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Abstract

The Hamiltonian p median problem consists of �nding p (p is given) non-intersecting
Hamiltonian cycles in a complete edge-weighted graph such that each cycle visits at
least three vertices and each vertex belongs to exactly one cycle, while minimizing
the total cost of p cycles. In this work, we present an e�ective and scalable hybrid
genetic algorithm to solve this computationally challenging problem. The algorithm
combines an edge-assembly crossover to generate promising o�spring solutions from
high-quality parents, and a multiple neighborhood local search to improve each
o�spring solution. To promote population diversity, the algorithm applies a mutation
operator to the o�spring solutions and a quality-and-distance update strategy to
manage the population. We compare the method to the best reference algorithms in
the literature based on three sets of 145 popular benchmark instances (with up to 318
vertices), and report improved best upper bounds for 8 instances. To evaluate the
scalability of the method, we perform experiments on a new set of 70 large instances
(with up to 1060 vertices). We examine the contributions of key components of the
algorithm.

Keywords: p-median; Traveling salesman; Memetic search; Edge assembly crossover;
Local search; Metaheuristic.

1 Introduction1

The Hamiltonian p-median problem (HpMP) [3] is de�ned on a complete graph2

G = (V , E), where V = {v0, v1, · · · , vn−1} is the vertex set and E is the edge3
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set. Let C be a non-negative cost matrix associated with E . The HpMP is to4

�nd p (p is given) non-intersecting Hamiltonian cycles such that each cycle5

visits at least three vertices and each vertex appears on exactly one cycle with6

the objective of minimizing the total cost of the p cycles. A mathematical7

formulation of the problem is shown in Appendix A. The popular symmetric8

traveling salesman problem (TSP) is a particular case of HpMP when p = 1.9

As a mixed routing location problem [16], the HpMP combines the p-median10

problem [20,25] and the TSP [1]. As such, the HpMP is a relevant model for11

a variety of practical problems related to school locations, depot locations,12

multi-depot vehicle routing, industrial process scheduling or leather cutting13

[7]. On the other hand, the HpMP is known to be NP-hard for any p ≥ 1 on14

Euclidean graphs [19] and is therefore computationally challenging.15

Since the introduction of HpMP in 1990, a number of solution methods have16

been developed. Several formulations have been studied within the polyhedral17

approach [9,15,35]. Gollowitzer et al. [8] performed theoretical and computa-18

tional comparisons of seven di�erent formulations. Marzouk et al. [19] devel-19

oped a branch-and-price (B&P) algorithm and presented results for three sets20

of 754 benchmark instances (21�318 vertices), including optimal solutions for21

272 small and medium instances (with 21�127 vertices) and 10 optimal solu-22

tions for large instances (with 150�318 vertices). Independently, Erdo§an et23

al. [5] presented an e�ective branch-and-cut algorithm (HpMP2) and showed24

results for two sets of 110 instances with up to 100 vertices, including optimal25

solutions for all 55 small instances and 43 medium instances (with 58�10026

vertices). In addition, Bekta³ et al. [2] studied the related directed Hamilto-27

nian p-median problem and proposed a dedicated branch-and-cut algorithm.28

According to the results in the literature, B&P [19] and HpMP2 [5] are the29

two state-of-the-art exact HpMP algorithms.30

On the other hand, heuristics were investigated to obtain approximate solu-31

tions for large instances in acceptable runtimes. Glaab [6] studied some HpMP32

variants and presented fast heuristics and LP-relaxations to obtain upper and33

lower bounds. Üster and Kumar [31] studied a related balanced ring prob-34

lem and presented a heuristic algorithm incorporating several GRASP-based35

randomized solution construction routines and an e�ective local search im-36

provement procedure. Erdo§an et al. [5] introduced a heuristic algorithm that37

integrates a giant tour and a dynamic programming formulation as well as an38

iterated local search algorithm (ILS) using 2-exchange and 1-opt operators.39

Herrán et al. [14] proposed a general variable neighborhood search algorithm40

(PGVNS) for the HpMP. The algorithm consists of three neighborhoods based41

on classical moves for routing problems. Computational results on 145 bench-42

mark instances showed that PGVNS outperformed other existing methods43

and is the state-of-the-art heuristic algorithm for the HpMP. However, large44

instances remain a challenge for all existing algorithms.45
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Our literature review shows that despite the relevance of HpMP in theory46

and practice, there are not many methods in the literature that e�ectively47

address the problem. This is in stark contrast to the related single-route TSP48

and multi-route vehicle routing problem (VRP), for which there are numerous49

solution methods that can handle large and even very large problem instances.50

On the other hand, population-based genetic algorithms are among the most51

powerful approaches for solving various routing and location problems. It is52

surprising that this approach has not yet been studied for solving the HpMP.53

In this work, we conduct the �rst study on the application of the population-54

based hybrid search framework to the HpMP. In doing so, we take advantage55

of existing e�ective search operators and strategies for solving related TSP56

and VRPs to develop a highly e�ective heuristic algorithm for this challeng-57

ing mixed routing location problem. The proposed population-based hybrid58

genetic search algorithm (HGA) incorporates an adapted popular edge as-59

sembly crossover, originally developed for TSP, and an e�ective local search60

procedure. The crossover generates promising o�spring solutions by inheriting61

common edges from the parent solutions and assembling non-common edges,62

while the local search improves each o�spring solution through an intensive63

neighborhood search. To further increase the search capacity of the algorithm,64

a mutation operator and an advanced population management are also incor-65

porated, with the �rst operator introducing new edges into the descendant66

solutions and the second ensuring a high-quality and diverse population.67

We evaluate the proposed algorithm on three sets of 145 benchmark instances68

(with up to 318 vertices) that are commonly tested in the literature, and com-69

pare the results with state-of-the-art algorithms. We also test the algorithm on70

a new set of 70 large instances (with 400 to 1060 vertices). In addition, we per-71

form experiments to shed light on the role of key components of the algorithm.72

In particular, we show for the �rst time through experimental observations the73

relevance of the idea of edge assembly to the HpMP.74

The rest of the paper is organized as follows. The proposed hybrid genetic75

algorithm is introduced in Section 2, including its search operators and de-76

tailed procedures. This is followed by a detailed computational comparison77

with the state-of-the-art methods in the literature in Section 3. Additional78

experiments are shown to analyze the main algorithmic ingredients and gain79

an understanding of their roles in Section 4 . We conclude with a summary of80

the main �ndings and future work in Section 5.81

2 Hybrid genetic algorithm for HpMP82

The proposed hybrid genetic algorithm (HGA) for the HpMP follows the gen-83

eral approach of memetic algorithms [21,26], which bene�t from a synergistic84

combination of population-based search and neighborhood-based search. In-85
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deed, this approach has been quite successful in solving several TSPs [11,24]86

and various routing problems [18,22,23,27,29,32,12,13]. We show in this paper87

that this approach is also very suitable for the HpMP.88
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Fig. 1. Flow chart of the hybrid genetic algorithm

As illustrated in Fig. 1, the HGA algorithm starts with an initial population89

P in which each individual is constructed by a greedy heuristic (Section 2.1).90

The population is then evolved through multiple generations by applying three91

search operators, including crossover, local search, and mutation. For each gen-92

eration, two parent solutions are selected and combined by the edge assembly93

crossover (EAX) [24] (Section 2.2), resulting in β o�spring solutions (β is a94

parameter), that are �rst improved by local search (Section 2.3), and then95

diversi�ed by the mutation (Section 2.4). Finally, each new solution is used to96

update the population based on a quality-and-distance strategy (Section 2.5).97

The algorithm terminates and returns the best solution ϕ∗ if the prede�ned98

termination condition is satis�ed (e.g., a maximum cuto� time or a maximum99

number of iterations).100

Of particular interest is the edge-assembly crossover, which allows a descen-101

dant solution not only to inherit common edges (de�ned in Section 2.2) of the102

parents, but also to e�ectively assemble non-common edges. Since crossover103

can introduce relatively few edges that are not present in both parents, the104

mutation operator enhances the diversity of the descendant by introducing105

new edges. The quality-and-distance update strategy allows for desirable and106

continuous diversity of the population.107

2.1 Population initialization108

The population P is initialized as follows. An initial solution is constructed by109

a greedy heuristic and local search is then applied to improve the quality. If110

the solution is di�erent from all other solutions in the population, it is inserted111

into P . The quality and distance update strategy (2.5) is activated to keep µ112

solutions once the population reaches the maximum size µ + λ. This process113

stops and returns the population when 4× µ initial solutions are considered.114
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For each initial solution, the greedy heuristic operates according to the fol-115

lowing steps. First, p vertices are randomly selected and each of them is used116

to initialize a cycle. To ensure that each cycle visits at least three vertices, we117

add two more vertices to the cycle in a greedy manner, chosen from the near-118

est neighbors (introduced in section 2.3) of the vertices in the cycle. Finally,119

the remaining vertices are added to arbitrary cycles in a greedy manner con-120

sidering the nearest neighbor rule. Once all vertices are considered, a feasible121

initial solution is constructed. The time complexity is bounded by O(n× α),122

where α is a parameter of the nearest neighbor rule.123

2.2 Edge assembly crossover124

Before triggering the crossover to generate o�spring solutions, the HGA selects125

two parent solutions ϕA and ϕB by a binary tournament strategy with respect126

to the objective value. In this work, we adopt the edge assembly crossover op-127

erator (EAX) to generate promising o�spring solutions. EAX was originally128

introduced to solve the TSP [24] and has shown its e�ectiveness in vehicle129

routing problems [22,23]. The EAX operator has been further generalized to130

successfully solve the split delivery vehicle routing problem [12] and the min-131

max multiple traveling salesman problem [13]. Given that the HpMP includes132

routing as its subproblem, EAX is naturally suited to meet the requirements133

of the HpMP. However, since the HpMP is di�erent from the TSP and rout-134

ing problems, speci�c adaptations are needed, which concern the last step135

(Restore feasibility) of the crossover procedure as described below.136

Given the input graph G = (V , E), let ϕA and ϕB be two parent solutions. Let137

GA = (V , EA) and GB = (V , EB) be the corresponding partial graphs, where EA138

and EB are the sets of edges traversed by ϕA and ϕB, respectively. Note that139

the vertices in the corresponding partial graph of a solution have the same140

degree of two. EAX uses this property to naturally assemble the edges of the141

parents to produce o�spring solutions. In what follows, an edge e ∈ EA ∪ EB142

is quali�ed as a common edge of ϕA and ϕB if e ∈ EA ∩ EB, otherwise, it is a143

non-common edge.144

Algorithm 1: The EAX procedure for the HpMP
Input: ϕA and ϕB parent solutions, β number of o�spring to be created;
Output: β o�spring solutions;

1 Step 1: Construct a joint graph GAB = (V, (EA ∪ EB)\(EA ∩ EB));
2 Step 2: Partition the joint graph GAB into AB-cycles.
3 Step 3: Generate β E-sets by combining AB-cycles.
4 Step 4: Construct β intermediate solutions according to E-sets and a basic

solution.
5 Step 5: Reduce or add cycles in intermediate solutions if the number of cycles

is not equal to p.

As shown in Algorithm 1, the EAX crossover generates β o�spring solutions145
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Fig. 2. Illustration of the EAX crossover for the HpMP

(β is a parameter) through the following steps.146

(1) Construct a joint graph GAB. From the partial graphs GA = (V , EA) and147

GB = (V , EB) associated to the parent solutions ϕA and ϕB, the joint148

graph GAB = (V , (EA ∪ EB)\(EA ∩ EB)) is built. One notices that all edges149

of GAB are non-common edges.150

(2) Partition the joint graph into AB-cycles. An AB-cycle is de�ned as a cy-151

cle in GAB. A random vertex associated with edges from GAB is selected152

to initialize an AB-cycle, which is extended by adjacent edges taken al-153

ternatively from EA and EB. When an added adjacent edge leads to a154

cycle and the number of edges is even, an AB-cycle is constructed and155

its edges are removed from GAB. When GAB = ∅, all edges are partitioned156

into AB-cycles. Since for each vertex in GAB the number of incident edges157

of EA is equal to that of EB, GAB can always be completely and evenly158

partitioned into AB-cycles.159

(3) Generate E-sets. An E-set is an union of AB-cycles. AB-cycles that share160

common vertices are combined to form E-sets. Then if the number of E-161

sets is greater than parameter β, some E-sets are randomly combined to162

retain β E-sets.163

(4) Construct intermediate solutions. Given a basic solution (say ϕA) and an164

E-set (say Es), an intermediate solution ϕ′ = (EA\(Es ∩ EA)) ∪ (Es ∩ EB)165

is created. We thus get β intermediate solutions.166

(5) Restore feasibility. Given an intermediate solution ϕ′, let p′ be the number167

of its Hamiltonian cycles. There are three cases of the value of p′, that is168

p′ > p, p′ = p and p′ < p. Infeasible solutions concern the �rst and third169

cases. For the �rst case (p′ > p), p′−p cycles are eliminated by the 2-opt*170

operator used in [22]. The process starts by randomly selecting a cycle,171

denoted as c1. Next, two vertices, u from c1 and v from another cycle c2172

are selected such that vertex v is among the α nearest neighbors of vertex173
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u. Subsequently, edges (u, x) and (v, y) are removed and replaced with174

new edges (u, v) and (x, y), where x and y are the successors of u and v,175

respectively. This results in the combination of cycles c1 and c2, with the176

objective of minimizing the total distance. The best acceptance strategy177

is used for this purpose. The iterative process continues until p′ = p. For178

the third case (p′ < p), p− p′ cycles are added via the 2-opt*. Similar to179

the �rst case, a random cycle, say c1, is selected, and two vertices, u and180

v, from the cycle are chosen such that vertex v is among the α nearest181

neighbors of vertex u. Then, edges (u, x) and (v, y) are removed, and new182

edges (u, v) and (x, y) are added, resulting in the splitting of cycle c1 into183

two cycles. This iterative process continues until p′ = p.184

Given an E-set, half of the edges come from EA and the other half from EB.185

Since an intermediate solution is constructed based on an E-set and a basic186

solution, say ϕA, if the size of E-set is large, more non-common edges from ϕB187

are inherited by the intermediate solution. Nagata and Kobayashi [24] demon-188

strated that increasing the size of the E-set can help the algorithm escape local189

optima. However, excessively large E-sets may produce o�spring solutions of190

low quality, as intermediate solutions with a high number of subtours can de-191

viate too far from the initial solution. On the contrary, if E-sets are too small,192

o�spring solutions tend to be similar to the basic solution since relatively few193

non-common edges coming from the other parent solution are involved. In this194

work, we experimentally set β = 5 (see Section 4.2 for a sensitivity analysis195

of β).196

Fig. 2 illustrates an example of the EAX procedure with p = 3. There are four197

and two cycles in intermediate solutions a′ and b′, respectively. For solution198

a′, two cycles are connected to restore feasibility. However, a cycle is divided199

to ensure the feasibility of solution b′. During this process, few common edges200

may be broken to re-connect two cycles. For example, as shown in Fig. 2,201

two common edges in solution b
′′
are broken. Indeed, in the �rst four steps,202

all common edges are inherited by intermediate solutions, while the last step203

may break few common edges to restore feasibility. Thus, the EAX crossover204

generates o�spring by inheriting nearly all common edges of the parents, as-205

sembling non-common edges of the parents and occasionally introducing few206

new short edges.207

A HpMP solution contains n edges. The space complexity of EAX is O(n).208

In the �rst four steps, 2 × n edges are assembled, and the time complexity209

is bounded by O(n). In the last step, suppose that there are m cycles in an210

intermediate solution and the cycle with the largest number of edges includes211

|Em| edges. The time complexity of step 5 is bounded by O(|Em| × α) when212

reducing or adding one cycle, where α is the number of the nearest neighbors213

introduced in Section 2.3.214
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2.3 Local search215

In the hybrid genetic algorithm framework, local search is the key compo-216

nent for search intensi�cation and o�spring improvement [10]. To attain high-217

quality solutions within a limited time, local search typically integrates en-218

riched neighborhood operators and speed-up techniques. For the HpMP, HGA219

adopts seven neighborhood operators that are popular for routing problems220

and explores them under the framework of variable neighborhood descent.221

Although Erdo§an et al. [5] and Herrán et al. [14] presented local search pro-222

cedures, they don't use any neighborhood reduction technique, making their223

algorithms less e�ective for large instances. In this work, we adopt the so-224

called α nearest neighbors rule where α (≤ n) is a granularity threshold [30]225

to restrict the neighborhood search to nearby vertices. The nearest neighbors226

rule aims to speed up the neighborhood search and avoid the examination of227

non-promising candidate solutions. This is the �rst time the nearest neighbors228

rule is adopted in the context of HpMP.229

We de�ne the following notations to introduce our neighborhood operators.230

Let vertex v be the nearest neighbor of u. Let c(u) and c(v) be two cycles231

which visit vertices u and v, respectively, and x and y are the successors of u232

in c(u) and v in c(v), respectively. Let (u, x) be the substring from vertex u233

to x and (v, y) be the substring from vertex v to y. Seven basic neighborhood234

operators (or moves) are de�ned as follows.235

(1) M1: Vertex u is removed from c(u) and inserted into c(v) after vertex v.236

(2) M2: Two consecutive vertices u and x are removed from c(u) and inserted237

into c(v) after vertex v.238

(3) M3: Two consecutive vertices u and x are removed from c(u) and place239

(x, u) after vertex v.240

(4) M4: Interchange the position of vertex u and vertex v.241

(5) M5: Interchange (u, x) and vertex v.242

(6) M6: Interchange (u, x) and (v, y).243

(7) M7: This is the 2-opt operator, which replaces (u, x) and (v, y) by (u, v)244

and (x, y) if c(u) = c(v).245

Given the nearest neighbors rule, the time complexity of all operators is246

bounded O(n× α).247

The seven operators are explored under the framework of variable neighbor-248

hood descent according to the order in which they are presented, as illustrated249

in Algorithm 2, where Mθ(ϕ) (θ = 1, 2, ..., θmax) is the current neighborhood250

and θmax =7.251

We mention that the iterated local search (ILS) of Erdo§an et al. [5] explores252

only M1 and M2. The PGVNS of Herrán et al. [14] adopts two parametric253
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Algorithm 2: The variable neighborhood descent with θmax neighbor-
hoods for the HpMP
Input: Solution ϕ, θmax neighborhoods;
Output: The local optimum solution ϕ;

1 begin

2 θ ← 1;
3 while θ ≤ θmax do
4 (ϕ, Improve)←Mθ(ϕ);
5 if Improve = true then

6 θ ← 1;
7 else

8 θ ← θ + 1;
9 end

10 end

11 return ϕ;
12 end

operators insλ and swapλ, which covers M1�M6 by varying λ. However, none254

of the previous studies employ the α nearest neighbors rule to explore the255

neighborhoods. Our experiments demonstrated that the α nearest neighbors256

rule is a highly e�ective strategy to improve the search e�ciency of the local257

search considerably. Finally, PGVNS additionally applies M7 to improve each258

individual cycle.259

2.4 Mutation260

Preserving a healthy population diversity is among the core issues of a hybrid261

genetic algorithm [10], whose purpose is to prevent the algorithm from prema-262

ture convergence. In HGA, since nearly all edges in an o�spring solution come263

from its parent solutions and the subsequent local search introduces few new264

edges, the population P may face a tricky problem, i.e., the edges of o�spring265

solutions are almost fully covered by parents and new edges are rarely present266

in the population. To cope with this problem, the HGA algorithm applies,267

with a probability ζ, a mutation operator to each o�spring solution to intro-268

duce new edges. This is a simple and e�ective way to diversify the o�spring269

and enhance population diversity.270

Given a solution ϕ, the mutation changes ϕ in ξ×n steps, where ξ is the muta-271

tion length. During each step, the mutation randomly applies the move M1 or272

the move M4 to perturb the solution. Suppose that M1 is applied, two vertices273

(denoted by u and v) are randomly picked from distinct cycles, and vertex u274

is inserted into r(v) after vertex v. Similarly, if M4 is applied, two vertices are275

randomly selected from distinct cycles and their places are swapped. As we276

show in Section 4.3, the mutation helps the algorithm to maintain a healthy277

population diversity all along the search process and prevents the search from278
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premature convergence.279

2.5 Population management280

Algorithm 3: The quality-and-distance updating strategy
Input: Population P with size of µ+ λ where µ is the minimal population size

and λ is the generation size;
Output: Updated population P with size of µ;

1 begin

2 The traveling distance of all solutions is saved in the matrix dis;
3 for i = 1 to |P| do
4 for j = 1 to i do
5 d[i, j]← HammingDis(ϕi, ϕj);
6 end

7 end

8 for i = 1 to |P| do
9 Sort d(i); /* From smallest to largest */

10 end

11 while |P| > µ do

12 for i = 1 to |P| do
13 dClost[i]←

∑nbClost
j=1 d[i, j];

14 end

15 Sort dClost; /* From largest to smallest */

16 Sort dis; /* From smallest to largest */

17 for i = 1 to |P| do
18 biasedF it[i]← disir

|P| + (1− nbElite
|P| )× dClostir

|P| ;

19 end

20 w ← maxi∈{1,2,··· ,|P|}biasedF it[i];
21 P ← P\{ϕw};
22 for i = 1 to |P| do
23 Update d(i) by removing ϕw;
24 end

25 Update dis by removing ϕw;
26 end

27 return P;
28 end

The main goal of population management is to maintain a healthy diversity of281

P all along the search process. HGA uses a population updating strategy sim-282

ilar to the technique described in [32]. Each new o�spring solution is inserted283

into the population if it is not the same as any solution of the population.284

Once the number of solutions reaches the maximum size µ+ λ where λ is the285

generation size, λ solutions are removed with respect to a biased �tness, and µ286

individuals go to the next generation. Now, we explain how the biased �tness287

for each individual is computed. Let d be a two dimensional matrix and d[i, j]288

denote the Hamming distance between solution ϕi and ϕj. Let d(i) be the row289
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of d that stores the Hamming distances between solution ϕi and each other290

solution in P .291

As shown in Algorithm 3, the Hamming distance between any pair of solutions292

equals the ratio between the number of non-common edges and n (lines 3 -293

7). Then, given a solution ϕi, |P| − 1 values of d(i) are ranked from smallest294

to largest (lines 8 - 10), and the sum of the �rst nbClost values (nbClost is a295

parameter) are regarded as the diversity contribution of ϕi to P , represented296

by dClost[i] (lines 12 - 14). Then, the values of dClost are arranged from297

largest to smallest and each solution ϕi is associated with a rank dClostir (line298

15). Furthermore, we also rank solutions of P according to their objective299

values from the best to the worst, leading to a rank disir for each solution ϕi300

(line 16). Finally, the biased �tness of solution ϕi is de�ned as biasedF it[i] =301

disir
|P| + (1− nbElite

|P| )× dClostir
|P| where nbElite is a parameter and less than µ (lines302

17 - 19). The solution associated with the largest biased �tness is removed303

from P and the biased �tness for each remaining solution of P is updated.304

The solution removal process is repeated until |P| = µ. Following [32], we set305

nbClost = 5 and nbElite = 4.306

If the best solution found so far ϕ∗ cannot be improved for γ consecutive307

iterations 1 (γ is a parameter called population rebuilding threshold), the al-308

gorithm restarts by generating a totally new population.309

2.6 Discussions310

As our literature review shows, the existing heuristic algorithms for the HpMP311

rely on single trajectory-based iterated local search [5] and variable neighbor-312

hood search [14], while ignoring the framework of population-based hybrid313

genetic search. Meanwhile, hybrid genetic search has been successfully applied314

to several related routing problems [10,22,33,34,12,13] and it is surprising to315

observe that this approach has never been studied in the context of the HpMP.316

As the �rst algorithm of its kind, the proposed HGA algorithm �lls this gap.317

In particular, we show that we are able to develop a competitive algorithm318

for the HpMP by leveraging the ideas of the successful EAX crossover origi-319

nally developed for the TSP and the powerful neighborhood search for routing320

problems, as well as speci�c diversity preservation strategies. Indeed, extensive321

computational results show that HGA achieves remarkable results in terms of322

solution quality and runtime on various benchmark instances.323

Given that the HpMP has a number of applications, the HGA algorithm can324

be used to better solve these practical problems. The code of the algorithm325

that we make publicly available will facilitate such applications.326

1 One iteration corresponds to one invocation of the local search procedure.
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3 Experimental Evaluation and Comparisons327

In this section, we experimentally evaluate the performance of the proposed328

algorithm and compare its results with the best existing algorithms.329

3.1 Benchmark instances330

Four sets of 215 HpMP instances are adopted for our experimental studies. The331

�rst three sets (S, M, L) include 145 benchmark instances commonly tested in332

the literature while the last set (N) includes 70 new large instances generated in333

this work. All of the instances are developed from graphs from the TSPLIB 2 .334

For sets S,M and L, given a TSPLIB graph, �ve instances are generated by us-335

ing distinct values of p ∈ {b n
10
c, bn

7
c, bn

5
c, bn

4
c, bn

3
c}. For set N, seven instances336

per graph are obtained by setting p ∈ {b n
30
c, b n

20
c, b n

10
c, bn

7
c, bn

5
c, bn

4
c, bn

3
c}.337

• small set (S): This set includes 55 instances from 11 TSPLIB graphs with338

21 to 52 vertices.339

• medium set (M): This set includes 55 instances from 11 TSPLIB graphs340

with 58 to 100 vertices.341

• large set (L): The set includes 35 instances from 7 TSPLIB graphs with 150342

to 318 vertices.343

• new large set (N): This new set includes 70 instances from 10 TSPLIB graphs344

(rd400, �417, pcb442, d493, u574, rat575, p654, u724, rat783, u1060) with345

400 to 1060 vertices.346

It is worth mentioning that exact algorithms such as HpMP2 [5] and B&P [19]347

are able to obtain optimal solutions for all instances of set S (except two for348

B&P). Furthermore, most instances in set M are solved optimally by HpMP2349

[5]. Thus, sets S and M are less challenging than sets L and N for the purpose350

of evaluating HpMP algorithms.351

All these 215 instances are used in our experiments to extensively evaluate352

the performance of the proposed HGA algorithm. The instances and the best353

solutions obtained by HGA are available online 3 .354

3.2 Experimental protocol and reference algorithms355

Parameter setting. The HGA algorithm has six parameters: the minimum356

population size µ, the generation size λ, the granularity threshold of near-357

est neighbors α, the mutation probability ζ, the mutation length ξ and the358

population rebuilding threshold γ. The automatic parameter tuning package359

Irace [17] is employed to calibrate these parameters. Given that HGA can ob-360

2 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html
3 https://github.com/pengfeihe-angers/HpMP.git
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tain consistent results with di�erent independent runs when solving small and361

medium instances, the instances used during tuning are selected from sets L362

and N: pr299-42, lin318-31, rd400-80, d493-70, pcb442-44, d493-70, u574-82,363

p654-130, u724-72, rat783-195, u1060-151, where the values of p are selected364

randomly. Furthermore, the maximum number of experiments is 2000 and the365

stopping condition per experiment is 3600s or 300,000 iterations. The com-366

puter we used for parameter tuning is equipped with an Intel i7-6700HQ of367

2.6GHz, where 7 cores are used. The candidate and �nal values are shown368

in Table 1. This setting can be considered as HGA's default setting and is369

consistently used for our experiments.370

Table 1
Parameter tuning results.
Parameter Section Description Considered values Final values

µ 2.5 minimal size of population {50, 100, 150, 200, 250} 100

λ 2.5 generation size {25, 50, 75, 100, 125} 50

α 2.3 granularity threshold {5, 8, 10, 12, 15, 20} 10

ζ 2.4 mutation probability {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3} 0.15

ξ 2.4 mutation length {0.05, 0.1, 0.15, 0.2, 0.25} 0.25

γ 2.5 population rebuilding threshold {5000, 10000, 20000, 30000, 50000, 80000} 30000

Reference algorithms.We take the following best HpMP heuristic and exact371

algorithms, as well as the best known solutions BKS (best upper bounds), as372

the references for the comparative study.373

• BKS. This indicates the best known solutions (upper bounds) that are sum-374

marized from all reference heuristic and exact approaches [5,19,14].375

• HpMP2 [5]. The branch-and-cut algorithm was implemented in C++, run-376

ning on a computer with an i7 2.5 GHz CPU. It solved optimally all small377

instances of set S and most medium instances of set M with a time limit of378

3600s. No results were reported on set L.379

• B&P [19]. This branch-and-price algorithm was implemented in C++. In380

[14], the source code of B&P was used to solve the 215 instances of the sets381

S, M, and L on a computer with an Intel i7 6500U processor running at 2.5382

GHz and 8 GB RAM. With a time limit of 3600s, B&P was able to obtain383

optimal solutions for all but two instances of S and more than half instances384

of set M. The detailed results of B&P from [14] are used in our comparative385

study.386

• PGVNS [14]. This algorithm was coded in C++ and experiments were con-387

ducted on a computer with an Intel i7 6500U processor running at 2.5 GHz388

and 8 GB RAM. The algorithm reported excellent results on the sets S,389

M, and L. The source code was kindly provided by the authors. To make390

comparisons as fair as possible, we re-run the code on our computer and391

report its results under the heading `re-PGVNS'.392

Given that B&P and HpMP2 are exact algorithms that aim to �nd optimal393

solutions, we consider the best heuristic algorithm PGVNS [14] as the most394

signi�cant reference algorithm for our comparative study.395
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Experimental setting and stopping criterion. The HGA algorithm was396

coded in C++ and compiled using the g++ compiler with the -O3 option 4 .397

All experiments were run on an Intel Xeon E-2670 processor of 2.5 GHz and398

2 GB RAM running Linux with a single thread. Both HGA and PGVNS were399

executed 20 times on each instance with distinct random seeds. The HGA400

algorithm terminates when it reaches a maximum of 500,000 iterations or the401

optimal solution. For PGVNS, we used its default parameter setting given in402

[14] with the stopping condition of a maximum of 0.3× p× n iterations or a403

maximum of 3600s cuto� time.404

3.3 Computational results and comparisons405

We report comparisons of the HGA algorithm with the reference algorithms on406

the four sets of benchmark instances. Detailed computational results on each407

instance are presented in Appendix B (Tables B.1�B.4), while a comparison408

summary is shown Table 2. To reveal the statistically signi�cant di�erence be-409

tween each pair of compared algorithms, the Wilcoxon signed-rank test with410

con�dence level of 0.05 is used. Furthermore, a commonly used benchmarking411

tool, performance pro�le [4], is employed to compare distinct algorithms in a412

visual way. Given a set of algorithms S and a set of instances I, the perfor-413

mance ratio rq,a of algorithm a on instance q with respect to the best approach414

for the minimization objective f is given by rq,a = fq,a
min{fq,a:a∈S}

. The overall415

performance of approach a is determined by Qa(τ) = |q∈I:rq,a≤τ |
|I| , which is the416

probability for algorithm a that its performance ratio rq,a is within a factor τ .417

Qa(τ) represents the (cumulative) distribution function for the performance418

ratio. Qa(τ = 1) is the percentage of instances on which algorithm a performs419

the best compared to all other algorithms.420

Table 2
Summary of results between the HGA and reference algorithms on four sets of 215
instances.
Instances Pair algorithms

Best Avg.

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

S
HGA vs. HpMP2 [5] 0 55 0 0.00E+00 - - - -

HGA vs. B&P [19] 0 55 0 0.00E+00 - - - -

HGA vs. PGVNS [14] 0 55 0 0.00E+00 0 55 0 0.00E+00

M

HGA vs. HpMP2 [5] 5 50 0 6.25E-02 - - - -

HGA vs. B&P [19] 23 32 0 2.70E-05 - - - -

HGA vs. PGVNS [14] 0 55 0 0.00E+00 - - - -

HGA vs. re-PGVNS 0 55 0 0.00E+00 6 48 1 2.64E-04

HGA vs. B&P [19] 28 3 0 - - - - -

HGA vs. PGVNS [14] 8 27 0 7.81E-03 19 12 4 6.31E-04L

HGA vs. re-PGVNS 16 19 0 4.38E-04 29 5 1 1.47E-06

HGA vs. re-PGVNS 70 0 0 3.56E-13 70 0 0 3.56E-13

HGA vs. re-PGVNS-long 68 2 0 7.64E-13 69 1 0 5.21E-13N

HGA vs. HGA-long 0 53 17 2.93E-04 0 13 57 3.51E-11

4 The code of the HGA algorithm will be available at:
https://github.com/pengfeihe-angers/HpMP.git
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Fig. 3. Performance pro�les of the compared algorithms on L and N sets

According to the summarized results of Table 2 and detailed results of Tables421

B.1�B.4, we make the following observations.422

• Sets S and M. For the small instances, the two heuristic algorithms HGA423

and PGVNS perform identically and are able to attain the optimal solutions424

proven by the exact algorithms HpMP2 and B&P generally in less than one425

second. Both HGA and PGVNS attain the optimal solutions proven by426

the exact algorithms. Between HGA and PGVNS, HGA has a better per-427

formance in terms of the average results and is signi�cantly faster than428

PGVNS to report solutions of the same quality.429

430

• Set L. For the 35 large instances, our HGA algorithm updates 8 BKS (new431

upper bounds) (22.9%) and matches all BKS values for the remaining in-432

stances (see detailed results in Table B.3). The small p-values (� 0.05)433

demonstrate that our algorithm dominates all reference algorithms in terms434

of both solution quality and computation time. In particular, HGA is sig-435

ni�cantly better than PGVNS in terms of the best and average results.436

Moreover, HGA requires always roughly no more than one-third of the time437

required by PGVNS to �nd solutions of equal or better quality. This demon-438

strates a clear advantage over the exact algorithms HpMP2 and B&P and439

the best heuristic algorithm PGVNS for solving these large instances. The440

performance pro�les shown in Fig. 3 further con�rm the dominance of HGA.441

442

• Set N. For this new set of largest instances, it is only possible to compare443
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HGA against PGVNS. For this set of instances, in addition to the standard444

stopping condition (a maximum of 500,000 iterations), we also tested HGA445

and PGVNS under a relaxed condition, i.e., a maximum of 1,000,000 itera-446

tions for HGA and a maximum equivalent runtime of 10800s (3 hours) for447

PGVNS. The results of long runs are shown in Tables 2 and B.4 under the448

headings HGA-long and re-PGVNS-long. According to the reached results,449

HGA signi�cantly outperforms PGVNS both under the standard and re-450

laxed stopping conditions (p � 0.05). HGA holds 68 best solutions out of451

the 70 instances and 2 equal solutions compared to PGVNS. HGA also re-452

ports signi�cantly better average results. The performance pro�les shown in453

Fig. 3 also support these conclusions. Once again, HGA is much faster than454

its competitor to report better or equal results, as shown in Table B.4. It is455

also interesting to notice that HGA is able to improve its owe results when456

it is given a higher time budget. Indeed, HGA-long performs signi�cantly457

better than HGA by obtaining 17 new upper bounds and equal results for458

the remaining instances. As shown in Fig. 3, HGA-long dominates all al-459

gorithms since Qa(τ = 1) of HGA reaches 1 �rstly, which indicates a high460

robustness.461

To sum, exact algorithms HpMP2 [5] and B&P [19] are valuable for �nding the462

optimal solutions for the small instances of sets S and some medium instances463

of set M. For the large instances of L and N, heuristic algorithms PGVNS464

and HGA are indispensable alternatives for �nding high-quality approximate465

solutions, while they are also able to easily reach the proven optimal solu-466

tions for the instances of sets S and M. Between HGA and PGVNS, HGA467

dominates PGVNS both in terms of the solution quality and computational468

e�ciency. In the following, we show additional experiments to investigate the469

contributions of the key algorithmic components to the high performance of470

the HGA algorithm.471

4 Additional experiments472

We now present additional experiments to study the roles of the edge as-473

sembly crossover and the mutation. The experiments are based on the most474

challenging instances of sets L and N.475

4.1 Signi�cance of the crossover476

The edge assembly crossover (EAX) produces o�spring solutions by combin-477

ing edges from parents and adding relatively few new short edges. Indeed, all478

common edges are inherited, while the size of E-sets determines how many479

non-common edges are involved in intermediate solutions. One notices that480

large E-sets may better promote diversity, but may result in low-quality o�-481

spring solutions due to the presence of too many cycles. Conversely, small482
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Table 3
Summary of comparative results between the HGA and �ve variants.

Pair algorithms
Best Avg.

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

HGA vs HGA1 (β = 3) 30 65 20 1.72E-01 52 39 24 2.79E-04

HGA vs HGA2 (β = 10) 26 73 16 2.09E-01 57 36 22 2.71E-06

HGA vs HGA3 (β = 15 ) 35 69 11 2.91E-03 76 34 5 7.69E-15

HGA vs HGA4 (Disable crossover) 105 10 0 5.84E-19 105 10 0 5.84E-19

HGA vs HGA5 (Disable mutation) 63 52 0 5.17E-12 87 27 1 4.00E-16

E-sets can produce o�spring solutions that are very similar to their parents,483

potentially limiting diversity [24]. Thus, we need to know which size of E-sets484

is the best compromise for the quality and diversity. To gain insights into this485

issue, three HGA variants with distinct values of β, HGA1 (β = 3), HGA2486

(β = 10), HGA3 (β = 15), are compared, along with the standard HGA with487

β = 5. An extra variant named HGA4 is also included where EAX is disabled.488

To ensure a fair comparison, the runtime budget of HGA provided by Tables489

B.3-B.4 was used to conduct the current experiment. We ran these algorithm490

variants on the same machine and report the comparative results in Table 3.491
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Fig. 4. Performance pro�les of the HGA and its variants.

The performance pro�les, shown in Fig. 4, illustrate that the performance492

di�erences are more visible for the average results than for the best results. Still493

it is observed that HGA has a higher Qs(1), which reaches the value of 1 earlier494

than its variants. Indeed, the results summarized in Table 3 indicate that in495

terms of the best results, HGA is marginally better than HGA1 and HGA2, but496

signi�cantly better than the other variants, while HGA signi�cantly dominates497

all its variants in terms of the average results. It is worth observing that HGA1498

(with a small β = 3) and HGA2-HGA3 (with large β = 10, 15) perform499

worse than HGA (with a moderate β = 5). This indicates that too large or500

too small β is harmful for HGA's performance. Finally, one observes that501

HGA4 (without the crossover) has the worst results, indicating that the EAX502

crossover is a key driving search operator of the HGA algorithm.503
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Fig. 5. Hamming distance between each pair of local optimal solutions. Brighter
colors correspond to smaller Hamming distances, indicating pairs of similar or closely
related solutions. The brightest colors indicate that more than 95% of the edges are
shared by two solutions, while the darkest blue colors indicate that less than 70% of
the edges are shared by two solutions.

4.2 Rationale behind the crossover504

To shed insights on why the EAX crossover is a meaningful operator for the505

HpMP, we investigate the relationship between high-quality local optimal so-506

lutions in terms of the Hamming distance. Intuitively, if two high-quality local507

optimal solutions have a small distance, that means that they share many508

common edges. This is then a favorable feature for the EAX crossover, be-509

cause EAX allows o�spring solutions to inherit the common edges that form510

the backbone of a high-quality solution.511

For this experiment, we use both HGA and PGVNS to sample various lo-512

cal optimal solutions, which are both of high-quality and diverse. Speci�cally,513

we adopt two representative instances (pr299, p = 29 and lin318, p = 31)514

with their best known results from Table B.3. We run HGA and PGVNS on515

these instances and record the local optimal solutions whose objective value516

is within 5% of the best known value. For each instance, we yield 600 distinct517

solutions. The Hamming distance between each pair of these solutions is cal-518

culated and the results are shown in Fig. 5 as two dimensional heat map. The519

abscissa and ordinate axes represent the rank of solutions from smallest to520

largest with respect to the objective value. The colored pixels represent the521

Hamming distance between each pair of solutions. Brighter colors correspond522

to small Hamming distances, indicating pairs of similar (or close) solutions.523

From Fig. 5, one notices that brighter colors center around the bottom left524

corner of both �gures. This means that higher quality solutions share more525

common edges than less good solutions. Given that EAX transmits the com-526

mon edges from parents to o�spring, the backbone of high-quality solutions is527

systematically preserved. This also explains why the EAX crossover needs to528

use relatively large E-sets when recombining high-quality parents to preserve529
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su�cient diversity in o�spring solutions. It is worth noting that these �ndings530

are fully consistent with the conclusions of Nagata and Kobayashi [24] in the531

context of applying EAX to the TSP.532

4.3 Bene�ts of the mutation533
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Fig. 6. Convergence charts of HGA and HGA5 for solving four representative in-
stances
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Fig. 7. The di�erences between HGA and HGA without mutation for solving sets L
and N.

HGA uses the mutation operator to diversify o�spring solution and promote534

population diversity. To assess its usefulness, a new variant (HGA5) is con-535

structed by disabling the mutation operator in HGA. HGA is then compared536

with HGA5 in terms of population diversity by using the following diversity537

measure [28]. Let |P| be the number of solutions in the population P . Let538

hij be the Hamming distance between two solutions ϕi and ϕj. During each539
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iteration, Equation (1) is used to measure the population diversity. We draw540

the convergence charts of HGA and HGA5 together with the population di-541

versity, based on four instances (lin318, p = 31, lin318, p = 45, pcb442, p =542

63, and pcb442, p=88). The results are visualized in Fig. 6, where HGA-R543

and HGA5-R indicate the best results found while HGA-H and HGA5-H are544

the average Hamming distance η of the population. HGA has a better conver-545

gence and dominates HGA5. HGA always keeps a higher value of η along its546

evolution compared to HGA5, which indicates that the mutation contributes547

to preserve diversity without sacri�cing quality.548

η =
2

|P|(|P| − 1)

|P|∑
i=1

|P|∑
j=i+1

hij (1)

Furthermore, Fig. 7 shows the comparative results of HGA and HGA5 in549

terms of both the best and average results on the 105 instances of sets L550

and N. The results are presented as the percentage deviation of the results551

of HGA5 compared to the results of HGA. Together with the summarized552

results reported in Table 3, it is clear that the performance of HGA will553

degrade signi�cantly if the mutation operator is disabled. These evidences554

con�rm that the mutation operator plays a positive role in our algorithm.555

5 Conclusions556

In this paper, we presented a hybrid genetic algorithm (HGA) for the Hamil-557

tonian p-median problem. The method includes a versatile edge assembly558

crossover allowing a diversi�ed search and a neighborhood-based search ensur-559

ing aggressive solutions improvement. Furthermore, a diversi�cation-oriented560

mutation operator and a quality-and-distance population updating strategy561

are integrated into the algorithm to manage the population.562

Computational experiments on three sets of 145 commonly used benchmark563

instances show that the algorithm can e�ectively solve a wide range of in-564

stances within a short time by either improving or matching the optimal or565

best known results reported in the literature. In particular, HGA outperformed566

all reference algorithms and provides 8 new best upper bounds. We also as-567

sessed the algorithm on a new set of 70 large instances and compared with the568

best heuristic algorithm and provided the �rst upper bounds for these chal-569

lenging instances. These bounds and the 8 new bounds for the conventional570

benchmark instances can be useful for future research on the HpMP. Addi-571

tional experiments were conducted to get insights into the roles and rationale572

of the edge assembly crossover for the HpMP and the impacts of the mutation573

operator.574

Given that the HpMP is a relevant model for a number of real-world problems,575
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our algorithm whose code will be publicly available can be used to better solve576

some of these practical applications.577

This work demonstrates that the hybrid genetic approach is highly e�ective578

for this computationally challenging problem, thank to a fruitful synergy be-579

tween a meaningful crossover, a powerful local search and suitable diversity580

preserving strategies. Finally, we highlight that the general idea of assembling581

promising edges of high-quality solutions is much relevant for the HpMP and582

this idea can be advantageously adopted to deal with other routing problems.583
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Appendix683

A Mathematical model684

The HpMP can be formulated as a set partition problem with additional685

constraints [19,14] to ensure that a feasible solution contains p cycles and686

each cycle visits at least three vertices. Let Ω be the set of cycles, each cycle687

being given by a sequence of edges. The travel cost ck of a cycle k ∈ Ω is given688

by the sum of the cost of the edges in its cycle. Let aik denote the number689

of times vertex i is visited by cycle k. Let xk be a binary variable such that690

xk = 1 if the cycle k is in the optimal solution, xk = 0 otherwise. The set691

partition formulation of HpMP is as follows.692

minimize
∑
k∈Ω

ckxk (A.1)

subject to :
∑
k∈Ω

aikxk = 1, ∀i ∈ V (A.2)

∑
i∈V

aikxk ≥ 3, ∀k ∈ Ω (A.3)

∑
k∈Ω

xk = p (A.4)

xk ∈ {0, 1}, ∀k ∈ Ω (A.5)

Objective function A.1 minimizes the overall of costs associated to each cycle.693

Constraints A.2 guarantee that each vertex is visited by exactly one cycle.694

Constraints A.3 state that each cycle needs to visit at least three vertices.695

Constraint A.4 guarantees that the number of cycles should equal p.696

B Computational results697

This section presents the detailed computational results of the proposed HGA698

algorithm together with the results of the reference algorithms: exact algo-699

rithms HPMP2 [5] and B&P [19] as well as heuristic algorithm PGVNS [14].700

For HPMP2, its results are extracted from [5], while for B&P and PGVNS,701

their results are compiled from [14].702

In the tables presented hereafter, column Instance indicates the name of each703

instance and corresponding value of p; column BKS is the optimal values704

(indicated by the '*' symbol) or best-known values (best upper bounds) sum-705

marized from the literature; Best and Avg. are the best and average results706

over 20 independent runs obtained by the corresponding algorithm in the707
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column header, respectively; MRT(s) in each column represents the time of708

each corresponding exact algorithm to �nd the optimal solution or the total709

runtime if no optimal solution is found; Time(s) in each column means the710

average runtime in seconds of the corresponding algorithm. In Tables B.1-B.4,711

Gap in the last column is calculated as Gap = 100× (fbest −BR)/BR, where712

fbest is the best objective value of HGA and BR is the best results of all other713

algorithms including BKS. The Average row is the average value of a perfor-714

mance indicator over the instances of a benchmark set. Improved best results715

(new bounds) are indicated by negative Gap values highlighted in boldface.716

In Table B.4, the dark gray color indicates that the corresponding algorithm717

obtains the best result among the compared algorithms on the corresponding718

instance; the medium gray color displays the second best results, and so on.719
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Table B.1
Results for the HpMP on the instances of set S. The timing information for the ref-
erence algorithms has the following meanings. For PGVNS, STMB(s) is the shortest
run time to attain the best solution among 10 runs (extracted from Table 9 of [14]).
The average time of PGVNS for set S is unavailable. For HGA, Time(s) is the average
runtime over 20 runs.

Instance
BKS

HPMP2 [5] B&P [19] PGVNS [14] HGA

Name p Best MRT(s) Best MRT(s) Best Avg. STMB(s) Best Avg. Time(s)

gr21

2 2773.00* 2773.00 0.49 2773.00 251.00 2773.00 2773.00 0.01 2773.00 2773.00 0.09

3 2774.00* 2774.00 0.34 2774.00 41.00 2774.00 2774.00 0.03 2774.00 2774.00 0.01

4 2757.00* 2757.00 0.19 2757.00 8.00 2757.00 2757.00 0.03 2757.00 2757.00 0.01

5 2832.00* 2832.00 0.46 2832.00 35.00 2832.00 2832.00 0.03 2832.00 2832.00 0.01

7 3043.00* 3043.00 0.45 3043.00 16.00 3043.00 3043.00 0.02 3043.00 3043.00 0.01

ulysses22

2 68.33* 68.33 0.39 68.33 3601.00 68.33 68.33 0.05 68.33 68.33 0.01

3 66.43* 66.43 0.38 67.18 3612.00 66.43 66.43 0.04 66.43 66.43 0.01

4 64.23* 64.23 0.19 64.23 3618.00 64.23 64.23 0.05 64.23 64.23 0.01

5 63.08* 63.08 0.16 63.08 7.00 63.08 63.08 0.03 63.08 63.08 0.01

7 65.08* 65.08 0.18 65.08 25.00 65.08 65.08 0.03 65.08 65.08 0.01

gr24

2 1238.00* 1238.00 0.31 1238.00 32.00 1238.00 1238.00 0.03 1238.00 1238.00 0.01

3 1227.00* 1227.00 0.25 1227.00 3601.00 1227.00 1227.00 0.03 1227.00 1227.00 0.12

4 1227.00* 1227.00 0.27 1227.00 16.00 1227.00 1227.00 0.04 1227.00 1227.00 0.05

6 1266.00* 1266.00 0.51 1266.00 102.00 1266.00 1266.00 0.05 1266.00 1266.00 0.08

8 1317.00* 1317.00 0.24 1317.00 22.00 1317.00 1317.00 0.02 1317.00 1317.00 0.17

fri26

2 911.00* 911.00 0.41 911.00 52.00 911.00 911.00 0.02 911.00 911.00 0.06

3 903.00* 903.00 0.31 903.00 38.00 903.00 903.00 0.03 903.00 903.00 0.06

5 893.00* 893.00 0.44 893.00 33.00 893.00 893.00 0.05 893.00 893.00 0.02

6 886.00* 886.00 0.37 886.00 12.00 886.00 886.00 0.07 886.00 886.00 0.02

8 885.00* 885.00 0.21 885.00 10.00 885.00 885.00 0.05 885.00 885.00 0.02

bayg29

2 1562.00* 1562.00 0.56 1562.00 291.00 1562.00 1562.00 0.02 1562.00 1562.00 0.02

4 1549.00* 1549.00 0.50 1549.00 29.00 1549.00 1549.00 0.08 1549.00 1549.00 0.07

5 1555.00* 1555.00 0.53 1555.00 17.00 1555.00 1555.00 0.07 1555.00 1555.00 0.07

7 1618.00* 1618.00 2.15 1618.00 75.00 1618.00 1618.00 0.11 1618.00 1618.00 0.03

9 1676.00* 1676.00 1.73 1676.00 52.00 1676.00 1676.00 0.06 1676.00 1676.00 0.11

swiss42

4 1232.00* 1232.00 1.37 1232.00 1195.00 1232.00 1232.00 0.17 1232.00 1232.00 0.27

6 1231.00* 1231.00 1.70 1231.00 693.00 1231.00 1231.00 0.27 1231.00 1231.00 0.56

8 1231.00* 1231.00 1.56 1231.00 110.00 1231.00 1231.00 0.37 1231.00 1231.00 0.20

10 1238.00* 1238.00 2.02 1238.00 20.00 1238.00 1238.00 0.36 1238.00 1238.00 0.16

14 1292.00* 1292.00 1.12 1292.00 69.00 1292.00 1292.00 0.16 1292.00 1292.00 0.10

att48

4 31903.30* 31903.30 3.73 31903.30 510.00 31903.30 31903.30 0.41 31903.30 31903.30 0.16

6 31836.12* 31836.12 3.41 31836.12 73.00 31836.12 31836.12 0.66 31836.12 31836.12 0.09

9 32195.53* 32195.53 3.99 32195.53 117.00 32195.53 32195.53 0.74 32195.53 32195.53 0.18

12 32742.91* 32742.91 3.99 32742.91 64.00 32742.91 32742.91 0.68 32742.91 32742.91 0.20

16 37068.82* 37068.82 285.90 38113.80 3632.00 37068.82 37068.82 0.27 37068.82 37068.82 0.17

gr48

4 4841.00* 4841.00 2.82 4961.00 3613.00 4841.00 4841.00 0.35 4841.00 4841.00 0.20

6 4805.00* 4805.00 1.76 4805.00 284.00 4805.00 4805.00 0.54 4805.00 4805.00 0.24

9 4926.00* 4926.00 13.70 4926.00 816.00 4926.00 4926.00 0.63 4926.00 4926.00 0.54

12 5011.00* 5011.00 4.91 5011.00 69.00 5011.00 5011.00 0.63 5011.00 5011.00 0.18

16 5445.00* 5445.00 24.25 5445.00 914.00 5445.00 5445.00 0.27 5445.00 5445.00 0.19

hk48

4 11271.00* 11271.00 3.48 11271.00 1388.00 11271.00 11271.00 0.34 11271.00 11271.00 0.30

6 11197.00* 11197.00 2.88 11197.00 37.00 11197.00 11197.00 0.55 11197.00 11197.00 0.65

9 11292.00* 11292.00 3.05 11292.00 218.00 11292.00 11292.00 0.69 11292.00 11292.00 0.23

12 11450.00* 11450.00 3.41 11450.00 242.00 11450.00 11450.00 0.63 11450.00 11450.00 0.21

16 12215.00* 12215.00 10.04 12215.00 236.00 12215.00 12215.00 0.27 12215.00 12215.00 0.15

eil51

5 422.32* 422.32 4.58 422.32 921.00 422.32 422.32 0.50 422.32 422.32 1.13

7 424.36* 424.36 6.88 424.36 401.00 424.36 424.36 0.68 424.36 424.36 1.14

10 432.49* 432.49 41.32 432.49 1771.00 432.49 432.49 0.81 432.49 432.49 0.55

12 436.59* 436.59 14.41 436.59 189.00 436.59 436.59 0.79 436.59 436.59 0.98

17 473.98* 473.98 50.96 473.98 1136.00 473.98 473.98 0.34 473.98 473.98 0.85

berlin52

5 7182.23* 7182.23 3.66 7194.76 3662.00 7182.23 7182.23 0.53 7182.23 7182.23 0.64

7 7167.20* 7167.20 2.57 7167.20 49.00 7167.20 7167.20 0.82 7167.20 7167.20 2.59

10 7206.70* 7206.70 4.43 7206.70 159.00 7206.70 7206.70 1.00 7206.70 7206.70 0.25

13 7298.63* 7298.63 4.68 7298.63 169.00 7298.63 7298.63 0.90 7298.63 7298.63 0.20

17 7800.77* 7800.77 48.81 7800.77 1352.00 7800.77 7800.77 0.45 7800.77 7800.77 0.88

Average - 5936.15 5935.15 10.43 5957.57 722.00 5936.15 5936.15 - 5936.15 5936.15 -

p-value - 0.00E+00 0.00E+00 - 1.25E-01 - 0.00E+00 - - - - -
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