPLS [14] as the current state-of-the-art CTSP algorithms.

CTSP generalizes the popular multiple traveling salesmen problem (MTSP),
which has attracted much interest in the last decades. For instance, Wang et
al. [36] introduced a memetic algorithm for solving MTSP, which includes a

4

variable neighborhood descent to search local optima. Another evolutionary
algorithm was proposed by Kashan et al. [18] for solving MTSP from the
perspective of grouping problems. Other representative studies were reported
in [31,37,4,30]. However, these methods are not suitable for CTSP, because of
the presence of exclusive cities.

In this work, we are interested in designing a practically e�ective algorithm for
solving CTSP with the memetic framework. This is motivated by two consid-
erations. First, one notices that the route of each salesman can be considered
as a TSP solution. Therefore, the optimization of each individual route can
naturally bene�t from existing powerful TSP methods. Second, we can con-
sider CTSP from the perspective of grouping problems in the sense that the
shared cities are to be dispatched into m groups (m being the number of sales-
men). As such, the population-based memetic framework with a meaningful
crossover represents an attractive approach given that it has been applied with
great success to several di�cult grouping problems (e.g., [10,11,39]).

3 Grouping memetic algorithm for CTSP

Given a CTSP instance, the search space explored by CTSP is a multi-route
problem whose candidate solutions consist of m tours where the k-th tour
includes city 0, the exclusive cities of Ck and some shared cities of S.

In this section, we present the grouping memetic algorithm (GMA) for solving
CTSP. For a CTSP instance, GMA explores a search space Ω composed of all
candidate feasible solutions, where a candidate solution ϕ consists of m tours
{r1, r2, . . . , rm} with rk (k = 1, 2, . . . ,m) being the k-th route visited by the
k-th salesman. Given a solution ϕ ∈ Ω, its objective value f(ϕ) is given by
the total distance of its m routes. The goal of GMA is thus to �nd a solution
with the smallest objective value as possible.

In the literature, three common methods were used to represent solutions of
CTSP: dual chromosome encoding [21], m-tour encoding [28] and adjacency
representation encoding [14]. In this work, we adopt the adjacency representa-
tion encoding, which has the advantage of encoding each route (group of cities)
independently to facilitate inter-routes operations. The interested reader is re-
ferred to [14] for more details and an illustrative example.

3.1 General scheme

The proposed GMA algorithm consists of four main components: population
initialization, local optima exploration, backbone-based crossover and popula-
tion updating. GMA starts with an initial population P of p solutions gener-
ated by the population initialization procedure (Section 3.2). It then repeats
a number of generations during which new candidate solutions are sampled.

5

At each generation, the backbone-based crossover combines two randomly and
uniformly selected parent solutions to generate a promising o�spring solution
(Section 3.4). The local optima exploration (LOE) is then applied to improve
the o�spring solution (Section 3.3), followed by population update (Section
3.5). This evolution process is terminated when a prede�ned stopping condi-
tion (e.g., an allowed number of generations, an allotted cuto� time limit) is
reached. In this work, we use a cuto� time limit. The pseudo-code of GMA is
shown in Algorithm 1.

Algorithm 1: Pseudo-code of GMA algorithm

Input: Instance I, population size p, number of the nearest cities Nn,
parameter α

Output: The best solution ϕ∗ found
1 begin

2 P = {ϕ1, ϕ2, · · · , ϕp} ← PopInitilize (I, p); /* Build an initial

population of p elite solutions, Section 3.2 */

3 ϕ∗ ← arg min {f(ϕi) : i = 1, 2, · · · , p};
4 while Stopping condition is not met do
5 randomly and uniformly select two parents ϕF and ϕM from P ;
6 ϕO ← Backbone_Crossover(ϕF , ϕM); /* Generate an

offspring solution by backbone-based crossover,

Section 3.4 */

7 ϕO ← LOE (ϕO, Nn, α); /* Improve the new solution by

local optima exploration, Section 3.3 */

8 if f(ϕO) < f(ϕ∗) then
9 ϕ∗ ← ϕO;

10 end

11 P ← PoolUpdating(P, ϕO); /* Update the population with

the new solution, Section 3.5 */

12 end

13 return ϕ∗;

14 end

3.2 Population initialization

The GMA starts its search with an initial population P of p high-quality (elite)
solutions. To construct a population, we use a greedy randomized heuristic to
generate a feasible solution, which is further improved by LOE described in
Section 3.3. The improved solution is then inserted into P if the solution is
di�erent from any existing solution in P ; otherwise, this solution is discarded.
This process is repeated until p di�erent solutions are generated. Thanks to
the greedy randomized heuristic and subsequent LOE improvement step, we
obtain a diverse and high-quality population.

A feasible solution is constructed by the greedy randomized heuristic according

6

Algorithm 2: Pseudo-code of the greedy randomized heuristic

Input: Instance I (exclusive city sets {C1, C2, · · · , Cm}, shared city set
S) and distance matrix

Output: A feasible solution ϕ
1 begin

2 ϕ← ∅; /* First step: build m partial routes with

exclusive cities */

3 for k = 1 to m do

4 rk ← {0}; /* Initiate the route with the city 0 */

5 while Ck 6= ∅ do
6 Select randomly and uniformly a city i from set Ck;
7 Insert city i in route rk such that the route distance increase is

minimal;
8 Remove city i from set Ck;

9 end

10 ϕ← ϕ ∪ {rk};
11 end

/* Second step: dispatch the shared cities S \ {0} among m
partial routes */

12 S ′ ← S \ {0};
13 while S ′ 6= ∅ do
14 Select randomly and uniformly a city j from set S ′;
15 Insert city j into a route of ϕ such that the total distance increase

is minimal;
16 Remove city j from set S ′;

17 end

18 return ϕ;

19 end

to the following steps: 1) build a partial route for each of the m salesmen by
using the corresponding exclusive cities; 2) dispatch the shared cities among
the m partial routes to obtain a complete solution. The pseudo-code of the
greedy randomized heuristic is shown in Algorithm 2. During the �rst step
(lines 4-12), to create the k-th partial route rk, one �rst initiates the route with
the city 0. Then, the exclusive cities in Ck are selected randomly and uniformly,
and inserted one by one into rk such that the insertion gives the smallest
increase of the route distance. When all exclusive cities of every salesman are
inserted into the corresponding route, the �rst step stops, leading to a partial
solution ϕ composed of m partial routes. During the second step (lines 13-18),
the shared cities j from S \ {0} are processed randomly and uniformly, and
inserted one by one into a route of the partial solution ϕ such that its total
distance increase is minimal. When all shared cities are inserted, an initial
solution is obtained. The �rst step has a time complexity of O(|Cm|2 × m),
while the second step is bounded by O(|S|×n). Therefore, the time complexity

7

of the greedy randomized heuristic is O(|S| × n).

3.3 Local optima exploration

Local optimization plays a key role in a memetic algorithm and constitutes
one of the driving forces for �nding solutions of increasing quality. For an ef-
fective examination of local optima, GMA employes a speci�c strategy that
combines an inter-route optimization and an intra-route optimization proce-
dure heuristic. Speci�cally, our local optima exploration procedure (LOE) it-
erates two complementary search components: the constrained cross-exchange
operator (CCE) (Section 3.3.1) and a TSP heuristic called Edge Assembly
Crossover (EAX) [26] (Section 3.3.2). CCE improves solutions by exchanging
two substrings (sub-routes) from two routes. The routes modi�ed by CCE are
indicated by a binary vector RT of length m (RT [i] = 1 if route i is changed
by CCE, RT [i] = 0 otherwise). Then each modi�ed route is further optimized
by EAX. CCE and EAX are repeated until the current solution ϕ cannot
be further improved. Algorithm 3 shows the pseudo-code of the local optima
exploration procedure integrating the CCE operator and the EAX heuristic.

Algorithm 3: Pseudo-code of local optima exploration

Input: Solution ϕ, number of the nearest cities Nn, parameter α
Output: Improved solution ϕB

1 begin

2 ϕB ← ϕ;
3 Flag ← true;
4 RT [k]← false ∀k ∈ {1, . . . ,m}; /* RT is a binary vector,

indicating the routes modified by CCE */

5 while Flag do
6 < ϕ,F lag,RT >← CCE(ϕ,Nn, α); /* Solution improvement

by CCE, Section 3.3.1 */

7 for k = 1, . . . ,m do

8 if RT [k] = true then
9 ϕ← ϕ \ {rk};
10 rk ← EAX(rk); /* Intra-route improvement by EAX,

Section 3.3.2 */

11 ϕ← ϕ ∪ {rk};
12 end

13 end

14 if f(ϕ) < f(ϕB) then
15 ϕB ← ϕ;
16 end

17 end

18 return ϕB;

19 end

8

3.3.1 Constrained cross-exchange

The conventional cross-exchange was initially designed for vehicle routing
problems [2,33,6]. It is a generic local search operator which performs ex-
changes of two consecutive substrings (sub-routes) r̂i and r̂j from two di�erent
routes ri and rj. However, given the particularity of exclusive cities in CTSP,
the cross-exchange cannot be used directly in our context. For this reason,
we propose a constrained cross-exchange (CCE) in this work. Moreover, it is
known that the cross-exchange has a high time complexity [2,33]. CCE uses a
suitable pruning technique to reduce this complexity.

The evaluation of a CCE move for CTSP is summarized in two steps. The
�rst step is to determine the start of two substrings and the second step is to
identify the suitable length of both substrings (r̂k1 and r̂k2). For the start of
substring r̂k1 , we �rst need to �nd an edge which will break route rk1 . Suppose
the edge is {I1, I2}. Then, a suitable new neighbor of city I1 needs to be
determined. To limit the number of candidate moves, CCE uses the following
heuristic pruning technique that only considers the neighbors among the Nn

nearest cities. Suppose that city J3 is such a neighbor, and city J3 belongs
to route rk2 . If edge {I1, J3} is added as a new edge, edge {J2, J3} or edge
{J3, J4} should be removed. Once the starts of two substrings (I2 and J3) are
determined, we need to identify the length of each substring. It is worth noting
that each substring should not include any exclusive cities because these cities
are only visited by the corresponding salesman.

Because the number of cities of each substring can vary from 0 to α (a param-
eter), all feasible combinations of the two substrings with their given starts
can be listed, and the move gain δ for each combination can also be calculated.
There are at most (α+ 1)2 combinations of two substrings. When a substring
is empty and the other is non-empty (r̂k1 = ∅ or r̂k2 = ∅), these two cases
are Or-opt [27,33]. However, both substrings cannot be empty simultaneously.
Therefore, at most (α+ 1)2− 1 combinations of two substrings could be listed
for two given starts. Then, we need to identify the best move (i.e., with the
largest gain δl) in these combinations. So far, a CCE move < r̂k1 , r̂k2 > is ac-
quired and the lengths of two substrings are determined. For all combinations
of the two starts, the global minimal move gain δb can be identi�ed. If δb < 0,
Flag ← true, RT [k1] ← 1 and RT [k2] ← 1; then, solution ϕ is updated by
swapping two substrings (r̂k1 and r̂k2); otherwise, solution ϕ, Flag and matrix
RT are returned, because the stopping condition (δb ≥ 0) of CCE is met. As
for the time complexity of CCE, there are O(|S| × (α+ 1)) ways to select the
�rst substring in any given route, while O(Nn × (α + 1)) ways exist to select
the second substring in another route. Therefore, the time complexity of CCE
is O(|S| ×Nn × ((α + 1)2 − 1)).

For example, Fig. 1 illustrates two cases of determining the starts of two

9

substrings. Then two complete CCE moves (r̂k1 = {I2} and r̂k2 = {J3, J4} or
r̂k2 = {J3, J2}) are illustrated in Fig. 2, where cities {I2, J2, J3} are shared. If
edge {J2, J3} is broken in the �rst step, the substring r̂k2 = {J3, J4} is serial
and in order. However, if edge {J3, J4} is broken in the �rst step, the substring
r̂k2 = {J3, J2} is serial and reverse.

1
I

2
I

2
J

3
J

4
J

1k
r

2k
r

1
I

2
I

2
J

3
J

4
J

Fig. 1. Illustrative example of starts for a CCE move.

1
I

2
I

2
J

3
J

4
J

1k
r

2k
r

5
J

3
I 1

I
2

I

1
J

2
J

3
J

1k
r

2k
r

4
J

3
I

Fig. 2. Illustrative example of complete CCE moves.

One may note the following di�erences between CCE and cross-exchange [2].
First, the cross-exchange operator used in [2] does not limit the length of the
substrings to be exchanged; however, in CCE, the length of the substrings
must be less than or equal to the value �xed by the parameter α. Second, in
CCE, exclusive cities are constrained to stay in a route and cannot be moved to
other routes. Therefore, the two substrings to be exchanged should not include
any exclusive cities. Finally, unlike vehicle routing for which cross-exchange
was designed, there is no capacity limitation for each salesman in CTSP. So
CCE does not consider this capacity constraint.

3.3.2 Edge assembly crossover (EAX) for TSP

For the optimization of each individual route, the constraint of exclusive cities
can be ignored. Thus optimizing each route corresponds to solving a TSP.
There are several sophisticated and powerful heuristics designed for solving
TSP. For example, the well-known fast 2-opt heuristic or LK algorithm can be
used to improve each route [17,2,31]. In this work, we adopt the EAX heuristic
[26] 1 , which is among the best TSP heuristics. In our case, EAX helps to keep
each route to being optimal or near-optimal in the iterative process of LOE.

1 The code of EAX is available at: https://github.com/sugia/GA-for-TSP

10

3.4 Backbone-based crossover

Crossover is another important ingredient of a memetic algorithm and should
be designed with care in order to favor transmissions of useful information from
parents to o�spring [13], while respecting the problem speci�c structure. One
popular way of designing meaningful crossover for grouping problems such
as CTSP is to explore the so-called backbone information, which typically
corresponds to solution attributes shared by elite solutions [32,12,11,39]. In
this work, we follow this idea and design a dedicated backbone crossover for
CTSP.

Let ϕF and ϕM be two parent solutions in the population. Based on ϕF and
ϕM , we divide the set of shared cities except the depot (S \ {0}) into two
categories, i.e., common elements and non-common elements.

De�nition 1: Given two parent solutions ϕF = {rF1 , rF2 , . . . , rFm} and ϕM =
{rM1 , rM2 , . . . , rMm }, a city i ∈ S \ {0} with respect to ϕF and ϕM is a common
element if there exists a k ∈ {1, . . . ,m} such that i appears in both rFk and rMk
(i.e., i ∈ rFk ∩ rMk). If i appears in rFk and rMl (k 6= l), city i is a non-common
element.

Then, an o�spring solution ϕO is constructed in two steps. In the �rst step,
a donor parent is �rst chosen randomly and uniformly between ϕF and ϕM .
A partial o�spring solution ϕO is then created by inheriting all m routes of
the donor parent without the shared cities. In the second step, for each city
i ∈ S \ {0}, if it is a common element appearing in rFk and rmk , then city i is
greedily inserted into route rOk of the partial o�spring solution. If city i is a
non-common element (i ∈ rFk , i ∈ rMl and k 6= l), we randomly and uniformly
select one route of the partial o�spring solution and then greedily insert i into
the selected route such that the insertion leads to the smallest increase of the
total distance.

1
{ F

F
r  ={0,1,2,3,8,9}; 2

Fr ={0,4,5,6,7,10}}

1
{ M

M
r  ={0,2,1,3,9,10}; 2

Mr ={0,6,4,5,7,8}}

1
{ O

O
r  ={0,2,1,3};

2

Or ={0,6,4,5}}

The first step

1
{ O

O
r  ={0,2,1,3,9,8}; ={0,6,7,4,5,10}}

The second step

2

Or

Fig. 3. Illustrative example of the backbone-based crossover

Fig. 3 shows an example of the crossover operator for a CTSP instance with
11 cities {0,1,. . . ,10} and m = 2 salesmen with their sets of exclusive cites
C1 = {1, 2, 3}, C2 = {4, 5, 6}, and the set of shared cities S \{0} = {7, 8, 9, 10}

11

(marked in red color). Let ϕF = {rF1 = {0, 1, 2, 3, 8, 9}; rF2 = {0, 4, 5, 6, 7, 10}}
and ϕM = {rM1 = {0, 2, 1, 3, 9, 10}; rM2 = {0, 6, 4, 5, 7, 8}} be the parent so-
lutions. By De�nition 1, cities 7 and 9 are common elements, while 8 and 9
are non-common elements. First, suppose that ϕM is the donor parent. Then
o�spring ϕO inherits the routes rM1 and rM1 by deleting the four shared cities,
leading to ϕO ← {rO1 = {0, 2, 1, 3}; rO2 = {0, 6, 4, 5}}. Then the shared cities
{7, 8, 9, 10} are successively considered until they are all inserted. City 7 is a
common element of the second routes of the parent solutions, it is thus greed-
ily inserted into the partial route rO2 , supposing this is the cheapest insertion
that increases the least the total distance. City 8 is a non-common element,
it is greedily inserted into the partial route rO1 or rO2 with equal probability.
Suppose that route rO1 is selected, and city 8 is inserted into route rO1 at the
cheapest place leading to the smallest increase of the route distance. Cites 9
and 10 are processed in the same way. When all shared cities {7, 8, 9, 10} are
inserted into ϕO, a feasible o�spring solution is constructed successfully, which
is then submitted to LOE for further improvement.

The time complexity of the crossover can be estimated as follows. The �rst
step needs to scan all the cities of the donor parent to allow its m routes
to be partially inherited. This is achieved in O(n) time. In the second step,
the shared cities in S \ {0} are inserted into the partial o�spring at the most
suitable places, while the time complexity of evaluating each move gain is
O(1). The second step can be performed in O(|S|×n) time. As the result, the
time complexity of the crossover is O(|S| × n).

3.5 Pool updating strategy

For each new o�spring solution ϕO improved by LOE in Section 3.3, the pool
updating strategy uses ϕO to update the population P as follows. If the o�-
spring ϕO is di�erent from any existing solutions and better than the worst
solution in P , ϕO replaces the worst solution; otherwise ϕO is discarded.

4 Experimental results and comparisons

This section presents a performance assessment of the GMA algorithm. We
show computational studies on well-known benchmark instances from the lit-
erature, and comparisons with existing state-of-the-art algorithms for CTSP.

4.1 Benchmark and experimental protocol

We employ three sets of 65 benchmark instances, which were commonly used
in previous studies on CTSP. The �rst set (Set I) contains 20 small instances
which were introduced in [21], and the number of cities is between 21 to 101
while the number of salesmen m is between 2 and 7. The second set (Set II),

12

introduced in [28,8], contains 14 medium size instances with 202, 229, 431, 666
cities, and 10− 40 salesmen. The last set (Set III), presented in [9,8], contains
31 large instances with 1002− 7397 cities and 3− 60 salesmen.

GMA was coded in C++ and complied with a g++ compiler with the -O3
option 2 . All experiments were conducted on a computer with an AMD-6134
processor (2.3 GHz and 2 GB RAM) running Linux.

To assess the performance of GMA, we show comparisons with the following
algorithms: arti�cial bee colony (ABC) [28] (2018), ant colony optimization
(ACO) [8] (2018) and iterated two phase local search (ITPLS) [14] (2021). In-
deed, computational results reported in the literature indicate that these three
algorithms represent the state-of-the-art of solving the above benchmark in-
stances, while ABC [28] and ITPLS [14] are clearly two dominating algorithms.
So we use ABC (source code unavailable) and ITPLS (source code available)
as the main reference algorithms and cite ACO (source code unavailable) when
it is appropriate.

To make the comparisons as fair as possible, we faithfully re-implemented the
best ABC algorithm of [28] 3 . We veri�ed that our implementation (denoted
as re-ABC) was able to reproduce the results reported in [28] (and in fact, our
ABC implementation even obtained some better results than those reported
in [28]). To ensure a fair comparison, we ran the compared algorithms on our
computer under the same cuto� limits: 1, 10 and 60 minutes for Sets I, II and
III, with the exception of 240 minutes for the largest instances with at least
7000 cities of Set III. Given the stochastic nature of the compared algorithms,
we ran each algorithm 20 times independently to solve each instance with the
above time limits.

In order to assess the gaps between the heuristic solutions (from GMA and
the reference algorithms) and the optimal solutions, we also investigated the
general mixed integer programming solver CPLEX (version 12.7) based on the
binary linear programming model from [21] (see Appendix A). Our experiment
indicated that CPLEX with this model can only solve optimally 10 smallest
instances of Set I within 7200 seconds, but fails to solve any instance of Sets
II and III due to memory over�ow.

4.2 Parameter tuning

GMA requires 3 parameters: population size p, number of nearest cities Nn

and parameter α. In order to identify a set of suitable parameters, we used the

2 The code of our algorithm will be available at http://www.info.univ-
angers.fr/pub/hao/CTSP.html
3 Our implementation of ABC [28] is available from the link given in footnote 2.

13

popular 'IRACE' package [22] for automatic parameters tuning. The tuning
was performed on 8 benchmark instances with 202 to 5397 cities. For the
experiment, the tuning budget was set to 500 runs, each with a time limit of
half of the cuto� time. The studied and �nal values (suggested by IRACE) of
these parameters are shown in Table 1.

Table 1
Parameters tuning results
Parameters Section Description Considered values Final value

p 3.1 population size {10,15,20,25,30} 20

Nn 3.3.1 number of nearest cities {30,40,50,60,70,80,90} 50

α 3.3.1 maximum length of substring {1,2,3,4,5,6,7} 7

4.3 Computational results and comparisons with existing algorithms

Computational results of GMA and the reference algorithms on set I are shown
in Table 2. For CPLEX, we report for each instance the upper bound (UB),
the lower bound (LB) and the Gap given by (UB−LB)/LB×100. So Gap = 0
implies that an optimal solution is found. Columns 6− 17 report respectively
the results of re-ABC, ITPLS and GMA in terms of the best objective value
fbest (over 20 runs), the average objective value favg , standard deviation σ
and the average time in seconds to reach the best objective value (Time(s)).
For the fbest and favg indicators, equally best values are shown in italic font.

Given that both the upper bounds and lower bounds are available for these
instances, we include the geometric mean of each algorithm for a global as-
sessment (row Geomean). For CPLEX, the geometric mean is calculated with

the gaps between UB and LB by (
h∏
i=1

UPi
LBi

)
1
h where UPi and LBi are the up-

per and lower bound of the ith instance, respectively. Similarly, for the other
algorithms (re-ABC, ITPLS, and GMA), we calculate their geometric means
for the best and average objective values by replacing UPi with the fbest and
favg values, respectively.

Finally, to assess the statistically signi�cant di�erence between GMA and each
main compared algorithm, Table 5 shows the p-values from the Wilcoxon
signed-rank test. With a con�dence level of 95%, a p-value smaller than 0.05
indicates a statistically signi�cant di�erence between the pair of compared
results.

From Table 2 on the 20 small instances of Set I, the following observations can
be made. First, CPLEX is able to solve optimally the 10 smallest instances
with 21 − 51 cities and 2 − 4 salesmen. For the remaining instances, the gap
between UP and LP remains reasonable and tends to increase with the size of
the instance. For the three heuristic algorithms, they perform equally well in
terms of solution quality by reaching their best solutions consistently including
the 10 optimal values. The geometric means indicates that the three heuristic

14

algorithms can reach the same results in terms of both the best and average
results. Meanwhile, the heuristic algorithms have smaller geometric means
compared with CPLEX and thus perform better for this set of instances.
In terms of computational e�ciency, GMA and re-ABC perform better than
ITPLS since they require signi�cantly less computation times to reach the
same results. It is worth mentioning that none of the other algorithms in the
literature, such as GA [21] (2014), VNS [24] 4 (2017), ACO [8] (2018), and
ABC [9] (2019) can reach such a performance (they report worse results for
some instances or their best results cannot be reached consistently).

Table 3 presents the results of the compared algorithms (re-ABC, ITPLS and
GMA) on the 14 medium instances of Set II with 202− 666 cities and 10− 40
salesmen. In addition to the main reference algorithms re-ABC and ITPLS,
we also include in this comparison ACO [8] for indicative purposes, which only
reported results for six instances. For each algorithm except ACO, we show
the best and average objective values (fbest and favg), the standard deviation
(σ) and the average time to reach the best objective value (Time(s)). Equally
best values are indicated in italic font, while strictly best values are highlighted
in boldface. Moreover, the last column Imp(%) provides the percentage im-
provement of GMA's best result fbest over the best objective value fbk of the
reference algorithms, computed as (fbest − fbk)/fbk × 100. Thus a negative
Imp(%) value indicates that GMA improved the best results of the reference
algorithms. For Set II, we ignored the geometric means given that the lower
bounds needed for their calculations are unavailable. In fact, we tried to ob-
tain LB for these instances by solving, with CPLEX, the linear programming
relaxation of the model presented in the Appendix. But CPLEX terminates
abnormally due to memory over�ow without proving any results or bounds.

Table 3 indicates that GMA �nds better results for 7 out of the 14 instances,
and matches the best results of the reference algorithms for 3 other instances.
The Wilcoxon signed-rank test on the fbest and favg values in Table 5 also con-
�rms that GMA signi�cantly outperforms the two main reference algorithms.
We do not insist on computation time because the main compared algorithms
report solutions of di�erent quality. Nevertheless, the three main compared al-
gorithms (re-ABC, ITPLS and GMA) require comparable computation times
to reach their best solutions. Note that the results of ACO [8] are somewhat
inconsistent. Among the six instances tested by ACO, even if it reports three
better results than the other algorithms (indicated with a star), its results for
the three other instances as well as for most of the 20 small instances of Set I
are considerably worse than algorithms, such as ABC [28] and ITPLS [14].

Table 4 presents the computational results of the compared algorithms for the

4 VNS reports a wrong result of 465.28 for eil51-2 because this result is smaller than
the proven optimal value of 478.08 from CPLEX.

15

T
ab
le
2.
C
om

pa
ra
ti
ve

re
su
lt
s
of

G
M
A
an
d
re
fe
re
nc
e
al
go
ri
th
m
s
on

Se
t
I.
T
he

eq
ua
lly

b
es
t
va
lu
es

ar
e
in
di
ca
te
d
in

it
al
ic
.

C
P
L
E
X

re
-A
B
C

IT
P
L
S

G
M
A
(t
h
is
w
o
rk
)

In
st
a
n
c
e

U
B

L
B

t(
s)

G
a
p
(%

)
f
b
e
s
t

f
a
v
g

σ
T
im

e
(s
)

f
b
e
s
t

f
a
v
g

σ
T
im

e
(s
)

f
b
e
s
t

f
a
v
g

σ
T
im

e
(s
)

e
il
2
1
-2

1
4
4
.9
2

1
4
4
.9
2

1
0
.0
0

1
4
4
.9
2

1
4
4
.9
2

0
.0
0

1
.0
0

1
4
4
.9
2

1
4
4
.9
2

0
.0

1
8
.3
2

1
4
4
.9
2

1
4
4
.9
2

0
.0

1
.0
0

e
il
2
1
-3

1
5
7
.4
8

1
5
7
.4
8

1
0
.0
0

1
5
7
.4
8

1
5
7
.4
8

0
.0
0

1
.0
0

1
5
7
.4
8

1
5
7
.4
8

0
.0

1
3
.1
5

1
5
7
.4
8

1
5
7
.4
8

0
.0

1
.0
0

e
il
3
1
-2

2
5
9
.3
6

2
5
9
.3
6

2
0
.0
0

2
5
9
.3
6

2
5
9
.3
6

0
.0
0

1
.0
0

2
5
9
.3
6

2
5
9
.3
6

0
.0

1
2
.7
0

2
5
9
.3
6

2
5
9
.3
6

0
.0

1
.0
0

e
il
3
1
-3

2
9
5
.3
1

2
9
5
.3
1

2
0

0
.0
0

2
9
5
.3
1

2
9
5
.3
1

0
.0
0

1
.0
0

2
9
5
.3
1

2
9
5
.3
1

0
.0

1
2
.8
5

2
9
5
.3
1

2
9
5
.3
1

0
.0

1
.0
0

e
il
3
1
-4

3
1
5
.9
7

3
1
5
.9
7

6
1

0
.0
0

3
1
5
.9
7

3
1
5
.9
7

0
.0
0

1
.0
0

3
1
5
.9
7

3
1
5
.9
7

0
.0

1
6
.9
0

3
1
5
.9
7

3
1
5
.9
7

0
.0

1
.0
0

e
il
4
1
-2

3
4
6
.2
4

3
4
6
.2
4

7
0
.0
0

3
4
6
.2
4

3
4
6
.2
4

0
.0
0

1
.0
0

3
4
6
.2
4

3
4
6
.2
4

0
.0

1
4
.4
5

3
4
6
.2
4

3
4
6
.2
4

0
.0

1
.0
0

e
il
4
1
-3

3
6
7
.8
4

3
6
7
.8
4

4
6

0
.0
0

3
6
7
.8
4

3
6
7
.8
4

0
.0
0

1
.0
0

3
6
7
.8
4

3
6
7
.8
4

0
.0

2
2
.0
5

3
6
7
.8
4

3
6
7
.8
4

0
.0

1
.0
0

e
il
4
1
-4

3
9
2
.1
4

3
9
2
.1
4

1
2
0

0
.0
0

3
9
2
.1
4

3
9
2
.1
4

0
.0
0

1
.0
0

3
9
2
.1
4

3
9
2
.1
4

0
.0

1
1
.5
5

3
9
2
.1
4

3
9
2
.1
4

0
.0

1
.0
0

e
il
5
1
-2

4
7
8
.0
8

4
7
8
.0
8

1
2
6

0
.0
0

4
7
8
.0
8

4
7
8
.0
8

0
.0
0

1
.0
5

4
7
8
.0
8

4
7
8
.0
8

0
.0

2
1
.5
5

4
7
8
.0
8

4
7
8
.0
8

0
.0

1
.0
0

e
il
5
1
-3

4
6
9
.5
0

4
6
9
.5
0

7
7
3

0
.0
0

4
6
9
.5
0

4
6
9
.5
0

0
.0
0

1
.0
0

4
6
9
.5
0

4
6
9
.5
0

0
.0

2
0
.4
0

4
6
9
.5
0

4
6
9
.5
0

0
.0

1
.0
0

e
il
5
1
-4

4
8
9
.9
9

4
8
5
.8
8

7
2
0
1

0
.8
5

4
8
9
.9
9

4
8
9
.9
9

0
.0
0

1
.0
0

4
8
9
.9
9

4
8
9
.9
9

0
.0

2
8
.5
5

4
8
9
.9
9

4
8
9
.9
9

0
.0

1
.4
0

e
il
5
1
-5

5
2
5
.9
8

5
0
3
.8
4

7
2
1
2

4
.3
9

5
2
5
.9
8

5
2
5
.9
8

0
.0
0

1
.1
0

5
2
5
.9
8

5
2
5
.9
8

0
.0

1
4
.3
5

5
2
5
.9
8

5
2
5
.9
8

0
.0

1
.0
0

e
il
7
6
-3

5
9
6
.1
8

5
8
3
.4
1

7
2
1
1

2
.1
9

5
9
3
.2
8

5
9
3
.2
8

0
.0
0

1
.0
0

5
9
3
.2
8

5
9
3
.2
8

0
.0

1
6
.4
0

5
9
3
.2
8

5
9
3
.2
8

0
.0

1
.0
0

e
il
7
6
-4

6
0
3
.7
9

5
8
5
.6
9

7
2
0
2

3
.0
9

6
0
3
.7
9

6
0
3
.7
9

0
.0
0

1
.5
0

6
0
3
.7
9

6
0
3
.7
9

0
.0

1
7
.7
5

6
0
3
.7
9

6
0
3
.7
9

0
.0

1
.6
0

e
il
7
6
-5

6
5
6
.5
6

6
2
0
.2
5

7
2
0
6

5
.8
5

6
5
1
.9
9

6
5
1
.9
9

0
.0
0

1
.0
0

6
5
1
.9
9

6
5
1
.9
9

0
.0

6
.7
5

6
5
1
.9
9

6
5
1
.9
9

0
.0

1
.0
0

e
il
7
6
-6

6
8
7
.4
3

6
2
4
.2
5

7
2
0
2

1
0
.1
2

6
7
2
.7
3

6
7
2
.7
3

0
.0
0

2
.1
0

6
7
2
.7
3

6
7
2
.7
3

0
.0

3
1
.4
0

6
7
2
.7
3

6
7
2
.7
3

0
.0

1
.0
0

e
il
1
0
1
-4

7
4
6
.9
3

6
9
7
.8
3

7
2
0
4

7
.0
4

7
2
6
.8
2

7
2
6
.8
2

0
.0
0

1
.3
0

7
2
6
.8
2

7
2
6
.8
2

0
.0

1
8
.4
5

7
2
6
.8
2

7
2
6
.8
2

0
.0

1
.0
0

e
il
1
0
1
-5

8
5
4
.2
3

7
5
0
.9
2

7
2
0
3

1
3
.7
6

7
7
9
.1
5

7
7
9
.1
5

0
.0
0

1
.0
5

7
7
9
.1
5

7
7
9
.1
5

0
.0

1
0
.8
0

7
7
9
.1
5

7
7
9
.1
5

0
.0

1
.0
0

e
il
1
0
1
-6

7
8
3
.0
8

7
0
6
.4
7

7
2
0
9

1
0
.8
4

7
5
9
.5
5

7
5
9
.5
5

0
.0
0

1
.2
5

7
5
9
.5
5

7
5
9
.5
5

0
.0

1
2
.7
5

7
5
9
.5
5

7
5
9
.5
5

0
.0

1
.7
0

e
il
1
0
1
-7

8
4
0
.6
0

7
2
9
.9
2

7
2
0
1

1
5
.1
6

7
9
8
.8
5

7
9
8
.8
5

0
.0
0

1
.2
0

7
9
8
.8
5

7
9
8
.8
5

0
.0

1
2
.5
6

7
9
8
.8
5

7
9
8
.8
5

0
.0

1
.8
0

G
e
o
m
e
a
n

1
.0
3
3
5

-
-

-
1
.0
2
3
5

1
.0
2
3
5

-
-

1
.0
2
3
5

1
.0
2
3
5

-
-

1
.0
2
3
5

1
.0
2
3
5

-
-

16

T
ab
le
3.

C
om

pa
ra
ti
ve

re
su
lt
s
of

G
M
A

an
d
re
fe
re
nc
e
al
go
ri
th
m
s
on

Se
t
II
.
E
qu
al
ly

b
es
t
va
lu
es

ar
e
in
di
ca
te
d
in

it
al
ic
.
T
he

st
ri
ct
ly

b
es
t

va
lu
es

ar
e
in
di
ca
te
d
in

b
ol
df
ac
e.

re
-A
B
C
[1
4
]

IT
P
L
S
[1
4
]

G
M
A
(t
h
is
w
o
rk
)

In
st
a
n
c
e

A
C
O

[8
]

f
b
e
s
t

f
a
v
g

σ
T
im

e
(s
)

f
b
e
s
t

f
a
v
g

σ
T
im

e
(s
)

f
b
e
s
t

f
a
v
g

σ
T
im

e
(s
)

I
m
p
(%

)

g
r2
0
2
-1
2

7
1
9
2
4
.0
0
*

9
9
8
7
1
.0
0

1
0
0
0
3
3
.2
0

1
1
0
.5
4

3
2
9
.4
5

9
9
8
7
1
.0
0

1
0
0
0
0
9
.5
0

1
1
2
.5
8

9
3
.5
5

9
9
8
7
1
.0
0

1
0
0
1
6
2
.5
0

1
8
5
.4
6

3
9
6
.6
5

3
9
.0
0

g
r2
0
2
-2
5

9
9
6
0
6
.0
0
*

1
7
3
5
4
7
.0
0

1
7
3
5
9
6
.8
0

5
4
.0
1

3
4
8
.8
5

1
7
3
4
1
8
.0
0

1
7
3
5
2
3
.8
0

4
6
.7
7

1
4
1
.2
5

1
7
3
4
7
7
.0
0

1
7
3
5
9
4
.6
5

7
5
.7
2

2
1
1
.8
0

7
4
.0
0

g
r2
0
2
-3
5

1
1
8
4
9
5
.0
0
*
2
3
3
7
4
9
.0
0

2
3
3
8
1
7
.8
5

7
0
.1
6

3
1
6
.1
5

2
3
3
7
4
9
.0
0

2
3
3
8
5
7
.8
0

7
3
.1
7

1
5
6
.8
5

2
3
3
8
7
1
.0
0

2
3
4
0
0
3
.3
5

7
2
.8
1

9
3
.8
5

9
7
.0
0

g
r2
2
9
-1
0

-
2
2
2
1
6
7
.0
0

2
2
2
3
5
4
.8
5

1
6
4
.0
8

2
4
4
.6
0

2
2
2
1
6
7
.0
0

2
2
2
3
4
7
.6
5

1
0
3
.5
0

2
2
6
.7
0

2
2
2
1
6
7
.0
0

2
2
2
1
7
3
.7
5

3
0
.1
9

2
0
1
.9
0

0
.0
0

g
r2
2
9
-1
5

-
2
6
4
1
4
6
.0
0

2
6
4
1
4
6
.0
0

0
.0
0

6
9
.6
0

2
6
4
1
4
6
.0
0

2
6
4
1
4
6
.0
0

0
.0
0

6
7
.0
0

2
6
4
1
4
6
.0
0

2
6
4
1
4
6
.0
0

0
.0
0

1
5
4
.8
5

0
.0
0

g
r2
2
9
-2
0

-
3
1
9
6
6
9
.0
0

3
1
9
6
6
9
.0
0

0
.0
0

3
0
3
.0
5

3
1
9
6
6
9
.0
0

3
1
9
6
7
1
.9
0

1
2
.9
7

1
2
8
.2
0

3
1
9
6
6
9
.0
0

3
1
9
8
8
0
.1
5

5
4
7
.7
7

8
3
.2
0

0
.0
0

g
r2
2
9
-3
0

-
4
0
6
6
6
4
.0
0

4
0
7
1
9
4
.8
5

3
7
5
.2
1

3
0
1
.3
5

4
0
6
6
6
4
.0
0

4
0
6
8
8
4
.0
0

2
2
5
.7
2

1
8
6
.2
0

4
0
6
7
0
1
.0
0

4
0
7
3
8
9
.7
5

2
7
9
.3
7

7
3
.1
0

0
.0
1

g
r4
3
1
-1
2

3
3
0
5
5
4
.0
0

2
4
9
0
3
1
.0
0

2
4
9
6
8
2
.2
5

2
9
3
.0
7

3
0
0
.2
5

2
4
9
4
2
1
.0
0

2
5
0
0
3
6
.9
5

6
1
3
.2
3

2
2
1
.4
5

2
4
8
4
4
7
.0
0

2
4
8
4
4
7
.0
0

0
.0
0

2
9
.5
0

-0
.2
3

g
r4
3
1
-2
5

4
6
4
2
9
8
.0
0

3
4
8
0
5
6
.0
0

3
4
8
4
3
1
.1
0

2
0
3
.8
2

3
3
3
.3
0

3
4
8
1
8
1
.0
0

3
4
9
2
3
8
.1
0

4
1
7
.3
8

2
5
3
.7
0

3
4
7
3
3
5
.0
0

3
4
7
5
5
9
.8
0

4
2
0
.1
3

3
9
4
.9
5

-0
.2
1

g
r4
3
1
-4
0

4
8
3
9
7
7
.0
0

4
1
6
1
8
9
.0
0

4
1
6
7
5
8
.4
0

2
4
9
.5
8

3
5
5
.2
0

4
1
6
5
5
2
.0
0

4
1
7
9
6
3
.7
5

9
5
8
.1
4

2
9
6
.9
0

4
1
5
3
1
4
.0
0

4
1
5
3
8
7
.4
5

8
8
.3
1

1
5
9
.4
5

-0
.2
1

g
r6
6
6
-1
0

-
3
9
0
1
8
8
.0
0

3
9
2
2
3
4
.0
0

9
7
1
.3
8

1
5
9
.4
5

3
8
9
5
8
3
.0
0

3
9
6
8
4
1
.5
5

2
7
1
6
.0
0

4
8
5
.9
0

3
8
7
5
6
2
.0
0

3
8
9
5
9
4
.8
0

3
4
1
7
.3
4

4
7
3
.5
5

-0
.5
2

g
r6
6
6
-1
5

-
4
4
8
6
0
4
.0
0

4
4
9
9
9
7
.3
5

7
1
6
.9
7

2
4
8
.1
5

4
4
8
2
5
7
.0
0

4
4
9
6
3
5
.2
5

8
0
0
.1
7

2
2
3
.6
0

4
4
6
4
7
5
.0
0

4
4
7
1
2
3
.6
0

3
2
8
.4
9

5
0
6
.2
0

-0
.4
0

g
r6
6
6
-2
0

-
5
2
2
1
5
7
.0
0

5
2
3
5
8
3
.1
5

9
3
7
.9
0

1
7
7
.5
5

5
2
1
1
4
9
.0
0

5
2
2
6
5
0
.9
0

1
0
0
6
.5
7

2
4
9
.5
0

5
1
9
1
2
1
.0
0

5
1
9
7
7
3
.4
5

3
9
7
.4
7

5
1
2
.2
5

-0
.3
9

g
r6
6
6
-3
0

-
6
5
2
5
8
7
.0
0

6
5
4
0
0
1
.5
0

6
3
3
.5
7

2
2
4
.8
0

6
5
1
8
0
1
.0
0

6
5
3
3
1
8
.1
0

9
2
7
.1
9

2
5
5
.0
5

6
5
0
1
1
6
.0
0

6
5
0
9
7
4
.9
0

4
1
7
.8
7

5
3
5
.7
0

-0
.2
6

17

T
ab
le
4.
C
om

pa
ra
ti
ve

re
su
lt
s
of

G
M
A
an
d
re
fe
re
nc
e
al
go
ri
th
m
s
on

Se
t
II
I.
T
he

st
ri
ct
ly

b
es
t
va
lu
es

ar
e
in
di
ca
te
d
in

b
ol
df
ac
e.

re
-A
B
C
[1
4
]

IT
P
L
S
[1
4
]

G
M
A
(t
h
is
w
o
rk
)

In
st
a
n
c
e

f
b
e
s
t

f
a
v
g

σ
T
im

e
(s
)

f
b
e
s
t

f
a
v
g

σ
T
im

e
(s
)

f
b
e
s
t

f
a
v
g

σ
T
im

e
(s
)

I
m
p
(%

)

p
r1
0
0
2
-5

3
1
6
4
3
7
.0
0

3
1
7
4
2
5
.4
0

4
7
9
.5
9

1
1
2
1
.9
5

3
1
8
5
8
7
.0
0

3
2
0
3
4
8
.8
0

1
0
5
8
.7
2

2
0
5
3
.4
5

3
1
3
8
8
5
.0
0

3
1
4
0
8
3
.2
0

1
2
8
.7
9

1
8
6
8
.4
0

-0
.8
1

p
r1
0
0
2
-1
0

3
8
2
2
0
1
.0
0

3
8
2
8
4
4
.9
0

4
2
3
.4
8

8
4
3
.4
0

3
8
3
1
1
2
.0
0

3
8
4
9
0
8
.5
5

9
3
6
.3
5

1
6
1
5
.6
0

3
7
9
8
4
6
.0
0

3
7
9
9
1
1
.0
0

1
6
2
.4
9

1
3
6
1
.6
5

-0
.6
2

p
r1
0
0
2
-2
0

5
1
6
2
5
6
.0
0

5
1
7
4
8
1
.5
5

4
5
2
.8
1

1
6
0
6
.0
0

5
1
7
9
1
7
.0
0

5
1
9
6
6
4
.8
5

7
9
4
.3
1

1
6
8
3
.0
5

5
1
4
9
6
8
.0
0

5
1
5
7
8
4
.5
5

4
9
8
.4
9

1
8
1
5
.7
0

-0
.2
5

p
r1
0
0
2
-3
0

6
6
4
6
4
8
.0
0

6
6
5
6
7
6
.3
0

5
5
9
.2
4

2
2
1
3
.6
0

6
6
4
3
0
8
.0
0

6
6
6
7
0
2
.2
0

9
2
9
.8
0

1
7
5
3
.6
5

6
6
1
5
4
0
.0
0

6
6
2
6
1
3
.1
0

9
5
8
.8
1

1
7
9
2
.0
0

-0
.4
2

p
r1
0
0
2
-4
0

8
0
6
0
2
2
.0
0

8
0
7
8
3
8
.6
5

7
8
6
.7
9

1
7
5
7
.5
0

8
0
5
9
6
7
.0
0

8
0
8
5
0
3
.3
5

1
4
4
4
.5
7

1
9
4
6
.3
5

8
0
3
6
2
4
.0
0

8
0
3
6
4
2
.4
5

7
4
.2
4

9
5
3
.1
0

-0
.2
9

fn
l2
4
6
1
-3

1
1
4
1
8
8
.0
0

1
1
4
5
0
9
.8
0

1
4
5
.7
7

3
5
6
2
.5
0

1
1
0
0
0
7
.0
0

1
1
0
5
5
3
.5
0

4
1
3
.8
4

2
7
7
3
.7
5

1
0
5
6
3
7
.0
0

1
0
5
7
5
4
.9
0

4
3
.7
8

1
0
9
2
.5
5

-3
.9
7

fn
l2
4
6
1
-6

1
2
2
3
1
2
.0
0

1
2
2
6
1
2
.3
0

1
8
8
.8
1

3
5
9
3
.5
0

1
1
8
5
1
3
.0
0

1
1
9
1
9
9
.1
5

3
8
7
.4
4

2
2
7
3
.7
0

1
1
6
1
2
8
.0
0

1
1
6
2
8
7
.0
5

7
7
.3
6

1
8
8
2
.7
5

-2
.0
1

fn
l2
4
6
1
-1
2

1
4
5
8
0
0
.0
0

1
4
6
3
7
4
.8
5

2
2
0
.6
8

3
5
9
7
.6
5

1
4
5
0
2
3
.0
0

1
4
5
6
8
8
.6
0

2
8
4
.3
7

3
1
2
8
.3
0

1
4
3
4
7
7
.0
0

1
4
3
8
6
6
.1
0

2
1
4
.3
2

3
4
1
0
.4
0

-0
.9
9

fn
l2
4
6
1
-2
4

2
2
2
4
6
5
.0
0

2
2
3
3
3
5
.3
0

4
5
6
.2
6

2
2
3
1
.6
5

2
2
1
4
9
4
.0
0

2
2
1
7
3
9
.8
0

1
6
3
.0
9

3
0
3
9
.9
5

2
2
1
1
1
6
.0
0

2
2
1
3
1
7
.3
5

1
2
1
.7
9

3
3
7
6
.6
5

-0
.1
7

fn
l2
4
6
1
-3
0

2
6
8
4
3
1
.0
0

2
6
9
1
4
0
.3
0

5
3
5
.8
8

2
1
8
8
.6
5

2
6
7
3
5
5
.0
0

2
6
7
5
9
3
.8
5

1
6
9
.3
1

2
8
4
2
.0
0

2
6
7
0
1
7
.0
0

2
6
7
2
4
9
.4
5

1
1
6
.6
9

3
2
0
6
.0
0

-0
.1
3

fn
l3
4
6
1
-3

1
6
2
3
3
5
.0
0

1
6
2
9
0
9
.2
0

1
7
7
.4
7

3
5
0
4
.0
5

1
5
6
7
5
3
.0
0

1
5
7
4
2
0
.5
0

3
9
1
.8
4

2
9
0
0
.7
5

1
4
8
9
1
7
.0
0

1
4
8
9
7
9
.5
5

3
3
.1
3

1
7
4
4
.7
5

-5
.0
0

fn
l3
4
6
1
-1
2

1
7
0
7
6
2
.0
0

1
7
1
2
4
3
.8
0

2
3
8
.7
0

3
6
1
2
.8
5

1
6
5
4
5
5
.0
0

1
6
6
5
2
5
.2
5

5
1
2
.4
3

3
0
3
4
.6
0

1
5
9
9
3
4
.0
0

1
6
0
0
4
0
.7
0

6
3
.0
9

1
9
2
8
.1
0

-3
.3
4

fn
l3
4
6
1
-1
2

1
9
2
8
7
4
.0
0

1
9
3
5
8
2
.7
5

3
3
6
.9
8

3
6
1
2
.9
0

1
8
8
2
2
3
.0
0

1
8
8
9
6
3
.2
5

3
7
1
.4
7

3
2
9
3
.0
0

1
8
5
3
6
3
.0
0

1
8
5
6
2
1
.6
0

1
4
3
.6
7

3
1
8
8
.8
0

-1
.5
2

fn
l3
4
6
1
-2
4

2
6
6
6
8
6
.0
0

2
6
7
1
3
0
.7
5

1
8
7
.3
2

3
5
0
4
.6
0

2
6
5
0
7
8
.0
0

2
6
5
6
7
2
.7
0

3
4
2
.8
3

3
0
4
5
.5
5

2
6
3
6
3
1
.0
0

2
6
3
9
8
0
.4
0

1
7
7
.3
9

3
4
0
5
.6
0

-0
.5
3

fn
l3
4
6
1
-3
0

3
0
8
7
4
2
.0
0

3
0
8
9
6
3
.1
0

9
5
.7
4

2
5
2
6
.1
0

3
0
7
5
6
2
.0
0

3
0
8
0
1
8
.4
0

2
0
8
.4
9

3
0
1
4
.7
0

3
0
7
0
7
1
.0
0

3
0
7
2
5
2
.3
0

1
1
3
.6
2

3
2
6
8
.0
0

-0
.1
7

fn
l3
4
6
1
-4
0

3
8
5
4
4
3
.0
0

3
8
5
7
2
7
.5
0

1
2
0
.9
4

2
3
1
3
.9
5

3
8
5
1
2
2
.0
0

3
8
5
2
9
6
.6
0

1
1
3
.7
3

2
8
2
7
.0
0

3
8
4
5
7
3
.0
0

3
8
4
7
2
2
.9
5

7
7
.9
6

3
3
1
0
.5
0

-0
.1
4

p
la
5
3
9
7
-2
0

3
8
3
3
5
0
0
0

3
8
3
9
2
3
3
0

2
6
9
8
0
.7
6

3
5
0
4
.1
5

3
8
3
3
1
5
0
0

3
8
4
9
4
9
5
0

7
3
2
6
5
.2
1

3
4
8
3
.1
5

3
8
0
0
6
1
0
0

3
8
0
1
8
4
5
0

2
5
3
5
4
.7
2

3
0
5
9
.7
0

-0
.8
5

p
la
5
3
9
7
-3
0

5
1
2
9
9
4
0
0

5
1
3
4
0
3
5
5

2
2
8
4
8
.8
7

3
2
0
5
.3
5

5
1
3
3
9
6
0
0

5
1
4
5
1
4
7
0

8
2
8
3
4
.3
6

3
4
0
3
.3
0

5
1
1
3
8
0
0
0

5
1
1
4
3
2
6
0

3
1
8
0
.1
0

3
1
7
4
.0
0

-0
.3
1

p
la
5
3
9
7
-4
0

6
4
4
0
8
2
0
0

6
4
4
7
6
7
5
5

3
0
6
1
2
.7
7

3
4
8
0
.9
0

6
4
2
8
5
9
0
0

6
4
4
0
4
0
6
0

6
1
2
1
6
.5
2

3
4
3
7
.4
5

6
4
0
9
7
9
0
0

6
4
1
2
1
7
6
0

1
8
4
9
8
.0
9

2
8
5
4
.4
0

-0
.2
9

p
la
5
3
9
7
-5
0

7
4
0
0
8
7
0
0

7
4
0
1
9
3
3
5

5
1
4
8
.6
6

2
3
5
9
.5
0

7
4
0
5
1
2
0
0

7
4
1
4
5
9
1
0

4
4
6
5
9
.8
2

3
4
0
7
.5
0

7
3
9
9
3
6
0
0

7
3
9
9
3
6
1
0

3
0
.7
8

2
7
0
9
.1
0

-0
.0
2

p
la
5
3
9
7
-6
0

8
5
3
0
3
1
0
0

8
5
3
2
4
6
4
5

1
0
4
5
4
.9
9

2
1
6
1
.0
0

8
5
3
2
3
1
0
0

8
5
4
2
4
4
0
0

6
0
0
4
8
.4
5

3
0
4
6
.9
5

8
5
2
6
6
2
0
0

8
5
2
6
6
7
5
0

2
3
5
.0
8

3
1
1
6
.5
5

-0
.0
4

p
la
6
3
9
7
-2
0

3
6
6
7
2
0
0
0

3
6
7
4
8
1
6
5

3
7
2
2
0
.6
4

3
6
0
8
.9
5

3
6
4
0
4
6
0
0

3
6
5
7
5
6
7
5

1
0
3
9
9
0
.1
0
3
3
3
7
.1
0

3
5
9
5
1
8
0
0

3
5
9
9
7
9
2
0

1
9
5
7
1
.5
9

3
0
6
2
.9
5

-1
.2
4

p
la
6
3
9
7
-3
0

4
7
6
8
9
8
0
0

4
7
7
5
0
0
5
5

2
4
2
2
9
.1
6

3
4
5
7
.4
0

4
7
5
5
1
8
0
0

4
7
8
3
2
4
6
0

9
8
8
2
9
.2
8

3
1
7
5
.2
5

4
7
3
4
6
4
0
0

4
7
3
6
8
1
5
5

1
2
1
9
7
.9
1

3
1
4
1
.8
0

-0
.4
3

p
la
6
3
9
7
-4
0

5
6
9
4
8
4
0
0

5
7
0
2
2
5
2
0

3
1
6
9
0
.5
4

3
4
0
0
.3
0

5
6
8
6
0
5
0
0

5
6
9
4
5
5
3
0

5
4
0
6
1
.0
4

3
0
4
0
.7
5

5
6
6
3
8
0
0
0

5
6
6
5
3
2
8
0

1
1
3
4
5
.8
4

3
0
9
6
.1
0

-0
.4
0

p
la
6
3
9
7
-5
0

6
7
4
1
5
0
0
0

6
7
4
8
5
9
6
5

2
7
0
1
4
.3
5

3
0
7
7
.9
5

6
7
3
4
7
7
0
0

6
7
4
1
9
3
8
0

4
0
1
2
2
.9
5

2
9
8
3
.4
5

6
7
1
6
1
5
0
0

6
7
1
7
1
1
9
0

7
6
6
7
.4
9

3
0
1
8
.5
0

-0
.2
8

p
la
6
3
9
7
-6
0

7
5
0
7
7
2
0
0

7
5
1
1
8
3
8
5

1
6
3
4
1
.5
0

3
3
1
4
.7
0

7
4
9
8
3
6
0
0

7
5
0
6
3
6
6
0

5
2
3
3
9
.2
7

3
0
9
9
.8
5

7
4
7
9
1
2
0
0

7
4
8
0
3
0
7
5

1
0
3
3
0
.1
2

3
2
3
5
.4
5

-0
.2
6

p
la
7
3
9
7
-2
0

4
2
2
6
2
9
0
0

4
2
4
3
2
4
3
5

7
8
8
5
5
.5
3

1
4
4
3
1
.4
5

4
1
8
0
4
2
0
0

4
2
0
2
7
4
0
5

1
3
8
5
6
3
.8
6
1
3
7
5
0
.3
0

4
1
2
6
0
5
0
0

4
1
4
2
2
1
9
5

7
0
8
8
7
.7
0

1
2
2
0
4
.6
5

-1
.1
1

p
la
7
3
9
7
-3
0

5
3
6
4
8
4
0
0

5
3
7
1
7
3
4
5

4
5
5
9
5
.9
4

1
4
0
1
7
.3
5

5
3
1
8
3
7
0
0

5
3
3
5
8
6
5
5

1
1
3
5
2
3
.0
8
1
3
7
7
8
.9
5

5
2
6
3
6
9
0
0

5
2
7
8
0
8
9
0

8
8
3
3
2
.8
3

1
2
9
3
2
.4
7

-0
.9
3

p
la
7
3
9
7
-4
0

6
5
8
4
7
1
0
0

6
5
9
1
9
2
5
0

4
2
1
0
6
.6
5

1
4
0
7
2
.9
0

6
5
4
4
1
6
0
0

6
5
6
6
2
8
4
5

1
4
2
2
3
2
.6
8
1
3
6
4
3
.1
5

6
4
9
3
7
2
0
0

6
5
0
2
9
5
2
0

5
8
8
2
6
.5
9

1
2
9
0
6
.2
5

-0
.7
7

p
la
7
3
9
7
-5
0

7
7
1
9
4
5
0
0

7
7
2
6
5
7
3
0

3
8
9
8
1
.2
9

1
4
0
6
4
.0
5

7
6
7
0
1
7
0
0

7
6
7
8
4
3
3
5

7
4
1
3
4
.0
9

1
3
7
4
8
.8
5

7
6
3
3
1
1
0
0

7
6
4
0
6
7
7
0

4
7
6
2
8
.3
3

1
2
6
3
5
.5
5

-0
.4
4

p
la
7
3
9
7
-6
0

8
7
0
4
1
5
0
0

8
7
1
0
3
3
2
1

3
5
0
4
5
.5
5

1
3
5
6
2
.4
2

8
6
6
2
8
2
0
0

8
6
7
4
9
4
9
0

7
7
7
4
7
.3
2

1
3
7
6
3
.9
0

8
6
1
5
3
7
0
0

8
6
2
2
4
3
8
0

4
8
4
2
9
.6
7

1
3
1
8
2
.3
5

-0
.5
8

18

31 large instances of Set III (1002− 7397 cities and 3− 60 salesmen) with the
same information as in Table 3. These results clearly show the dominance of
the proposed GMA algorithm over the reference algorithms for these large in-
stances, by systematically reporting better results in terms of the best and the
average objective values. Moreover, GMA requires the shortest computation
times to reach its solutions for this set of large instances, demonstrating its re-
markable search capacity and high computational e�ciency. According to the
p-values (less than 0.05) from the Wilcoxon signed-rank test shown in Table
5, the di�erence between GMA and each compared algorithm is statistically
signi�cant.

Tables 2-4 demonstrate the high competitiveness of the proposed GMA al-
gorithm compared with the state-of-the-art algorithms for solving the exist-
ing CTSP benchmark instances. Its superiority becomes more evident when
medium and large instances are solved. GMA reports improved best-known
results (new upper bounds) for 7 medium instances of Set II and all 31 large
instances of Set III, which are useful for future research on CTSP.

0

0.2

0.4

0.6

0.8

1

1 1.02 1.04 1.06 1.08 1.1

P
er

ce
n

ta
g

e
o

f
p

ro
b

le
m

s
so

lv
ed

 (
f b

es
t)

Performance ratio

GMA

re-ABC

ITPLS

(a)

0

0.2

0.4

0.6

0.8

1

1 1.02 1.04 1.06 1.08 1.1

P
er

ce
n

ta
g

e
o

f
p

ro
b

le
m

s
so

lv
ed

 (
f a

vg
)

Performance ratio

GMA

re-ABC

ITPLS

(b)

Fig. 4. Performance pro�les of GMA and two reference algorithms on the 65 instances
of sets I, II, and III. The left part corresponds to the best results while the right
part is for the average results.

For a more intuitive illustration of the performance assessment of the algo-
rithms, we use the performance pro�le [7], which is a popular benchmarking
tool for rigorous comparison of di�erent algorithms. In general, performance
pro�les adopt a speci�c performance metric (in our case, we use fbest and favg)
on all sets of instances. To compare a set of algorithmsX over a set of problems
Q, the performance ratio is de�ned by rx,q = fx,q

min{fx,q:x∈X,q∈Q}
. If an algorithm

x does not report result for a problem q, rx,q = +∞. The performance func-

tion of an algorithm x is computed by Qx(τ) = |q∈Q|rx,q≤τ |
|Q| . The value Qx(τ)

computes the fraction of problems that the algorithm x can solve with at most
τ many times the cost of the best algorithm. For example, Qx(1) equals the
number of problems that algorithm x solved better than, or as good as the
other algorithms in Q. Similarly, the value Qx(rf) is the maximum number of

19

problems that algorithm x solved. Therefore, Qx(1) and Qx(rf) represent the
e�ciency and robustness of algorithm x, respectively.

Fig. 4 shows the performance pro�les of GMA, ITPLS and re-ABC. We ob-
serve that GMA dominates the reference algorithms in terms of the best and
average values. Indeed, GMA has a much higher Qx(1) value compared with
the reference algorithms, indicating that GMA can �nd better or equal results
for all instances. Furthermore, GMA reaches Qx(rf) �rstly, indicating a high
robustness of our algorithm.

Table 5
Summary of comparative results between GMA and two reference algorithms
Algorithm pair Set/Instance Indicator Better Equal Worse p− value

GMA vs. ITPLS I/20 fbest 0 20 0 0.00E+00

favg 0 20 0 0.00E+00

II/14 fbest 7 4 3 2.44E-04

favg 8 1 5 4.80E-02

III/31 fbest 31 0 0 1.17E-06

favg 31 0 0 1.17E-06

GMA vs. re-ABC I/20 fbest 0 20 0 0.00E+00

favg 0 20 0 0.00E+00

II/14 fbest 8 4 2 1.37E-02

favg 9 1 4 4.79E-02

III/31 fbest 31 0 0 1.17E-06

favg 31 0 0 1.17E-06

Finally, Table 5 summarizes the results reported by the compared algorithms
on the three sets of 65 instances. Column 2 gives the set name and the number
of instances in the set. Column 3 shows the quality indicators (fbest and favg).
Columns 4-6 count the number of instances for which GMA achieves a better,
equal or worse value compared with each reference algorithm. The last column
presents the p-values from the Wilcoxon signed-rank test. Table 5 reveals large
performance gaps between GMA and each reference algorithm on Sets II and
III. We conclude that GMA is very competitive for solving CTSP and this is
particularly true for large instances.

5 Discussion and analysis

5.1 Bene�t of the key components

In this section, we justify the design choices behind the proposed GMA algo-
rithm. For this, we investigate the impacts of its key components: Constrained
Cross-exchange, EAX as well as backbone-based crossover. For our experi-
ments, we used the 45 instances of Sets II and III and ignored the instances
of Set I. Indeed, for the instances of Set I, their best-known results can be
consistently reached by the state-of-the-art algorithms including ABC, ITPLS
and GMA within a very short time. As such, these instances are too easy to
be used to compare algorithm variants.

20

Table 6
Comparative results on Set II between GMA and its three variants. Strictly best
values are shown in boldface.

GMA GMA0 GMA1 GMA2

Instance fbest favg fbest favg fbest favg fbest favg

gr202-12 99871.00 100162.50 100292.00 100722.85 100196.00 100573.25 99871.00 100217.90

gr202-25 173477.00 173594.65 173782.00 173828.55 173394.00 173681.40 173511.00 173643.90

gr202-35 233871.00 234003.35 234126.00 234226.30 233907.00 234074.20 233749.00 233948.20

gr229-10 222167.00 222173.75 222167.00 222255.75 223266.00 224262.85 222167.00 222167.00

gr229-15 264146.00 264146.00 264224.00 265715.20 265537.00 266727.75 264183.00 264186.90

gr229-20 319669.00 319880.15 320976.00 322435.20 319669.00 320910.90 319669.00 320424.30

gr229-30 406701.00 407389.75 407692.00 408434.25 407962.00 408942.80 407226.00 407648.55

gr431-12 248447.00 248447.00 248447.00 248462.10 252253.00 254230.25 248447.00 248447.00

gr431-25 347335.00 347559.80 347545.00 348599.25 350446.00 351721.50 347459.00 347800.20

gr431-40 415314.00 415387.45 415280.00 415560.35 416983.00 419148.30 415280.00 415342.00

gr666-10 387562.00 389594.80 392586.00 395300.20 399415.00 404852.60 387321.00 388644.95

gr666-15 446475.00 447123.60 449908.00 452081.65 453684.00 459695.45 446839.00 447329.35

gr666-20 519121.00 519773.45 523090.00 525733.00 523178.00 526787.50 519071.00 520190.70

gr666-30 650116.00 650974.90 653524.00 656015.75 652608.00 655150.05 651330.00 652005.05

Table 7
Comparative results on Set III between GMA and its three variants. Strictly best
values are indicated in boldface.

GMA GMA0 GMA1 GMA2

Instance fbest favg fbest favg fbest favg fbest favg

pr1002-5 313885.00 314083.20 314065.00 314495.30 324126.00 327673.20 313867.00 313946.15

pr1002-10 379846.00 379911.00 380489.00 380656.65 388221.00 391193.95 379846.00 379920.85

pr1002-20 514968.00 515784.55 515927.00 516825.70 522573.00 524484.30 513814.00 515288.60

pr1002-30 661540.00 662613.10 663314.00 664050.80 666270.00 669233.55 661540.00 662284.40

pr1002-40 803624.00 803642.45 804971.00 805937.95 808207.00 810596.10 803624.00 804251.20

fnl2461-3 105637.00 105754.90 105793.00 105943.85 112896.00 113202.90 105637.00 105753.75

fnl2461-6 116128.00 116287.05 116531.00 116761.30 120621.00 121369.65 116173.00 116273.20

fnl2461-12 143477.00 143866.10 146060.00 146259.00 145953.00 146626.45 143739.00 144100.30

fnl2461-24 221116.00 221317.35 225527.00 226078.10 222280.00 222706.05 221167.00 221439.10

fnl2461-30 267017.00 267249.45 271199.00 271586.55 267799.00 268144.30 267296.00 267441.70

fnl3461-3 148917.00 148979.55 148957.00 149065.90 160427.00 161053.00 148917.00 148978.25

fnl3461-6 159934.00 160040.70 160181.00 160340.95 169106.00 169983.65 159906.00 160052.60

fnl3461-12 185363.00 185621.60 186394.00 186910.25 192212.00 192988.60 185652.00 185814.80

fnl3461-24 263631.00 263980.40 267515.00 267723.05 267007.00 267684.65 263763.00 264050.00

fnl3461-30 307071.00 307252.30 310275.00 310787.45 308936.00 309526.70 306991.00 307148.20

fnl3461-40 384573.00 384722.95 387335.00 387810.05 385794.00 385981.80 384611.00 384752.45

pla5397-20 38006100 38018450 38049400 38084660 38527700 38625835 38006000 38013320

pla5397-30 51138000 51143260 51297400 51353685 51294600 51385805 51141700 51148700

pla5397-40 64097900 64121760 64337200 64420905 64192200 64258245 64100100 64148815

pla5397-50 73993600 73993610 73993700 73993870 74048200 74119855 73993600 73993615

pla5397-60 85266200 85266750 85269600 85281395 85347400 85397905 85266900 85267150

pla6397-20 35951800 35997920 36298800 36344680 36502300 36650005 35945200 36020685

pla6397-30 47346400 47368155 47646200 47680965 47555300 47699290 47390500 47418730

pla6397-40 56638000 56653280 56881800 56921780 56828400 56884080 56661500 56688900

pla6397-50 67161500 67171190 67297700 67370130 67293800 67359825 67181100 67207485

pla6397-60 74791200 74803075 74941900 74988450 74935800 74986940 74814700 74845785

pla7397-20 41260500 41422195 42063000 42217895 41653000 41817975 41446600 41501520

pla7397-30 52636900 52780890 53655100 53801700 52953600 53082005 52810400 52893300

pla7397-40 64937200 65029520 66045400 66163565 65151400 65267450 64993500 65070450

pla7397-50 76331100 76406770 77166800 77274005 76467400 76569390 76344200 76422895

pla7397-60 86153700 86224380 87017600 87097055 86243600 86382840 86171600 86233840

5.1.1 Bene�t of constrained cross-exchange

To highlight the bene�t of the constrained cross-exchange (CCE, Section
3.3.1), we compared GMA with a variant GMA0, where CCE is removed from

21

LOE. In other words, only EAX is employed in GMA0 in the local optima
exploration component.

Computational results of GMA and GMA0 are shown in Tables 6 and 7 and
summarized in Table 8 and Fig. 5. The results indicate that GMA performs
signi�cantly better than GMA0 in terms of fbest and favg. For fbest, GMA
dominates GMA0 by getting 42 better results out of the 45 tested instances
and reporting only one worse result. Furthermore, the statistically signi�cant
di�erence between GMA and GMA0 is veri�ed by the Wilcoxon singed-rank
test with a 95% level of con�dence in Table 8. Therefore, this experiment
con�rms the usefulness of CCE for the GMA algorithm.

5.1.2 Bene�t of EAX

To assess the bene�t of EAX in LOE, we created another variant GMA1 in
which EAX is replaced by 2-opt [17] for individual route optimization. GMA1

shares the other ingredients of GMA.

From the results in Tables 6 and 7, we observe that GMA signi�cantly outper-
forms GMA1 on all instances, except gr202-25. For gr202-25, the best result of
GMA1 is slightly better than GMA. Furthermore, the small p-value (less than
0.05) in Table 8 from the Wilcoxon singed-rank test attests the signi�cant
di�erence between GMA and GMA1. Moreover, the performance pro�les of
Fig. 5 indicate that GMA surpasses GMA1 in terms of fbest and favg. Indeed,
GMA arrives at Qx(rf) �rstly, much earlier than GMA1. These observations
illustrate the bene�t of EAX in GMA.

5.1.3 Bene�t of backbone-based crossover

0

0.2

0.4

0.6

0.8

1

1 1.02 1.04 1.06 1.08

P
er

ce
n

ta
g

e
o

f
p

ro
b

le
m

s
so

lv
ed

 (
f b

es
t)

Performance ratio

GMA

GMA₀

GMA₁

GMA₂

(a)

0

0.2

0.4

0.6

0.8

1

1 1.02 1.04 1.06 1.08 1.1

P
e
r
c
e
n

ta
g

e
 o

f
p

r
o

b
le

m
s

so
lv

e
d

 (
f a

v
g
)

Performance ratio

GMA

GMA₀

GMA₁

GMA₂

(b)

Fig. 5. Performance pro�les of GMA and its three variants on the set of 45 selected
instances. The left part corresponds to the best results while the right part is for
the average results.

To study the e�ectiveness of the backbone-based crossover, we compared GMA
with a third variant GMA2. In GMA2, the backbone-based crossover is re-

22

placed by a crossover proposed by Singh and Baghel [30], which was designed
for the related MTSP problem. This crossover selects one of the two parents
uniformly at random and copies, from the parent to the o�spring, the most
promising route (i.e., the route having the smallest ratio of route length to
the number of cities in that route). Then all the cities belonging to the route
are deleted from both parents by connecting the predecessor of each city to
its successor, and the length of the route is updated accordingly.

From the comparative results (fbest and favg) of GMA and GMA2 in Tables 6
and 7, we observe that in terms of fbest, GMA dominates GMA2 by acquiring
25 better results, 10 equal results and 10 worse results. The Wilcoxon signed-
rank test, shown in Table 8, also con�rms that GMA outperforms signi�cantly
GMA2 on the large instances (set III). This experiment demonstrates that the
backbone-based crossover operator contributes positively to the performance
of GMA, in particular for solving large instances.

Finally, Fig. 5 provides other useful information for the importance of each
ingredient of GMA. For example, GMA1 performs the worst because it has
the worst (smallest) Qx(1) value and reaches Qx(rf) lastly. Therefore, we can
summarize that EAX is the most important component of GMA, followed by
CCE, �nally the backbone-based crossover operator.

Table 8
Summary of comparative results between GMA and and its three variants
Algorithm pair Set/Instance Indicator Better Equal Worse p− value

GMA vs. GMA0 II/14 fbest 11 2 1 9.77E-04

favg 14 0 0 1.22E-04

III/31 fbest 31 0 0 1.17E-06

favg 31 0 0 1.17E-06

GMA vs. GMA1 II/14 fbest 12 1 1 7.32E-04

favg 14 0 0 1.22E-04

III/31 fbest 31 0 0 1.17E-06

favg 31 0 0 1.17E-06

GMA vs. GMA2 II/14 fbest 6 4 4 3.34E-01

favg 9 1 4 9.42E-02

III/31 fbest 19 6 6 1.60E-03

favg 23 0 8 9.94E-04

5.2 In�uences of selection, pool updating and mutation

In addition to the local optimization and crossover components, the perfor-
mance of a memetic algorithm such as GMA could be in�uenced by other fac-
tors such as parent selection, pool updating and mutation. According to our
experiments with the roulette-wheel selection strategy and the rank-pool up-
dating strategy [39], no signi�cant changes were observed regarding the perfor-
mance of the GMA algorithm. In this subsection, we focus on studying the in-
�uence of mutation. Speci�cally, when the best solution ϕ∗ is not improved for
maxNoImpor consecutive iterations (we empirically set maxNoImpor = 50),
the search is judged to be stagnating. Then a mutation operator is triggered to

23

modify one third of the solutions in the population (i.e., each solution is mu-
tated with an equal probability of 1/3). The mutation consists of displacing a
certain number of randomly and uniformly chosen shared cities. To be speci�c,
for a solution to be mutated, |S| × 0.3 shared cities are �rst removed, leading
to a partial solution. Then these removed shared cities are inserted into the
partial solution one by one, using the second step of the greedy randomized
heuristic to minimize the distance increase. After that, each mutated solution
is optimized by the local optima exploration procedure of Section 3.3. Com-
parative results of GMA and the GMA variant extended with the mutation
(called GMA3) are shown in Tables 9 and 10.

Table 9
Comparative results on Set II between GMA and GMA3 (with mutation). Strictly
best values are indicated in boldface.

GMA GMA3

Instance fbest favg σ fbest favg σ

gr202-12 99871.00 100162.50 185.46 99871.00 100136.95 201.03

gr202-25 173477.00 173594.65 75.72 173358.00 173569.15 100.05

gr202-35 233871.00 234003.35 72.81 233871.00 233973.20 91.05

gr229-10 222167.00 222173.75 30.19 222167.00 222167.00 0.00

gr229-15 264146.00 264146.00 0.00 264146.00 264147.85 8.27

gr229-20 319669.00 319880.15 547.77 319669.00 319776.90 332.11

gr229-30 406701.00 407389.75 279.37 406664.00 407333.55 320.53

gr431-12 248447.00 248447.00 0.00 248447.00 248447.00 0.00

gr431-25 347335.00 347559.80 420.13 347335.00 347565.85 441.71

gr431-40 415314.00 415387.45 88.31 415314.00 415364.05 73.31

gr666-10 387562.00 389594.80 3417.34 387459.00 389350.40 2939.49

gr666-15 446475.00 447123.60 328.49 446322.00 447109.50 345.89

gr666-20 519121.00 519773.45 397.47 519121.00 519664.20 360.33

gr666-30 650116.00 650974.90 417.87 650116.00 650894.35 369.63

Best/All 0/14 2/14 - 4/14 11/14 -

p-value - - - 1.25E-01 1.20E-03 -

The results indicate that in terms of fbest, GMA3 outperforms GMA by ob-
taining 13 better results, 28 equal results and 4 worse results. However, the
Wilcoxon signed-rank test shows that there is no statistically signi�cant di�er-
ence. On the contrary, in terms of favg, GMA3 dominates GMA by acquiring 34
better results, 2 equal results and 9 worse results. The Wilcoxon signed-rank
test con�rms that GMA3 signi�cantly outperforms GMA. This experiment
indicates that the mutation strategy can indeed improve the performance of
GMA. Especially, it signi�cantly reinforces the stability of the algorithm.

5.3 Convergence analysis

Finally, we investigate the convergence behaviors of GMA (and the GMA3

variant with mutation) and two key reference algorithms (re-ABC and ITPLS).
For this study, we acquired the running pro�les of these algorithms on two
representative instances of Set II (gr431-25, gr666-30). We ran each algorithm
20 times with the cuto� time of 600 seconds per run and recorded the best
objective values during the process. The results of this experiment are shown
in Fig. 6.

24

Table 10
Comparative results on Set III between GMA and GMA3 (with mutation). Strictly
best values are indicated in boldface.

GMA GMA3

Instance fbest favg σ fbest favg σ

pr1002-5 313885.00 314083.20 128.79 313885.00 314106.55 127.60

pr1002-10 379846.00 379911.00 162.49 379846.00 379902.00 140.98

pr1002-20 514968.00 515784.55 498.49 514244.00 515655.65 586.90

pr1002-30 661540.00 662613.10 958.81 661540.00 662422.80 710.68

pr1002-40 803624.00 803642.45 74.24 803624.00 803624.00 0.00

fnl2461-3 105637.00 105754.90 43.78 105637.00 105755.90 43.10

fnl2461-6 116128.00 116287.05 77.36 116128.00 116278.25 75.96

fnl2461-12 143477.00 143866.10 214.32 143477.00 143811.60 173.59

fnl2461-24 221116.00 221317.35 121.79 221105.00 221299.40 110.59

fnl2461-30 267017.00 267249.45 116.69 267017.00 267230.20 102.23

fnl3461-3 148917.00 148979.55 33.13 148917.00 148979.55 33.13

fnl3461-12 159934.00 160040.70 63.09 159934.00 160035.25 65.67

fnl3461-12 185363.00 185621.60 143.67 185363.00 185605.90 136.94

fnl3461-24 263631.00 263980.40 177.39 263672.00 263972.35 162.72

fnl3461-30 307071.00 307252.30 113.62 307026.00 307233.95 122.99

fnl3461-40 384573.00 384722.95 77.96 384573.00 384720.40 79.81

pla5397-20 38006100 38018450 25354.72 38006100 38018355 25426.04

pla5397-30 51138000 51143260 3180.10 51138000 51142525 2790.75

pla5397-40 64097900 64121760 18498.09 64097900 64120030 16710.07

pla5397-50 73993600 73993610 30.78 73993600 73993605 22.36

pla5397-60 85266200 85266750 235.08 85266300 85266710 202.35

pla6397-20 35951800 35997920 19571.59 35951800 36000990 20031.03

pla6397-30 47346400 47368155 12197.91 47346400 47370840 12919.44

pla6397-40 56638000 56653280 11345.84 56635600 56653405 12491.62

pla6397-50 67161500 67171190 7667.49 67158800 67170200 7372.00

pla6397-60 74791200 74803075 10330.12 74788500 74801030 9630.71

pla7397-20 41260500 41422195 70887.70 41311800 41425215 57057.91

pla7397-30 52636900 52780890 88332.83 52672800 52781955 71085.17

pla7397-40 64937200 65029520 58826.59 64926700 65019290 57437.00

pla7397-50 76331100 76406770 47628.33 76306200 76391380 47713.59

pla7397-60 86153700 86224380 48429.67 86121900 86210057.89 53419.75

Best/All 4/31 7/31 - 9/31 23/31 -

p-value - - - 3.31E-01 3.68E-02 -

One notices �rst that the curves of the population-based GMA and GMA3

do not start at time 0. This is because that these algorithms spent a non-
negligible portion of the time on generating the initial population (around
60 and 100 seconds for gr431-25 and gr666-30, respectively). From Fig. 6, one
observes that re-ABC and ITPLS improve their solution quality quickly at the
beginning of the search, and slow down or even stagnate as the time going.
For GMA and GMA3, the population initialization step allowed them to start
the search with high-quality solutions. The best solution in the population is
continually updated when the time goes on, implying that GMA and GMA3

can better bene�t from the allowed time to improve their solutions.

6 Conclusions

The colored traveling salesmen problem is a relevant variant of the popular
traveling salesmen problem and generalizes the well-known multiple traveling
salesmen problem. In this work, we presented the �rst grouping memetic al-

25

347000

349000

351000

353000

355000

357000

0 100 200 300 400 500 600

T
ra

v
el

in
g

 d
is

ta
n

ce

Time (seconds)

re-ABC

ITPLS

GMA

GMA₃

(a)

650000

654000

658000

662000

666000

670000

0 100 200 300 400 500 600

T
ra

v
el

in
g

 d
is

ta
n

ce

Time (seconds)

re-ABC

ITPLS

GMA

GMA₃

(b)

Fig. 6. Convergence charts (running pro�les) of re-ABC, ITPLS, GMA and GMA3

for solving two representative instances (gr431-25 and gr666-30). The results were
obtained from 20 independent executions of each compared algorithms

gorithm for solving CTSP. The algorithm relies on a speci�c backbone-based
crossover to generate promising o�spring solutions by solution recombination
and a powerful local optima exploration for o�spring improvement. Extensive
computational results on three sets of 65 benchmark instances in the literature
indicate that our algorithm is very competitive compared with existing lead-
ing algorithms. In particular, it reports 38 new upper bounds while matching
24 best-known results. We also investigated the interest of CPLEX for solving
CTSP and reported 10 proven optimal solutions for the �rst time.

For future work, there are several perspectives. First, the cross-exchange oper-
ator used for inter-route optimization has a high time complexity. This implies
that the local optimization component of the proposed algorithm is time con-
suming. As such, for a given time unit (e.g., a short cuto� time), the algorithm
will not be able to sample many candidate solutions, limiting thus its perfor-
mance. To cope with this problem, one possible way is to reduce the number
of candidate solutions considered by CCE. To this end, it is interesting to
investigate the idea of neighborhood pruning that proves to be successful for
vehicle routing [2,34] and TSP [17]. Second, recent research on using learn-
ing technique to reinforce optimization algorithm showed interesting results
(e.g. [38]). As such, it would be useful to study in depth hybrid approaches
that combine learning strategies and GMA. Third, CTSP is strongly related
to MTSP and TSP, for which powerful algorithms exist. Ideas of these algo-
rithms could be useful for solving CTSP. Finally, to the best of our knowledge,
no dedicated exact algorithm exists for CTSP. E�orts are needed to �ll the
gap.

Acknowledgments

We are grateful to the reviewers for their useful comments and suggestions
which helped us to signi�cantly improve the paper. We thank Prof. Jun Li

26

and Prof. Alok Singh for providing their test instances. Support from the
China Scholarship Council (CSC, No. 201906850087) for the �rst author is
also acknowledged.

References

[1] D. L. Applegate, R. E. Bixby, V. Chvátal, W. J. Cook, The Traveling Salesman
Problem: a Computational Study, Princeton University Press, 2006.

[2] F. Arnold, K. Sörensen, Knowledge-guided local search for the vehicle routing
problem, Computers & Operations Research 105 (2019) 32�46.

[3] T. Bektas, The multiple traveling salesman problem: an overview of formulations
and solution procedures, Omega 34 (3) (2006) 209�219.

[4] A. E. Carter, C. T. Ragsdale, A new approach to solving the multiple traveling
salesperson problem using genetic algorithms, European Journal of Operational
Research 175 (1) (2006) 246�257.

[5] D. Cattaruzza, N. Absi, D. Feillet, T. Vidal, A memetic algorithm for the multi
trip vehicle routing problem, European Journal of Operational Research 236 (3)
(2014) 833�848.

[6] P. Chen, H.-K. Huang, X.-Y. Dong, Iterated variable neighborhood descent
algorithm for the capacitated vehicle routing problem, Expert Systems with
Applications 37 (2) (2010) 1620�1627.

[7] E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance
pro�les, Mathematical Programming 91 (2) (2002) 201�213.

[8] X. Dong, W. Dong, Y. Cai, Ant colony optimisation for coloured travelling
salesman problem by multi-task learning, IET Intelligent Transport Systems
12 (8) (2018) 774�782.

[9] X. Dong, Q. Lin, M. Xu, Y. Cai, Arti�cial bee colony algorithm with generating
neighbourhood solution for large scale coloured traveling salesman problem, IET
Intelligent Transport Systems 13 (10) (2019) 1483�1491.

[10] E. Falkenauer, Genetic Algorithms and Grouping Problems, John Wiley & Sons,
Inc., USA, 1998.

[11] P. Galinier, Z. Boujbel, M. C. Fernandes, An e�cient memetic algorithm for
the graph partitioning problem, Annals of Operations Research 191 (1) (2011)
1�22.

[12] P. Galinier, J.-K. Hao, Hybrid evolutionary algorithms for graph coloring,
Journal of Combinatorial Optimization 3 (4) (1999) 379�397.

[13] J.-K. Hao, Memetic algorithms in discrete optimization, in: Handbook of
memetic algorithms, Springer, 2012, pp. 73�94.

27

[14] P. He, J.-K. Hao, Iterated two-phase local search for the colored traveling
salesmen problem, Engineering Applications of Arti�cial Intelligence 97 (2021)
104018.

[15] P. He, J. Li, H. Qin, Z. He, R. He, Fields distinguished by edges and middles
visited by heterogeneous vehicles to minimize non-working distances, Computers
and Electronics in Agriculture 170 (2020) 105273.

[16] P. He, J. Li, D. Zhang, S. Wan, Optimisation of the harvesting time of rice in
moist and non-moist dispersed �elds, Biosystems Engineering 170 (2018) 12�23.

[17] K. Helsgaun, An e�ective implementation of the lin�kernighan traveling
salesman heuristic, European Journal of Operational Research 126 (1) (2000)
106�130.

[18] A. H. Kashan, A. A. Akbari, B. Ostadi, Grouping evolution strategies: An
e�ective approach for grouping problems, Applied Mathematical Modelling
39 (9) (2015) 2703�2720.

[19] L. T. Kóczy, P. Földesi, B. Tü¶-Szabó, Enhanced discrete bacterial memetic
evolutionary algorithm-an e�cacious metaheuristic for the traveling salesman
optimization, Information Sciences 460 (2018) 389�400.

[20] J. Li, X. Meng, X. Dai, Collision-free scheduling of multi-bridge machining
systems: a colored traveling salesman problem-based approach, IEEE/CAA
Journal of Automatica Sinica 5 (1) (2017) 139�147.

[21] J. Li, M. Zhou, Q. Sun, X. Dai, X. Yu, Colored traveling salesman problem,
IEEE Transactions on Cybernetics 45 (11) (2014) 2390�2401.

[22] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, T. Stützle, The
irace package: Iterated racing for automatic algorithm con�guration, Operations
Research Perspectives 3 (2016) 43�58.

[23] Y. Lu, J.-K. Hao, Q. Wu, Hybrid evolutionary search for the traveling repairman
problem with pro�ts, Information Sciences 502 (2019) 91�108.

[24] X. Meng, J. Li, X. Dai, J. Dou, Variable neighborhood search for a colored
traveling salesman problem, IEEE Transactions on Intelligent Transportation
Systems 19 (4) (2017) 1018�1026.

[25] Y. Nagata, O. Bräysy, Edge assembly-based memetic algorithm for the
capacitated vehicle routing problem, Networks: An International Journal 54 (4)
(2009) 205�215.

[26] Y. Nagata, S. Kobayashi, A powerful genetic algorithm using edge assembly
crossover for the traveling salesman problem, INFORMS Journal on Computing
25 (2) (2013) 346�363.

[27] I. Or, Traveling salesman-type combinatorial problems and their relation to the
logistics of blood banking, PhD thesis (Department of Industrial Engineering
and Management Science, Northwestern University).

28

[28] V. Pandiri, A. Singh, A swarm intelligence approach for the colored traveling
salesman problem, Applied Intelligence 48 (11) (2018) 4412�4428.

[29] C. Prins, A simple and e�ective evolutionary algorithm for the vehicle routing
problem, Computers & Operations Research 31 (12) (2004) 1985�2002.

[30] A. Singh, A. S. Baghel, A new grouping genetic algorithm approach to the
multiple traveling salesperson problem, Soft Computing 13 (1) (2009) 95�101.

[31] B. Soylu, A general variable neighborhood search heuristic for multiple traveling
salesmen problem, Computers & Industrial Engineering 90 (2015) 390�401.

[32] W. Sun, J.-K. Hao, W. Wang, Q. Wu, Memetic search for the equitable coloring
problem, Knowledge-Based Systems 188 (2020) 105000.

[33] É. Taillard, P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, A tabu search
heuristic for the vehicle routing problem with soft time windows, Transportation
Science 31 (2) (1997) 170�186.

[34] P. Toth, D. Vigo, The granular tabu search and its application to the vehicle-
routing problem, INFORMS Journal on Computing 15 (4) (2003) 333�346.

[35] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, W. Rei, A hybrid genetic
algorithm for multidepot and periodic vehicle routing problems, Operations
Research 60 (3) (2012) 611�624.

[36] Y. Wang, Y. Chen, Y. Lin, Memetic algorithm based on sequential variable
neighborhood descent for the minmax multiple traveling salesman problem,
Computers & Industrial Engineering 106 (2017) 105�122.

[37] S. Yuan, B. Skinner, S. Huang, D. Liu, A new crossover approach for solving
the multiple travelling salesmen problem using genetic algorithms, European
Journal of Operational Research 228 (1) (2013) 72�82.

[38] Y. Zhou, B. Duval, J.-K. Hao, Improving probability learning based local search
for graph coloring, Applied Soft Computing 65 (2018) 542�553.

[39] Y. Zhou, J.-K. Hao, F. Glover, Memetic search for identifying critical nodes in
sparse graphs, IEEE Transactions on Cybernetics 49 (10) (2018) 3699�3712.

A Appendix

In this appendix, we show the mathematical model that we used to report the
results of the general ILP solver CPLEX in Section 4. The model is based on
[14] and [21].

Min F =
m∑
k=1

n−1∑
i=0

n−1∑
j=0

cijxijk (A.1)

n−1∑
i=1

x0ik = 1,∀k ∈M (A.2)

29

n−1∑
i=1

xi0k = 1,∀k ∈M (A.3)

∑
i

∑
j

xijk = 0, i ∈ (Ck ∪ S), j ∈ V \(Ck ∪ S),∀k ∈M (A.4)

n−1∑
j=0

m∑
k=1

xjik = 1, j 6= i, i ∈ V \{0} (A.5)

∑
l

xjlk =
∑
i

xijk, i 6= j 6= l, j, i, l ∈ Ck ∪ S,∀k ∈M (A.6)

uik − ujk + n× xijk ≤ n− 1, j 6= i, i, j ∈ V \{0},∀k ∈M (A.7)

The binary variable xijk = 1 indicates that the k-th salesman passes through
edge {i, j}, and otherwise xijk = 0. uik is the number of cities visited on the
k-th route from the depot up to city i. The objective function of CTSP is given
by Eq. (A.1) and Eqs. (A.2-A.7) are the constraints of the problem. Eqs. (A.2)
and (A.3) require that each salesman starts from the depot and returns to the
depot. Eq. (A.4) indicates that each salesman can only visit its own exclusive
cities and some shared cities. Eq. (A.5) means that each city except the depot
can only be visited exactly once. Eq. (A.6) indicates that a salesman can only
arrive at its exclusive and shared cities to continue its route. Eqs. (A.6) and
(A.7) are employed to eliminate the subtours for each salesman.

This ILP model has two variables for every edge (for both directions) and
uses the Miller-Tucker-Zemlin subtour elimination constraints. Given that this
model includes more variables than necessary and the Miller-Tucker-Zemlin
subtour elimination constraints are known to be very slow for TSP from prac-
tical point of view, it would be interesting to investigate other formulations. A
possible way would be to de�ne an undirected model using, e.g., the subtour
elimination constraints of Dantzig-Fulkerson-Johnson. Even if such a formula-
tion makes the use of ILP solvers impossible, it can form a basis for designing
dedicated branch-and-cut algorithms, which can be expected to outperform
the approach based on general ILP solvers.

30

	Introduction
	Literature review and related works
	Grouping memetic algorithm for CTSP
	General scheme
	Population initialization
	Local optima exploration
	Backbone-based crossover
	Pool updating strategy

	Experimental results and comparisons
	Benchmark and experimental protocol
	Parameter tuning
	Computational results and comparisons with existing algorithms

	Discussion and analysis
	Benefit of the key components
	Influences of selection, pool updating and mutation
	Convergence analysis

	Conclusions
	References
	Appendix

