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Abstract

The orienteering problem (OP) and prize-collecting traveling salesman problem
(PCTSP) are two typical TSPs with profits, in which each vertex has a profit and
the goal is to visit several vertices to optimize the collected profit and travel costs.
The OP aims to collect the maximum profit without exceeding the given travel cost.
The PCTSP seeks to minimize the travel costs while ensuring a minimum profit
threshold. This study introduces a hybrid genetic algorithm that addresses both the
OP and PCTSP under a unified framework. The algorithm combines an extended
edge-assembly crossover operator to produce promising offspring solutions, and an
effective local search to ameliorate each offspring solution. The algorithm is further
enforced by diversification-oriented mutation and population-diversity management.
Extensive experiments demonstrate that the method competes favorably with the
best existing methods in terms of both the solution quality and computational effi-
ciency. Additional experiments provide insights into the roles of the key components
of the proposed method.
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1 Introduction

In many real-life applications, such as the home fuel delivery problem [I8§],
tourist trip design problem [45], and bike repairing problem in a bike-share
system [39], not all available customers can be visited owing to the limited time
budget or other resource constraints. Traveling salesman problems (TSPs)
with profits are typically used to formulate these applications, where the time
budget or resource limits can be modeled by a knapsack constraint or gener-
alized covering constraints. Thus, TSPs with profits can be viewed as a com-
bination of two classical combinatorial optimization problems, i.e., the TSP
and knapsack problem. Given their relevance, TSPs with profits have received
considerable attention in the past several decades.

Let G = (V,€) be an undirected graph, where V = {wvg,vq,--- ,v,} is the
vertex set, vg is the depot, N’ = {v1,--- , v, } represents n vertices (customers),
and & is the edge set. Let p; be the nonnegative profit associated with each
vertex v; € V (po = 0). Let C = (¢;;) be the nonnegative cost (distance)
matrix associated with £ satisfying the triangle inequality (c;; + cjx > cik
for v;,v;, v, € V and v; # v; # vi,). TSPs with profits seek to determine an
elementary circuit (i.e., each vertex is visited at most once) starting and ending
at the depot, and visit several customers to optimize the collected profit and
travel costs.

According to how the profit and travel cost objectives are considered, three
different TSPs with profits have been identified in the literature [14]. The first
problem is the profitable tour problem (PTP), where the two objectives are
combined into a single objective function that seeks to minimize travel costs
minus collected profit [14]. The second problem is the orienteering problem
(OP) [18/50], which aims to maximize the collected profit under the constraint
that the travel costs do not exceed a given value ¢,,,,. The OP is also known
as the selective traveling salesperson problem [27J16]. The third problem is the
prize-collecting TSP (PCTSP) [15], which aims to minimize the travel costs
under the constraint that the collected profit must reach a given minimum
value pin. In Appendix [A] we provide a mathematical formulation of the
OP and PCTSP for a precise description of these problems. As indicated
in [14], these problems are N'P-hard, and thus, computationally challenging.
According to [14], among these three problems, the OP and PCTSP are under
a primal dual relationship and attract substantially more attention than the
PTP. In this study, we follow this trend and focus on the effective solution of
the OP and PCTSP.

As shown in the comprehensive review of [I4], numerous studies have con-
tributed to improving the state of the art in solving these difficult problems.
Several exact algorithms were proposed in [I2728/T6/T5/4] to solve small- and
medium-sized instances with up to 532 vertices optimally. Remarkably, the re-
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visited branch-and-cut algorithm presented by Kobeaga et al. [26] could find
optimal solutions for OP instances with up to 2152 vertices. However, several
heuristic algorithms have been developed for TSPs with profits to deal with
large-sized instances, the optimal solutions of which cannot be determined by
exact algorithms. In Section [2| we review the most representative heuristic al-
gorithms. However, to date, these problems have been studied separately with
specific algorithms designed for each problem, without a general and unified
approach. Moreover, compared to research on exact algorithms, studies on ef-
fective heuristic algorithms remain rare and there is clearly a need for methods
that can solve large instances effectively and efficiently.

This work aims to advance the state-of-the-art in solving two T'SPs with prof-
its (OP and PCTSP) using effective heuristic algorithms. For this purpose,
we introduce a unified approach for the OP and PCTSP under the hybrid
genetic search framework. Hybrid genetic algorithms, which are also known as
memetic algorithms, take advantage of population-based genetic frameworks
and neighborhood-based local search frameworks [2I]. Owing to the use of a
population of solutions, a genetic algorithm offers the possibility of creating
new solutions by the recombination of existing solutions via a crossover op-
erator. Furthermore, by exploring a neighborhood, a local search algorithm
offers an effective means of locating high-quality solutions around a seed-
ing solution. By combining these two complementary methods, a hybrid ge-
netic algorithm is expected to achieve performance that cannot be attained
by applying each individual approach separately. Several highly effective hy-
brid genetic algorithms have been proposed to solve various routing problems
[ATI34354215253/54].

We devise a dedicated technique for the OP and PCTSP to adapt the popular
edge-assembly crossover that was initially designed for the TSP [33|36] and
apply it to routing problems [34)3523|22]. The proposed approach relies on
an extended edge-assembly crossover operator and benefits from synergy with
effective local search and dedicated diversification strategies, such as muta-
tion and population-diversity management. Our experiments on well-known
benchmark instances in the literature demonstrate that the proposed algo-
rithm competes favorably with the best-performing methods. In particular,
the algorithm can improve many current best bounds for both the OP and

PCTSP.

The remainder of this paper is organized as follows. Section [2| provides a
literature review of solution approaches for the two TSPs with profits. The
proposed algorithm is described in Section [3] Section [4] presents the compu-
tational results and comparisons. Section |5 analyzes the main components of
the algorithm. Section [6] presents the conclusions of the study.
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2 Literature review

We provide a literature review of the studies on the two TSPs with profits,
namely the OP and PCTSP according to [14] and [4950].

Table [1] summarizes the existing heuristic algorithms for the OP. A compre-
hensive review of heuristics up to 2010 was provided in [50]. Our review fo-
cuses on more recent studies. In 2010, Silberholz and Golden [45] studied the
generalized OP and presented an iterated local search, whereby routes were
improved by 2-opt, whereas unrouted vertices were inserted into the route
when the travel costs were less than ¢,,q,. In 2014, Campos et al. [7] intro-
duced the GRASP algorithm that combined the general greedy randomized
adaptive search procedure, path relinking, and local search with three neigh-
borhoods. The experimental results indicated that the algorithm obtained
high-quality solutions within a short running time. In 2015, Marinakis et al.
[31] used the GRASP procedure to construct a population of solutions, which
was developed by applying a simple 1-point crossover and local search. In 2016,
Keshtkaran and Ziarati [24] developed another GRASP, in which new solutions
were generated using a segment-removing strategy. The computational results
demonstrated the competitiveness of the algorithm on two standard bench-
mark instances. In 2017, Ostrowski et al. [38] implemented a specific crossover
in which the common vertices involved in two routes were considered to pro-
duce offspring solutions by changing the fragments of the two routes. In this
algorithm, feasible and infeasible routes were allowed to cross over, while the
fitness function was redefined with respect to the travel costs.

In 2018, Kobeaga et al. [25] proposed an evolutionary algorithm for the OP
(EA4OP) that featured an interesting edge recombination operator to produce
offspring individuals. This recombination operator inherits two main charac-
teristics from the parent solutions with respect to the vertices and edges. All
vertices that are common to both parents are maintained, whereas vertices
that belong to only one parent are included with a probability, and all vertices
that do not belong to any parent are excluded. The edges of the parents are
inherited as far as possible to pass on a maximum amount of information and
make the length of offspring solutions as short as possible. The experimental
results indicated that EA4OP is highly effective and efficient. In 2019, San-
tini [44] presented the adaptive large neighborhood search algorithm (ALNS)
including various destroy and repair methods. Experiments on four sets of
benchmark instances revealed that the algorithm was competitive, producing
several new best results.

In addition to these heuristic algorithms, we mention the recent revisited
branch-and-cut (RB&C) exact algorithm [26], which could prove many opti-
mal solutions and update numerous lower bounds for small- and medium-sized
benchmark instances.
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This review reveals that the two heuristic algorithms presented in [25/44] and
the exact algorithm of [26] represent the current state of the art for solving the
OP. These works hold the best known results for the four sets of benchmark
instances that are commonly tested in the literature.

Table 1
Summary of the taxonomy of representative heuristic algorithms for the OP
Literature Year Framework
Tsiligirides [47] 1984 Stochastic algorithm
Golden et al. [1I8] 1987 Centre of gravity heuristic
Ramesh and Brown [43] 1991 Tabu search
Wang et al. [56] 1995 Artificial neural network
Chao et al. [g] 1996 Record-to-record
Gendreau et al. [17] 1998 Tabu search
Tasgetiren and Smith [46] 2000 Genetic algorithm
Liang et al. [29] 2006 Ant colony optimzation
Silberholz and Golden [45] 2010 Iterated local search
Campos et al. [7] 2014 GRASP with path relinking
Marinakis et al. [31] 2015 Memetic-GRASP
Keshtkaran and Ziarati [24] 2016 GRASP
Ostrowski et al. [38] 2017 Evolution-inspired local improvement algorithm
Kobeaga et al. [25] 2018 Evolutionary algorithm
Santini [44] 2019 Adaptive large neighborhood search

The PCTSP was originally defined by Balas [I], where a penalty for each unvis-
ited vertex was considered in the objective function. Since then, considerable
efforts have been devoted to mathematical models and solution algorithms. Bi-
enstock et al. [5] presented an approximation algorithm based on Christofides’
algorithm and Balas [2| analyzed several effective inequalities for this prob-
lem. Later, Balas [3] summarized the results of polyhedral considerations and
applications.

In recent years, several algorithms have been presented for the PCTSP, achiev-
ing good results on medium-sized instances with up to 500 vertices. Gomes
et al. [I9] proposed a hybrid GRASP+VNS algorithm and demonstrated its
competitiveness against previous methods. Chaves and Lorena [10] presented
a hybrid metaheuristic algorithm based on a clustering search and compared
the results of the algorithm with those obtained by CPLEX. Pedro and Sal-
danha [40] introduced a tabu search approach and presented new upper bounds
for several PCTSP instances. Climaco et al. [II] proposed a branch-and-cut
(B&C) algorithm and an MIP-based heuristic to solve the PCTSP, which
exhibited highly satisfactory performance for the tested instances. To summa-
rize, these approaches consider different objectives arising in the real world,
with the aim of minimizing the sum of the travel costs and penalties for the
unrouted vertices. However, several studies [I14] on the PCTSP did not con-
sider the penalty terms of the unrouted vertices. In this case, the aim is to
minimize the travel costs under the constraint that the collected prize must
reach a given minimum value p,,;,. Following this objective, Bérubé et al. [4]
proposed a B&C algorithm and reported results on medium-sized instances
with up to 532 vertices. This B&C algorithm represents the current state of
the art for solving the PCTSP problem.
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The OP and PCTSP consider only one vehicle in their application. Vari-
ous studies have also investigated multi-vehicle routing problems with profits
[6/55120], such as the team OP, where several vehicles are available to collect
the profit. Several hybrid genetic algorithms relating to our work can be found
in the literature for various routing problems, such as the TSP, vehicle routing
problem (VRP), and their variants. For instance, Nagata and Kobayashi [30]
presented a powerful genetic algorithm that relies on edge-assembly crossover
for the TSP. Nagata and Bréaysy [34] further applied edge-assembly crossover
to the capacitated VRP and a local search procedure to ameliorate each off-
spring solution. However, the edge-assembly crossover in these studies only
dealt with situations in which each vertex had the same degree in both par-
ent solutions. Edge-assembly crossover cannot be directly applied to TSPs
with profits, given that each vertex may be associated with different degrees
in distinct solutions. Thus, we extend the edge-assembly crossover to address
this difficulty. Another popular hybrid genetic algorithm [54J51] implements a
crossover operator based on the giant tour and split algorithms. We also imple-
ment this crossover operator to evaluate the performance of the genetic algo-
rithm. However, the OP also integrates the well-known 0-1 knapsack problem
as a subproblem, which has been widely studied [32]. However, we are unaware
of a competitive hybrid genetic algorithm given that dynamic programming is
very effective, even for large instances.

3 Hybrid genetic algorithm for TSPs with profits

This section presents the hybrid genetic algorithm (HGA) designed for the
two studied TSPs with profits; that is, the OP and PCTSP. This is a unified
algorithm in the sense that, with slight adjustments, the same algorithm is
used to solve both problems effectively.

HGA is outlined in Algorithm [1} Starting from an initial population P con-
structed by the initialization procedure (line 2), the algorithm evolves the
population throughout numerous generations by applying the crossover oper-
ator, local search procedure, mutation operator, and population management
(lines 4-15). In each generation, two solutions are selected as parents using the
binary tournament strategy, which selects the best solution among two ran-
dom solutions from P as a parent [52]. Of particular interest is the extended
edge-assembly crossover operator (line 6), which creates (3 offspring solutions
by assembling the edges of the parent solutions. Subsequently, each offspring
solution is submitted to the local search procedure for quality improvement
(line 8). Finally, each solution is diversified by a mutation operator (line 12)
and managed by an advanced pool updating strategy (line 13). The algorithm
stops and returns the best solution ¢* once a predefined stopping condition is
met (e.g., a maximum cutoff time or maximum number of generations). The
crossover, mutation, and advanced pool updating strategies are exactly same
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Algorithm 1: Hybrid genetic algorithm for two TSPs with profits
Input: Instance [;

Output: The best found solution ¢*;

begin

P « Initial Population(I); /* Initializing the population P,
Section */
@* <= argmin{ f(y;)|i = 1,2,---,|P|}; /* Updating the best solution
p* found so far; */
while Stopping condition is not met do
{¢a,pp} «SelectParent(P);
{092, ,gpg} — E?AX(pa, pB); /* Generating promising
offspring solutions, Section x/
for i =1 to 5 do
ok + LocalSearch(pl); /* Ameliorating the offspring
solution, Section */
if f(¢h) < f(¢") then
P = 90;
end
©h < Mutation(pl)); /* Generating mutation, Section m
*/
P UpdatmgPop(P,goio); /* Updating the population,
Section m */
end
end
return p*;
end

when the algorithm is applied to the OP and PCTSP. However, the initializa-
tion and local search differ slightly because the two problems consider different
objectives.

The remainder of this section is dedicated to a detailed presentation of the
methods for population initialization, crossover, local search, mutation, and
population management.

3.1 Population initialization

The initial population P is generated in two phases using a method inspired
by the technique presented in [51]. Phase 1 generates a pool of 4 X A solutions,
where each solution is created greedily (see below) and subsequently improved
by the local search described in Section[3.3] Phase 2 uses the surviving strategy
described in Section [3.4.2]to retain A solutions in P with respect to the solution
quality and their contribution to the diversity of the population.

In phase 1, each solution in the population is generated by a two-stage tech-
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nique: in the first stage (S1), a greedy strategy is adopted to construct an
initial solution, and in the second stage (S2), the local search procedure is
applied to improve the initial solution further. Because the OP and PCTSP
pursue different optimization objectives, two different greedy strategies are
used for the two problems in S1. For the OP, the greedy construction works
as follows: It starts with an empty route and initializes the route using depot
vp. It then extends the route by inserting a vertex one by one into the route.
Initially, a vertex is randomly selected and inserted after vy. Subsequently, an
unrouted vertex v; from the -nearest neighborhood of the newly added vertex
v; 1s selected and inserted after vertex v; such that the insertion leads to the
minimum increase in the travel costs. If there are no unrouted vertices in the
0-nearest neighborhood of the newly inserted vertex, a new unrouted vertex is
randomly selected and inserted after a vertex in the partial solution, such that
the insertion leads to the minimum travel costs. This process is repeated until
all vertices are inserted into the solution, or the current travel costs exceed
1.5 X ¢ppaz- For the PCTSP, the greedy construction works similarly and differs
only in the selection of the next vertex to be added, which aims to maximize
the collected profit in the PCTSP. The construction stops when the collected
profit reaches 1.5 X p,,;n,. In S2, the local search procedure is applied to restore
the feasibility of the solution and to improve the quality of each solution as far
as possible. Given that phase 1 generates 4 x A solutions, phase 2 eliminates
additional solutions using the surviving strategy described in Section to
preserve exactly A (population size) solutions in P.

For the OP, one notes that the initial solutions constructed in S1 are not
necessarily feasible. Given that the feasibility of an initial solution can be
easily recovered by removing several vertices in the subsequent local search
procedure, we ensure that the initial population is composed of only feasible
solutions. The rationale behind the use of the threshold 1.5 X ¢,,,, during the
solution construction is to obtain a diversified and high-quality population.
Indeed, by setting 1.5 X ¢q: in S1, more diversified initial solutions can be
produced because more vertices can participate in the construction of the solu-
tion in S1. For the PCTSP, each initial solution is necessarily feasible because
a profit of 1.5 X p,,in is collected. Like in the case of OP, having more vertices
in initial solutions promotes a better diversity. Indeed, our experiments show
that the performance of the algorithm will not change significantly if we ad-
just the value slightly. However, if the value becomes too small < 1.1, initial
solutions will only include a limited number of cities, impacting negatively
the population diversity. If the coefficient of 1.5 is replaced by an extremely
large value > 2.0, we will obtain initial solutions with a high degree of sim-
ilarity, which in turn significantly affects the quality of the solution. Finally,
the coefficient remains constant as it is only used when constructing initial
solutions.
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3.2  FEztended edge-assembly crossover

The HGA algorithm relies on an extended edge-assembly crossover, which is
an adaptation of the edge-assembly crossover (EAX) designed for the TSP
[33J36] to TSPs with profits. Critically, it is difficult to apply EAX directly to
TSPs with profits because EAX assumes that all vertices are visited exactly
once in the solution of the TSP.

Given a TSP instance defined on a graph G = (V,€), a candidate TSP so-
lution ¢ corresponds to a partial graph G, = (V,&,), where &, is the set of
edges traversed by ¢. Given a solution of the TSP, each vertex in V is visited
exactly once, and thus, has the same degree of two in G,. Given two parent
TSP solutions and their associated partial graphs, EAX uses this property to
reassemble the edges from the parents to produce offspring solutions.

However, the situation is different for TSPs with profits. Given two parent
solutions, some vertices may be visited in one parent but not in the other
parent. Consequently, a vertex may have two distinct degrees in the partial
graphs of the parent solutions. This particularity makes it impossible to apply
EAX to TSPs with profits. For the OP and PCTSP, we design an extended
EAX (E*AX), whose key concept is to add dummy edges (self-loops) to ensure
that each vertex has the same degree in the graphs of the parent solutions.

Given an instance of the OP or PCTSP in graph G = (V, £), let ¢ be a solution
that visits |¢| vertices (|¢| < n) and let G, = (V,&,) be the corresponding
partial graph, where £, C £ is the set of edges traversed by ¢. There are two
cases for each vertex in G,: 1) the vertex is visited by ¢ and its degree is 2 in
G,; and 2) the vertex is not visited by ¢ and its degree is 0. In the example
of Fig. [I| the red vertices are not visited by @ and their degree is 0 in G4,
whereas the visited vertices in G4 have a degree of 2.

Let ¢4 and pp be two candidate solutions for the OP or PCTSP, and let
Ga= (V,E4) and Gs = (V, Ep) be the corresponding partial graphs. We define
the degree difference of vertex v in G4 and Gg as 0, = |dega(v) — degp(v)],
where deg,(v) denotes the degree of vertex v in graph G,. In the example of
Fig. [I} the degree difference 9, of a vertex v equals 0 if v is visited by both
solutions or none of them; otherwise, §, = 2. For each vertex v with 9, = 2,

we can add a dummy loop (v,v) in G4 or Gg to make the degree difference 0
(see Fig. [1] (left-middle)).

Let Gy = (V,&}) and G = (V, &) be graphs extended with dummy loops
such that J, = 0 for all vertices. Clearly, the extended graphs G’; and Gg
satisfy the basic properties that are required by the EAX; that is, each vertex
has the same degree in these graphs. As a result, we can now benefit from the
edge assembly idea of the EAX operator to create offspring solutions for the



289 OP and PCTSP

Step 5

AB-cycles E-sets Intermediate solutions Offspring solutions

Fig. 1. Illustration of E2AX.

200 Given two parent solutions ¢4 and g, the proposed E?AX for the OP and
21 PCTSP performs the following steps to generate [ offspring solutions.

20 (1) Generation of multigraph Gap with dummy loops. Build partial graphs

203 Ga = (V,E4) and Gg = (V,Ep) for ¢4 and pp. For each vertex v such
204 that 0, # 0 in G4 and Gg, add w dummy self-loops in ¢4 or
208 wp to make J, = 0. Build multigraph G = (V, & U &), where £ and
296 &y are the edge sets extended with dummy loops.

207 (2) Generation of AB-cycles from Gas. An AB-cycle is a closed path whose
208 edges are alternatively obtained from the parents. From multigraph G 43,
209 build a set of AB-cycles as follows. Initialize an AB-cycle by a random
300 vertex with one adjacent edge in G45. Then, add edges belonging to
301 &'y and & alternatively until a cycle is obtained, which is an AB-cycle.
302 Remove the edges of the A B-cycle from G 45. Repeat the process to build
303 the next AB-cycle until all edges in G 45 are considered.

s (3) Generation of E-sets. An E-set is a union of AB-cycles. Divide the set of
305 AB-cycles randomly and uniformly into 8 subsets (6 = 3 in this work),
306 with each subset of AB-cycles defining an F-set.

37 (4) Generation of intermediate solutions. First, remove all dummy loops in
308 the E-sets. Then, for each E-set, produce an intermediate solution from a
300 random parent solution (say ¢ ) by removing the edges of £4 and adding
310 the edges of &s.

s (B) Elimination of isolated subtours. For each intermediate solution contain-
312 ing subtours, merge the subtours with the main tour using the method
313 presented in [36].

s Fig. provides an illustrative example of the recombination process with E2AX
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applied to two parent solutions ¢4 and ¢g. The second intermediate solution
contains two small subtours that are merged with the main tour to form a
single tour.

We now provide an analysis of the time complexity of E2AX. Steps (1)—(4)
must assemble || + |Ep| edges to produce § offspring solutions, implying
a time complexity of O(|€| + |Eg|). Given that a solution is necessarily an
elementary tour, n > || and n > |Eg| hold. Thus, the times of steps (1)—(4)
are bounded by O(n). In the final step, suppose that there are m isolated
subtours including a maximum of e edges. The time complexity of this step
is O(e x §) [36], where 0 is the number of closest vertices, as introduced in

Section B.3.11

In practice, we have observed that when solving the OP, it is possible for two
parent solutions with the same visited vertices (thus collecting the same profit,
called them symmetric solutions) to be selected for crossover. In this case, the
OP is essentially equivalent to the TSP and the parent solutions typically
have different travel costs. As a result, E?AX will degenerate to the standard
EAX for the TSP. Moreover, we observe experimentally that the probability
of selecting two parent solutions with the same profit is less than 0.2%, and
thus these symmetric solutions have little impact on the performance of the
algorithm. It is important to note that for the PCTSP, two solutions with the
same objective value (i.e., the same traveling cost) cannot be selected as parent
solutions, as clone solutions are not permitted in the population according to
the population management strategy (see Section .

3.8  Offspring improvement

HGA employs a neighborhood-based local search to improve the offspring so-
lutions generated by E2AX. As discussed in [I4], four neighborhood operators
are typically used to transform a route for TSPs with profits: 1) adding an
unrouted vertex, 2) removing a vertex from the route, 3) resequencing the
route, and 4) replacing a routed vertex with an unrouted vertex. Note that
the fourth operator is simply a combination of the first and second operators
and our experiments also indicate that the fourth operator is of little help in
improving the performance of our HGA. Consequently, our HGA adopts only
the first three operators in its neighborhood exploration. Many TSP heuris-
tics have been proposed to resequence a route. In our case, we adopt the 2-opt
heuristic [12], which has been shown to be effective for the OP and PCTSP.
We now explain the add and the remove operators.

11
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3.3.1 Add operator

This operator is applied to add unrouted vertices into the route. For the OP, a
heuristic that is commonly used in the literature [7/45] is adopted to perform
vertex insertions. For each unrouted vertex v;, its move gain A = CJFCPT
is calculated, where v;, and v;, are the vertices before and after v;, rgspectiveply.
Then, the most favorable vertex with the largest move gain is selected and
added to the route. The add operator is repeatedly applied until the constraint
on the travel cost limit c¢,,,, is violated. For the PCTSP, the add operator is
triggered to insert unrouted vertices when the collected profit is below the
minimum profit threshold p,,;,. To collect more profits while maintaining the
travel costs as low as possible, the vertex that leads to the minimum increase
in the travel costs is selected and added to the route.

The worst time complexity of the add operator is O(|p| x (n — |¢|)), where
|p| is the number of vertices visited in the solution. This complexity can be
reduced to O(d x (n — |¢|)) by considering only the d-nearest vertices (0 is
a parameter known as the granularity threshold) and using the streamlining
techniques of [25].

3.3.2  Remowve operator

This operator is applied to remove the visited vertices. For the OP, given
a routed vertex v;, the move gain of removing v; is determined by A =
Mﬁ? where v;, and v;, are the vertices before and after v;, respec-
tively. If the solution is infeasible; that is, the travel costs are greater than
Cmaz, the vertex associated with the smallest A is removed. The remove pro-
cess stops when the solution becomes feasible. For the PCTSP, the operator
attempts to reduce the travel costs as far as possible while maintaining the
feasibility of the solution; that is, the collected profit is greater than the min-
imum profit threshold p,.;,. To achieve this, a vertex v; associated with the
maximum A = ¢; ; + ¢, — Ci i, Value is targeted and removed from the route,
where v;, and v;, are the vertices before and behind v; in the route, respec-
tively. The process terminates when the removal of any vertex in the route
reduces the collected profit to less than p,,;,. The time complexity of the
remove operator is bounded by O(|¢]|).

3.3.8 Application of move operators

It is important to decide the order in which the add and remove operators,
as well as the 2-opt operator, are applied. Given that the OP and PCTSP
pursue different objectives with different constraints, HGA applies a specific
order for each problem. As indicated in Algorithms[2and [3] for both problems,
the 2-opt operator is first applied to reduce the travel costs as far as possible.
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Then, for the OP, the remove operator is used to restore the feasibility when
the travel costs exceed ¢4, followed by the add operator to increase the
profits and the 2-opt operator to reduce the travel costs as far as possible.
For the PCTSP, the add operator is used to insert new vertices to satisfy the
minimum profit constraint p,.;,, followed by the remove operator and 2-opt
operator to reduce the travel costs as far as possible. Once the solution cannot
be improved further, the local search phase terminates and returns the best
solution.

Algorithm 2: The local search procedure for OP
Input: Solution ¢;
Output: Local optima solution ¢;

begin
¢ < 2-opt (p); /* Reducing the travel costs */
¢ <—Remove (¢); /* Restoring feasibility */
var < 0;
while var # f(¢) do
var = f(g);
¢ «<Add (¢); /* Adding vertices */
@ <= 2-opt (p);
end
return o;
end

Algorithm 3: The local search procedure for PCTSP
Input: Solution ¢;
Output: Local optima solution ¢;
begin
© < 2-opt (p); /* Reducing the length */
¢ <Add (¢); /* Restoring feasibility */
var < 0;
while var # f(¢) do
var = f(p);
¢ <Remove (¢); /* Removing vertices */
p = 2-0pt (©);
end
return o;
end

3.4 Diwversity preservation
Diversity is a key factor in population-based algorithms. HGA employs two

different complementary strategies; that is, a specific mutation and dedicated
population management, to preserve the population diversity effectively.
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3.4.1 Mutation

An offspring solution created by E2AX exclusively inherits the edges of its
parents. That is, E2AX cannot introduce vertices that are not visited by both
parents into the offspring solutions. Furthermore, the local search can rarely
introduce unrouted vertices into the solution, given that adding new vertices
often increases the travel costs, which is undesirable. Consequently, the off-
spring solution may resemble the parents even after local optimization. To
maintain sufficient diversity and avoid premature convergence, HGA applies
a mutation with probability 7 to modify each offspring solution by adding
new vertices. The mutation removes some vertices from the solution and then
greedily inserts unrouted vertices into the solution while respecting the cor-
responding constraints (i.e., the maximum travel costs ¢,q, for the OP and
minimum collected profit p,,;, for the PCTSP).

Given a solution ¢, let N, and N, be sets of routed and unrouted vertices
in o, respectively. The mutation process consists of two steps. First, [ vertices
(I is a parameter known as the mutation length) are selected and removed
individually, and all of them are saved in set 7. Specifically, vertex v; is selected
for removal if its removal leads to the minimum move gain A = m,
where v;, and v;, are the vertices before and behind wv;, respectively. Each
removed vertex is forbidden from being reinserted into the route during the
mutation. Second, vertex v; is selected from N, \ T such that its insertion leads
to the maximum increase in A = cp—&-cpﬁ and is inserted into solution (.
For the OP, the insertion process stops when [ unrouted vertices are inserted
or if any of the possible insertions would render the solution infeasible (i.e., the
travel costs would exceed ¢,,4,). For the PCTSP, the move gain for inserting
an unrouted vertex is computed in the same manner as that for the OP.
The insertion terminates when [ vertices are inserted or the insertion makes
the solution feasible (i.e., the collected profit reaches py,,). For the OP and
PCTSP, the mutation operator aims to promote diversity by introducing as
many unrouted vertices as possible. Cost-effective vertices can be considered
as promising for improving the solution quality. Thus, the move gain of the
PCTSP differs in the local search procedure. In Section we demonstrate

the importance of this mutation experimentally.

3.4.2  Population management

To maintain suitable population diversity P, HGA adopts a variable popula-
tion scheme similar to that used in [51], where clone solutions are not permitted
in the population. From an initial population of A solutions, the population
is extended by the offspring solutions until the size reaches the upper limit
1+ A, where p is the generation size. When this occurs, the surviving selec-
tion is triggered to remove p solutions with respect to the fitness and their
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contributions to the diversity of the population. Similar to Vidal [51], the dis-
tance between the two solutions is defined as the number of distinct edges.
Let |P| denote the number of solutions to P. Given a solution ¢, the distances
between ¢ and the other |P| — 1 solutions are computed and sorted from
smallest to largest. Subsequently, the sum of the first nbClost values (nbClost
is a parameter) is used as the diversity contribution of ¢ to P, which is de-
noted by div,. Thus, each solution ¢ € P is associated with a div, value. All
these values are sorted from smallest to largest and each solution is associated
with a rank rd, with respect to div,. Furthermore, we rank the solutions of
P according to their objective values from worst to best, leading to another
rank 7o, for each solution ¢. Finally, the biased fitness of solution ¢ is de-
fined as f(¥)bigsea = 0y, + (1 — %) x rd,, where nbElite is a parameter.
The biased fitness that we use aims to prevent premature convergence of the
population by identifying and preserving the most promising and diversified
solutions. The solution that is associated with the smallest biased fitness is
removed from P and the biased fitness for each remaining solution in P is
updated. The solution-removal process is repeated until there are A solutions
in P. Following [51], we set nbClost = 5 and nbElite = 4.

If the best solution found thus far, ¢*, cannot be improved over v consecutive
iterations (7 is a parameter known as the population rebuilding threshold and
one iteration is the generation of one offspring solution followed by the local
search), the algorithm restarts by generating a completely new population.

4 Computational results and comparisons

In this section, we evaluate the performance of the proposed algorithm on the
OP and PCTSP. We present the benchmark instances, experimental protocol,
reference algorithms, and comparisons with state-of-the-art methods.

4.1 Benchmark instances

For the OP, four sets of instances are used in the literature, all of which were
introduced by Kobeaga et al. [25]. Each set includes 86 instances that are
divided into two groups: medium-sized instances with up to 400 vertices and
large-sized instances with up to 7,397 vertices. For the first three sets, the
maximum travel cost ¢pe. = [a - v(T'SP)], where v(T'SP) is the length of
the shortest Hamiltonian route that visits all vertices and o = 0.5. The profit
of each vertex is generated using the three methods described by Fischetti et
al. [15]. In the final set, o takes different values, whereas all vertices have the
same profits as in the second set. Furthermore, Vansteenwegen and Gunawan
[49] collected various OP benchmark instances, which are available onlind?]
including many small-sized instances. Because the four sets of 344 instances in

! https://www.mech.kuleuven.be/en/cib/op
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[25] are representative, we ignore the small-sized instances mentioned in [49].

There are no unified instances for the PCTSP. We followed [4] and used the
method in [I5] to generate three sets of 240 instances with up to 7,397 vertices,
where each set includes 80 instances and is further divided into two groups:
medium-sized instances with up to 532 vertices and large-sized instances with
up to 7,397 vertices. The profit of each vertex is the same as that in [4].
Furthermore, Vansteenwegen [48] stated that the most difficult instances are
those where the selected number of vertices is slightly greater than half of the
total number of vertices. Consequently, we set p,i;,=10.5 > ,cn il

These 344 instances for the OP and 240 instances for the PCTSP were used
in our experiments to evaluate the performance of the proposed HGA. In-
deed, both the OP and PCTSP benchmark instances were obtained from TSP
benchmark instances and the prize for each vertex was generated in the same

manner. The instances and best solutions that were obtained by HGA are
available onlind?]

4.2 Ezperimental protocol and reference algorithms

Parameter settings. HGA has six main parameters: the minimum popu-
lation size A and generation size u, granularity threshold ¢ that is used in
the local search, mutation probability 7, mutation length [, and population
rebuilding threshold 7. The automatic parameter tuning package Irace [30]
was used to identify suitable values for the parameters. The candidate and
final values are listed in Table [2] These parameter values can be considered to
constitute the default settings and were used consistently in our experiments.

Table 2
Parameter tuning results.

Final values

Parameter Section Description Considered values

OP PCTSP
A minimal size of population {50, 100, 150, 200, 250} 100 100
n generation size {25, 50, 75,100, 125} 50 100
§ granularity threshold {5,8,10,12,15,20} 10 12
T mutation probability {0,0.05,0.1,0.15,0.2,0.25, 0.3} 0.15 0.1
l mutation length {0.05,0.1,0.15,0.2,0.25} 0.25 0.25
~y population rebuilding threshold {5000, 10000, 20000, 30000, 50000, 80000} 30000 30000

Reference algorithms. According to the review in Section [2| we identified
the best heuristic and exact algorithms for the OP and used them for our
comparative study.

e BKS. This indicates the best known solutions (best lower bounds) that were
compiled from all reference heuristic and exact approaches [26/4425].

e RB&C [26]. This exact algorithm [26] was applied to solve the first three sets
of instances and could obtain optimal solutions for many instances under a

2 https://github.com/pengfeihe-angers/tsps-with-profits.git
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time limit of 18,000 seconds.

e ALNS [44]. This algorithm was implemented in C++ and executed on an
Intel Xeon E5 processor, running at 2.2 GHz under a time limit of 18,000
seconds or after 250,000 iterations without improvement. The algorithm
was executed 10 times on each instance. It was tested on the four sets of
instances.

e EA4OP [25]. This hybrid algorithm was implemented in C and executed
on an Intel Xeon E5-2609 v3 1.90 GHz processor with 4 GB RAM. The
algorithm terminates either when the first quartile of the population’s fitness
is the same as the best fitness or when the maximum running time exceeds
18,000 seconds. The algorithm was executed 10 times on each instance. It
was tested on the four sets of instances.

e B&C [25]. This is the B&C algorithm that was presented in [I5] and rerun
in [25]. It stops when the maximum running time (18,000 seconds) is met
or when the optimal solution is found. This algorithm was tested on the
fourth set only.

For the PCTSP, only the B&C algorithm [4] was tested on medium-sized
instances with up to 532 vertices. To obtain a reference algorithm for large-
sized instances with up to 7397 vertices, we created an HGA variant (HGA-
Giant), where we replaced E?AX with a giant tour crossover, as described in

Appendix

Experimental settings and stopping criterion. The HGA algorithm was
implemented in C++ and compiled using the g++ compiler with the -O3
option@ All experiments were run on an Intel Xeon ES-2630 processor with
2.66 GHz and 6 GB RAM running Linux with a single thread. The algorithm
was executed 20 times for each instance, with distinct random seeds. Following
the literature, HGA terminated when it reached a time limit of 18,000 seconds
or a maximum of 500,000 iterations (one iteration means the generation of one
offspring solution followed by one local search run).

4.8  Computational results

To compare HGA and reference algorithms, two summarizing tables are pre-
sented for the OP and PCTSP, respectively. The Wilcoxon signed-rank test
with a confidence level of 0.05 was applied to verify the statistically significant
differences between HGA and each reference algorithm. A p-value lower than
0.05 indicates a significant difference.

3 The code for the HGA  algorithm will be available at
https://github.com/pengfeihe-angers/tsps-with-profits.git
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4.3.1 Comparative results on the OP

Because the two reference heuristic algorithms, namely ALNS [44] and EA4OP
[25], did not provide their average values, we focus on the best objective values
of the compared algorithms in Table [3| Detailed results for the four sets of
344 instances are presented in Tables |B.1HB.8&|

Regarding the BKS values, which represent the best values ever reported by all
algorithms, HGA outperforms 67 BKS values (new lower bounds) out of 344
instances (19.5%) and matches 172 other BKS values (50%). Specifically, for
both the medium- and large-sized instances from Set I, HGA exhibits a worse
performance compared to the BKS values. For the medium-sized instances
from Sets II, III, and IV, our HGA competes favorably with the BKS values,
and the p-values (> 0.05) from the Wilcoxon signed-rank test reveals no sig-
nificant statistical difference between the results of HGA and BKS values. For
the large-sized instances from Sets Il and III, although HGA yields several
new bounds, the p-values (> 0.05) indicates that there are no significant dif-
ferences between the compared results. Finally, for the large-sized instances
from Set IV, our algorithm achieves remarkable performance compared to the
BKS values, and the p-values (< 0.05) clearly indicates that the differences
are statistically significant. Given that the BKS values are the best results
compiled from all existing approaches, HGA can be considered to achieve a
highly competitive performance.

HGA significantly outperforms the two best heuristic algorithms, namely ALNS
and EA4OP (p-value < 0.05), except for ALNS on the first set. Furthermore,
the two best exact algorithms, namely RB&C and B&C, obtain many opti-
mal solutions for medium-sized instances within a reasonable running time,
but their results and running times become unacceptable with the increase in
instance size. As shown in Tables [B.4] [B.6] and [B.8, HGA provides significant
improvements for large-sized instances, particularly for instances with at least
2,000 vertices.

Tables present detailed results for all 344 OP instances. Although
EA40OP exhibits a very short running time, its results are much worse than
those of ALNS and HGA. Compared with ALNS, our HGA could obtain bet-
ter results with a shorter running time. It is noticeable that exact algorithms
require a very short time for medium-sized instances to obtain optimal solu-
tions; however, the gap becomes unacceptable for large-sized instances. Thus,
even if HGA can find high-quality solutions in a short time for small- and
medium-sized instances, its main advantage is its capacity to solve large-sized
OP instances.

The time limit of 5 hours is adopted from the literature to allow a fair com-
parison with the reference algorithms. In practice, our HGA algorithm needs
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Table 3
The OP: summary of results between HGA and reference algorithms on the four sets
of 344 instances in terms of the best objective values.

Instances Pair algorithms Medium-sized (45) Large-sized (41)
#Wins #Ties #Losses p-value #Wins +#Ties #Losses p-value
HGA vs. BKS 0 35 10 2.00E-03 3 1 37 5.51E-06
Set I HGA vs. RB&C [26] 0 35 10 2.00E-03 5 1 35 4.62E-05
HGA vs. EA4OP [25] 12 29 4 1.80E-02 32 2 7 6.70E-06
HGA vs. ALNS [44] 3 35 7 4.59E-01 20 4 17 7.61E-02
HGA vs. BKS 0 43 2 5.00E-01 13 2 26 5.53E-01
Set II HGA vs. RB&C [26] 0 43 2 5.00E-01 13 2 26 7.64E-01
HGA vs. EA4OP [25] 31 14 0 1.17E-06 41 0 0 2.42E-08
HGA vs. ALNS [44] 16 29 0 4.35E-04 40 0 1 2.61E-08
HGA vs. BKS 0 43 2 5.00E-01 19 3 19 7.10E-02
Set 111 HGA vs. RB&C [26] 0 43 2 5.00E-01 19 3 19 6.24E-02
HGA vs. EA4OP [25] 28 15 2 1.64E-05 39 0 2 5.26E-08
HGA vs. ALNS [44] 14 29 2 1.13E-02 38 0 3 6.14E-08
HGA vs. BKS 2 41 2 8.75E-01 30 4 7 1.54E-05
Set IV HGA vs. B&C [25] 2 41 2 8.75E-01 30 4 7 4.15E-06
HGA vs. EA4OP [25] 27 17 1 6.57E-05 39 0 2 7.81E-08
HGA vs. ALNS [44] 20 24 1 1.01E-03 39 2 0 5.25E-08
Summary HGA vs. BKS 2 162 16 65 10 89

much less time to reach its best results (as the TMB values showed in the
tables). Compared to the exact algorithm for the OP, HGA generally attains
the optimal values or better lower bounds within a much shorter time (often
no more than half of the time of the exact algorithm), except for the large
instances of Set I for which HGA finds (good) suboptimal solutions (gap from
0.29% to 5.11%) within 35% of the time needed by the exact algorithm. Fi-
nally, it is somewhat difficult to compare a heuristic (which aims to find the
best possible solution as soon as possible) and an exact algorithm (which aims
to find the optimal solution and prove its optimality).

4.3.2  Comparative results on the PCTSP

Table 4
The PCTSP: summary of best results between HGA and B&C [4] on the three sets
of 138 medium-sized instances.

Medium-sized (46)

Instances Pair algorithms
#Wins #Ties #Losses p-value
Set I HGA vs. B&C [4] 4 37 5 8.20E-01
Set II HGA vs. B&C [4] 7 36 3 4.92E-01
Set ITT HGA vs. B&C [4] 11 21 14 3.06E-01
Summary 22 94 22 -

To demonstrate the effectiveness of our algorithm for the PCTSP, we compare
HGA with the exact B&C algorithm [4] on the three sets of 138 medium-sized
instances. Table 4| summarizes the comparative results and the detailed results
of our algorithm on PCTSP are provided in Tables As indicated in
Table 4] HGA competes well with B&C for the 138 medium-sized instances.
Indeed, our HGA obtains 22 new bounds, although no statistically significant
difference is observed between the compared results. It can also be observed
from Table [4] that B&C fails to obtain optimal solutions for large-sized in-
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stances with more than 400 vertices, although it solves several medium-sized
instances to optimality. However, the running time of B&C increases signifi-
cantly with the size of the instance. Meanwhile, HGA finds high-quality solu-
tions for large-sized instances within a short running time. In particular, HGA
reaches new upper bounds for 120 out of the 240 instances (50%), matches the
best solutions for 96 instances (40%), and misses the best known results for
only 24 cases (10%). Additionally, HGA attains the optimal values or better
upper bounds with only 20% of the time needed by the exact algorithm.

4.4 Discussion

We now present several discussions related to the long-term behavior of HGA,
generality of the hybrid algorithmic framework as well as the E2AX operator,
and instance features on the performance of the algorithms.

4.4.1 Long-term behavior of HGA

Our HGA algorithm uses a stopping condition defined by a time limit of 18,000
seconds or a maximum of 500,000 iterations of the neighborhood search. It
is worth investigating whether the results of the algorithm could be further
improved by prolonging the running time. To answer this question and to
observe the behavior of HGA over time, Fig. [2] presents the running profiles
on two representative instances (13795 in Set II and fl4461 in Set III of the
OP instances). The running profiles are defined by the function ¢ — f, where
1 is the number of iterations and f is the achieved objective value at iteration
1 averaged over 20 runs. The red dots in Fig. 2| indicate the average objective
values obtained at the end of the standard stopping conditions. It can be
observed from Fig. 2] that the results of HGA on these two large-sized instances
can be further improved when the running time is prolonged. Indeed, the best
results for these two instances are 111086 and 148038, which are better than
the best results reported in Tables and (11098 and 147641). This
experiment confirms that HGA exhibits a highly desirable long-term search
behavior, and it is expected to discover better solutions by taking advantage
of prolonged stopping conditions.

4.4.2  Other applications of HGA and E*AX operator

Although HGA along with the E2AX operator is designed for solving TSPs
with profits, its algorithmic framework and the idea of its crossover can be
conveniently adapted to solve multi-vehicle problems such as the split delivery
vehicle routing problem (SDVRP) [13] and team orienteering problem (TOP)
[9] with some adjustments. For instance, in [22], the SDVRP was addressed by
a memetic algorithm (SplitMA), which follows the same hybrid algorithmic
framework and integrates a general edge assembly crossover (gEAX) as well
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Fig. 2. Running profiles of the HGA algorithm on two representative instances.

as dedicated local search operators for the SDVRP. The SplitMA algorithm
reported excellent results on the set of 162 popular benchmark instances, as
shown in Table |5| (data extracted from [22]) where the BKS indicates the best
known objective values ever reported in the literature. Specifically, for the
SDVRP with limited fleet (SDVRP-LF), SplitMA finds 70 new upper bounds
(43%), matches the BKS values for 75 other instances (46%) and only misses
17 BKS values (10%). SplitMA also significantly dominates its competitors in-
cluding multistart iterated local search (SplitILS, 2015), iterative constructive
and variable neighbourhood descent with diversification (iVNDiv, 2009), ran-
dom granular tabu search (RGTS, 2014), scatter search (SS, 2008), and hybrid
genetic algorithm (HGA, 2012). For the SDVRP with unlimited fleet (SDVRP-
UF), SplitMA updates 73 BKS values (new upper bounds) and matches 81
other BKS values. Once again, SplitMA performs significantly better than the
reference algorithms including tabu search with vocabulary building (TSVBA,
2010), forest-based tabu search (FBTS, 2015) memetic algorithm with popu-
lation management (MAPM , 2007), and attribute based hill climber heuristic
(ABHC, 2010). Tt is worth mentioning that the SplitMA algorithm was ranked
second at the 12th DIMACS Implementation Challenge on Vehicle Routing -
SDVRP Track.

Finally, the E2AX operator does not consider edge directions when construct-
ing AB-cycles and cannot be directly applied to directed cases. However, this
crossover can be further extended to directed cases by considering the edge
directions when building AB-cycles. We will explore this possibility in the
future.

4.4.8 Influence of instance features on algorithm performance

For the OP, we observe that the performance of the exact algorithms [4]25]
is dependent on the size of the instances and the variability of the profits
assigned to the vertices. Indeed, for the instances of Set I, all vertices have the
same prize (p; = 1), and the objective of the OP is reduced to cover as many
vertices as possible. These instances are easily solved to optimality by the
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Table 5
Summary of comparative results of SplitMA and reference algorithms for the split
delivery vehicle routing problem with limited fleet (upper part) and unlimited fleet

(lower part) in terms of the best objective values [22].
Best

Pair algorithms ##Instances
#Wins #Ties #Losses p-value

SDVRP-LF 162 -
SplitMA vs. BKS 162 70 75 17 4.28E-09
SplitMA vs. SplitILS 162 76 74 12 1.11E-12
SplitMA vs. iVNDiv 99 92 7 0 3.15E-17
SplitMA vs. RGTS 88 78 9 1 2.15E-14
SplitMA vs. SS 49 44 5 0 1.74E-09
SplitMA vs. HyGA 21 12 8 1 3.09E-03
SDVRP-UF 162 -

SplitMA vs BKS 162 73 81 8 2.08E-12
SplitMA vs. SplitILS 162 82 76 4 4.35E-16
SplitMA vs. TSVBA 120 105 13 2 8.69E-20
SplitMA vs. FBTS 67 67 0 0 1.12E-12
SplitMA vs. MAPM 74 62 12 0 1.72E-12
SplitMA vs. ABHC 36 34 2 0 1.83E-07

exact algorithms. For the instances in Sets II and III, all vertices are assigned
a pseudo-random prize between 1 and 100, and larger prizes are assigned to
vertices far from the depot. According to the results in Tables these
instances are more challenging for the exact algorithms and many instances
cannot be solved to optimality. Regarding our HGA, we observe that for large-
sized instances and instances where the profits of the vertices are not uniformly
distributed, HGA is more robust and powerful than the exact algorithms.

Indeed, additional experiments were conducted to investigate properties of in-
stances that may affect the performance of HGA. Four representative instances
with similar sizes, but different profit distributions (rat575-gen2 and rat575-
gen3 with a uniform geographic distribution, p654-gen2 and p654-gen3 with
a clustered distribution). The best results on these instances are illustrated
in Fig. 3| with profits represented by circles. From Table we find that
the time needed to hit the best result (TMB) of rat575-gen2 is significantly
larger than that of p654-gen2, even if the running time of both instances is
similar, indicating that HGA converges quickly when solving the latter (clus-
tered) instance. From Fig. 3a)-(b) and experimental logs, we observe that
HGA spends more time carrying out the local search procedure to find local
optima for instances with a uniform geographic distribution. This is particu-
larly evident for Set ITI. For rat575-gen3 (random distribution) and p654-gen3
(clustered distribution), it can be observed that the running time and TMB
for the clustered instance are considerably less than for the instance with a
random distribution. As shown in Fig. [3(c) - (d) and experimental logs, HGA
can easily find three clusters and attain local optima quickly when solving
p654-gen3 (clustered distribution). Conversely, HGA has to spend a larger
amount of time carrying out the local search procedure when solving rat575-
gen3 (random distribution). Therefore, it is safe to conclude that HGA is more
advantageous in solving instances with a clustered geographic distribution. Fi-
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nally, we also observe that the size of instances and variability of profits also
influence, to a certain extent, the performance of the algorithm.

(a) rat575-gen2 (b) p654-gen2

(c) ratb75-gen3 (d) p654-gen3

Fig. 3. Graph structures of four representative instances.
5 Assessment of algorithmic components

In this section, we describe additional experiments that were conducted to
study the benefits of the two key components of the proposed algorithm. The
experiments were based on the instances of Sets IT and III for the OP.

5.1 Significance of crossover

To assess the significance of E?AX within HGA, we created an HGA variant
(HGA-Giant), in which E2AX was replaced with the giant tour crossover [6]
(see Appendix and another HGA variant (HGA1), where E?AX was dis-
abled in HGA. We ran these algorithms under the same stopping condition as
before. The comparative results are presented in Table [f] and Fig.

From these results, we observe that E2AX played a strongly positive role in the
good performance of HGA. Indeed, HGA dominated HGA-Giant by obtaining
108 better results and 61 equal results out of the 172 tested instances. HGA1
(without crossover) exhibited the worst performance compared with HGA and
HGA-Giant, indicating that crossovers such as E2AX and the giant tour are
highly beneficial for the performance of the hybrid algorithm. In particular, for
the PCTSP, HGA significantly outperformed HGA-Giant in terms of both the
objective value and computational efficiency, as confirmed by the p-values <
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Table 6

Comparative results between HGA and HGA-Giant (using the giant tour crossover).

oP
Instances Pair algorithms Best Avg.
#Wins  #Ties #Losses p-value #Wins #Ties #Losses p-value
HGA vs. HGA-Giant 51 34 1 4.25E-09 65 18 3 3.65E-11
Set II (86)
HGA vs. HGA1 81 5 0 5.36E-15 83 3 0 2.50E-15
HGA vs. HGA-Giant 57 27 2 1.55E-10 68 15 3 4.84E-12
Set TII (86)
HGA vs. HGA1 84 2 0 1.71E-15 85 1 0 1.17E-15
PCTSP
Best Avg
#Wins  #Ties #Losses p-value #Wins #Ties #Losses p-value
Set I (80) HGA vs. HGA-Giant 65 12 3 1.34E-11 75 0 5 2.43E-12
Set II (80) HGA vs. HGA-Giant 75 3 2 5.70E-13 T 1 2 1.98E-13
Set III (80) HGA vs. HGA-Giant 73 5 2 5.57E-13 7 0 3 2.24E-13

0.05. According to the detailed results for the PCTSP in Tables[B.9B.14 HGA
required only half of the time required by HGA-Giant to find solutions of equal
or better quality on medium-sized instances, and it could reach better solutions
than HGA-Giant with a shorter running time on large-sized instances.

In summary, E2AX positively contributes to the performance of HGA and
outperforms the giant tour crossover.
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Fig. 4. The differences between HGA and two variants for solving the instances of
Sets II and III of the OP.

5.2 Benefits of mutation

In HGA, the mutation operator is used to preserve the diversity of the popula-
tion. To assess its usefulness, an HGA variant (HGA2) was created by disabling
the mutation operator. We compared HGA and HGA?2 in terms of the popula-
tion diversity using the following diversity measure: Let |P| be the number of
solutions in population P. Let AV, be the set of vertices visited by solution ¢ in
P. Let H be the set of vertices visited by all solutions in P and H = ijl./\/’ .-
Let & be the proportion of vertices covered by P and & = WZ—', 0<&E<1. We
used the value of £ to measure the population diversity. If & — 1, P covers
many vertices, offering good possibilities for the algorithm to explore larger
search spaces and vice versa. We present the convergence charts of HGA and
HGA2 together with the evolution of the population diversity based on two
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instances (rat783-gen3 and ul060-gen2). The results are presented in Fig.
where HGA-R and HGA2-R indicate the best results found, whereas HGA-P
and HGA2-P are the current diversity values £ of the population. It should be
noted that HGA exhibited better convergence and dominated its counterpart
in both instances. It is observed that HGA always maintained a higher value
¢ along its evolution compared to HGA2, which indicates the contribution of
the mutation to the diversity and performance of the HGA algorithm.

Finally, Fig. [6] depicts the comparative results of HGA and HGA2 in terms of
both the best and average objective values on the 86 instances of Set 1T and
86 instances of Set III (the names of 15 instances are shown). The results are
presented as the deviation in the percentage of the HGA2 results compared
with the HGA results. For medium-sized instances, HGA and HGA2 obtained
similar results. However, for instances with more than 200 vertices, HGA2
performed worse than HGA, and the difference became more significant as
the size of the instances increased. These results confirm that the mutation
operator plays a crucial role in HGA, especially for large-sized instances.
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Fig. 5. Convergence charts of HGA and HGA2 for solving two representative in-
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6 Conclusions

This study has presented a new hybrid genetic algorithm to address two TSPs
with profits efficiently. We introduced several methodological contributions,
including an extended edge-assembly crossover for producing promising solu-
tions, an effective local search for solution refinement, and specific strategies
for preserving the diversity of the population.

Extensive experiments were conducted on the OP and PCTSP. For the OP,
four sets of 344 commonly used instances were tested, and 67 new lower bounds
were discovered. The algorithm also matched the best known results for 172
other instances. For the PCTSP, the results on three sets of 240 instances
exhibited high performance on large-sized instances, including 120 new best
results that have never been reported in the literature. Additional experiments
were conducted to obtain insight into the benefits of the proposed crossover
and mutation. The new bounds reported in this study may be useful for future
research on these issues.

The proposed algorithm can be further improved by investigating more pow-
erful streamline techniques to increase the computational efficiency and to
deal with larger problem instances. Moreover, this study confirms the merit of
the general concept of assembling promising edges from elite parents, which
may aid in the design of new crossovers for other routing problems such as
multi-vehicle and directed cases.

Acknowledgments

We are grateful to the reviewers for their insightful and constructive com-
ments, which helped us to significantly improve the paper. The authors also
would like to thank the following colleagues: Dr. G. Kobeaga [2526], Prof.
M. Gendreau and Prof. J-Y. Potvin [4] for their kind helps. This work is
partially supported by the National Natural Science Foundation Program of
China (Grant No. 72122006). Support from the China Scholarship Council
(CSC, No. 201906850087) for the first author is also acknowledged.

References

[I] E. Balas, The prize collecting traveling salesman problem, Networks: An
International Journal 19 (6) (1989) 621-636.

[2] E. Balas, The prize collecting traveling salesman problem: Ii. polyhedral results,
Networks: An International Journal 25 (4) (1995) 199-216.

[3] E. Balas, The prize collecting traveling salesman problem and its applications,

26



787

788

789

790

791

792

794

795

796

797

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

in: The traveling salesman problem and its variations, Springer, 2007, pp. 663—
695.

[4] J.-F. Bérubé, M. Gendreau, J.-Y. Potvin, A branch-and-cut algorithm for
the undirected prize collecting traveling salesman problem, Networks: An
International Journal 54 (1) (2009) 56-67.

[5] D. Bienstock, M. X. Goemans, D. Simchi-Levi, D. Williamson, A note on the
prize collecting traveling salesman problem, Mathematical Programming 59 (1)
(1993) 413-420.

[6] H. Bouly, D.-C. Dang, A. Moukrim, A memetic algorithm for the team
orienteering problem, 40R 8 (1) (2010) 49-70.

[7] V. Campos, R. Marti, J. Sanchez-Oro, A. Duarte, Grasp with path relinking for
the orienteering problem, Journal of the Operational Research Society 65 (12)
(2014) 1800-1813.

[8] I-M. Chao, B. L. Golden, E. A. Wasil, A fast and effective heuristic for the
orienteering problem, European Journal of Operational Research 88 (3) (1996)
475-489.

[9] I-M. Chao, B. L. Golden, E. A. Wasil, The team orienteering problem, European
Journal of Operational Research 88 (3) (1996) 464-474.

[10] A. A. Chaves, L. A. N. Lorena, Hybrid metaheuristic for the prize collecting
travelling salesman problem, in: European Conference on Evolutionary
Computation in Combinatorial Optimization, Springer, 2008.

[11] G. Climaco, L. Simonetti, I. Rosseti, A branch-and-cut and mip-based heuristics
for the prize-collecting travelling salesman problem, RAIRO: Recherche
Opérationnelle 55 (2021) 719.

[12] G. A. Croes, A method for solving traveling-salesman problems, Operations
Research 6 (6) (1958) 791-812.

[13] M. Dror, P. Trudeau, Savings by split delivery routing, Transportation Science
23 (2) (1989) 141-145.

[14] D. Feillet, P. Dejax, M. Gendreau, Traveling salesman problems with profits,
Transportation Science 39 (2) (2005) 188-205.

[15] M. Fischetti, J. J. S. Gonzalez, P. Toth, Solving the orienteering problem
through branch-and-cut, INFORMS Journal on Computing 10 (2) (1998) 133
148.

[16] M. Gendreau, G. Laporte, F. Semet, A branch-and-cut algorithm for the
undirected selective traveling salesman problem, Networks: An International
Journal 32 (4) (1998) 263-273.

[17] M. Gendreau, G. Laporte, F. Semet, A tabu search heuristic for the undirected
selective travelling salesman problem, Furopean Journal of Operational
Research 106 (2-3) (1998) 539-545.

27



826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

[18] B. L. Golden, L. Levy, R. Vohra, The orienteering problem, Naval Research
Logistics 34 (3) (1987) 307-318.

[19] L. Gomes, V. Diniz, C. A. Martinhon, An hybrid grasp+ vnd metaheuristic for
the prize-collecting traveling salesman problem, XXXII Simpdsio Brasileiro de
Pesquisa Operacional (2000) 1657-1665.

[20] F. Hammami, M. Rekik, L. C. Coelho, A hybrid adaptive large neighborhood
search heuristic for the team orienteering problem, Computers & Operations
Research 123 (2020) 105034.

[21] J.-K. Hao, Memetic algorithms in discrete optimization, in: Handbook of
memetic algorithms, Springer, 2012, pp. 73-94.

[22] P. He, J-K. Hao, General edge assembly crossover-driven memetic
search for split delivery vehicle routing, Transportation Science (2022)
https://doi.org/10.1287 /trsc.2022.1180.

[23] P. He, J.-K. Hao, Memetic search for the minmax multiple traveling salesman
problem with single and multiple depots, European Journal of Operational
Research 307 (3) (2023) 1055-1070.

[24] M. Keshtkaran, K. Ziarati, A novel grasp solution approach for the orienteering
problem, Journal of Heuristics 22 (5) (2016) 699-726.

[25] G. Kobeaga, M. Merino, J. A. Lozano, An efficient evolutionary algorithm for
the orienteering problem, Computers & Operations Research 90 (2018) 42-59.

[26] G. Kobeaga, M. Merino, J. A. Lozano, A revisited branch-and-cut algorithm for
large-scale orienteering problems, arXiv preprint arXiv:2011.02743.

[27] G. Laporte, S. Martello, The selective travelling salesman problem, Discrete
Applied Mathematics 26 (2-3) (1990) 193-207.

[28] A. C. Leifer, M. B. Rosenwein, Strong linear programming relaxations for the
orienteering problem, European Journal of Operational Research 73 (3) (1994)
017-523.

[29] Y .-C. Liang, A. E. Smith, An ant colony approach to the orienteering problem,
Journal of the Chinese Institute of Industrial Engineers 23 (5) (2006) 403-414.

[30] M. Lopez-Ibéanez, J. Dubois-Lacoste, L. P. Caceres, M. Birattari, T. Stiitzle, The
irace package: Iterated racing for automatic algorithm configuration, Operations
Research Perspectives 3 (2016) 43-58.

[31] Y. Marinakis, M. Politis, M. Marinaki, N. Matsatsinis, A memetic-grasp
algorithm for the solution of the orienteering problem, in: Modelling,
computation and optimization in information systems and management sciences,
Springer, 2015, pp. 105-116.

[32] S. Martello, D. Pisinger, P. Toth, New trends in exact algorithms for the 0-1
knapsack problem, European Journal of Operational Research 123 (2) (2000)
325-332.

28



865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

9200

901

902

903

[33] Y. Nagata, Edge assembly crossover: A high-power genetic algorithm fot the
traveling salesman problem, in: Proceedings of the 7Tth International Conference
on Genetic Algorithms, 1997, 1997.

[34] Y. Nagata, O. Briysy, Edge assembly-based memetic algorithm for the
capacitated vehicle routing problem, Networks: An International Journal 54 (4)
(2009) 205-215.

[35] Y. Nagata, O. Braysy, W. Dullaert, A penalty-based edge assembly memetic
algorithm for the vehicle routing problem with time windows, Computers &
Operations Research 37 (4) (2010) 724-737.

[36] Y. Nagata, S. Kobayashi, A powerful genetic algorithm using edge assembly
crossover for the traveling salesman problem, INFORMS Journal on Computing
25 (2) (2013) 346-363.

[37] I. Oliver, D. Smith, J. R. Holland, Study of permutation crossover operators on
the traveling salesman problem, in: Genetic algorithms and their applications:
proceedings of the second International Conference on Genetic Algorithms: July
28-31, 1987 at the Massachusetts Institute of Technology, Cambridge, MA,
Hillsdale, NJ: L. Erlhaum Associates, 1987., 1987.

[38] K. Ostrowski, J. Karbowska-Chilinska, J. Koszelew, P. Zabielski, Evolution-
inspired local improvement algorithm solving orienteering problem, Annals of
Operations Research 253 (1) (2017) 519-543.

[39] A. Paul, D. Freund, A. Ferber, D. B. Shmoys, D. P. Williamson, Budgeted
prize-collecting traveling salesman and minimum spanning tree problems,

Mathematics of Operations Research 45 (2) (2020) 576-590.

[40] O. Pedro, R. Saldanha, R. Camargo, A tabu search approach for the prize
collecting traveling salesman problem, Electronic Notes in Discrete Mathematics
41 (2013) 261-268.

[41] J.-Y. Potvin, State-of-the art review-evolutionary algorithms for vehicle routing,
INFORMS Journal on Computing 21 (4) (2009) 518-548.

[42] C. Prins, A simple and effective evolutionary algorithm for the vehicle routing
problem, Computers & Operations Research 31 (12) (2004) 1985-2002.

[43] R. Ramesh, K. M. Brown, An efficient four-phase heuristic for the generalized
orienteering problem, Computers & Operations Research 18 (2) (1991) 151-165.

[44] A. Santini, An adaptive large neighbourhood search algorithm for the
orienteering problem, Expert Systems with Applications 123 (2019) 154-167.

[45] J. Silberholz, B. Golden, The effective application of a new approach to the
generalized orienteering problem, Journal of Heuristics 16 (3) (2010) 393-415.

[46] M. F. Tasgetiren, A. E. Smith, A genetic algorithm for the orienteering problem,
in: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 2,
IEEE, 2000.

29



904

905

906

907

9208

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

[47] T. Tsiligirides, Heuristic methods applied to orienteering, Journal of the
Operational Research Society 35 (9) (1984) 797-809.

[48] P. Vansteenwegen, Planning in tourism and public transportation, 4OR 7 (3)
(2009) 293-296.

[49] P. Vansteenwegen, A. Gunawan, State-of-the-art solution techniques for op and
top, in: Orienteering Problems, Springer, 2019, pp. 41-66.

[50] P. Vansteenwegen, W. Souffriau, D. Van Oudheusden, The orienteering problem:
A survey, European Journal of Operational Research 209 (1) (2011) 1-10.

[51] T. Vidal, Hybrid genetic search for the cvrp: Open-source implementation and
swap* neighborhood, Computers & Operations Research 140 (2022) 105643.

[52] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, W. Rei, A hybrid genetic
algorithm for multidepot and periodic vehicle routing problems, Operations
Research 60 (3) (2012) 611-624.

[53] T. Vidal, T. G. Crainic, M. Gendreau, C. Prins, A hybrid genetic algorithm with
adaptive diversity management for a large class of vehicle routing problems with
time-windows, Computers & Operations Research 40 (1) (2013) 475-489.

[54] T. Vidal, T. G. Crainic, M. Gendreau, C. Prins, A unified solution framework
for multi-attribute vehicle routing problems, European Journal of Operational
Research 234 (3) (2014) 658-673.

[55] T. Vidal, N. Maculan, L. S. Ochi, P. H. Vaz Penna, Large neighborhoods
with implicit customer selection for vehicle routing problems with profits,
Transportation Science 50 (2) (2016) 720-734.

[56] Q. Wang, X. Sun, B. L. Golden, J. Jia, Using artificial neural networks to solve
the orienteering problem, Annals of Operations Research 61 (1) (1995) 111-120.

Appendix

A Mathematical model

In this section, we propose a possible mathematical model for the undirected
OP and PCTSP following [14]. Let x. be a binary variable and z. = 1 if and
only if the edge (e) is used in the solution. Let y; be a binary variable and y;
= 1 if and only if vertex v; is visited. For every vertex subset S, let §(S) be
the set of edges with one end in S and the other end in V\S.

mazimize Y p;y; (A.1)
v; €V
Zceme < Crnaz (A.2)
ec&
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Z Te=2y; (v; €V) (A.3)

Y. < |3|e€—6(?}) (S c W{w},3< |8 <n—2) (A4)
b vo = 1 (A.5)
v, €{0,1} (e€€&) (A.6)
y € {01} (v;€V) (A7)

We refer to constraints as knapsack constraints. Constraints are so-
called assignment constraints, whereas constraints are used to eliminate
subtours. The mathematical model for the PCTSP is

minimize » | C.xe (A.8)
ec&
subject to (A.3[-[A.7)) plus
v; EV

We refer to constraints as generalized covering constraints.

B Computational results

This appendix presents the detailed computational results of the proposed
HGA compared with the reference algorithms. The results of HGA are based
on 20 independent runs per instance. For the OP, we compare our results with
the four best algorithms in the literature: RB&C [20], B&C [25], EA4OP [25],
and ALNS [44]. For the PCTSP, only one exact algorithm, namely B&C [4],
is presented for a small number of instances. For the purpose of comparison,
we implemented an HGA variant (HGA-Giant), in which we replaced the
proposed E2AX with a giant tour crossover, which was inspired by the giant
tour crossover designed for the multi-route team OP [6]. We used HGA-Giant
as the main reference algorithm for the PCTSP and ran the algorithm under
the stopping condition presented in Section

B.1  Giant tour crossover

Crossover operators based on the giant tour have been used to solve various
routing problems [54], which rely on efficient split algorithms that are designed
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for specific constraints, such as capacity or time windows. The giant tour can
also be applied to TSPs with profits with respect to the corresponding con-
straints. In this section, we introduce the giant tour crossover and an optimal
split algorithm.

We consider the PCTSP as an example. Given a solution ¢, let NV, and N, be
sets of routed and unrouted vertices in ¢, respectively. Furthermore, let 4 and
©p be two parent solutions. First, all routed vertices (v; € N,,) in solution
¢4 are arranged into an array A. Second, all unrouted vertices (v; € N,,) are
arranged into A after the routed vertices in a sequential order. An array B is
produced using solution ¢z in the same manner. Third, given two giant tours
A and B, an ordered crossover [37] is used on a simple permutation-based
representation. Subsequently, a new giant tour S is produced. Finally, a linear
time-split algorithm with respect to the collecting prize optimally splits each
giant tour by inserting a trip delimiter. Specifically, for each vertex in S, if
the delimiter is inserted after the vertex, there are two tours, and O(1) time is
required to compute the profits and travel costs. As there are n vertices in .S,
we can optimally split S in O(n) time. Following the split, a feasible offspring
is returned.

B.2 Results

In the tables presented hereafter, the column Instance indicates the names of
the instances and the column BKS presents the best known values summarized
from the literature. For the exact algorithms B&C [25] and RB&C [26], LB
and UB are the lower and upper bounds from the corresponding algorithm,
respectively. Gap was calculated as Gap = 100 x (LB — UB)/UB. A star
* indicates a proven optimal solution. Time represents the running (ending)
time of the corresponding algorithm. For the heuristic algorithms ALNS [44],
EA4OP [25], and our HGA, Best is the best result over multiple runs (10 for
ALNS and EA4OP, and 20 for HGA). Time is the average running (ending)
time of the algorithm. Furthermore, for our HGA and its variant HGA-Giant,
TMB is the average running time required for HGA or HGA-Giant to attain
its overall best results. TMB was calculated based on the runs (over 20 runs)
that hit the overall best result. Furthermore, two indicators are defined to
illustrate the performance of HGA.

° 51 = 100 x (BKS— fbest)/fbest-
e 9y = 100 X (fpest — BKS)/BKS.

01 is the difference between the proposed HGA algorithm and the best known
results of OP (a maximization problem), where fy. is the best objective value
of HGA and BKS is the best known result summarized from the reference
algorithms. s is the gap between HGA and the best known results of PCTSP
(a minimization problem), where fu.s is the best objective value of HGA
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and BKS is the best result among the B&C and HGA-Giant algorithms. In
the tables, the Average row represents the average value of the instances of
a benchmark set. Improved best results (new bounds) are indicated by the
negative 0 values highlighted in boldface.
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Table B.1

Results for OP on medium-sized instances of Set I.

Instances BKS RB&C EA4OP ALNS [44] HGA
LB UB LB UB Gap(%) Time Best Time Best Time Best Avg. Time TMB 61(%)

att48 31 31 31 31 * 0.03 31 0.25 31 6.77 31 31.00 0.85 0.84 0.00
gra8 31 31 31 31 * 0.02 31 0.13 31 9.99 31 31.00 0.04 0.01 0.00
hk48 30 30 30 30 * 0.01 30 0.24 30 7.20 30 30.00 2.51 2.51 0.00
eil51 29 29 29 29 * 0.01 29 0.24 29 9.51 29 28.85 11.92 7.16 0.00
berlin52 37 37 37 37 * 0.02 37 0.30 37 9.42 37 37.00 0.04 0.01 0.00
brazil58 46 46 46 46 * 0.07 46 1.00 46 9.13 46 45.30 44.65 6.38 0.00
st70 43 43 43 43 * 0.05 43 0.32 43 15.99 43 43.00 0.66 0.66 0.00
eil76 47 47 47 47 * 0.04 46 0.32 47 20.51 47 46.05 59.01 1.96 0.00
pr76 49 49 49 49 * 0.06 49 0.61 49 18.64 49 48.05 63.37 0.94 0.00
gro6 64 64 64 64 * 0.08 64 1.44 64 20.31 64 64.00 15.44 15.44 0.00
rat99 52 52 52 52 * 0.47 52 0.66 52 27.75 52 51.80 33.95 20.86 0.00
kroA100 56 56 56 56 * 0.41 55 0.34 56 34.75 56 56.00 9.92 9.92 0.00
kroB100 58 58 58 58 * 0.27 57 0.63 58 43.06 58 56.45 68.74 25.52 0.00
kroC100 56 56 56 56 * 0.25 56 0.48 56 34.32 56 56.00 14.68 14.68 0.00
kroD100 59 59 59 59 * 0.09 58 0.65 59 34.61 59 59.00 5.82 5.82 0.00
kroE100 57 57 57 57 * 5.53 57 0.50 57 32.26 57 56.35 60.60 27.06 0.00
rd100 61 61 61 61 * 0.12 61 0.74 61 29.49 61 60.90 40.18 33.52 0.00
eil101 64 64 64 64 * 0.06 64 0.79 64 31.73 64 64.00 7.20 7.20 0.00
lin105 66 66 66 66 * 0.48 66 1.42 66 32.11 66 66.00 0.45 0.44 0.00
prl07 54 54 54 54 * 0.08 54 0.93 54 78.46 54 54.00 0.11 0.01 0.00
grl20 75 75 75 75 * 0.28 74 1.20 75 29.58 75 75.00 28.58 28.58 0.00
pri24 75 75 75 75 * 0.35 75 1.11 75 49.64 75 75.00 0.86 0.86 0.00
bier127 103 103 103 103 * 0.38 103 1.18 103  40.84 103 103.00 5.05 5.05 0.00
prl36 71 71 71 71 * 1.75 71 0.96 71 29.97 71 70.95 40.26 35.01 0.00
grl37 81 81 81 81 * 0.24 78 3.44 81 59.21 81 81.00 7.44 7.44 0.00
prl44 7 7 7 e * 1.46 7 2.61 7 87.82 7 76.50 74.23 46.61 0.00
kroA150 86 86 86 86 * 33.87 86 1.17 86 82.79 86 85.05 113.12 33.65 0.00
kroB150 87 87 87 87 * 2.21 86 1.00 87 61.64 86 86.00 146.01 36.24 1.16
pr152 s ™ 7 T * 1.29 7 3.64 ™ 91.38 ™ 76.45 90.19 30.72 0.00
uls9 93 93 93 93 * 1.82 92 1.11 93 99.63 93 92.15 122.50 37.65 0.00
rat195 102 102 102 102 * 3.71 99 1.78 102 195.57 101 100.45 139.73 56.95 0.99
d198 123 123 123 123 * 5.28 123 6.68 123 65.57 123 122.70 118.46 60.17 0.00
kroA200 117 117 117 117 * 2.5 117 1.74 117 114.75 116  114.05 227.36 83.39 0.86
kroB200 119 119 119 119 * 9.91 119 1.66 119 86.58 118 117.70 211.44 81.31 0.85
gr202 145 145 145 145 * 2.71 145 6.89 145 187.56 145 144.60 157.66 77.48 0.00
5225 124 124 124 126 1.59 18000.00 124 1.28 124 279.52 124 124.00 0.22 0.06 0.00
tsp225 129 129 129 129 * 4.31 127 2.29 128 198.47 128 126.05 223.06 102.75 0.78
pr226 126 126 126 126 * 107.69 126 6.61 126 181.94 126 125.20 168.44 16.25 0.00
gr229 176 176 176 176 * 0.32 176  8.81 173 108.27 175 174.30 324.03 84.10 0.57
gil262 158 158 158 158 * 0.35 156  2.84 158  240.02 155 153.50 323.80 125.41 1.94
pr264 132 132 132 132 * 3.92 132 5.62 132 314.29 132 132.00 2.44 2.35 0.00
a280 147 147 147 147 * 40.65 143  3.00 144  239.06 145 142.95 272.42 134.60 1.38
pr299 162 162 162 162 * 48.85 160 3.12 162 410.90 160 159.60 280.80 87.62 1.25
1in318 205 205 205 205 * 5.49 202 7.15 203 294.23 205 203.55 403.82 153.07 0.00
rd400 239 239 239 239 * 36.71 234 6.59 237  422.56 236 233.50 623.83 294.78 1.27
Average 89.31 89.31 89.31 89.36 - 407.20 88.62 2.12 89.07 99.51 88.96 88.44 101.02 40.07 -
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Table B.7

Results for OP on medium-sized instances of Set IV.

Instances  BKS B&C EA40OP ALNS [44] HGA

LB Gap(%) Time Best Time Best Time Best Avg. Time TMB 61 (%)
att48 1870 1870 0.00 106.00 1870 0.52 1870 8.99 1870 1870.00 185.07 1.58 0.00
gra8 2264 2264 0.00 22.40 2264 0.40 2264 3.82 2264 2264.00 279.14 1.82 0.00
hk48 2177 2177 0.00 0.20 2177 0.15 2177 7.76 2177 2177.00 271.23 1.46 0.00
eil51 2490 2490 0.00 82.10 2490 0.24 2489 6.65 2490 2490.00 327.17 3.69 0.00
berlin52 2089 2089 0.00 115.00 2085 0.48 2089 10.75 2089 2089.00 253.33 9.03 0.00
brazil58 2070 2070 0.00 132.00 2060 1.08 2070 10.71 2070 2070.00 308.02 1.27 0.00
st70 3316 3316 0.00 127.70 3314 0.42 3316 7.82 3316 3315.50 450.39 118.57 0.00
eil76 3646 3646 0.00 45.10 3646 0.52 3640 9.38 3646 3646.00 471.84 31.66 0.00
pr76 3361 3361 0.00 1047.70 3361 0.62 3358 10.78 3361 3361.00 438.33 18.70 0.00
gro6 4851 4851 0.00 212.30 4851 0.37 4851 6.68 4851 4851.00 505.50 3.54 0.00
rat99 3502 3502 0.00 16.00 3502 0.60 3502 31.01 3502 3501.60 551.80 160.40 0.00
kroA100 4999 4999 0.00 187.10 4999 0.36 4999 6.44 4999 4999.00 590.22 66.04 0.00
kroB100 2935 2935 0.00 34.40 2935 0.61 2935 31.84 2935 2904.90 554.57 61.39 0.00
kroC100 1962 1962 0.00 261.60 1955 0.46 1962 31.46 1962 1962.00 336.67 2.33 0.00
kroD100 1212 1212 0.00 11.80 1212 0.41 1212 14.33 1212 1212.00 149.85 0.02 0.00
kroE100 4635 4635 0.00 203.40 4616 0.69 4631 13.14 4635 4635.00 681.46 22.99 0.00
rd100 3815 3815 0.00 164.60 3808 0.75 3815 22.99 3815 3815.00 647.49 21.46 0.00
eil101 4308 4308 0.00 90.80 4306 0.83 4308 39.55 4308 4308.00 609.52 4.68 0.00
lin105 2455 2455 0.00 1020.60 2453 0.81 2455 33.74 2455 2455.00 416.77 3.38 0.00
prl07 2072 2072 0.00 159.00 2072 1.95 2072 10.20 2072 2072.00 227.42 0.58 0.00
grl20 5830 5830 0.00 236.70 5830 1.25 5830 18.10 5830 5830.00 677.32 37.24 0.00
pril24 2036 2036 0.00 163.80 1937 1.18 2036 48.00 2036 2036.00 329.39 0.47 0.00
bier127 5068 5068 0.00 278.40 5067 2.28 5053 42.94 5068 5068.00 614.18 81.69 0.00
prl36 2860 2860 0.00 6303.60 2820 0.74 2860 51.86 2860 2858.80 542.13 210.35 0.00
grl37 6523 6523 0.00 203.10 6516 2.52 6523 35.45 6523 6523.00 779.57 15.72 0.00
prl44 5641 5641 0.00 357.90 5639 4.53 5641 70.02 5641 5639.30 855.54 228.20 0.00
kroA150 6858 6858 0.00 415.90 6855 1.69 6855 42.88 6858 6858.00 816.73 11.97 0.00
kroB150 7023 7023 0.00 303.00 7020 1.16 7014 23.86 7023 7023.00 890.59 4.47 0.00
prl52 5823 5823 0.00 483.60 5820 5.21 5823 43.79 5261 5261.00 823.84 20.03 10.68
uls9 3147 3147 0.00 1145.20 3147 0.92 3147 161.92 3147 3147.00 499.78 5.35 0.00
rat195 9753 9753 0.00 205.40 9750 1.69 9737 27.11 9753 9752.75 928.42 233.11 0.00
d198 4661 4661 0.00 492.70 4654 4.95 4658 122.01 4661 4661.00 786.39 151.19 0.00
kroA200 9892 9892 0.00 340.30 9892 2.73 9854 47.90 9892 9889.85 1034.46 363.36 0.00
kroB200 9849 9849 0.00 253.20 9842 1.62 9846 20.18 9849 9849.00 1084.16 153.14 0.00
gr202 1071 1071 0.00 376.10 995 1.47 1055 30.88 1071 1071.00 116.43 0.31 0.00
ts225 11002 11002 0.00 3524.60 11002 1.87 10954 61.48 11002 11002.00 1177.47 109.28 0.00
tsp225 10972 10972 0.00 706.70 10972 2.52 10920 76.87 109731 10969.60 1128.39 516.11 -0.01
pr226 4893 4893 0.00 1183.10 4890 4.83 4893 313.81 4893 4893.00 602.26 35.66 0.00
gr229 11482 11482 0.00 563.10 11482 6.46 11397 29.97 11482 11475.85 1019.99 444.54 0.00
gil262 2031 2031 0.00 1770.50 2030 1.35 2031 93.73 2031 2031.00 469.39 2.76 0.00
pr264 10253 10253 0.00 277.50 10166 6.42 10179 180.21 10253 10158.10 1201.48 206.18 0.00
a280 12064 12064 0.00 351.80 12048 3.39 11955 217.26 12064 12049.80 1333.67 491.79 0.00
pr299 14986 14986 0.00 7771.90 14980 3.46 14959 48.86 14986 14982.05 1284.58 471.44 0.00
1in318 15132 15132 0.00 - 15119 7.91 14960 106.15 151461 15144.10 1614.19 600.93 -0.09
rd400 20107 20107 0.00 5093.10 20101 9.61 20060 103.75 20102 20097.25 1829.40 812.23 0.02
Average 5755.24 5755.24 - 837.30 5745.56 2.09 5739.00 51.93 5742.98 5739.30 682.12 127.60 -

1 One notices that HGA finds better feasible solutions than the optimal solutions reported by B&C [25].
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Table B.8

Results for OP on large-sized instances of Set IV.

Instances  BKS B&C - EA40OP ALNS [IE] I-‘IGA

LB Gap(%) Time Best Time Best Time Best Avg. Time TMB 61 (%)
fla17 20496 20496 0.00 18000.00 20494 39.61 20496 165.27 20496 20493.30 1738.74 620.28 0.00
gr431 13976 13976 0.00 18000.00 13969 50.29 13807 794.43 139791 13978.60 1475.64 4T1.77 -0.02
pr439 19613 19613 0.00 3936.10 19510 13.61 19453 765.03 19613 19599.80 1871.00 1175.60 0.00
pcb442 5869 5839 0.51 18000.00 5650 3.40 5869 1290.30 5888 5888.00 904.60 51.57 -0.32
d493 21740 21740 0.00 18000.00 21674 21.00 21578 785.63 21744" 21688.15 2240.91 1428.08 -0.02
att532 26728 26728 0.00 18000.00 26728 17.20 26684 461.68 26721 26714.95 2175.10 968.04 0.03
ali535 13520 13520 0.00 15739.60 13442 73.07 13350 2346.62 13520 13396.35 1601.36 933.42 0.00
pab561 27719 27712 0.03 18000.00 27719 24.14 27445 570.88 27729 27712.50 2845.50 1612.59 -0.04
us74 28823 28823 0.00 18000.00 28822 26.03 28815 76.97 288271 28818.10 2337.93 1089.82 -0.01
rat575 28364 28364 0.00 18000.00 28334 24.68 28237 436.44 28357 28330.10 2764.61 1590.76 0.02
p654 31814 31814 0.00 18000.00 31717 123.82 31724 267.05 31798 31748.15 2747.90 1396.04 0.05
des7 32548 32548 0.00 13485.10 32534 33.00 32378 304.43 32546 32523.45 3151.48 1861.76 0.01
gr666 21013 21013 0.00 18000.00 20901 132.65 20762 18000.00 21077" 21069.40 2317.14 1205.05 -0.30
u724 34988 34988 0.00 18000.00 34921 40.93 34554 629.02 34987 34952.45 3959.01 2095.75 0.00
rat783 7829 7829 0.00 18000.00 7548 13.35 7713 8573.52 78321 7772.45 1208.69 572.72 -0.04
dsj1000 27357 27357 0.00 18000.00 25352 48.13 26573 18000.00 274311 27407.05 3693.85 2017.84 -0.27
pr1002 23527 23527 0.00 18000.00 22482 35.67 22832 11291.20 235901 23463.60 2966.59 1898.84 -0.27
ul060 51775 51768 0.01 18000.00 51775 150.58 51593 2079.50 51849 51795.15 6074.41 3741.43 -0.14
vm1084 38678 38678 0.00 18000.00 38228 50.34 37970 7560.86 387001 38695.65 4929.41 2658.18 -0.06
pcbh1173 56010 55954 0.10 18000.00 56010 77.73 55618 6709.24 56018 55926.85 7185.71 5406.83 -0.01
d1291 4029 4029 0.00 2335.60 4024 45.07 4029 1707.97 4029 4029.00 1043.51 7.06 0.00
rl1304 57782 57782 0.00 18000.00 57545 112.18 57576 8261.13 58220" 58137.95 7787.85 5404.39 -0.75
rl1323 65664 65476 0.29 18000.00 65664 99.81 65166 905.12 65667 65617.10 7640.51 4957.15 0.00
nrwl379 69214 69119 0.14 18000.00 69214 152.00 69150 2234.08 69184 69156.80 7689.43 3984.67 0.04
11400 70511 70476 0.05 18000.00 70488 287.75 70511 3310.76 70530 70528.45 7588.49 2439.46 -0.03
ul432 54540 54540 0.00 18000.00 53550 127.79 52742 14148.70 54490 54218.35 8482.44 6081.59 0.09
11577 33754 22191 34.26 18000.00 33754 200.71 31118 18000.00 34613 33808.55 4872.68 2631.43 -2.48
d1655 33231 29920 9.96 18000.00 31880 371.31 33231 18000.00 34203 33968.00 4756.13 3447.54 -2.84
vml1748 82126 81778 0.42 18000.00 82126 265.55 81786 18000.00 82461 82399.45 12942.79 8541.65 -0.41
ul817 37457 31800 15.10 18000.00 36416 418.80 37457 18000.00 38576 38106.95 5505.37 4524.52 -2.90
r11889 83875 71527 14.72 18000.00 83081 363.35 83875 15860.70 84827 84708.10 14813.47 10162.37 -1.12
d2103 37124 31045 16.37 18000.00 34192 465.36 37124 18000.00 37825 37399.55 5371.52 3715.71 -1.85
u2152 55397 48472 12.50 18000.00 54744 906.84 55397 18000.00 57972 57435.30 9685.72 8004.51 -4.44
u2319 110995 110995  0.00 18000.00 110960  438.26 110555 18000.00 1113271 111146.50 18000.42 15008.89 -0.30
pr2392 50944 45407 10.87 18000.00 50902 285.26 50944 18000.00 54000 53252.75 8483.59 7303.01 -5.66
pcbh3038 101173 91831 9.23 18000.00 101173  800.13 99612 18000.00 104367 104010.45 18000.18 15932.87 -3.06
13795 80069 71328 10.92 18000.00 80069 4496.09 76916 18000.00 94492 92311.60 17333.96 16339.19 -15.26
fnl4461 85088 84098 1.16 18000.00 85088 1490.80 83032 18000.00 92721 91987.95 17380.33 14834.60 -8.23
rl5915 279430 279116  0.11 18000.00 279277  8438.60 279430 18000.00 281337 280645.75 18000.03 17349.20 -0.68
r15934 137838 - - - 137838  4037.07 134787 18000.00 158854 157125.89 18000.55 17000.64 -13.23
pla7397 142399 106131 25.47 18000.00 142399 6667.36 136820 18000.00 154773 153488.55 18000.06 16700.21 -7.99
Average 52500.66 47789.00 - 17087.41 52195.10 767.54 51874.02 9256.99 55540.73 55255.05 7062.81 5296.76 -

1 One notices that HGA finds better feasible solutions than the optimal solutions reported by B&C [25].
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Table B.9

Results for PCTSP on medium-sized instances of Set I.

Instances B&C [4] HGA-Giant HGA

UB Time Best Avg. Time TMB Best Avg. Time TMB 52 (%)
st70 260* 0.85 260 273.30 1266.53 664.74 260 260.00 792.75 5.85 0.00
€il76 235* 0.94 220 230.00 734.33 377.61 2131 213.30 488.85 120.07 -3.18
pr76 41248* 2.39 41248 41248.30 2110.90 686.59 41248 41248.00 1262.36 13.95 0.00
gro6 20688* 38.05 20688 20688.00 2126.95 464.85 20697 20697.00 1477.65 18.70 0.04
rat99 581* 14.30 581 582.45 1682.12  642.50 581 582.00 968.70 295.95 0.00
kroA100 9184* 9.11 9184 9342.90 2045.73  440.68 9184 9184.00 1446.20 20.41 0.00
kroB100 9096* 5.72 9096 9184.60 2122.75 571.52 9096 9098.05 1199.66 274.31 0.00
kroC100 9457* 18.26 9457 9701.65 1934.45 665.54 9457 9457.00 1441.24 18.38 0.00
kroD100 8719* 6.30 8997 9434.85 2138.77 606.55 8719 8719.00 1430.61 37.08 0.00
kroE100 9097* 6.87 9097 9249.40 2148.35 770.65 9097 9097.00 1543.35 23.68 0.00
rd100 3168* 6.53 3210 3243.15 2056.05 624.37 3168 3168.00 1538.52 94.76 0.00
eill01 232% 4.36 248 257.90 1035.23 376.38 232 232.20 741.61 277.42 0.00
lin105 5920* 168.02 5954 6001.45 1986.56 432.48 5920 5920.00 1495.24 26.85 0.00
prl07 18311* 6.87 18311 18315.80 2159.51 1041.38 18311 19313.10 1506.69 525.56 0.00
prl24 22998* 13.30 22998 23183.20 2320.54 600.97 22998 22998.00 1417.57 18.90 0.00
bierl27 26347* 4.49 26347 26752.15 2354.50 895.53 26347 26347.00 1361.66 33.11 0.00
ch130 2408* 8.64 2426 2499.30 2221.70 714.48 2408 2408.00 1347.44 43.04 0.00
prl36 46167* 71.88 47087 47363.85 2189.83 929.18 46167 46167.00 1591.33 233.84 0.00
grl37 29575* 10.62 29575 29593.70 2215.35 639.47 29575 29575.00 1667.00 5.24 0.00
prld4 27424* 84.26 28061 28077.55 2265.45 690.53 27424 27424.00 1767.58 44.92 0.00
ch150 2760* 22.95 2792 2913.70 2201.50 890.90 2760 2760.30 1603.15 455.81 0.00
kroA150 11496* 2137.76 11649 12051.80 2286.16 975.07 11496 11496.00 1699.46 84.79 0.00
kroB150 11357* 36.53 11452 11956.95 2124.50 875.65 11357 11357.00 1850.63 48.11 0.00
prl52 36333* 68.85 36606 36850.00 2270.58 824.73 36333 36333.00 1995.90 118.36 0.00
uls9 18511* 570.01 18689 18902.80 2419.91 748.44 18511 18511.00 1764.78 26.31 0.00
rat195 1112* 156.26 1129 1143.85 2096.24 763.96 1112 1112.45 1543.24 741.92 0.00
d198 6913* 1366.88 6929 6948.10 2341.96 748.18 6913 6913.00 1991.81 38.38 0.00
kroA200 12372%* 118.79 12898 13630.75 2434.66 1440.98 12372 12380.65 2186.29 974.14 0.00
kroB200 12338* 351.33 12747 13319.45 2402.80 1184.53 12338 12338.00 1777.11 54.89 0.00
gr202 13790* 328.51 13894 14072.85 2397.94 708.81 13790 13796.15 1708.05 585.02 0.00
ts225 57995 14400.00 57535 58461.45 2529.29 765.36 57535 57535.00 1998.88 6.50 0.00
tsp225 1721%* 317.29 1822 1881.30 2272.71 870.35 1721 1721.75 1948.02 897.45 0.00
pr226 36720* 5429.52 36935 38738.25 2463.89 1079.71 36720 37151.00 1900.28 980.77 0.00
gr229 39875* 154.54 40822 42451.30 2518.79 916.35 39875 40144.75 1819.58 888.08 0.00
gil262 986* 165.14 1130 1186.50 2633.00 1285.05 991 994.55 2048.30 1002.03 0.51
pr264 22644* 532.23 22919 23268.90 2879.28 1740.95 22903 25727.60 2100.00 676.60 1.14
a280 1231* 303.65 1286 1326.65 2359.74 776.42 1252 1259.05 1922.74 709.23 1.71
pr299 23089 14400.00 23023 23426.00 2852.53 1176.44 22514 22522.80 2552.63 791.74 -2.21
1lin318 15913* 2355.21 16418 16942.30 2652.22 948.33 15913 15913.00 2350.49 563.66 0.00
rd400 6284%* 2110.73 6948 7317.45 3448.83 1987.45 6284 6316.15 2634.51 1678.07  0.00
fla17 5754 14400.00 5562 5624.00 3547.23 875.99 5449 5450.85 2771.75 994.36 -2.03
gr431 35222%* 14285.70 35245 35747.50 3395.01 1295.71 35222 35224.60 2664.16 921.48 0.00
pr439 35297* 1483.28 36727 37401.65 3305.44 1200.81 35297 35350.65 2529.08 748.10 0.00
pcb442 22281 14400.00 23496 24007.00 3537.49 1244.83 22281 22301.10 3041.85 1485.59 0.00
d493 13582* 1943.26 14229 14448.15 3346.13 1587.33 13582 13600.95 3256.53 994.78 0.00
att532 8943%* 10280.10 9289 9491.20 3787.90 1613.14 10433 10593.00 3270.04 1813.74 16.67
Average 16209.41 2230.44 16417.74 16711.59 2383.07 899.16 16218.61 16324.17 1813.38 443.74 -

1 One notices that HGA finds better feasible solutions than the optimal solutions reported by B&C [4].
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Table B.10

Results for PCTSP on large-sized instances of Set I.

HGA-Giant HGA

Instances . .

Best Avg. Time TMB Best Avg. Time TMB 82 (%)
ali535 47890 52262.80 4519.04 2758.00 42756 42984.10 3721.87 2148.39 -10.72
ub74 15780 16551.30 4189.39 3013.66 14671 14700.85 3916.90 1981.10 -7.03
rat575 3270 3348.85 4099.71 1331.54 3023 3036.85 3545.65 1864.71 -7.55
p654 16552 17626.60 3941.21 1956.80 16173 16173.00 3259.72 804.99 -2.29
d657 21784 22598.00 4461.48 2880.53 20889 20904.65 3385.33 2084.09 -4.11
gr666 84119 86308.20 4358.81 2372.07 78410 80987.20 3552.02 1650.69 -6.79
u724 18543 19301.60 4991.53 4470.48 16692 16749.25 4003.05 1612.22 -9.98
rat783 4325 4411.10 5277.20 2495.65 3938 3979.55 4783.58 1768.90 -8.95
dsj1000 6997800 7075698.35 7245.65 5423.50 6940600 6956310.00 6896.05 4090.00 -0.82
pr1002 118568 122205.35 6048.96 5157.00 106138 108198.10 5336.69 3625.03 -10.48
ul060 100381 102363.10 7231.86 5815.26 88335 88665.00 5427.29 2880.01 -12.00
vm1084 76512 90154.95 7887.30 6953.26 65255 65256.90 5796.05 1498.21 -14.71
pcb1173 26934 27469.60 6878.13 5312.04 24916 24989.15 7144.23 3451.92 -7.49
d1291 24049 24600.05 7618.76 4238.72 23276 23380.85 6738.42 3042.44 -3.21
rl1304 114795 123217.65 9369.78 6994.19 100463 101120.10 8019.14 4149.27 -12.48
rl1323 132231 138641.90 9195.54 8503.08 107724 108437.25 8577.82 5991.34 -18.53
nrwl379 25518 25954.85 10504.95 6806.16 23831 23934.25 9366.99 3989.30 -6.61
fl1400 8084 8216.20 8644.44 4470.06 8336 8343.45 9068.82 4034.91 3.12
ul432 76281 78190.90 8709.27 4461.42 72688 72908.40 9032.67 3971.92 -4.71
11577 9941 10083.85 9384.07 4445.69 9728 9739.85 6949.05 4495.42 -2.14
d1655 29662 30511.45 11214.47 9003.36 28321 28730.45 8465.60 4938.04 -4.52
vm1748 112141 130574.70 16281.23 15758.16 82916 83133.20 10188.62 5078.04 -26.06
ul817 28613 29363.45 13185.74 8177.49 26490 26824.50 11088.22 6072.33 -7.42
r11889 160227 167929.95 13974.32 11564.46 113498 114168.45 13340.98 7308.52 -29.16
d2103 36513 36972.85 11210.51 6603.01 34286 34287.90 13037.04 4268.58 -6.10
u2152 32478 33222.95 15191.68 10582.24 30649 30921.55 15537.73 7965.56 -5.63
u2319 118786 119444.20 15661.34 6877.61 116000 116000.00 16073.73 496.72 -2.35
pr2392 181451 185710.90 13677.79 5550.13 164029 164955.25 17622.28 10371.24 -9.60
pcb3038 68022 69834.65 18000.38 16520.10 62174 62818.70 18000.42 17591.35 -8.60
13795 13594 15375.20 18000.17 16308.70 12741 13404.40 18000.27 17055.30 -6.27
fnl4461 93107 94070.45 18000.19 17465.75 81399 81720.40 18000.59 17867.45 -12.57
rl5915 315805 323273.25 18000.65 13592.38 216241 218312.65 18001.11 17855.01 -31.53
r15934 316957 323398.55 18000.26 10025.79 218703 222194.10 18000.77 17881.14 -31.00
pla7397 8837800 8896016.67 18000.63 15546.70 8296170 8328854.00 18001.35 17803.95 -6.13
Average 537309.21 544261.89 10381.07 7453.97 507395.85 509327.19 9761.18 6226.12 -
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Table B.11

Results for PCTSP on medium-sized instances of Set II.

Instances B&C [4] HGA-Giant HGA

UB Time Best Avg. Time TMB Best Avg. Time TMB 52 (%)
st70 247% 1.31 247 254.60 1157.24 431.77 247 247.00  456.84 2.95 0.00
€il76 200% 6.44 202 206.20  574.44  244.88 200 200.00 200.26  49.88 0.00
pr76 38330* 22.13 38850 38977.00 2034.23 802.75 38330 38330.00 976.65  15.46 0.00
gro6 19380%* 34.60 19380 19380.00 2215.10 55.86 19380 19380.00 1234.05 10.74 0.00
rat99 518% 61.50 526 535.60 1665.93 725.69 518 518.40 592.64  210.63  0.00
kroA100  8519* 29.70 8795 8975.55 2111.43 906.26 8519 8519.00 1190.93 95.89 0.00
kroB100  7794* 41.70 7821 8148.30  2333.69 977.55 7794 7794.00 1177.52 25.59 0.00
kroC100  9060* 41.16 9296 0421.35 2355.78 675.91 9060 0060.00 1417.05 10.46 0.00
kroD100  8267* 30.74 8459 8561.40 2377.51 786.14 8267 8267.00 1242.05 295.46  0.00
kroE100  7644* 17.90 8180 8663.35 2166.03 579.36 7644 7644.00 1239.45 19.25 0.00
rd100 2892* 22.29 2932 3009.95 2238.05 688.31 2892 2892.00 921.78  57.41 0.00
€il101 211% 9.11 221 230.40 1044.23  267.20 211 212.55  451.24  171.27  0.00
1in105 5614% 716.02 5802 5825.85  2069.88 648.43 5614 5622.15  1308.90 245.13  0.00
prio7 26372* 76.69 26485 26639.75 2371.05 1158.75 26372 26372.00 1433.83 111.59  0.00
pri24 23150% 162.39 23868 24103.75 2344.45 581.15 23150 23150.00 1267.54 26.94 0.00
bier127 24478* 37.55 24992 25129.05 2606.16 848.59 24478 24478.00 1276.40 30.21 0.00
ch130 2220% 83.66 2366 2435.55 2382.69 1007.95 2220 2220.00 1314.72 504.62  0.00
pri3e 40241 14400.00 40636 41808.25 2156.29 1033.55 40023 40023.00 1403.00 202.39  -0.54
gri37 28242% 366.15 28242 28251.70 2292.34 753.94 28242 28242.00 1752.22 16.38 0.00
prid4 27073* 284.38 27449 28700.55 2697.84 1275.77 27073 27073.00 1450.82 29.21 0.00
ch150 2476% 541.81 2648 2740.70  2468.95 972.60 2476 2478.10  1360.78 235.18  0.00
kroA150  9968* 60.85 10715 11038.15 2540.79 974.39 0968 0968.00  1521.98 33.11 0.00
kroB150  10278* 469.95 10719 10939.35 2502.28 751.03 10278 10439.50 1657.29 72.20 0.00
pris2 34474% 249.75 34710 34912.80 2384.66 1117.21 34474 34474.30 1762.78 346.99  0.00
ul59 17161% 763.28 18222 18597.75 2291.02 948.67 17161 17161.00 1617.72 63.57 0.00
rat195 988* 112.81 1031 1046.30  2280.34 916.64 990 994.25 1045.83 520.83  0.20
di198 6653*% 2579.62 6676 6705.95 2458.00 729.38 6653 6653.00 1604.25 419.63  0.00
kroA200  11219* 2278.69 12027 12624.50 2626.21 1387.48 11219 11251.60 1898.65 850.61 0.00
kroB200  11250%* 415.38 12799 13325.25 2749.84 1116.39 11250 11250.00 1811.84 180.79  0.00
gr202 12804%* 753.52 13274 13391.90 2712.00 998.64 12804 12808.10 1600.15 635.79  0.00
5225 53102* 907.77 54975 56442.90 2530.42 918.77 53102 53102.00 1583.29 229.16  0.00
tsp225 1585* 1803.93 1723 1782.85  2517.27 661.19 1585 1589.45  1463.25 842.61 0.00
pr226 36190* 8186.06 37088 38052.90 2426.58 885.13 36190 36775.45 1947.51 686.58  0.00
gr229 35856* 3478.96 36615 37188.75 2703.52 1180.40 35856 36020.80 1960.93 407.65  0.00
gil262 865*% 165.21 1043 1095.30  2942.29 1356.09 865 865.55 1463.20 639.99  0.00
pr264 23660 14400.00 22790 23118.90 2758.50 1253.41 25080 25099.60 2121.82 634.38 10.05
2280 1143 14400.00 1217 1262.25 2643.18 1115.98 1131 1138.70  1363.13 556.05  -1.05
pr299 20613 14400.00 21636 22019.90 2677.80 1171.38 20534 20591.45 2247.42 1298.94 -0.38
lin318 14909* 3394.98 15404 16223.55 2748.88 1212.81 14909 14925.95 2345.94 953.60  0.00
rd400 5590% 3102.53 7082 7226.35  3394.91 1067.25 5590 5781.40 2517.79 1409.09  0.00
417 5971 14400.00 5466 5542.15  3552.72 1282.62 5354 5359.15 2366.97 858.14  -2.05
gra3l 31725 14400.00 33331 33932.05 3792.43 2189.49 31725 31725.00 2453.09 835.34  0.00
pra39 33110 14400.00 34534 35038.95 3943.30 1696.64 33079 33086.10 2653.69 668.86  -0.09
pch44? 19165 14400.00 21878 22446.90 3990.55 1727.80 19162 19188.05 2909.42 1160.58 -0.02
d493 12835 14400.00 14240 14554.30 3811.67 1316.84 12687 12719.25 291555 1106.52 -1.15
att532 8231 14400.00 9068 9200.75 4335.16 1312.68 9792 0939.30  3210.29 1526.12 18.96
Average  15266.80 3811.10 15775.22 16080.64 2542.99 971.97 15307.57 15339.76 1604.40 419.65 -
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Table B.12

Results for PCTSP on large-sized instances of Set II.

Instances HGA-Gian-t H_GA

Best Avg. Time TMB Best Avg. Time TMB 82 (%)
ali535 47600 50836.75 5481.66 2164.89 40838 41073.30 3416.66 2160.47 -14.21
ub74 15790 16337.25 4802.40 1522.94 13660 13738.10 3456.81 2078.83 -13.49
rat575 3005 3073.95 4746.15 2022.61 2700 2712.00 2724.57 1257.38 -10.15
p654 16233 16492.95 4757.14 2166.05 15461 15469.85 3351.91 1702.63 -4.76
d657 21075 21497.50 5872.18 1932.54 18950 18979.90 3755.76 1820.76 -10.08
gr666 83808 86094.80 5538.10 2295.56 75702 76431.60 3826.03 1844.19 -9.67
u724 18070 18984.40 4889.32 1300.49 14924 15030.60 4356.68 2933.25 -17.41
rat783 4081 4150.45 5136.55 1833.39 3446 3513.55 3926.83 1968.81 -15.56
dsj1000 6658210 6698721.50 6578.54 5468.90 6428930 6473253.50 6368.08 4346.50 -3.44
pr1002 119676 122904.35 6145.16 1718.06 98795 100118.00 6100.34 3884.73 -17.45
ul060 97788 100108.30 7116.67 1771.21 81534 82636.45 6000.21 3785.21 -16.62
vm1084 69869 78092.75 9083.64 4339.40 63684 63744.74 6639.36 3508.90 -8.85
pcb1173 26350 27363.60 9777.27 3449.71 22982 23223.75 6765.56 3839.71 -12.78
d1291 23583 24179.10 8895.48 4675.84 22148 22327.05 5478.72 3323.13 -6.08
rl1304 113099 118157.60 8620.93 3407.41 95589 96046.30 6363.72 2790.89 -15.48
rl1323 121711 129922.50 9484.58 3661.33 102312 103271.80 6746.93 4499.24 -15.94
nrwl379 25049 25339.80 12061.47 5763.69 20805 21200.75 8473.57 4805.47 -16.94
fl1400 8064 8389.95 11851.43 8180.52 7732 7780.40 6437.19 3320.17 -4.12
ul432 73071 73931.15 9896.33 3153.81 58418 59232.45 7718.68 4745.64 -20.05
11577 9836 10023.90 9579.35 4623.14 9111 9174.95 8257.34 5592.10 -7.37
d1655 30854 31228.80 12543.25 5283.63 26257 26735.05 9320.19 7625.40 -14.90
vm1748 92731 102265.20 14105.31 8951.64 80034 80407.85 10982.57 6402.71 -13.69
ul817 29390 30224.75 12691.13 5159.59 24316 24679.65 9936.50 7717.81 -17.26
r11889 141203 148699.15 16072.90 5702.52 110226 111197.95 12595.92 8933.69 -21.94
d2103 35451 36533.90 14148.48 6486.04 32935 32968.20 11825.39 5348.26 -7.10
u2152 33168 33655.30 15866.23 6010.47 27543 27942.90 10232.30 8366.51 -16.96
u2319 110241 112362.63 17030.77 6024.11 84351 85185.30 12510.91 9243.60 -23.48
pr2392 180615 183115.50 18000.32 7757.63 152816 156057.50 16755.98 16166.88 -15.39
pcb3038 67488 69128.40 18000.44 9210.16 55810 56828.40 18000.24 17887.34 -17.30
13795 14267 15973.30 18000.34 12775.48 11859 12732.70 18000.24 17682.58 -16.88
fnl4461 90189 91179.85 18000.37 12372.52 72006 73024.85 18000.60 17851.83 -20.16
rl5915 276743 290102.75 18000.48 16072.21 209848 212486.30 18001.09 17859.98 -24.17
r15934 278156 293190.80 18000.33 16426.86 213500 215103.75 18000.86 17781.86 -23.24
pla7397 8641000 8641000.00 18000.20 13202.50 7376900 7466082.50 18001.12 17870.27 -14.63
Average 516984.24 520978.32 11140.44 5790.79 461062.41 465599.76 9186.14 7086.67 -10.82
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Table B.13

Results for PCTSP on medium-sized instances of Set III.

Instances B&C [4] HGA-Giant HGA

UB Time Best Avg. Time TMB Best Avg. Time TMB 52 (%)
st70 308* 7.71 309 311.65 1113.25 375.41 308 308.65 525.64 228.30 0.00
€il76 204* 9.05 206 208.85 671.13 266.01 204 204.00 375.40 14.80 0.00
pr76 42200* 24.02 42955 43378.25 2157.69 917.24 42200 42200.00 1261.54 8.22 0.00
gro6 22491* 50.48 22340 22615.75 2297.87 999.25 223161 22354.75 1407.77 413.90 -0.11
rat99 579* 55.05 600 611.05 1453.40 531.32 580 582.65 826.28 284.86 0.17
kroA100 8325%* 17.47 8325 8444.70 2237.71 1008.02 8325 8325.00 1189.84 32.95 0.00
kroB100 8768% 42.17 8768 8829.25 2203.32 812.81 8768 8774.95 1222.64 403.58 0.00
kroC100 9283%* 86.21 9410 9546.70 2222.38 923.35 9283 9363.90 1440.03 179.19 0.00
kroD100 8998%* 57.52 8998 9063.60 2090.52 774.45 8998 8998.00 1278.01 24.81 0.00
kroE100 9313* 41.76 9398 9437.75 2273.53 722.27 9313 9313.00 1215.78 22.28 0.00
rd100 3377* 51.72 3377 3394.10 2010.36 813.90 3377 3419.00 1368.30 317.12 0.00
eill01 223%* 17.55 230 232.05 1094.94 451.81 224 224.55 525.92 171.42 0.45
lin105 6547* 423.40 6667 6706.10 2172.05 845.92 6547 6547.00 1426.18 78.27 0.00
prl07 27198 14400.00 27198 27258.10 2400.69 1008.50 27184 27184.00 1097.56 24.53 -0.05
prl24 26375* 206.93 26785 27137.35 2512.35 1040.17 26375 26375.00 1184.75 10.29 0.00
bierl27 42358* 4654.12 42930 43118.30 2501.51 868.81 42359 42360.40 1816.47 644.71 0.00
ch130 2305* 60.85 2338 2352.75 2408.65 632.41 2305 2312.55 1326.79 557.86 0.00
prl36 42179* 4564.78 43227 43905.45 2719.20 1166.28 42179 42188.10 1524.84 482.31 0.00
grl37 34023 14400.00 33714 34140.45 2598.89 842.07 33270 33403.95 1840.08 724.72 -1.32
prl44 30033 14400.00 30123 30402.00 2574.98 1030.72 29746 29746.00 1553.85 215.12 -0.96
ch150 2675* 132.36 2706 2740.70 2541.85 939.59 2675 2678.50 1328.33 134.24 0.00
kroA150 9409* 78.72 9750 9957.95 2601.10 1229.45 9409 9409.00 1412.88 189.20 0.00
kroB150 10392* 256.38 10763 10927.35 2428.56 617.70 10564 10564.00 1625.80 150.05 1.66
prl52 40937 14400.00 41488 41936.60 2224.23 1079.51 40599 40599.00 1511.65 27.00 -0.83
uls9 17631%* 328.30 17670 17803.75 2324.98 852.79 17631 17670.70 1705.66 616.38 0.00
rat195 999* 776.12 1086 1112.55 2285.45 1181.38 1013 1049.85 1257.77 458.17 1.40
d198 7388* 1974.04 7435 7472.80 2525.87 758.28 7388 7388.00 2067.25 329.20 0.00
kroA200 11987* 803.92 12293 12787.70 2760.52 847.09 12075 12104.85 1904.79 962.35 0.73
kroB200 10752* 1398.61 10888 11157.40 2858.80 1039.78 10752 10752.00 1729.95 378.08 0.00
gr202 14377* 5085.50 14806 14903.80 2780.78 928.50 14546 14558.75 1829.80 858.27 1.18
ts225 53414 14400.00 53325 53438.85 2402.22 702.62 53325 53325.00 1419.70 240.27 0.00
tsp225 1649 14400.00 1707 1749.30 2520.54 893.41 1649 1652.55 1416.66 569.65 0.00
pr226 39091 14400.00 39296 39669.05 2505.70 929.80 38874 38912.25 1946.43 875.65 -0.56
gr229 46791* 4004.14 47146 48360.10 3190.54 1254.60 467491 47162.40 2337.96 672.78 -0.09
gil262 961* 387.02 1026 1057.85 2796.33 893.21 966 970.00 1462.00 580.02 0.52
pr264 23264 14400.00 23230 24015.65 3264.81 1951.50 23093 23108.45 1539.55 220.56 -0.59
a280 1084* 4324.35 1085 1094.90 2415.33  994.18 1087 1088.80 1230.21 572.81 0.28
pr299 20317* 5129.46 21324 21577.95 2922.90 1517.35 20317 20448.00 2148.44 1495.82 0.00
1lin318 16401* 6867.39 17798 18404.75 3380.24 1080.94 16401 16402.15 2370.42 871.77 0.00
rd400 5700* 2602.41 6253 6558.75 3699.86 1367.74 5877 5895.65 2376.49 857.93 3.11
fla17 5740 14400.00 5553 5620.95 4028.67 2096.99 5368 5377.45 1103.21 357.33 -3.33
gr431 56484 14400.00 63656 65237.30 4405.86 1619.90 55817 57198.60 3233.26 1842.90 -1.18
pr439 35771 14400.00 37236 37795.45 3940.71 1968.45 35788 35814.35 2473.97 967.82 0.05
pcb442 19632 14400.00 21316 21976.10 3715.95 1426.35 19666 20028.25 2413.00 1819.01 0.17
d493 13480 14400.00 14137 14542.65 3513.02 1479.74 13507 13517.30 2902.48 995.09 0.20
att532 10258 14400.00 11953 12056.35 5744.27 2534.88 10315 10477.60 3437.85 1944.92 0.56
Average 17427.63  5350.42 17887.48 18153.28 2641.16 1048.18 17376.35 17442.15 1621.59 517.97 0.03

1 One notices that HGA finds better feasible solutions than the optimal solutions reported by B&C [4].
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Table B.14

Results for PCTSP on large-sized instances of Set III.

Instances HGA-Gian-t H_GA

Best Avg. Time TMB Best Avg. Time TMB 82 (%)
ali535 65661 66246.25 5730.36 2094.07 68710 69764.6 3977.863 2677.96 4.64
us74 16157 16397.70 4795.63 2385.67 13730 13822.35 3007.96 1315.915 -15.02
rat575 2917 2956.90 5530.21 2681.86 2658 2701.3 2660.836 1695.456 -8.88
p654 16085 16289.70 4901.00 2363.43 15853 15881.9 3031.258 1607.091 -1.44
d657 23671 24151.15 5338.83 1786.25 21380 21875.45 4052.302 2953.046 -9.68
gr666 95945 97270.30 7417.76 4435.51 92942 93215.35 4476.175 2486.513 -3.13
u724 16562 17093.85 5561.84 2368.25 14054 14093.9 3523.882 1816.394 -15.14
rat783 3681 3829.80 7990.99 3744.49 3503 3608 3702.949 1751.809 -4.84
dsj1000 6126650 6336921.60 6543.15 5799.36 6099840 6181059 5648.652 4855.394 -0.44
prl1002 111941 114649.10 11067.47 6027.71 92882 93979.3 5509.153 4359.783 -17.03
ul060 82282 86070.05 7319.40 2661.46 73035 73956.45 5231.196 3551.189 -11.24
vm1084 63126 66508.45 8700.17 4304.68 57945 58226.8 5199.252 3100.454 -8.21
pcb1173 24908 25581.65 13603.76 7447.96 22969 23934.6 6636.45 5696.322 -7.78
d1291 25119 25887.70 8792.17 4146.81 23049 23128.55 7140.085 3542.74 -8.24
rl1304 106362 115222.50 12498.09 6158.64 81770 82141.55 6307.316 4078.16 -23.12
rl1323 111527 117009.25 10944.81 4032.25 90419 90907.53 6129.159 4270.05 -18.93
nrwl379 22078 22430.05 18000.09 11323.12 21446 22760.75 7500.976 6377.507 -2.86
fl1400 7301 7421.05 18000.11 7555.35 6975 7007.15 5764.467 2576.688 -4.47
ul432 57658 59432.30 11420.94 5401.35 51171 51515.65 5986.278 3438.962 -11.25
11577 9801 10273.10 18000.14 8630.82 8967 8984.75 6507.709 3432.093 -8.51
d1655 31294 32498.55 14776.31 6702.76 27553 27646.1 8515.859 4979.303 -11.95
vm1748 103042 125572.90 18000.19 8477.87 67744 67934.45 8315.873 3773.694 -34.26
ul817 24718 25525.95 16373.74 6680.61 21427 21681.15 7770.203 5462.698 -13.31
r11889 136123 143098.40 16635.66 7346.77 101257 101533 9976.649 6185.451 -25.61
d2103 30504 31208.05 18000.16 9900.11 29254 29261.45 8875.615 2896.752 -4.10
u2152 27756 28669.35 18000.13 8352.88 23677 24148.85 7911.774 5968.639 -14.70
u2319 95562 98274.15 18000.17 11252.63 86288 86996.95 11012.27 6800.371 -9.70
pr2392 152349 155399.85 18000.20 8465.84 151021 152901.5 13270.02 11648.99 -0.87
pcb3038 57885 59404.50 18000.18 9279.09 51095 54014.25 17992.01 17107.99 -11.73
13795 14806 15673.40 18000.43 7880.81 11850 11986.3 18002.67 14258.02 -19.96
fnl4461 78257 80511.60 18000.27 9824.28 77167 78417.1 18000.35 17879.18 -1.39
rl5915 263766 290963.05 18000.64 10836.60 177708 180451.5 18000.44 17735.67 -32.63
r15934 284844 308088.90 18000.47 9457.43 183885 186586.2 18000.89 17772.43 -35.44
pla7397 6368310 6556739.50 18000.64 13159.04 6364860 6448766 18000.74 17789.99 -0.05
Average 431136.71 278919.72 12880.77 6557.82 418767.18 424261.46 8401.15 6348.31 -
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