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The split delivery vehicle routing problem is a variant of the well-known vehicle routing problem, where

each customer can be visited by several vehicles. The problem has many practical applications, but is

computationally challenging. This paper presents an effective memetic algorithm for solving the problem

with a fleet of limited or unlimited vehicles. The algorithm features a general edge assembly crossover to

generate promising offspring solutions from the perspective of assembling suitable edges and an effective

local search to improve each offspring solution. The algorithm is further reinforced by a feasibility-restoring

procedure, a diversification-oriented mutation and a quality-and-distance pool updating technique. Extensive

experiments on 324 benchmark instances indicate that our algorithm is able to update 143 best upper bounds

in the literature and match the best results for 156 other instances. Additional experiments are presented to

obtain insights into the roles of the key search ingredients of the algorithm. The method was ranked second

at the 12th DIMACS Implementation Challenge on Vehicle Routing - SDVRP Track.
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1. Introduction1

The split delivery vehicle routing problem (SDVRP) (Dror and Trudeau 1989, 1990) is a variant of2

the conventional vehicle routing problem (VRP). Unlike the VRP where each customer is visited3

exactly by one vehicle, the SDVRP allows a customer’s demand to be split and served by several4

homogeneous capacitated vehicles starting and finishing at the depot.5

Formally, let G = (V,E) be an undirected graph where V = {0,1, · · · , n} is the vertex set with 06

being the depot and N = {1, · · · , n} representing n customers and E is the edge set. Each customer7

i∈N is associated with an integer demand di ∈Z+. Let C = (cij) be a non-negative cost (distance)8

1
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matrix associated with E satisfying the triangle inequality (cij + cjk > cik for all i, j, k ∈ V and9

i ̸= j ̸= k). Given a set of K identical vehicles with capacity Q available at the depot, the SDVRP10

is to find K routes (K can be limited or unlimited) such that 1) each route starts at the depot11

to serve a number of customers and ends at the depot without exceeding the vehicle capacity12

Q, 2) the demand di of customer i ∈ N can be split and served by more than one vehicle, and13

3) the total traveling distance of the K routes is minimized. According to the number K of the14

available vehicles (fleet size), the problem is called the SDVRP-LF (for limited fleet size) if K is15

fixed or the SDVRP-UF (for unlimited fleet size) otherwise. For the SDVRP-LF, K is fixed to16

Kmin = ⌈(
∑n

i=1 di/Q)⌉ to ensure the feasibility of the solution. A mathematical formulation of both17

problems is shown in Appendix A.18

Like the conventional VRP, the SDVRP has a number of applications such as determining routes19

and schedules for newspaper delivery (Song, Lee, and Kim 2002) and waste collection (Archetti20

and Speranza 2004). Meanwhile, the SDVRP has been much less investigated compared to the21

VRP and its variants such as the capacitated VRP, the VRP with time windows and the VRP22

with profits. Still, since the introduction of the SDVRP, a number of algorithms using exact and23

heuristic approaches have been proposed. Representative exact approaches are based on various24

formulations (Belenguer, Martinez, and Mota 2000, Ozbaygin, Karasan, and Yaman 2018) and25

the branch-and-cut framework (Archetti, Bianchessi, and Speranza 2014, Munari and Savelsbergh26

2022). These exact approaches are able to provide the optimal solutions for some small or medium-27

sized instances with up to some 100 customers. For larger instances, heuristics and metaheuristics28

are preferred to find suboptimal solutions with a reasonable time, as reviewed in Section 2.29

This work aims to advance the state-of-the-art for solving large SDVRP instances effectively and30

efficiently. The contributions of this paper are summarized as follows.31

� We propose a memetic algorithm (SplitMA)1 that combines several complementary search32

components including a general edge assembly crossover (gEAX) to generate promising offspring33

solutions and a local search associated with a maximum splits strategy to improve offspring solu-34

tions. The gEAX crossover transmits common edges from parent solutions to offspring solutions35

while reassembling non-common edges of parent solutions. The local search exploits both VRP36

neighborhood operators and SDVRP neighborhood operators reinforced by the maximum splits37

strategy, which ensures that a customer will not be served by too many vehicles. The algorithm38

additionally integrates dedicated repairing techniques to ensure the feasibility of offspring solu-39

tions, a mutation to diversify each new solution, and an advanced updating strategy to maintain40

a healthy population.41

1 The SplitMA algorithm was ranked second at the 12th DIMACS Implementation Challenge on Vehicle Routing -
SDVRP Track http://dimacs.rutgers.edu/programs/challenge/vrp/.
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� We illustrate the competitiveness of the algorithm on four sets of 324 instances of the SDVRP-42

LF and SDVRP-UF problems compared to the state-of-the-art algorithms. In particular, we report43

143 new best upper bounds that can be useful for future studies. We investigate the underlying44

algorithmic components to shed light on their contributions to the performance of the algorithm.45

Specifically, we provide insights about why the gEAX crossover works well on the SDVRP and46

present for the first time experimental evidences that high-quality solutions are close to each other47

and are also close to optimal solutions.48

� This work shows the interest of the general idea of the edge assembly crossover. The gEAX49

crossover, which generalizes the popular EAX crossover for the TSP (Nagata 1997, Nagata and50

Kobayashi 2013), provides a powerful solution recombination mechanism that can be advanta-51

geously applied not only to the SDVRP, but also to other routing problems where the associated52

graphs of candidate solutions do not necessarily have the same degree for their vertices.53

The remainder of this paper is organized as follows. Section 2 provides a literature review on54

solution approaches for the SDVRP. Section 3 presents the details of the proposed algorithm.55

Section 4 shows computational results and comparisons. Section 5 investigates key ingredients of56

the proposed algorithm. Section 6 draws conclusions with research perspectives.57

2. Literature review58

A comprehensive review of exact and heuristic solution approaches until 2012 can be found59

in Archetti and Speranza (2012). In this section, we focus on a literature review of heuristic60

approaches, while mentioning some representative studies on exact approaches developed since61

2014. Table 1 summarizes the methods discussed in this section.62

Archetti, Bianchessi, and Speranza (2014) presented two branch-and-cut (B&C) algorithms,63

where the first uses the formulation of Belenguer, Martinez, and Mota (2000) and the other adopts64

a commodity-flow formulation. The methods solved 17 instances to optimality (one instance with65

100 customers). Ozbaygin, Karasan, and Yaman (2018) created a compact vehicle-indexed flow66

formulation and presented computational results including optimal solutions for instances with 7667

customers. Munari and Savelsbergh (2022) proposed three compact formulations and developed a68

B&C algorithm, which solved 91 instances to proven optimality (with up to 80 customers). For69

larger instances, heuristics/metaheuristics such as neighborhood-based local search and population-70

based search are used to find suboptimal solutions with a reasonable time.71

The first local search algorithm for solving the SDVRP was presented by Dror and Trudeau (1989,72

1990). Two neighborhood operators, namely k-Split and RouteAddition, were combined into the73

local search. The k-Split operator divides the demand of a customer and inserts the divided demand74

into different routes with an enough residual capacity. On the contrary, the RouteAddition operator75
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Table 1 Representative exact and heuristic algorithms for the SDVRP

Literature Framework Problem Solved

Exact algorithms

Archetti, Bianchessi, and Speranza (2014) B&C Both

Ozbaygin, Karasan, and Yaman (2018) Vehicle indexed flow formulation Both

Munari and Savelsbergh (2022) B&C Both

Heuristic methods

Dror and Trudeau (1989, 1990) Local search SDVRP-UF

Derigs, Li, and Vogel (2010) Local search SDVRP-UF

Archetti, Speranza, and Hertz (2006) Tabu search SDVRP-UF

Aleman and Hill (2010) Tabu search SDVRP-UF

Berbotto, Garćıa, and Nogales (2014) Tabu search SDVRP-LF

Zhang et al. (2015) Tabu search SDVRP-UF

Chen et al. (2017) Priori split strategy SDVRP-UF

Aleman, Zhang, and Hill (2010) Variable neighborhood descent SDVRP-LF

Han and Chu (2016) Variable neighborhood descent SDVRP-UF

Silva, Subramanian, and Ochi (2015) Iterated local search Both

Mota, Campos, and Corberán (2007) Scatter search algorithm SDVRP-LF

Campos, Corberán, and Mota (2008) Scatter search algorithm SDVRP-UF

Shi et al. (2018) Particle swarm optimization SDVRP-UF

Chen, Golden, and Wasil (2007) Hybrid algorithm/matheuristic SDVRP-UF

Archetti, Speranza, and Savelsbergh (2008) Hybrid algorithm/matheuristic SDVRP-UF

Jin, Liu, and Eksioglu (2008) Hybrid algorithm/matheuristic SDVRP-UF

Boudia, Prins, and Reghioui (2007) Memetic algorithm SDVRP-UF

Wilck and Cavalier (2012) Genetic algorithm SDVRP-LF

tries to remove a split customer from all routes and create a new route to serve the customer.76

These two operators were widely used in follow-up studies. To better handle the problem and cope77

with the complexity of the SDVRP, other neighborhood operators were presented. Boudia, Prins,78

and Reghioui (2007) proposed two new operators where two or three customers in two routes are79

swapped with the possibility of splitting their demands. Derigs, Li, and Vogel (2010) introduced a80

new relocation operator where three routes were manipulated to explore neighboring solutions.81

The tabu search metaheuristic was adapted to the SDVRP by Archetti, Speranza, and Hertz82

(2006) for the first time, where a neighboring solution was obtained by removing a customer from83

a set of routes in which it was currently visited and inserting it either into a new route or into84

an existing route with an enough residual capacity. This algorithm outperformed significantly85

Dror and Trudeau’s algorithms (Dror and Trudeau 1989, 1990). Then, Aleman and Hill (2010)86

proposed a so-called tabu search with vocabulary building approach (TSVBA). An initial set of87

solutions was constructed firstly and attractive solution attributes were summarized to explore new88

solutions. Solutions in the set evolved along with the searching progress. The random granular tabu89

search (RGTS) was proposed by Berbotto, Garćıa, and Nogales (2014), where a heuristic prunning90

technique is used to filter non-promising neighborhood solutions and speed up the neighborhood91

search. Another tabu search algorithm, namely forest-based tabu search (FBTS), was introduced by92
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Zhang et al. (2015), where the forest structure is used to represent each solution. Several dedicated93

operators based on the forest structure were also designed, and the experimental results showed94

that the FBTS algorithm was competitive with existing algorithms.95

Mota, Campos, and Corberán (2007) proposed a scatter search heuristic to address the SDVRP-96

LF for the first time. Campos, Corberán, and Mota (2008) introduced another scatter search for the97

SDVRP-LF with two distinct procedures for generating initial populations. Han and Chu (2016)98

presented a multi-start solution approach for solving the SDVRP-UF. Aleman, Zhang, and Hill99

(2010) proposed an adaptive memory algorithm for the SDVRP-LF, which uses a constructive100

procedure for initial solution generation and a variable neighborhood descent (VND) for solution101

improvement. The constructive procedure builds an initial solution by greedily inserting customers102

with a mechanism called route angle control. The VND procedure follows to seek improved solutions103

by exploring three commonly used neighborhoods. Silva, Subramanian, and Ochi (2015) presented104

a multi-start iterated local search (SplitILS) for both cases of limited and unlimited fleet. Spli-105

tILS is composed of an efficient perturbation procedure and a randomized variable neighborhood106

descent exploring numerous VRP neighborhood operators and SDVRP neighborhood operators.107

Extensive experiments indicated that SplitILS performed remarkably well and dominated previous108

algorithms. Chen et al. (2017) introduced a novel and efficient approach to solve the SDVRP-UF,109

where each customer’s demand was split into small pieces in advance and then the SDVRP was110

solved by applying leading VRP algorithms (Groër, Golden, and Wasil 2010). Shi et al. (2018)111

proposed the first particle swarm optimization for the SDVRP-UF and reported some new upper112

bounds, even though its performance is generally worse than SplitILS (Silva, Subramanian, and113

Ochi 2015).114

In addition to these local search approaches, two hybrid population-based approaches were inves-115

tigated. Boudia, Prins, and Reghioui (2007) presented the memetic algorithm with population116

management, which used the giant tour crossover (Prins 2004) and a local search procedure includ-117

ing two new swap moves. The algorithm performed competitively compared to the tabu search of118

Archetti, Speranza, and Hertz (2006) on a number of benchmark instances. Wilck and Cavalier119

(2012) proposed another hybrid genetic algorithm that reproduced offspring solutions using route-120

by-route methods and reported competitive results with previous algorithms, though its results121

were significantly improved by SplitILS (Silva, Subramanian, and Ochi 2015) later.122

Our review shows that the algorithms in Silva, Subramanian, and Ochi (2015), Zhang et al.123

(2015), Berbotto, Garćıa, and Nogales (2014), Aleman, Zhang, and Hill (2009), Campos, Corberán,124

and Mota (2008), Wilck and Cavalier (2012), Aleman and Hill (2010), Boudia, Prins, and Reghioui125

(2007), Derigs, Li, and Vogel (2010) hold the best-known results for the SDVRP-LF and SDVRP-126

UF. Thus, we use these approaches as our reference algorithms for the comparative study.127
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3. General edge assembly crossover driven memetic algorithm128

Population-based evolutionary algorithms have been successfully applied to the traveling salesman129

problem (Nagata 1997, Nagata and Kobayashi 2013) and several vehicle routing problems (Potvin130

2009, Nagata and Bräysy 2009, Nagata, Bräysy, and Dullaert 2010, Prins 2004, Vidal et al. 2012,131

2013, 2014). The proposed SplitMA algorithm for the SDVRP is a population-based hybrid algo-132

rithm that uses a dedicated edge assembly crossover to generate new solutions and an effective133

local optimization to improve the offspring solutions. SplitMA also applies a mutation to diversify134

each offspring solution and an advanced pool updating strategy to manage the population.135

Algorithm 1: The memetic algorithm for the SDVRP

Input: Instance I;

Output: The best solution φ∗ found so far;

1 begin
2 P ← PopulationInitial(I); /* Initializing the population P, Section 3.1 */

3 φ∗← argmin{f(φi)|i= 1,2, · · · , |P|}; /* φ∗ Record the best solution found so far */

4 while Stopping condition is not met do
5 {φA,φB}←ParentSelection(P); /* Selecting two parental solutions randomly */

6 {φ1
O,φ

2
O, · · · ,φ

β
O}←gEAX (φA, φB); /* Generating offspring solutions, Section 3.2

*/

7 for i= 1 to β do
8 φi

O← RestoringFeasibility(φi
O); /* Restoring feasibility, Section 3.3 */

9 φi
O← Mutation(φi

O); /* Generating mutation, Section 3.4 */

10 φi
O← LocalSearch(φi

O); /* Improving the offspring solution, Section 3.5 */

11 if SDVRP-LF then
12 φi

O← EmptyRoute(φi
O); /* Reducing routes to Kmin, Section 3.5.3 */

13 end

14 if f(φi
O)< f(φ∗) then

15 φ∗←φi
O;

16 end

17 P ←PoolUpdating(P,φi
O); /* Managing the population, Section 3.6 */

18 end
19 end

20 return φ∗;
21 end

136

The general scheme of SplitMA is outlined in Algorithm 1. SplitMA starts from an initial pop-137

ulation P constructed by the population initialization procedure (Line 2 of Algorithm 1). Then138

the algorithm evolves the population through a number of generations by applying the gEAX139

crossover, the local optimization procedure and the population updating procedure (Lines 4-19).140

Of particular interest is the general edge assembly crossover operator (gEAX) (Line 6) that creates141

at each generation β offspring solutions by assembling the edges of two parent solutions. After142

restoring the feasibility of each offspring solution in terms of customer demand and vehicle capacity143
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(Line 8), the solution is diversified by the mutation operator (Line 9) and then submitted to local144

optimization for quality improvement (Line 10). Finally, each improved solution is used to update145

the population by the pool updating strategy (Line 17). For the SDVRP-LF where the fleet size is146

set to Kmin, the number of the used vehicles is reduced to this fleet size by emptying some routes147

if needed (Lines 11-13). During the search, the best solution found so far φ∗ is updated each time148

a solution better than it is discovered (Lines 14-16). The algorithm stops and returns the best149

solution φ∗ when a predefined stopping condition is met (e.g., a maximum cutoff time or maximum150

number of generations).151

3.1. Population initialization152

SplitMA starts its evolution from an initial population P, whose size varies between pmin and153

pmax (pmax > pmin) during the search process. Similar to Vidal (2022), 4× pmin solutions are first154

constructed and subsequently improved by the local search (Section 3.5), and then inserted into155

P one by one. Once |P| = pmax, the surviving strategy (Section 3.6) is triggered to shrink the156

population P to pmin solutions.157

The construction process of each solution works as follows. First, Kmin = ⌈(
∑n

i=1 di/Q)⌉ routes158

are created where each route is initialized by the depot and a random customer. Then, for each159

newly routed customer i, a random unrouted customer j from the δ-nearest neighborhood (see160

Section 3.5) is selected and inserted into the route after the customer i without split. This insertion161

process stops when no customer can be inserted into the solution without violating the capacity162

constraint. Finally, if there are unrouted customers, these customers are dividedly inserted into163

routes in a greedy way such that the insertions lead to the minimum increase of the objective value164

(i.e., the total traveling distance). Once all customers are routed, a complete solution is obtained.165

3.2. The general edge assembly crossover operator166

Crossover is a key component of memetic algorithms and constitutes one leading force to explore167

the search space (Hao 2012). In this section, we introduce the gEAX crossover for the SDVRP that168

generalizes the edge assembly crossover (EAX), which was initially designed for the TSP (Nagata169

1997, Nagata and Kobayashi 2013) and adapted to the VRP (Nagata and Bräysy 2009). The basic170

idea of EAX for the TSP and the VRP is to preserve the common edges shared by the parent171

solutions and assemble non-common edges, based on the knowledge that high-quality solutions of172

these problems always share a high number of common edges and these common edges form a173

stable backbone that is highly likely to be part of the optimal solution.174

The main difficulty of applying EAX to the SDVRP lies in the fact that EAX assumes that175

each customer is served by exactly one vehicle. Indeed, for a given TSP and VRP instance defined176

on a graph G, a candidate solution can be identified by a partial graph of G. Given two parent177
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solutions, each customer vertex necessarily has the same degree of two and EAX uses this property178

to assemble edges from the parents. However, for the SDVRP, given that each customer can be179

served by several vehicles, a solution corresponds to a multigraph where parallel edges may exist180

between some vertices (see Definition 1). Indeed, given the assumption that triangle inequality181

holds, there is an optimal solution in which each edge between customers is traversed at most182

once. However, each edge between the depot and a customer may still be traversed several times.183

Without loss of generality, we use the term ’vertex’ to denote both ’depot’ and ’customer’ in184

this paper. As a result, the same customer vertex may have different degrees in the multigraphs185

of the parent solutions, making the EAX crossover inoperative. On the other hand, the idea of186

assembling specific (promising) edges from the routes of high-quality solutions is highly appealing187

from the perspective of solution recombination. The general edge assembly crossover gEAX that188

we introduce in this work benefits from the basic idea of assembling suitable edges and gets around189

the aforementioned difficulty related to the EAX crossover.190
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Figure 1 Illustration of adding dummy edges. (a) A portion of the multigraphs GA and GB associated to solutions

φA and φB. (b) multigraph GA and extended multigraph GB with two dummy loops. (c) Joint multigraph

of GA and extended GB.

The key idea of the gEAX crossover is to ensure that each vertex has the same degree in the191

multigraphs of the parent solutions by introducing dummy edges, rendering it possible to apply192

the edge assembling operations. To describe the gEAX crossover, we first introduce the following193

notations.194

For a SDVRP instance on graph G = (V,E), let φ be a solution composed of K routes. Following195

the notation used in Appendix A, let xk
ij be a Boolean variable such that xk

ij = 1 if route (or196

vehicle) k goes from vertex i to vertex j and xk
ij = 0 otherwise. Given that edge (i, j) is traversed197

in the solution φ, then xij(φ) =
∑K

k=1 x
k
ij is the number of times edge (i, j) is traversed in φ and198

xij(φ)≥ 1. For example, in Fig. 1(a) (the square is the depot j and the circle represents customer199

i), three vehicles (say k1, k2 and k3) of solution φA (solid lines) go through the edge (i, j). These200

three distinct traversals on (i, j) are identified as xk1
ij = 1, xk2

ij = 1 and xk3
ij = 1. Thus xij(φA) = 3.201
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For solution φB (dot lines), there is only one route k passing through the edge (i, j), thus xk
ij = 1202

and xij(φB) = 1.203

Definition 1. For a solution φ of the SDVRP instance on graph G = (V,E), we define its204

corresponding multigraph Gφ = (V,Eφ) with the multiset of parallel edges Eφ such that for an edge205

(i, j) of E , there are xij(φ) parallel edges in Eφ.206

Fig. 1(a) shows a portion of the multigraphs associated to solutions φA and φB. For solution207

φA, there are three parallel edges between the depot j and the customer i, because three vehicles208

traverse edge (i, j).209

Definition 2. Given two solutions φA and φB, let GA = (V,EA) and GB = (V,EB) be the corre-210

sponding multigraphs. The degree difference of vertex i in GA and GB is ∆i = |degA(i)− degB(i)|211

where degφ(i) denotes the degree of vertex i in solution φ. For a vertex i, if ∆i ̸= 0, GA or GB is212

extended by adding one or more dummy loops (i, i) to the vertex to render ∆i = 0.213

In the example of Fig. 1(a), ∆i = |degA(i)− degB(i)|= 6− 4 = 2 and ∆j = |degA(j)− degB(j)|=214

3− 1 = 2. Thus, GB is extended by dummy loops (i, i) and (j, j) as shown in see Fig. 1(b). In what215

follows, an edge e∈ EA ∪EB is called a common edge of φA and φB if e∈ EA ∩EB; otherwise, e is a216

non-common edge.217

Definition 3. Given two solutions φA and φB, let GA = (V,EA) and GB = (V,EB) be their218

extended multigraphs such that ∆i = 0 holds for each vertex i, we define the joint multigraph219

GAB = (V,{EA ∪EB}\{EA ∩EB}) by the symmetric difference of EA and EB.220

Fig. 1(c) shows the joint multigraph GAB associated to two solutions φA and φB.221

Given two solutions φA, φB as well as their corresponding multigraphs GA = (V,EA) and GB =222

(V,EB), the proposed gEAX crossover generates several offspring solutions in five steps (see Fig. 2223

for an illustrative example).224

1. Addition of dummy loops and generation of graph GAB = (V,EAB). At the beginning,225

dummy loops are added to make the degree difference become 0 for all vertices in the multigraphs226

GA and GB. Specifically, for each vertex i, the number of added dummy loops (i, i) is |degA(i)−degB(i)|
2

.227

If degA(i) > degB(i), dummy loops are added into EB, and vice versa, as illustrated in Fig. 1(b).228

Once the degree difference becomes 0 for all vertices in the multigraphs GA and GB, we create the229

joint multigraph GAB = (V,EAB) with EAB = {EA ∪ EB}\{EA ∩ EB}. In the example of Fig. 2, four230

dummy loops are added.231

2. Generation of AB-cycles. From the joint multigraph GAB, a number of AB-cycles are gen-232

erated where each new AB-cycle is constructed as follows. A random vertex is selected to initialize233

an empty AB-cycle; then edges from EA and EB are traced alternatively to extend the ongoing234

AB-cycle, and each traced edge is removed from GAB; the AB-cycle is constructed successfully235

when the traced edges lead to a cycle. After the construction of the current AB-cycle, if GAB is236
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Figure 2 Illustration of the gEAX crossover.

not empty, the process continues to build the next AB-cycle. The process stops and returns all237

AB-cycles once GAB becomes empty. As shown in Fig. 2, three AB-cycles are generated from GAB.238

One notices that each AB-cycle contains at least four edges. Let C denote the set of m AB-cycles239

obtained from this step.240

3. Generation of E-sets. From the set of m AB-cycles C = {C1, C2, · · · , Cm}, a set of E-sets is241

created, where an E-set is an union of AB-cycles. Each new E-set Ei is initialized by an AB-cycle242

C′ in C and C′ is removed from C. Then, each remaining AB-cycle C′′ of C are checked. If C′′243

shares at least one vertex with Ei, C′′ is added to Ei and removed from C. A complete E-set (Ei)244

is achieved when no AB-cycles can be added into Ei. This process stops when no AB-cycle is left245

(i.e., C becomes empty). In the example of Fig. 2, the three AB-cycles should be combined to form246

one single E-set since the depot is shared. However, for illustrative purpose of steps 4 and 5 below,247

we suppose three E-sets as shown in Fig. 2. Let E denote the set of E-sets obtained from this step.248

4. Generation of intermediate solutions. For each E-set Ei of E, an intermediate solution249

is generated by using a random parent (say φA) as the basic solution. The dummy loops in the250

E-sets Ei are first removed. Then, the intermediate solution φ′
i is constructed based on φA by251

removing from it the edges of EA shared with Ei and adding the edges of EB shared with Ei, that is,252

φ′
i← (EA \ (Ei ∩EA))∪ (Ei ∩EB). Such a strategy guarantees that all common edges in φA and φB253

are necessarily inherited by intermediate solutions. Moreover, all edges in intermediate solutions254

come from parent solutions. Fig. 2(a′−c′) illustrate the three intermediate solutions from this step.255
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5. Elimination of isolated subtours. An intermediate solution may include one or more iso-256

lated subtours, such as the triangle subtour in the upper left corner of Fig. 2(a′). The 2-opt*257

heuristic (Potvin and Rousseau 1995) is then adopted to eliminate these subtours. For each ran-258

domly selected subtour, an edge is removed from the subtour and an edge is removed from another259

route. Then two new edges are introduced to connect two routes. This process is exactly the same260

as the M8 and M9 neighborhood operators introduced in Section 3.5.1. Fig. 2(a′′) illustrates the261

offspring solution after subtour elimination from the intermediate solution of Fig. 2(a′).262

The complexity of gEAX can be summarized as follows. Suppose without loss of generality that263

|EA| ≥ |EB|. In the first four steps, there are |EA|+|EB| edges involved, leading to a time complexity264

of |EA|. For the fifth step, the time complexity of 2-opt* is O(n × δ), where δ is a parameter265

(Introduced in Section 3.5). Thus, the time complexity of gEAX is O(n× δ). Moreover, |EA| edges266

are invoked and thus the space complexity is O(|EA|).267

The gEAX crossover follows the idea of the EAX crossover initially designed for the VRP (Nagata268

and Bräysy 2009) and inherits its advantages, while relaxing the customer demand and capacity269

constraints. A pair of solutions can generate a variety of offspring solutions with relatively short270

edges from the parent solutions. More importantly, gEAX overcomes the limitation of EAX that271

parent solutions (precisely their multigraphs) need to possess the same degree for each vertex. As272

we show in Sections 4 and 5.1, gEAX significantly contributes to the performance of the proposed273

algorithm. In Section 5.2, we provide experimental evidences to understand why gEAX is a mean-274

ingful crossover for the SDVRP. Finally, the idea behind gEAX also provides a basis for designing275

meaningful edge assembly crossovers for other rich routing problems such as team orienteering,276

location routing as well as arc routing.277

3.3. Restoring the feasibility of offspring solutions278

The customer demand and vehicle capacity are ignored during the gEAX crossover process. As279

such, an offspring solution may be infeasible in terms of these constraints. This section describes280

how the feasibility of an offspring solution is restored.281

3.3.1. Restoring customers’ demand When the routes from the parent solutions are recom-282

bined by gEAX, the total amount of served demand of a customer in an offspring solution can be283

different from the customer’s demand. Suppose that di(rk) is the served demand of customer i by284

route rk. For example, for the offspring b
′′
of Fig. 3, customer i (denoted by the red dot) is visited285

by two routes r3 and r4 with the total amount of served demand di(r3) + di(r4). However, since286

route r4 in solution b
′′
entirely comes from φA that serves the full demand di already, we have287

di(r3) + di(r4)> di. Thus, for each customer i, we need to adjust the demand distribution among288

the routes visiting the customer and make sure that
∑K

k=1 di(rk) = di.289
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Figure 3 Illustration of balancing demands

We distinguish two cases (i)
∑K

k=1 di(rk)>di, and (ii)
∑K

k=1 di(rk)<di. Let drk be the total load290

of route rk. For the first case, the capacity excess drk−Q (Q is the vehicle capacity) of each route rk291

visiting customer i is calculated, and the resulting values are sorted from the largest to the smallest.292

Then, the route rk with the largest capacity excess is identified. If
∑K

k=1 di(rk)− di > di(rk), the293

customer i is removed from route rk. Otherwise the amount of demand di(rk)− (
∑K

k=1 di(rk)− di)294

is removed from route rk, and the demand of customer i is restored, that is
∑K

k=1 di(rk) = di. This295

process is looped until the demand of all customers is restored. For the second case, the process is296

similar and operates with the residual capacity of Q− drk .297

3.3.2. Restoring the capacity constraints In addition to the customer demand, the off-298

spring solutions generated by the gEAX crossover may violate the capacity constraint as well. To299

restore the capacity feasibility of an offspring solution, we apply two well-known inter-route move300

operators (i.e., insert* and 2-opt*).301

Specifically, let φ be an infeasible offspring solution and fc(φ) be its fitness as defined by fc(φ) =302

f(φ) + pc × fp(φ), where f(φ) is the traveling cost, fp(φ) is the total overcapacity in solution φ,303

and pc is a penalty parameter initialized to be the ratio between the longest edge and the largest304

demand. The repair process operates on an overcapacitated route r and uses insert* (Archetti,305

Speranza, and Hertz 2006) and 2-opt* (2-opt* corresponds to M8 and M9 of Section 3.5.1) to repair306

the route. During this process, a tabu list is used to prevent a performed move from being reversed.307

After each repair operation involving two routes, the set of infeasible routes Rinf is updated. The308

penalty parameter pc is multiplied by 10 if no feasible move can be found while there are still309

infeasible routes (Rinf ̸= ∅). The procedure continues until all routes becomes feasible (Rinf = ∅),310

and returns the repaired solution φ.311

3.4. Mutation312

Given that an offspring solution inherits exclusively the edges of its parents, it may resemble313

much the parents even after the feasibility restoring operations. To introduce some diversity into314
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an offspring solution, we modify the solution with a probability pm with the removal operator315

presented in Shaw (1998). Basically, this operator deletes some customers from their routes and316

then greedily reinserts these customers into the solution while respecting the capacity constraint.317

Specifically, the mutation removes a number of customers that are similar with respect to a318

predefined characteristic (e.g., location or demand). In this work, we use the distance between319

customers to define the similarity. The mutation works in two steps as follows. Firstly, a random320

customer i in route rk with its served demand di(rk) is selected to initialize set S. Then, the321

similarity between customer i and other customers (N \ S) is calculated and sorted in ascending322

order, where the first customer has the maximum similarity. A customer with its served demand323

in the route is selected with the roulette-wheel selection and saved in set S subsequently. For each324

selected customer i, if it is visited by more than one route, a random route is retained. The first step325

terminates when l customers are considered (|S|= l) (l is a parameter called the mutation length).326

More details about this step can be found in Ropke and Pisinger (2006). The second step reinserts327

greedily the removed customers of set S. For each customer i ∈ S, a customer j ∈N \ S from its328

δ-nearest neighborhood is selected, and the customer i is inserted after the customer j with respect329

to the capacity constraint and the minimum traveling distance. This procedure terminates when330

all customers in S are inserted into the solution. The worst-case time complexity of the mutation331

is O(l× δ).332

3.5. Local search333

Local search is among the core components of the state-of-the-art heuristic algorithms for several334

related VRPs. Enriched neighborhood operators, exploration strategies, and speed-up techniques335

have been developed to allow the local search to attain high-quality solutions within a limited time.336

The local search procedure of SplitMA for the SDVRP adopts nine popular VRP neighborhood337

operators used in Vidal (2022), including eight inter-route and one intra-route structures. To rein-338

force its search capacity, our local search additionally employs four tailored SDVRP neighborhood339

operators proposed in Boudia, Prins, and Reghioui (2007) and Dror and Trudeau (1989, 1990).340

These 13 operators are explored under the framework of variable neighborhood descent according341

to the order in which they are presented in the forthcoming subsections.342

Before introducing the neighborhood operators, we first present three application rules. The343

first rule is that once an improvement occurs with an inter-route structure, the procedure checks344

whether a vehicle visits some customers twice. If so, the duplicated visits with the largest distance345

reduction are removed. The second rule defines the neighborhood of each customer with the δ-346

nearest vertices, where δ (δ < |N |) is the granularity threshold restricting the search to nearby347

vertices. This rule aims to avoid the examination of non-promising neighboring solutions and speeds348
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up the local search. The last rule is that the first improvement strategy is adopted to explore each349

neighborhood.350

To present the different neighborhood operators, we adopt the following notations. r(u) and r(v)351

denote the routes which visit vertices u and v, respectively. Let v be a neighbor of u, and x and352

y the successors of u in r(u) and v in r(v), respectively. (u,x) is the substring from vertex u to x,353

and (v, y) is the substring from vertex v to y.354

3.5.1. VRP neighborhood operators We first summarize the nine commonly used VRP355

neighborhood operators, named as M1–M9. Detailed presentations of these operators are provided356

in Vidal (2022). Basically, M1–M3 are based on the insertion operation and M4-M6 use the inter-357

change (or swap) operation. M7 is the classical 2-opt for intra-route move, while M8 and M9 apply358

2-opt* (Potvin and Rousseau 1995) for inter-route optimization.359

� M1: If u is a customer visit, remove u from route r(u) and place u after v;360

� M2: If u and x are customer visits, remove them from route r(u) and place (u,x) after v;361

� M3: If u and x are customer visits, remove them from route r(u) and place (x,u) after v;362

� M4: Interchange u and v if they are customer visits;363

� M5: Interchange (u,x) and v if they are customer visits;364

� M6: Interchange (u,x) and (v, y) if they are customer visits;365

� M7: This is 2-opt. If r(u) = r(v), replace (u,x) and (v, y) by (u, v) and (x, y);366

� M8: This is 2-opt*. If r(u) ̸= r(v), replace (u,x) and (v, y) by (u, v) and (x, y);367

� M9: This is 2-opt*. If r(u) ̸= r(v), replace (u,x) and (v, y) by (u, y) and (v,x).368

3.5.2. SDVRP inter-route neighborhood operators We describe now the four inter-369

route neighborhood operators M10–M13 specifically designed for the SDVRP (Boudia, Prins, and370

Reghioui 2007, Dror and Trudeau 1989).371

� M10: This operator extends M4 by modifying the amounts to be delivered to customers with372

respect to the capacity constraint. Suppose that customers u and v (customer v is a neighbor373

of customer u) are visited on two distinct routes, that is r(u) ̸= r(v). There are two cases: (i) if374

du(r(u))> dv(r(v)), then customer v with demand dv(r(v)) is inserted before or after customer u375

in route r(u), and a copy of u with dv(r(v)) is inserted into route r(v) at the position of customer376

v; (ii) if du(r(u))<dv(r(v)), customer u with du(r(u)) is inserted before or after customer v, while377

a copy of v with du(r(u)) is removed from route r(v) and repositioned at the position of customer378

u in route r(u). Please refer to Boudia, Prins, and Reghioui (2007), Silva, Subramanian, and Ochi379

(2015) for a detailed description and illustration.380

� M11: It extends M5 by adjusting the amounts to be delivered to customers while satisfying381

the capacity constraint. Suppose that customers u and v come from two different routes. Two cases382
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are considered: (i) if du(r(u))+ dx(r(u))>dv(r(v)) and du(r(u))<dv(r(v)), then customer u with383

du(r(u)) and a copy of x with dv(r(v))−du(r(u)) are interchanged with customer v with dv(r(v));384

(ii) if du(r(u))+dx(r(u))<dv(r(v)), customers u,x are inserted before or after v in route r(v), and385

a copy of customer v with du(r(u)) + dx(r(u)) is removed from r(v) and replaced at the position386

of u in route r(u). One notices that if du(r(u))+dx(r(u)) = dv(r(v)), M11 becomes M5. A detailed387

description of M11 can be found in Boudia, Prins, and Reghioui (2007), Silva, Subramanian, and388

Ochi (2015).389

� M12 (RouteAddition): This operator was introduced by Dror and Trudeau (1989). Firstly,390

suppose that a customer u is served by two routes r(u) and r′(u), and the customer u is removed391

from the routes and inserted in a new empty route. Then, four subtours of routes r(u) and r′(u)392

split by customer u are considered. The best component of combining these four route segments393

together with customer u is constructed to minimize the traveling cost, and three new routes are394

generated. Following Dror and Trudeau (1989), we only consider the customer u involved in two or395

three routes to limit the computational complexity of exploring this neighborhood. For example,396

if customer u is visited by two routes, there are 9 components; however, if customer u is visited by397

three routes, there are 19 components.398

� M13 (k -Split): This operator was also introduced by Dror and Trudeau (1989). It splits a399

customer and inserts the split demands into different routes with respect to the minimum move400

gain and capacity constraint. A greedy heuristic is adopted to find the best move quickly. For a401

detailed description, please refer to Silva, Subramanian, and Ochi (2015).402

3.5.3. Route elimination For the SDVRP-LF, feasible solutions are limited toKmin vehicles.403

However, this constraint is relaxed during the mutation and local search with different neighbor-404

hood operators. In order to obtain feasible solutions after the local search, the k -Split neighborhood405

operator is employed to eliminate the least loaded route one by one until the number of routes406

equals Kmin. For route elimination, we adopt the EmptyRoutes procedure presented in Silva, Sub-407

ramanian, and Ochi (2015).408

3.5.4. Maximum splits per customer Intuitively, to minimize the objective function, it is409

not desirable to split too much a customer’s demand. As a result, in SplitMA, for each customer410

i, a maximum number of splits si is determined by si =max{smin, ⌈θ× di
Q
⌉}, where θ is a control411

parameter and smin sets the minimum of si, which prevents the maximum splits per customer412

from becoming too small. In SplitMA, we experimentally set θ = 50 and smin = 5, and apply413

the maximum splits strategy in neighborhood operators M10, M11 and M13. The benefits of this414

strategy are investigated in Section 5.4.415
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3.6. Population management416

Population management is known as an important ingredient of successful memetic algorithms.417

SplitMA adopts a variable population scheme inspired by that used in Vidal et al. (2012).418

The number of individuals in P varies between pmin and pmax (pmin < pmax) during the evolution419

process. Unlike the population management strategy used in Vidal et al. (2012), clone individuals420

are not allowed. Along with the evolution, the size of P increases since offspring individuals are pro-421

gressively added to the population. Once |P|> pmax, the surviving selection is triggered to remove422

pmax - pmin individuals by considering their contributions to the diversify of the population and423

traveling cost. Similar to Boudia, Prins, and Reghioui (2007), the normalized Hamming distance424

hAB between φA and φB is defined as the ratio between the number of non-common edges and425

the number of total edges in φA and φB, hAB = |{EA∪EB}\{EA∩EB}|
|EA∪EB| . Then, the biased fitness of each426

solution is calculated with respect to its initial fitness and diversity rank in P.427

If the best solution found so far φ∗ cannot be improved during γ consecutive iterations, the428

algorithm restarts by generating a totally new population.429

4. Computation Results and Comparisons430

In this section, we report extensive experiments to evaluate the performance of SplitMA on popular431

benchmark instances in comparison with the state-of-the-art SDVRP algorithms in the literature.432

4.1. Benchmark instances433

Four sets of commonly tested instances are used in the experiments.434

� Set I. It was proposed by Belenguer, Martinez, and Mota (2000) and consists of 25 instances435

with 22–101 customers. The set has been widely tested by almost all SDVRP algorithms. This set436

considers two cost matrices (i.e., unrounded and rounded costs), leading to 50 distinct instances.437

� Set II. This set was generated by Campos, Corberán, and Mota (2008) following the procedure438

provided by Archetti, Speranza, and Hertz (2006). It includes 49 test-instances with up to 199439

customers. These instances are divided into 7 groups such that the instances of a group have440

the same cost matrix and distinct demands. This set was also used to evaluate some algorithms’441

performances, such as SplitILS (Silva, Subramanian, and Ochi 2015), Aleman and Hill (2010) and442

Aleman, Zhang, and Hill (2009).443

� Set III. The set was presented by Archetti, Speranza, and Savelsbergh (2008) following the444

same approach of Archetti, Speranza, and Hertz (2006). The set is composed of 6 groups including445

42 instances with 50–199 customers, and the instances in each group have the same cost matrix446

and distinct demands.447

� Set IV. This set was provided by Chen, Golden, and Wasil (2007). It includes 21 instances448

with 8–288 customers. These instances have the particularity that customers are concentrically449

distributed around the depot.450
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Table 2 Parameter tuning results.

Parameter Section Description Considered values Final value

pmin 3.1 and 3.6 minimal size of population {10,15,20,25,30} 30

pmax 3.1 and 3.6 maximal size of population {45,50,55,60,65,70,75} 60

pm 3.4 mutation probability {0,0.05,0.1,0.15,0.2,0.25,0.3} 0.2

l 3.4 length of mutation {0.05,0.1,0.15,0.2,0.25} 0.05

δ 3.5 granularity threshold {10,15,20,25,30} 20

γ 3.6 maximum iterations without improvement {5000,10000,15000,20000,25000} 10000

All these 162 instances are used in our experiments to evaluate the performance of the proposed451

SplitMA algorithm. The instances and the best solutions obtained by SplitMA are available online452

at https://github.com/pengfeihe-angers/SplitMA.453

4.2. Experimental protocol and reference algorithms454

Parameter setting. The SplitMA algorithm involves six main parameters: the minimal popula-455

tion size pmin, the maximal population size pmax, the mutation probability pm, the mutation length456

l, the granularity threshold δ and the maximum iterations without improvement γ. To tune these457

parameter, we applied the automatic parameter tuning package Irace (López-Ibáñez et al. 2016),458

leading to the setting shown in Table 2. This setting can be considered as the default setting of459

the SplitMA algorithm and is consistently used for our experiments.460

Reference algorithms. Following the review of Section 2, we adopt the following references461

for the comparative study.462

� BKS. This indicates the best known solutions (best upper bounds) that are compiled from all463

reference heuristic and exact approaches (Munari and Savelsbergh 2022, Ozbaygin, Karasan, and464

Yaman 2018, Archetti, Bianchessi, and Speranza 2014).465

� SplitILS. This multistart iterated local search algorithm was proposed by Silva, Subramanian,466

and Ochi (2015) for solving the SDVRP-LF and SDVRP-UF. It remains one of the current best467

SDVRP algorithms. The algorithm was implemented in the C++ language and executed on an468

Intel Core i7 2.93 GHz with 8.0 GB of RAM memory running Linux. Each instance was executed469

20 times with distinct seeds under the single thread. The stopping condition is the maximum470

iterations given by min{Kmin×n,5000}× 10.471

� iVNDiv. The algorithm was proposed by Aleman and Hill (2010) for solving the SDVRP-LF472

only. The algorithm was implemented in the C# language and executed on a Pentium 4, 2.8 GHz473

with 512 MB of RAM. The stopping condition is a maximum number of iterations.474

� RGTS. This random granular tabu search algorithm was proposed by Berbotto, Garćıa, and475

Nogales (2014) for solving the SDVRP-LF and SDVRP-UF. It was written in C++ and executed476

on a personal computer with 2.10 GHz and 4 GB RAM. The algorithm stops when the given477

number of non-improving moves is met.478
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� SS. This scatter search algorithm was proposed by Campos, Corberán, and Mota (2008) for479

solving the SDVRP-LF only. It was encoded by C and executed on a Pentium IV, 2.4 GHz, 1480

GB RAM. The algorithm stops when the reference set remains unchanged after combining all the481

solutions or the maximum number of iterations is reached.482

� HGA. The hybrid genetic algorithm was presented by Wilck and Cavalier (2012) and tested483

on some instances of Set I and Set IV. It was implemented in FORTRAN 95 and executed on an484

Intel Xeon 2.94 GHz with 8 GB RAM.485

� TSVBA. The tabu search with vocabulary building approach was proposed by Aleman and Hill486

(2010) for solving the SDVRP-UF. It was implemented in C# and run on a Pentium 4, 2.8 GHz,487

512 MB of RAM. The algorithm stops when a predefined number of iterations without improving488

is reached.489

� FBTS. The forest-based tabu search was proposed by Zhang et al. (2015) for solving the490

SDVRP-UF. It was written in C++ and executed on an Intel i5-2410 2.3 GHz, 4 GB RAM. The491

algorithm terminates when the number of non-improvement steps is met.492

� MAPM. The memetic algorithm with population management was proposed by Boudia, Prins,493

and Reghioui (2007) for solving the SDVRP-UF. The algorithm was implemented in Delphi and494

executed on a 3.0 GHz personal computer. The algorithm stops when a maximum number of495

iterations is reached.496

� ABHC. The attribute based hill climber heuristic was proposed by Derigs, Li, and Vogel (2010)497

for solving the SDVRP-UF. It was executed on a 3 GHz personal computer with 2 GB RAM.498

Among these references, the BKS values can be considered as the most reliable because they499

are the best results ever reached by an existing SDVRP algorithm in the literature. On the other500

hand, the results of the cited algorithms enable an assessment of the proposed algorithm compared501

to the current state-of-the-art methods. We contacted the authors of the reference algorithms, and502

obtained the source codes of RGTS (Berbotto, Garćıa, and Nogales 2014) and FBTS (Zhang et al.503

2015). Unfortunately, for RGTS when we ran it with large scale instances such as p03-100D4, the504

program terminated with unknown errors. For FBTS, when we compiled the C++ code with g++505

on our computer, there were several errors. Furthermore, two studies (Chen et al. 2017, Shi et al.506

2018) are excluded for our comparative experiments because they report inconsistent results. For507

several instances, their results are even better than the proven optimal values reported in Archetti,508

Bianchessi, and Speranza (2014), Munari and Savelsbergh (2022).509

Experimental setting and stopping criterion. The SplitMA algorithm was implemented in510

C++ and compiled using the g++ compiler with the -O3 option2. Experiments were executed on a511

2 Upon the publication of the paper, the code of our algorithm will be made available at https://github.com/

pengfeihe-angers/SplitMA
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computer with a Xeon E5-2670 processor of 2.5 GHz and 2 GB RAM running Linux with a single512

thread. The algorithm was executed 20 times for each instance with distinct random seeds. In order513

to provide a good compromise between computing time and solution quality, the SplitMA algorithm514

terminates when it reaches a maximum of 40,000 iterations. Since each application of the gEAX515

crossover produces β offspring solutions, each iteration means an offspring solution is constructed516

and improved by the local search subsequently. On our computer, one run of SplitMA under this517

stopping condition corresponds to a maximum of 0.04 to 4470.13 seconds (only one instance requires518

this longest time) according to the instance size, which is quite reasonable compared to the time519

reported by most reference algorithms in the literature.520

4.3. Computational results and comparisons521

In the tables presented hereafter, column Instance indicates the name of instances; #Instances is522

the number of instances; LB is the lower bound extracted from state-of-the-art exact algorithms523

(Belenguer, Martinez, and Mota 2000, Ozbaygin, Karasan, and Yaman 2018, Munari and Savels-524

bergh 2022, Archetti, Bianchessi, and Speranza 2014); Best and Avg. are the best and average525

results obtained by the corresponding algorithm in the column header, respectively; Gap is calcu-526

lated as Gap= 100× (fbest−BKS)/BKS, where fbest is the best objective value of SplitMA. Since527

the SDVRP is a minimization problem, a negative Gap (in bold) indicates an improved upper528

bound. Time is the average time in seconds of 20 executions. TMB is the average time needed by529

the algorithm to hit its best solution. Furthermore, the dark gray color indicates that the corre-530

sponding algorithm obtains the best result among all compared algorithms on the corresponding531

instance; the medium gray color displays the second best results, and so on.532

We also provide the summarizing information as follows. Average is the average value over the533

instances of a benchmark set. #Best is the number of instances for a set where an algorithm gets534

the best objective value. Finally, to access the statistically significant difference between SplitMA535

and each reference algorithm, the p-value is shown in each table and it is the result of the Wilcoxon536

signed-rank test with a confidence level of 0.05. If the p-value is less than 0.05, the null hypothesis537

is rejected.538

In the following subsections, we present the results obtained by SplitMA on all the benchmark539

instances and compare them with the reference algorithms.540

4.3.1. Comparative results on the SDVRP-LF Table 3 summarizes the results of the541

SplitMA algorithm for the SDVRP-LF (upper part) compared to the reference algorithms in terms542

of the best objective values while Tables 7 - 11 show the detailed results on the 162 instances.543

From these tables, the following observations can be made. First, as shown in Table 3, SplitMA544

finds 70 new upper bounds out of the 162 instances (43%), matches the BKS values for 75 other545
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Table 3 Summary of comparative results between SplitMA and reference algorithms in terms of the best

objective values.

Pair algorithms #Instances
Best Avg.

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

SDVRP-LF 162 - - - - - - - -

SplitMA vs. BKS 162 70 75 17 4.28E-09 - - -

SplitMA vs. SplitILS 162 76 74 12 1.11E-12 97 29 36 7.42E-09

SplitMA vs. iVNDiv 99 92 7 0 3.15E-17 - - - -

SplitMA vs. RGTS 88 78 9 1 2.15E-14 79 8 1 2.76E-14

SplitMA vs. SS 49 44 5 0 1.74E-09 - - - -

SplitMA vs. HGA 21 12 8 1 3.09E-03 - - - -

SDVRP-UF 162 - - - - - - - -

SplitMA vs BKS 162 73 81 8 2.08E-12 - - - -

SplitMA vs. SplitILS 162 82 76 4 4.35E-16 112 33 17 6.24E-18

SplitMA vs. TSVBA 120 105 13 2 8.69E-20 - - - -

SplitMA vs. FBTS 67 67 0 0 1.12E-12 - - - -

SplitMA vs. MAPM 74 62 12 0 1.72E-12 - - - -

SplitMA vs. ABHC 36 34 2 0 1.83E-07 - - - -

instances (46%) and only misses 17 BKS values (10%). This performance can be considered as546

remarkable given that the BKS values are the best results compiled from all existing algorithms.547

Furthermore, compared to the most effective heuristic SplitILS, SplitMA obtains 76 and 97 better548

results in terms of the best and average values, respectively, while the reverse is true for 12 and549

36 cases. For the remaining reference algorithms, the dominance of SplitMA is even more evident550

by achieving the best results for the vast majority of the instances. According to the Wilcoxon551

signed-rank test, the small p-values (≪ 0.05) between SplitMA and the competitors indicate that552

the performance differences are statistically significant.553

From the detailed results shown in Tables 7 - 11, we have several observations. First, for each554

benchmark set, SplitMA competes favorably with the corresponding reference algorithms in terms555

of the best and average results. Second, in terms of running time, SplitMA spends a little more time556

to obtain slightly better results compared to SplitILS for Set I with both rounded and unrounded557

costs. For the three remaining Sets, SplitMA finds better results than SplitILS with less compu-558

tation time. Some algorithms, such as RGTS, show very short times, but their results are much559

worse than SplitMA (and SplitILS). It is worth saying that given the reference algorithms were560

programmed in different languages and performed on different computers under different stopping561

conditions, the comments on running times are provided for indicative purposes only.562

4.3.2. Comparative results on the SDVRP-UF Table 3 summarizes the results of the563

SplitMA algorithm for the SDVRP-UF (lower part) compared to the reference algorithms in terms564

of the best objective values while Tables 12 - 16 show the detailed results on the 162 instances. One565

notices that our algorithm updates 73 BKS values (new upper bounds) and matches 81 other BKS566

values. Compared to the best reference algorithm SplitILS, our algorithm reports 82 better, 76567

equal and 8 worse results, respectively. For the average results, SplitMA obtains 112 better results568

compared to SplitILS. SplitMA performs much better than the other reference algorithms (weaker569
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Table 4 Summary of comparative results of SplitMA compared to the results of SplitGiant (using the giant

tour crossover) and SplitMA1 (without any crossover).

Pair algorithms
Best Avg.

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

SplitMA vs. SplitGiant 46 28 0 3.52E-09 54 13 7 3.52E-12

SplitMA vs. SplitMA1 64 10 0 4.63E-10 68 6 0 7.64E-13

than SplitILS) by obtaining the best results for the vast majority of the instances. The small570

p-values (≪ 0.05) from the Wilcoxon signed-rank test indicate that the performance differences571

between SplitMA and the reference algorithms are statistically significant.572

5. Analysis573

In this section, we conduct additional experiments to assess the contributions of two key compo-574

nents of the SplitMA algorithm, that is gEAX and local search. For this, we focus on the SDVRP-UF575

and the 74 instances of Sets I and II.576

5.1. Significance of the gEAX crossover577

To assess the interest of the gEAX crossover, we create two variants of SplitMA as follows. The first578

variant (SplitGiant) replaces in SplitMA the gEAX crossover by the popular giant tour crossover,579

which has been very successful for solving routing problems (Potvin 2009, Vidal et al. 2014) as580

well as the SDVRP (Boudia, Prins, and Reghioui 2007). To implement this variant, we faithfully581

follow the description of Boudia, Prins, and Reghioui (2007) and adopt the source code of the split582

procedure from Vidal (2022). The second variant (SplitMA1) just disables the gEAX crossover of583

SplitMA. To ensure a fair comparison, we use the average running time of SplitMA shown in Tables584

12 and 14 as the stopping condition of these two variants to solve each instance. Like SplitMA,585

each variant is run 20 times independently on each instance. The summarized results are shown in586

Table 4 while the detailed results are illustrated in Fig. 4 where the results of SplitMA are used as587

the basis and the results of SplitGiant and SplitMA1 are presented related to this basis.588

From Table 4 and Fig. 4, one observes that SplitMA outperforms SplitGiant (using the giant589

tour crossover) in terms of both the best and average values, by reaching 46 better results and590

28 equal results out of the 74 instances. Furthermore, when the gEAX crossover is removed from591

SplitMA, the results become much worse since SplitMA1 (without gEAX) can only matches 10592

and 6 best solutions in terms of the best and average results.593

To further compare SplitMA and SplitGiant, we investigate their convergence behaviors. Specif-594

ically, we obtain the running profiles of these algorithms on two representative instances (S101D3595

and S101D5). Each algorithm is run 20 times with the same time budget and the best results were596

recorded during the process. The results of this experiment are shown in Fig. 5. One observes that597

SplitMA converges not only faster than SplitGiant, but also converges better.598
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Figure 4 Performance gaps of SplitGiant (with the giant tour crossover) and SplitMA1 (with the gEAX crossover

disabled) compared to SplitMA on the 74 instances of Sets I and II (a positive gap indicates a deteri-

orating result) in terms of the best results and average results.
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Figure 5 Convergence charts of SplitMA and SplitGiant for solving two representative instances.

We conclude that gEAX is not only a critical search operator contributing greatly to the perfor-599

mance of SplitMA, but also a more suitable crossover compared to the giant tour crossover.600

5.2. Rationale behind the crossover601

To shed insights on why the gEAX crossover is a suitable operator for the SDVRP, we investigate602

the relationship between high-quality local optimal solutions in terms of the Hamming distance.603

Indeed, relevant studies on the TSP (Mühlenbein 1990, Nagata and Kobayashi 2013) and VRP604

(Arnold and Sörensen 2019, Nagata and Bräysy 2009) have found that high-quality solutions share605

many common edges, which form the backbone of optimal solutions. EAX thus benefits from this606

property to construct promising offspring solutions by inheriting the backbone information while607

introducing a certain degree of diversity (Nagata and Kobayashi 2013). In this section, we show608

experimentally that the same property remains valid for the SDVRP.609

For our experiment, we select two representative instances: eil51 whose optimal value is known610

and S101D5 whose best result is shown in Table 12. We run SplitMA on these two instances611
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Figure 6 Hamming distance between each pair of local optimal solutions
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Figure 7 Hamming distance between solutions and the best/optimal solution

and record a large number of high-quality solutions whose objective value is within 5% of the612

best/optimal value. As such, 501 solutions for eil51 and 625 solutions for S101D5 are collected.613

Then, we calculate the normalized Hamming distance (see the definition in Section 3.6) between614

each pair of the solutions. Informally, this distance indicates the percentage of the non-common615

edges between two solutions over the total edges of the two solutions. A value close to 0 means that616

the two solutions are very similar and vice versa. The results are showed in the two dimensional617

heat map of Fig. 6. The abscissa and ordinate represent the rank of solutions from smallest (best) to618

largest (worst) with respect to the objective value. Each colored pixel corresponds to the normalized619

Hamming distance between two solutions. Hot colors show small Hamming distances, corresponding620

to pairs of similar (or close) solutions, while cold colors indicate large Hamming distances, thus621

pairs of distant solutions.622
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As one observes in Fig. 6, hot colors are around the bottom left corner of both figures, while623

cold colors are around the upper right corner. This indicates that the higher the quality of the624

solutions, the more they are similar to each other and vice versa. Furthermore, Fig. 7 illustrates625

the Hamming distance between high-quality solutions and the best/optimal solution. Once again,626

one notes that high-quality solutions are closer to the best/optimal solution compared to less good627

solutions. This is particularly true for S101D5, for which high-quality solutions are very close to628

the best known solution (with more than 90% common edges).629

These findings explain why the gEAX crossover performs well for the SDVRP. Indeed, gEAX630

transmits the common edges from parents (high-quality solutions) to offspring and conserves the631

backbone information of high-quality solutions while reassembling non-common edges. It is worth632

noting that these findings are fully consistent with the cases of the TSP and VRP, which motivated633

the design of the EAX crossover.634

5.3. Benefits of the local search and mutation635
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Figure 8 Illustration of the effects of the neighborhood operators and the mutation operator in terms of the gap

with respect to the results of the SplitMA algorithm with all neighborhoods and the mutation operator.

SplitMA uses thirteen neighborhood operators in its local search procedure and one mutation636

operator. It is interesting to know how each of these operators contributes to the performance637

of the algorithm. For this purpose, we create fourteen SplitMA variants (named V1 to V14) by638

disabling each of these operators. For example, variant V1 is the SplitMA algorithm with the M1639

neighborhood being removed from the local search procedure and V14 is SplitMA without the640

mutation operator. To assess the contributions of the nine VRP neighborhoods (M1-M9) and the641

four SDVRP neighborhoods (M10-M13), we create two additional SplitMA variants V15 and V16642

where M1-M9 and M10-M13 are disabled, respectively. For each of these variants, we compare its643

best and average results with those obtained by SplitMA. The gaps between these variants and644
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Table 5 Effect of each neighborhood and the mutation operator.

Pair algorithms
Best Avg.

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

SplitMA vs. V1 18 42 14 5.88E-01 31 20 23 9.01E-01

SplitMA vs. V2 13 48 13 6.94E-01 25 21 28 8.49E-01

SplitMA vs. V3 14 44 16 9.92E-01 29 22 23 9.67E-01

SplitMA vs. V4 14 45 15 9.66E-01 32 22 20 3.16E-01

SplitMA vs. V5 13 46 15 4.73E-01 27 22 25 9.75E-01

SplitMA vs. V6 18 44 12 1.53E-01 32 22 20 8.04E-02

SplitMA vs. V7 13 45 16 3.36E-01 26 22 26 2.70E-01

SplitMA vs. V8 14 45 15 9.31E-01 32 21 21 4.08E-01

SplitMA vs. V9 14 45 15 9.31E-01 32 21 21 4.08E-01

SplitMA vs. V10 32 39 3 1.05E-05 49 21 4 1.70E-09

SplitMA vs. V11 16 44 14 5.30E-01 32 21 21 3.40E-02

SplitMA vs. V12 15 42 17 4.54E-01 29 20 25 4.36E-01

SplitMA vs. V13 12 45 17 2.39E-01 39 16 19 7.13E-03

SplitMA vs. V14 26 40 8 3.76E-03 44 21 9 2.70E-07

SplitMA vs. V15 24 41 9 2.17E-02 55 14 5 1.02E-10

SplitMA vs. V16 35 36 3 3.71E-07 58 14 2 2.56E-11

SplitMA are shown in Fig. 8, and a positive gap implies a deteriorating performance with respect645

to the original SplitMA algorithm.646

From the results of Table 5 and Fig. 8, the contribution of each operator can be summarized as647

follows. First, all operators influence the algorithm with variable impacts. Specifically, M10 can be648

considered as the most critical neighborhood operator since SplitMA deteriorates significantly its649

performance if M10 is disabled. Meanwhile, the roles of M2 and M9 are rather marginal. Second,650

each of the four tailored SDVRP neighborhood operators (M10–M13) plays an important role for651

the local search. Third, the mutation operator (V14) cannot be ignored since it considerably influ-652

ences the performance of SplitMA for the best and average results. Finally, both V15 (without the653

VRP neighborhoods) and V16 (without the SDVRP neighborhoods) perform very badly, confirm-654

ing that both types of neighborhoods are indispensable for the local search. Meanwhile, we observe655

that the SDVRP neighborhoods are more critical than the VRP neighborhoods. In summary, all656

the neighborhoods and mutation contribute to the performance of the SplitMA algorithm, even if657

their contributions vary significantly.658

5.4. Benefits of the maximum splits per customer659

We now study how the maximum splits strategy contributes to the performance of SplitMA. For660

this purpose, we create 10 SplitMA variants with different values of θ, which controls the number of661

maximum splits per customer (the larger θ, the higher the allowed maximum splits). For example,662

variant MaxS30 uses θ = 30. For each of these variants, we compare its best and average results663

with those obtained by SplitMA (θ= 50). This experiment follows the same experimental protocol664

as before and the results are summarized in Table 6.665

From Table 6, we find that SplitMA performs significantly better than MaxS150 and MaxS200666

in terms of the best results. Indeed, the value of θ used in variant MaxS200 is four times larger667

than SplitMA (θ = 50). Furthermore, if the maximum splits strategy is removed from SplitMA,668



He and Hao: Memetic Search for SDVRP
26 Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!)

Table 6 Effect of the maximum splits per customer.

Pair algorithms
Best Avg.

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

SplitMA vs. MaxS20 11 46 17 4.25E-01 19 29 26 3.07E-01

SplitMA vs. MaxS30 14 47 13 8.29E-01 20 31 23 4.69E-01

SplitMA vs. MaxS40 12 53 9 2.97E-01 22 32 20 5.28E-01

SplitMA vs. MaxS60 13 56 5 8.54E-02 22 32 20 9.70E-01

SplitMA vs. MaxS70 13 57 4 5.52E-02 25 31 18 8.75E-01

SplitMA vs. MaxS80 12 56 6 1.33E-01 26 30 18 6.12E-01

SplitMA vs. MaxS90 12 46 16 5.24E-01 19 28 27 2.92E-01

SplitMA vs. MaxS100 13 57 4 5.52E-02 27 29 18 2.29E-01

SplitMA vs. MaxS150 13 57 4 4.94E-02 33 26 15 1.05E-01

SplitMA vs. MaxS200 14 55 5 3.29E-02 34 25 15 3.81E-02

the results we obtain are nearly the same as with the variant MaxS200. Thus, the maximum splits669

strategy positively contributes to the performance of SplitMA. On the other hand, SplitMA is670

marginally better than the other variants except two cases for these 74 SDVRP-UF instances,671

which indicates that SplitMA performs similarly well when the maximum splits per customer are672

limited to a reasonable range.673

6. Conclusions674

The split delivery vehicle routing problem is a useful model for a broad range of applications in675

various domains. This work introduced a new memetic algorithm SplitMA that features a general676

edge assembly crossover for creating promising offspring solutions and an effective local search677

for solution refinement. It also employs dedicated repairing techniques to ensure the feasibility of678

offspring solutions, a mutation to diversify new offspring solutions, and an advanced quality-and-679

distance strategy for maintaining a healthy population.680

Extensive experiments on four sets of 324 commonly used instances demonstrate that our algo-681

rithm significantly outperforms all existing SDVRP algorithms available in the literature. The682

algorithms discovers 143 new upper bounds (70 for the SDVRP with a fleet of limited vehicles and683

73 cases for the SDVRP with a fleet of unlimited vehicles) and matches the best known results684

for the majority of the remaining instances. Additional experiments are shown to understand the685

contributions of main algorithmic components including the gEAX crossover, local search neigh-686

borhoods and mutation.687

For further work, several directions can be envisaged. First, the local search is the most time-688

consuming component. To improve the computational efficiency of the local search, it would be689

interesting to investigate speed-up techniques, such as static move descriptors designed for the690

CVRP (Accorsi and Vigo 2021). Second, the gEAX crossover is accompanied by the offspring691

feasibility restoring operations with respect to customer demand and vehicle capacity constraints692

(Section 3.3), while the local search reestablishes the fleet constraint (for the SDVRP-LF) by route693

elimination (Section 3.5.3). As such, the algorithm basically explores feasible solutions. Meanwhile,694
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as discussed in (Glover and Hao 2011), for constrained problems, a controlled exploration of infea-695

sible solutions may facilitate discover high-quality feasible solutions that are difficult to reach if696

the search is limited to the feasible region. This approach has been successfully applied to several697

routing problems (Gendreau, Hertz, and Laporte 1994, Vidal et al. 2012, Chen, Hao, and Glover698

2016, Schneider and Löffler 2019). It is worth studying mixed search approaches allowing the exam-699

ination of both feasible and infeasible solutions. Finally, this work confirms the interest of the700

general idea of assembling promising edges from elite parents. This idea together with the design701

principle of the gEAX can benefit the design of meaningful crossovers for other routing problems702

such as location routing and arc routing.703
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Appendix A: Mathematical model704

In this section a mixed integer programming formulation for the SDVRP based on Archetti, Speranza, and705

Hertz (2006) is provided.706

Given a undirected graph G = (V,E) with the vertex set V = {0,1, · · · , n} where 0 is the depot and707

N = {1, · · · , n} represents n customers, and the edge set E . Let di ∈ Z+ be the demand of customer i ∈N708

and C = (cij) a non-negative cost (distance) matrix associated with E satisfying the triangle inequality709

(cij + cjk > cik for all i, j, k ∈ V and i ̸= j ̸= k). Let Q be the capacity of K identical vehicles. The formulation710

of the SDVRP is based on two decision variables. Binary variable xk
ij takes the value of 1 if vehicle k traverses711

edge (i, j), and it takes the value of 0 otherwise. Variable yik is the quantity of the demand of customer i712

delivered by the kth vehicle. The mathematical model for the SDVRP-UF is described as follows.713

Min f =

K∑
k=1

n∑
i=0

n∑
j=0

cijx
k
ij (1)

subject to:714
K∑

k=1

n∑
i=0

xk
ij ≥ 1 j = 0, · · · , n (2)

715
n∑

i=0

xk
ip−

n∑
j=0

xk
pj = 0 p= 0, · · · , n; k= 1, · · · ,K (3)

716 ∑
i∈S

∑
j∈S

xk
ij ≤ |S|− 1 k= 1, · · · ,K; S ⊆N (4)
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717

yik ≤ di

n∑
j=0

xk
ij k= 1, · · · ,K; i= 1, · · · , n (5)

718
K∑

k=1

yik = di i= 1, · · · , n (6)

719
n∑

i=1

yik ≤Q k= 1, · · · ,K (7)

720

xk
ij ∈ {0,1} i= 0, · · · , n; i= 0, · · · , n; k= 1, · · · ,K (8)

721

yik ≥ 0 i= 1, · · · , n;k= 1, · · · ,K (9)

Constraint (2) imposes that each vertex has to be visited at least once. Constraint (3) is the flow conser-722

vation constraint while constraint 4 is used to eliminate subtours. The first three constraints are classical723

constraints used in routing problems. Constraints (5)–(7) are related to the allocation of the demands of724

customers among vehicles. Constraint (5) indicates that customer i can be served by vehicle k only when725

k visits it. Constraint (6) guarantees that the total demand of each customer must be met. Constraint (7)726

imposes that the capacity for each vehicle cannot be exceeded.727

Finally, since the SDVRP-LF limits the number of vehicles K to the minimum possible Kmin =728

⌈(
∑n

i=1 di/Q)⌉, this extra constraint (K =Kmin) needs to be added into the model.729

Appendix B: Computational results730

Detailed comparative results between the proposed SplitMA and the reference algorithms on the four sets of731

benchmark instances are provided in Tables 7–16. Following (Silva, Subramanian, and Ochi 2015), we provide732

for the instances of Set I the results using both real and rounded costs (the distance matrices of these instances733

with round costs are obtained from http://dimacs.rutgers.edu/programs/challenge/vrp/vrpsd/). For734

the other benchmark sets, we report real value costs like in the literature.735

Table 7 Results for the SDVRP-LF on the instances of Set I.
iVNDiv RGTS SplitILS SplitMA

Instances LB BKS
Best Time Best Avg. Time Best Avg. Time Best Avg. Gap(%) Time TMB

eil22 - 375.28 375.28 4.19 375.28 375.28 0.00 375.28 375.28 0.14 375.28 375.28 0.00 0.13 0.02
eil23 525.65 568.56 569.75 3.42 598.56 568.56 0.00 568.56 568.56 0.12 568.56 568.56 0.00 0.11 0.04
eil30 - 512.72 512.72 14.47 519.70 525.33 210.00 512.72 512.72 0.32 512.72 512.72 0.00 0.22 0.10
eil33 - 837.06 853.10 14.03 843.64 843.64 29.00 837.06 837.06 0.45 837.06 837.06 0.00 46.98 0.41
eil51 518.26 524.61 524.61 54.91 524.93 531.24 11.00 524.61 524.61 1.63 524.61 524.61 0.00 0.50 0.49
eilA76 809.67 823.89 851.24 83.28 860.86 - 37.00 823.89 825.22 27.25 823.89 823.89 0.00 122.50 19.77
eilB76 985.42 1009.04 1059.57 79.00 1023.23 1023.32 23.00 1009.04 1011.19 44.98 1009.04 1011.20 0.00 140.38 52.55
eilC76 723.55 738.67 753.29 148.20 746.34 774.20 23.00 738.67 739.83 15.68 738.67 738.67 0.00 122.60 13.84
eilD76 672.54 687.60 699.35 140.83 702.26 702.26 31.00 687.60 688.37 9.92 686.70 687.24 -0.13 117.77 27.89
eilA101 803.62 826.14 852.74 319.33 849.98 851.23 61.00 826.14 826.26 36.59 826.14 826.70 0.00 148.83 29.26
eilB101 1055.40 1076.26 1139.27 185.84 1112.15 1112.29 73.00 1076.26 1078.58 101.26 1076.01 1076.93 -0.02 169.50 74.25
S51D1 457.10 459.50 471.92 40.53 459.50 459.93 12.00 459.50 459.50 1.07 459.50 459.50 0.00 0.35 0.33
S51D2 700.40 708.42 731.01 28.34 723.97 723.32 1.00 708.42 709.54 9.98 708.42 708.60 0.00 98.05 23.32
S51D3 938.50 948.01 1001.22 14.70 970.67 970.89 4.00 948.01 949.96 14.15 947.97 947.97 0.00 104.49 9.85
S51D4 1549.70 1561.01 1680.66 16.53 1614.10 1614.90 14.00 1561.01 1563.25 59.96 1560.88 1561.21 -0.01 246.21 140.36
S51D5 1326.61 1333.67 1389.40 13.94 1381.68 1385.31 3.00 1333.67 1333.85 32.41 1333.67 1334.47 0.00 145.26 40.99
S51D6 2165.64 2169.10 2218.23 16.83 2213.93 2215.41 2.00 2169.10 2174.71 83.79 2169.10 2170.60 0.00 275.95 94.04
S76D1 592.60 598.94 606.47 476.27 629.62 629.62 101.00 598.94 598.98 4.54 598.94 598.94 0.00 101.67 4.38
S76D2 1071.30 1087.99 1143.36 46.94 1113.43 1113.43 10.00 1087.99 1089.69 74.51 1087.40 1088.53 -0.05 147.69 66.14
S76D3 1407.54 1427.81 1490.08 53.34 1459.96 1461.20 15.00 1427.81 1429.01 88.72 1425.73 1428.31 -0.15 164.97 58.95
S76D4 2059.80 2079.76 2173.61 51.84 2103.05 2103.05 14.00 2079.76 2080.76 173.55 2079.74 2079.84 0.00 217.01 104.34
S101D1 716.80 726.59 749.19 2125.58 791.21 791.55 123.00 726.59 728.44 14.16 726.59 726.62 0.00 135.55 28.87
S101D2 1358.90 1383.35 1443.44 217.91 1415.92 1417.40 21.00 1383.35 1386.45 129.94 1377.89 1384.74 -0.39 198.08 88.04
S101D3 1853.10 1876.97 1988.78 146.61 1907.92 1907.92 19.00 1876.97 1881.26 277.62 1874.84 1880.13 -0.11 245.04 142.05
S101D5 2767.60 2792.01 2984.48 104.05 2896.00 2898.50 14.00 2792.01 2795.73 696.64 2789.81 2798.39 -0.08 876.06 646.71
Average - 1085.32 1130.51 176.04 1113.516 - - 1085.32 1086.75 75.98 1084.77 1086.03 - 153.03 66.68
Best# - - 0 - 0 0 - 0 4 - 10 15 - - -
p-value - 5.46E-03 2.67E-05 - 2.70E-05 2.35E-05 5.46E-03 1.01E-02 - - - - - -
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Table 8 Results for the SDVRP-LF on the instances of Set I with rounded costs.
iVNDiv SplitILS SplitMA

Instances LB BKS
Best Time Best Avg. Time Best Avg. Gap(%) Time TMB

eil22 375.00 375 375 4.19 375 375 0.13 375 375.00 0.00 33.38 0.04
eil23 569.00 569 570 3.42 569 569 0.09 569 569.05 0.00 31.77 0.16
eil30 510.00 510 510 14.47 510 510 0.3 510 510.00 0.00 44.28 0.12
eil33 834.70 835 851 14.03 835 835 0.39 835 835.00 0.00 43.80 0.13
eil51 521.00 521 521 54.91 521 521.55 1.63 521 521.50 0.00 61.05 1.13
eilA76 807.60 818 847 83.28 818 820.45 25.68 818 824.30 0.00 96.83 49.36
eilB76 981.40 1002 1055 79 1002 1005.8 38.05 1002 1006.90 0.00 106.99 38.11
eilC76 717.80 733 746 148.2 733 733.55 15.17 733 737.40 0.00 88.71 20.60
eilD76 666.10 681 695 140.83 681 683 11.02 682 685.50 0.15 87.72 15.16
eilA101 799.80 814 843 319.33 815 815.85 32.7 817 819.30 0.37 106.37 12.39
eilB101 1040.60 1061 1122 185.84 1061 1065.4 75.43 1061 1075.10 0.00 120.25 61.02
S51D1 454.40 458 466 40.53 458 458 1.21 458 458.00 0.00 55.13 0.28
S51D2 694.20 703 725 28.34 703 704.65 8.32 703 703.00 0.00 81.68 14.26
S51D3 935.17 942 994 14.7 943 944.2 13.58 942 942.00 0.00 95.09 21.03
S51D4 1547.00 1551 1672 16.53 1552 1555.55 47.34 1551 1551.00 0.00 353.89 87.78
S51D5 1325.34 1328 1385 13.94 1328 1329.15 33.46 1328 1328.00 0.00 194.67 36.55
S51D6 2153.00 2153 2211 16.83 2163 2165.7 65.68 2156 2156.11 0.14 280.29 124.06
S76D1 592.00 592 600 476.27 592 592.45 4.75 592 593.25 0.00 76.83 2.87
S76D2 1061.10 1081 1138 46.94 1081 1083.35 59.2 1081 1081.80 0.00 139.35 40.61
S76D3 1395.90 1419 1485 53.34 1419 1422.05 8.07 1420 1420.20 0.07 162.39 57.44
S76D4 2046.10 2071 2160 51.84 2071 2074.3 148.48 2072 2072.95 0.05 265.37 127.91
S101D1 716.00 716 740 2125.58 716 718.4 14.17 716 719.00 0.00 91.57 13.08
S101D2 1337.10 1364 1426 217.91 1364 1370.95 116.33 1360 1369.74 -0.29 140.02 75.89
S101D3 1832.20 1859 1974 146.61 1859 1868.75 233.36 1858 1862.95 -0.05 199.14 114.72
S101D5 2737.10 2770 2970 104.05 2772 2779.65 579.68 2767 2775.56 -0.11 989.28 877.67
Avgerage - 1077.04 1123.24 176.04 1077.64 1080.07 61.37 1077.08 1079.70 - 157.83 71.70
Best# - - 0 - 3 9 - 3 12.00 - - -
p-value - 8.52E-01 4.00E-05 - 3.42E-01 4.34E-01 - - - - - -

Table 9 Results for the SDVRP-LF on the instances of Set II.

SS iVNDiv SplitILS SplitMA
Instances BKS

Best Time Best Time Best Avg. Time Best Avg. Gap(%) Time TMB
p01-50 524.61 524.61 49.70 524.61 54.91 524.61 524.61 1.87 524.61 524.61 0.00 73.29 0.62
p01-50D1 460.79 460.79 51.80 471.92 33.70 460.79 460.79 1.16 460.79 460.79 0.00 59.53 0.35
p01-50D2 741.06 741.06 66.40 766.19 19.77 741.06 741.26 9.87 741.06 741.06 0.00 88.95 2.19
p01-50D3 982.77 997.83 87.10 1039.89 18.16 982.77 983.70 18.44 982.77 982.77 0.00 110.82 29.23
p01-50D4 1456.00 1554.38 92.60 1522.43 16.36 1456.00 1456.87 46.74 1456.00 1456.00 0.00 162.84 14.05
p01-50D5 1467.47 1532.19 92.40 1540.39 15.33 1467.47 1467.47 48.93 1467.47 1467.47 0.00 145.46 13.50
p01-50D6 2154.21 2312.48 5.80 2215.34 18.70 2154.21 2154.51 83.85 2154.21 2154.63 0.00 289.48 144.16
p02-75 823.89 829.01 166.50 851.24 83.28 823.89 824.77 30.84 823.89 823.89 0.00 119.36 19.36
p02-75D1 596.25 596.99 144.00 597.46 303.77 596.25 596.25 5.00 596.25 596.25 0.00 97.13 5.57
p02-75D2 1064.49 1071.87 143.80 1099.47 73.05 1064.49 1066.87 53.42 1064.49 1065.41 0.00 145.60 50.85
p02-75D3 1393.11 1463.60 126.80 1478.67 67.80 1393.11 1393.11 101.77 1393.11 1393.18 0.00 159.46 48.46
p02-75D4 2081.38 2182.34 119.90 2200.51 71.11 2081.38 2084.62 219.74 2074.57 2080.37 -0.33 268.47 130.09
p02-75D5 2112.19 2228.90 11.10 2238.98 80.30 2112.19 2113.38 267.72 2104.37 2112.46 -0.37 272.09 150.94
p02-75D6 3179.20 3387.86 10.50 3304.24 58.05 3179.20 3181.30 441.77 3173.48 3178.53 -0.18 446.40 323.80
p03-100 826.14 829.45 276.10 852.74 319.33 826.14 826.39 40.81 826.14 826.70 0.00 147.77 28.78
p03-100D1 726.81 726.81 272.10 745.35 2194.23 726.81 730.01 17.72 726.81 726.81 0.00 140.47 32.32
p03-100D2 1376.09 1397.50 305.10 1425.90 190.53 1376.09 1380.28 182.16 1373.85 1381.60 -0.16 199.30 103.36
p03-100D3 1823.17 1908.02 225.20 1956.13 154.47 1823.17 1827.47 326.55 1822.25 1826.76 -0.05 219.96 101.25
p03-100D4 2751.13 2894.21 177.90 2865.86 126.52 2751.13 2754.52 629.59 2745.81 2750.08 -0.19 335.31 212.80
p03-100D5 2813.82 2986.33 17.00 2941.64 103.94 2813.82 2817.05 737.35 2812.04 2814.61 -0.06 344.25 197.63
p03-100D6 4294.12 4576.13 38.30 4429.21 94.98 4294.12 4298.50 731.49 4291.58 4294.52 -0.06 577.05 378.35
p04-150 1024.59 1045.22 527.10 1074.11 1361.16 1024.59 1026.60 251.66 1023.23 1024.32 -0.13 228.02 127.47
p04-150D1 866.31 871.26 743.30 891.98 3461.44 866.31 866.31 119.63 866.31 866.31 0.00 204.75 17.56
p04-150D2 1861.63 1937.20 326.60 1978.01 878.55 1861.63 1866.48 1055.54 1862.22 1869.21 0.03 294.79 187.48
p04-150D3 2528.51 2649.97 21.30 2671.62 625.83 2528.51 2531.79 1514.55 2525.51 2530.36 -0.12 399.21 269.29
p04-150D4 3988.06 4062.88 50.40 4165.18 671.36 3988.06 3997.49 1986.49 3980.33 3988.04 -0.19 886.49 686.40
p04-150D5 3986.49 4185.68 23.00 4165.18 675.39 3986.49 3996.85 2076.38 3980.33 3988.04 -0.15 889.04 688.41
p04-150D6 6231.01 6479.46 30.50 6482.11 584.84 6231.01 6233.76 1660.06 6225.41 6238.81 -0.09 2093.71 2013.53
p05-199 1289.40 1324.73 588.30 1368.67 3284.64 1289.40 1296.37 1594.46 1287.51 1295.99 -0.15 316.82 199.75
p05-199D1 1017.30 1023.14 1874.80 1073.55 15505.22 1017.30 1018.40 438.21 1017.28 1018.42 0.00 292.70 153.93
p05-199D2 2307.82 2433.17 32.10 2464.65 1457.16 2307.82 2313.37 2440.32 2306.31 2317.16 -0.07 425.89 353.13
p05-199D3 3153.01 3291.96 31.20 3411.38 2173.84 3153.01 3163.89 3895.07 3147.31 3160.63 -0.18 806.19 774.46
p05-199D4 4844.58 5074.57 50.70 5184.57 3650.59 4844.58 4855.82 3806.84 4840.46 4849.00 -0.09 1410.50 1283.91
p05-199D5 5061.25 5265.01 327.30 5363.65 3026.22 5061.25 5070.77 4570.46 5061.31 5069.56 0.00 1811.51 1669.95
p05-199D6 8045.18 8323.72 215.00 8329.55 2124.66 8045.18 8047.68 4718.09 8022.22 8030.53 -0.29 3920.84 3863.79
p06-120 1037.88 1042.12 270.30 1201.83 3414.41 1037.88 1043.41 90.06 1037.88 1037.88 0.00 171.02 46.75
p06-120D1 975.96 976.57 370.90 1087.80 3952.67 975.96 976.42 46.16 975.96 975.96 0.00 173.93 26.43
p06-120D2 2703.75 2742.60 380.80 2806.92 558.56 2703.75 2708.51 762.81 2702.50 2705.77 -0.05 277.22 165.90
p06-120D3 3907.27 3979.67 329.00 4026.53 358.56 3907.27 3910.03 1543.98 3906.96 3911.81 0.01 444.97 347.11
p06-120D4 6201.66 6357.33 20.60 6364.87 458.91 6201.66 6215.87 1975.24 6194.24 6197.24 -0.12 936.03 763.29
p06-120D5 6372.58 6481.09 20.50 6545.50 469.17 6372.58 6375.64 2289.79 6328.42 6330.36 -0.69 1165.84 931.02
p06-120D6 10001.95 10158.32 20.40 10302.16 636.72 10001.95 10005.18 2209.90 10001.70 10006.23 0.00 2832.47 2639.81
p07-100 819.56 819.56 192.40 824.78 126.08 819.56 819.56 27.99 819.56 819.56 0.00 136.50 1.34
p07-100D1 632.63 636.00 166.50 673.54 1207.42 632.63 633.11 14.38 632.63 632.63 0.00 150.36 16.89
p07-100D2 1413.85 1418.81 206.30 1428.27 123.00 1413.85 1413.91 130.70 1413.85 1413.91 0.00 185.34 40.73
p07-100D3 1967.41 1995.34 266.50 2007.11 107.47 1967.41 1967.93 260.65 1967.41 1967.47 0.00 236.64 91.15
p07-100D4 3087.75 3166.31 272.70 3156.31 96.98 3087.75 3088.96 435.09 3088.23 3088.78 0.02 319.06 159.89
p07-100D5 3125.47 3248.76 16.00 3225.63 110.05 3125.47 3126.22 619.62 3125.39 3125.81 0.00 369.35 184.86
p07-100D6 4902.81 5065.26 13.80 5028.78 178.19 4902.81 4907.00 823.19 4901.06 4902.75 -0.04 647.66 432.65
Average 2591.93 2678.74 201.40 2701.48 1130.15 2591.93 2595.12 925.59 2588.92 2592.27 -0.08 539.39 410.71
Best# - 0 - 0 - 3 10 - 26 32 - - -
p-value 2.23E-06 1.74E-09 - 1.18E-09 - 2.23E-06 2.75E-04 - - - - - -
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Table 10 Results for the SDVRP-LF on the instances of Set III.

RGTS SplitILS SplitMA
Instances LB BKS

Best Avg. Time Best Avg. Time Best Avg. Gap(%) Time TMB
p01-50 - 524.61 529.23 535.39 13.00 524.61 524.61 1.83 524.61 524.61 0.00 72.67 0.60
p01-50D1 459.50 459.50 466.86 473.32 18.00 459.50 459.50 1.21 459.50 459.50 0.00 59.96 0.29
p01-50D2 756.71 756.71 784.60 789.83 3.00 756.71 760.52 14.55 756.71 758.02 0.00 95.68 44.36
p01-50D3 996.93 1005.75 1025.04 1036.50 1.00 1005.75 1005.93 21.48 1005.75 1005.75 0.00 113.82 19.37
p01-50D4 1485.00 1488.27 1503.33 1538.25 1.00 1488.27 1489.05 52.71 1487.18 1487.62 -0.07 184.82 61.84
p01-50D5 1474.10 1481.71 1503.21 1513.15 8.00 1481.71 1484.62 42.90 1481.71 1481.89 0.00 157.79 70.90
p01-50D6 2149.05 2156.14 2195.67 2202.50 4.00 2156.14 2160.60 84.35 2155.80 2155.80 -0.02 245.13 49.59
p02-75 - 823.89 864.64 879.35 10.00 823.89 824.39 30.31 823.89 823.89 0.00 118.45 19.08
p02-75D1 616.58 617.85 629.08 637.00 21.00 617.85 620.19 5.72 617.85 617.85 0.00 103.20 4.01
p02-75D2 1093.56 1110.43 1146.21 1161.75 8.00 1110.43 1112.70 54.11 1109.24 1110.48 -0.11 146.02 75.07
p02-75D3 1483.17 1502.05 1550.35 1584.59 12.00 1502.05 1503.42 110.02 1502.05 1503.52 0.00 161.38 59.92
p02-75D4 2270.44 2301.61 2398.40 2412.78 14.00 2301.61 2304.89 283.77 2302.12 2306.06 0.02 321.12 174.07
p02-75D5 2192.25 2219.52 2240.04 2251.50 13.00 2219.52 2222.58 261.25 2219.11 2220.02 -0.02 238.88 112.85
p02-75D6 3192.10 3223.06 3259.36 - 6.00 3223.06 3226.79 377.02 3217.51 3221.30 -0.17 416.63 282.12
p03-100 - 826.14 845.98 858.20 34.00 826.14 826.45 42.16 826.14 826.70 0.00 147.76 28.85
p03-100D1 753.12 760.00 804.86 834.16 130.00 760.00 760.70 22.00 760.00 760.00 0.00 151.50 50.93
p03-100D2 1435.23 1458.46 1491.82 1497.82 32.00 1458.46 1462.37 200.43 1458.46 1460.90 0.00 202.81 128.34
p03-100D3 1971.43 1997.76 2062.53 2019.50 51.00 1997.76 2001.83 366.31 1996.76 2002.79 -0.05 243.98 113.71
p03-100D4 3043.27 3090.65 3171.59 3182.40 54.00 3090.65 3094.91 746.44 3085.69 3088.52 -0.16 381.22 260.34
p03-100D5 2945.76 2991.22 3091.25 3111.23 54.00 2991.22 2991.89 756.18 2986.27 2991.17 -0.17 364.90 237.24
p03-100D6 4316.42 4387.32 4465.03 4474.00 75.00 4387.32 4389.19 719.27 4378.33 4384.70 -0.20 656.07 438.25
p04-150 - 1023.87 1059.71 1069.89 457.00 1023.87 1026.48 243.93 1023.23 1024.32 -0.06 228.72 128.20
p04-150D1 896.03 921.47 979.72 998.25 424.00 921.47 923.74 164.58 921.20 921.79 -0.03 224.56 116.43
p04-150D2 1986.79 2017.00 2093.21 2102.50 159.00 2017.00 2021.78 1156.99 2016.93 2025.54 0.00 313.34 180.33
p04-150D3 2811.64 2849.66 2943.54 2979.02 184.00 2849.66 2856.41 1699.36 2849.59 2853.04 0.00 431.38 315.14
p04-150D4 4474.18 4543.18 4652.10 4610.04 255.00 4543.18 4550.63 2467.51 4533.82 4547.78 -0.21 1094.75 992.48
p04-150D5 4269.77 4336.80 4460.22 4508.16 252.00 4336.80 4342.45 2366.91 4332.75 4341.43 -0.09 918.83 796.82
p04-150D6 6287.09 6396.68 6511.46 6511.46 200.00 6396.68 6402.63 2180.59 6378.28 6393.31 -0.29 2175.27 1853.53
p05-199 - 1285.79 1368.81 1401.30 698.00 1285.79 1292.79 1672.72 1287.51 1295.99 0.13 315.59 198.30
p05-199D1 1042.37 1074.18 1158.06 1151.59 989.00 1074.18 1080.65 629.08 1073.57 1081.15 -0.06 294.34 165.21
p05-199D2 2423.64 2481.44 2570.97 2570.97 324.00 2481.44 2487.28 2846.16 2478.37 2488.61 -0.12 497.44 402.65
p05-199D3 3420.17 3472.79 3592.77 3578.04 225.00 3472.79 3481.37 3015.92 3469.90 3479.66 -0.08 621.69 548.97
p05-199D4 5425.69 5526.28 5798.39 5798.39 220.00 5526.28 5530.56 5799.52 5521.61 5531.00 -0.08 3511.05 3433.92
p05-199D5 5306.11 5404.44 5556.01 5556.01 198.00 5404.44 5415.31 5706.50 5398.15 5414.40 -0.12 3460.31 3427.53
p05-199D6 8062.24 8188.47 8319.35 8319.35 241.00 8188.47 8195.06 3528.41 8181.44 8197.54 -0.09 4548.54 4470.13
p11-120 - 1037.88 1043.89 1080.30 1231.00 1037.88 1038.68 85.14 1037.88 1037.88 0.00 172.08 46.63
p11-120D1 1023.37 1043.19 1099.30 1120.10 1176.00 1043.19 1043.21 93.35 1042.80 1042.94 -0.04 169.38 76.68
p11-120D2 2879.63 2899.91 2939.41 2952.60 99.00 2899.91 2905.28 898.52 2898.25 2902.33 -0.06 318.13 226.02
p11-120D3 4162.99 4219.01 4301.53 4308.53 176.00 4219.01 4220.59 2260.39 4215.98 4218.70 -0.07 474.16 322.23
p11-120D4 6808.07 6856.11 6967.53 6967.53 301.00 6856.11 6863.96 3363.54 6849.73 6858.08 -0.09 1374.52 1220.46
p11-120D5 6584.11 6674.97 6770.14 6770.14 148.00 6674.97 6678.58 2306.51 6639.95 6645.59 -0.52 1072.92 800.01
p11-120D6 10111.11 10132.50 10132.50 10133.20 42.00 10215.90 10218.78 2006.24 10192.00 10196.90 0.59 2644.68 2223.42
Average - 2799.24 2865.42 2865.38 203.83 2801.23 2804.84 1159.19 2797.56 2802.12 - 701.08 575.64
Best# - - 1 1 - 3 10 - 25 29 - - -
p-value - 6.37E-05 7.86E-08 9.69E-08 - 5.01E-06 3.23E-04 - - - - - -

Table 11 Results for the SDVRP-LF on the instances of Set IV.

HGA RGTS SplitILS SplitMA
Instances LB BKS

Best Time Best Avg. Time Best Avg. Time Best Avg. Gap(%) Time TMB
SD1 228.28 228.28 228.28 0.27 228.28 228.28 0.00 228.28 228.28 0.05 228.28 228.28 0.00 10.98 0.03
SD2 708.28 708.28 708.28 1.95 708.28 708.28 0.00 708.28 708.28 0.58 708.28 708.28 0.00 53.74 0.06
SD3 430.40 430.40 430.58 1.94 430.58 430.58 0.00 430.58 430.58 0.59 430.58 430.58 0.04 41.80 0.06
SD4 631.05 631.05 631.05 6.24 633.98 633.98 0.00 631.05 631.05 2.16 631.05 631.05 0.00 84.20 0.22
SD5 1390.57 1390.57 1390.57 14.20 1401.28 1401.72 3.00 1390.57 1390.57 5.90 1390.57 1390.57 0.00 168.71 0.44
SD6 831.24 831.24 833.58 14.97 846.16 861.12 2.00 831.24 831.24 5.62 831.24 831.24 0.00 121.49 0.48
SD7 3640.00 3640.00 3640.00 28.61 3640.00 3640.00 3.00 3640.00 3640.00 13.74 3640.00 3640.00 0.00 237.60 0.26
SD8 5068.28 5068.28 5068.28 48.26 5068.28 5068.28 2.00 5068.28 5068.28 24.07 5068.28 5068.28 0.00 221.65 2.12
SD9 2044.19 2044.20 2054.84 48.91 2044.73 2058.03 1.00 2044.20 2044.43 35.86 2044.20 2044.20 0.00 215.89 2.73
SD10 2684.88 2684.88 2746.54 114.16 2701.55 2709.12 6.00 2684.88 2684.88 81.76 2684.88 2684.88 0.00 298.34 4.87
SD11 13275.00 13280.00 13280.00 231.64 13280.00 13280.00 15.00 13280.00 13280.00 136.43 13280.00 13280.00 0.00 455.49 5.45
SD12 7175.80 7213.61 7279.97 227.11 7213.62 7213.62 19.00 7213.61 7216.34 179.19 7213.61 7213.61 0.00 436.65 22.08
SD13 10053.60 10110.57 10110.57 421.95 10129.52 10129.52 61.00 10110.58 10110.58 168.07 10110.60 10110.60 0.00 526.65 12.42
SD14 10588.20 10715.53 10786.52 718.65 10783.00 10783.00 41.00 10715.53 10722.73 432.26 10715.50 10716.32 0.00 666.98 415.02
SD15 14908.50 15093.85 15160.04 1278.35 15151.06 15158.30 110.00 15093.85 15102.85 658.54 15089.60 15091.21 -0.03 939.34 559.89
SD16 3379.33 3379.33 3433.83 1225.88 3481.21 3481.21 54.00 3395.11 3395.16 580.27 3381.25 3381.26 0.06 1163.46 500.74
SD17 26317.20 26493.56 26559.92 1722.20 26512.51 26512.51 130.00 26493.56 26499.23 484.43 26493.60 26493.60 0.00 1090.71 247.79
SD18 14029.20 14197.80 14302.22 1735.83 14293.49 14293.49 61.00 14197.80 14202.85 676.77 14194.70 14203.31 -0.02 865.62 550.21
SD19 19707.20 19989.95 20152.53 3093.17 20131.94 20154.32 310.00 19989.95 20000.54 1261.95 19991.90 20003.86 0.01 1160.30 813.57
SD20 39252.80 39641.91 39706.51 6208.16 39701.96 39703.32 560.00 39641.91 39648.42 1518.12 39635.50 39638.21 -0.02 2500.54 1487.16
SD21 11271.00 11271.00 11461.20 10565.70 11365.16 11369.31 371.00 11344.96 11357.62 4326.99 11281.90 11315.20 0.10 2393.82 2242.46
Average - 9002.11 9045.97 1319.44 9035.55 9038.95 83.29 9006.39 9009.23 504.45 9002.17 9004.98 - 650.19 327.05
Best# - - 1 - 0 0 - 2 3 - 4 8 - - -
p-value - 3.66E-04 3.09E-03 - 5.35E-04 5.35E-04 3.33E-01 1.15E-01 - - - - - -
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Table 12 Results for the SDVRP-UF on the instances of Set I.

TSVBA FBTS SplitILS SplitMA
Instances LB BKS

Best Time Best Time Best Avg. Time Best Avg. Gap(%) Time TMB
eil22 375.28 375.28 375.28 2.58 375.30 4.00 375.28 375.28 0.15 375.28 375.28 0.00 0.13 0.02
eil23 568.56 568.56 569.75 1.59 568.60 4.00 568.56 568.56 0.13 568.56 568.56 0.00 0.11 0.04
eil30 505.01 505.01 505.01 7.45 519.00 7.00 505.01 505.01 0.24 505.01 505.01 0.00 0.23 0.23
eil33 837.05 837.06 843.64 8.38 837.10 10.00 837.06 837.06 0.51 837.06 837.06 0.00 44.48 0.37
eil51 524.61 524.61 527.67 49.84 528.00 23.00 524.61 524.61 1.79 524.61 524.61 0.00 0.62 0.62
eilA76 809.58 823.89 853.20 145.78 842.70 191.00 823.89 824.92 30.76 823.89 823.89 0.00 104.54 12.03
eilB76 984.13 1009.04 1034.21 91.36 1017.10 289.00 1009.04 1012.07 51.83 1009.04 1011.22 0.00 118.58 64.89
eilC76 722.76 738.67 761.55 151.13 754.30 73.00 738.67 739.89 16.96 738.67 738.67 0.00 102.90 15.59
eilD76 674.17 687.60 695.96 122.52 701.10 57.00 687.60 689.36 11.16 686.70 687.43 -0.13 98.84 20.79
eilA101 804.40 826.14 844.21 295.22 838.80 194.00 826.14 826.58 38.90 826.14 826.70 0.00 123.61 37.67
eilB101 1055.59 1076.26 1112.15 173.13 1096.10 280.00 1076.26 1079.15 110.61 1076.26 1077.47 0.00 146.98 72.87
S51D1 459.50 459.50 468.79 13.56 464.80 13.00 459.50 459.50 1.24 459.50 459.50 0.00 0.33 0.31
S51D2 708.41 708.42 718.69 31.66 711.90 121.00 709.29 709.49 11.20 708.42 708.51 0.00 86.84 29.75
S51D3 941.03 947.97 969.78 18.75 952.80 215.00 948.06 950.12 15.74 947.97 947.97 0.00 94.70 7.83
S51D4 1560.87 1560.88 1628.20 19.77 1587.80 134.00 1562.01 1563.29 56.28 1560.88 1561.05 0.00 194.41 113.89
S51D5 1333.66 1333.67 1362.19 15.39 1348.80 127.00 1333.67 1333.67 36.69 1333.67 1333.85 0.00 136.04 34.41
S51D6 2163.22 2169.10 2236.16 14.38 2202.20 81.00 2169.10 2177.78 62.55 2169.10 2170.32 0.00 278.82 130.03
S76D1 598.93 598.94 613.70 252.28 615.90 33.00 598.94 598.94 4.86 598.94 598.94 0.00 85.69 6.07
S76D2 1066.88 1087.40 1128.15 60.44 1103.60 329.00 1087.40 1089.45 69.36 1087.40 1088.99 0.00 131.38 76.99
S76D3 1406.85 1427.86 1472.92 51.13 1449.80 314.00 1427.86 1429.26 96.50 1426.78 1429.05 -0.07 148.34 69.86
S76D4 2053.66 2079.76 2180.13 53.56 2108.60 299.00 2079.76 2081.16 188.38 2079.74 2079.77 0.00 201.13 83.08
S101D1 716.92 726.59 749.93 860.31 745.70 223.00 726.59 728.45 15.93 726.59 726.59 0.00 109.53 16.20
S101D2 1356.78 1378.43 1409.03 219.52 1394.60 327.00 1378.43 1386.03 151.66 1377.01 1383.72 -0.10 172.17 120.33
S101D3 1845.07 1874.81 1947.62 132.19 1913.30 325.00 1874.81 1880.62 317.29 1874.65 1880.39 -0.01 222.64 141.64
S101D5 2758.21 2791.22 2910.71 131.16 2858.80 374.00 2791.22 2795.36 572.13 2789.61 2791.59 -0.06 318.60 161.87
Average - 1084.67 1116.75 116.92 1101.47 161.88 1084.75 1086.62 74.51 1084.46 1085.45 - 116.87 48.70
Best# - - 0 - 0 - 0 1 - 6 16 - - -
p-value - 5.51E-02 2.07E-05 - 1.23E-05 - 4.82E-03 5.46E-04 - - - - - -

Table 13 Results for the SDVRP-UF on the instances of Set I with rounded costs.

MAPM TSVBA SplitILS SplitMA
Instances LB BKS

Best Time Best Time Best Avg. Time Best Avg. Gap(%) Time TMB
eil22 375.00 375 375 4.11 375 2.58 375 375.00 0.15 375 375.00 0.00 43.72 0.02
eil23 569.00 569 569 5.47 570 1.59 569 569.00 0.11 569 569.00 0.00 41.61 0.24
eil30 503.00 503 503 5.7 503 7.45 503 503.00 0.23 503 503.00 0.00 51.83 0.08
eil33 835.00 835 835 5.19 844 8.38 835 835.00 0.45 835 835.00 0.00 58.09 0.09
eil51 521.00 521 521 7.28 526 49.84 521 521.00 1.75 521 521.00 0.00 79.40 9.86
eilA76 792.71 818 828 35.94 847 145.78 818 821.75 24.63 818 820.60 0.00 129.57 32.56
eilB76 957.60 1002 1019 13.09 1027 91.36 1002 1007.05 37.68 1002 1005.90 0.00 144.39 67.67
eilC76 714.24 733 738 14.75 754 151.13 733 733.75 14.75 733 733.35 0.00 117.30 34.35
eilD76 667.93 682 682 23.12 691 122.52 682 683.05 10.39 680 682.70 -0.29 111.44 51.22
eilA101 792.40 814 818 25.25 834 295.22 814 816.20 32.61 814 816.65 0.00 131.91 50.99
eilB101 1017.77 1061 1082 21.81 1104 173.13 1061 1064.00 78.42 1061 1063.60 0.00 156.53 74.92
S51D1 458.00 458 458 8.77 465 13.56 458 458.00 1.17 458 458.00 0.00 73.38 0.37
S51D2 703.00 703 707 7.44 715 31.66 703 704.75 8.12 703 703.15 0.00 109.07 20.49
S51D3 933.07 943 945 7.84 966 18.75 943 944.05 13.06 942 942.00 -0.11 131.09 16.09
S51D4 1547.44 1553 1578 11.98 1621 19.77 1553 1556.50 39.25 1551 1551.00 -0.13 538.46 71.39
S51D5 1326.73 1328 1351 16.72 1357 15.39 1328 1329.25 32.07 1328 1328.00 0.00 292.13 32.91
S51D6 2153.00 2153 2182 9.92 2228 14.38 2163 2166.15 52.95 2156 2156.00 0.14 515.77 111.52
S76D1 592.00 592 592 15.23 606 252.28 592 592.30 4.75 592 592.20 0.00 97.51 13.56
S76D2 1040.67 1082 1089 30.5 1124 60.44 1082 1083.15 53.6 1080 1081.30 -0.18 192.15 65.90
S76D3 1379.57 1420 1427 12.89 1466 51.13 1420 1423.05 67.81 1418 1420.00 -0.14 235.31 97.06
S76D4 2034.70 2073 2117 8.76 2170 53.56 2073 2074.95 144.89 2071 2071.90 -0.10 389.04 142.81
S101D1 714.87 716 717 49.75 741 860.31 716 718.35 14.76 716 718.05 0.00 116.78 56.03
S101D2 1301.93 1366 1372 31.72 1398 219.52 1366 1371.40 112.47 1360 1365.65 -0.44 202.81 103.46
S101D3 1803.51 1864 1891 33.98 1936 132.19 1864 1868.05 236.05 1858 1862.10 -0.32 295.32 183.00
S101D5 2709.48 2770 2854 18.66 2897 131.16 2770 2779.10 439.49 2765 2767.80 -0.18 595.48 310.54
Average - 1077.36 1090.00 17.03 1110.60 116.92 1077.76 1079.91 56.86 1076.36 1077.72 - 194.00 61.88
Best# - 0 - 0 - 0 1 - 9 18 - - -
p-value - 2.54E-02 1.96E-04 - 2.69E-05 - 1.95E-03 3.40E-04 - - - - - -
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Table 14 Results for the SDVRP-UF on the instances of Set II.

MAPM TSVBA SplitILS SplitMA
Instances BKS

Best Time Best Time Best Avg. Time Best Avg. Gap(%) Time TMB
p01-50 524.61 524.61 8.53 527.67 49.84 524.61 524.61 1.82 524.61 524.61 0.00 65.81 0.52
p01-50D1 460.79 460.79 12.38 466.74 19.69 460.79 460.79 1.17 460.79 460.79 0.00 52.48 0.31
p01-50D2 741.06 751.41 10.22 753.98 23.17 741.06 741.26 9.72 741.06 741.06 0.00 80.89 1.85
p01-50D3 982.79 988.31 12.49 1023.24 17.72 982.79 983.59 18.04 982.77 983.13 0.00 99.79 14.50
p01-50D4 1456.00 1467.06 21.42 1530.81 19.11 1456.00 1457.37 42.86 1456.00 1456.00 0.00 154.69 8.24
p01-50D5 1467.47 1477.01 24.53 1505.38 19.09 1467.47 1467.47 49.42 1467.47 1467.47 0.00 137.18 10.08
p01-50D6 2150.97 2154.35 22.91 2219.32 24.41 2150.97 2152.95 51.94 2150.00 2150.15 -0.05 235.87 115.36
p02-75 823.89 823.89 35.72 853.20 145.78 823.89 824.80 30.52 823.89 823.89 0.00 104.77 12.02
p02-75D1 596.25 600.06 18.75 614.09 136.14 596.25 596.25 4.98 596.25 596.25 0.00 83.10 4.51
p02-75D2 1064.49 1074.46 34.14 1085.70 97.17 1064.49 1066.36 53.25 1064.49 1065.37 0.00 125.18 58.26
p02-75D3 1393.11 1413.80 37.38 1458.59 67.66 1393.11 1393.11 97.13 1393.11 1393.20 0.00 139.04 18.85
p02-75D4 2081.38 2102.58 46.11 2164.74 61.81 2081.38 2084.91 191.06 2076.92 2082.27 -0.21 251.73 135.55
p02-75D5 2111.83 2132.16 51.78 2182.33 55.17 2111.83 2114.03 212.38 2105.15 2112.19 -0.31 222.52 133.15
p02-75D6 3178.47 3200.35 27.48 3278.33 86.27 3178.47 3181.28 412.86 3175.61 3177.67 -0.09 420.01 234.40
p03-100 826.14 829.44 34.59 844.21 295.22 826.14 826.39 40.01 826.14 826.70 0.00 125.41 37.52
p03-100D1 726.81 726.81 37.12 741.60 1944.09 726.81 730.80 16.67 726.81 726.81 0.00 115.70 29.32
p03-100D2 1376.22 1392.85 78.06 1416.35 160.95 1376.22 1380.23 187.76 1373.85 1380.81 -0.17 171.11 81.05
p03-100D3 1823.58 1845.30 28.39 1886.70 145.05 1823.58 1827.81 313.83 1823.29 1826.80 -0.02 197.78 86.17
p03-100D4 2749.53 2780.95 84.38 2874.86 125.28 2749.53 2753.99 647.44 2745.64 2749.10 -0.14 314.73 210.32
p03-100D5 2813.52 2858.87 100.16 2929.29 134.84 2813.52 2817.05 737.91 2811.62 2815.30 -0.07 327.31 196.40
p03-100D6 4294.12 4312.95 55.75 4435.56 185.55 4294.12 4299.40 737.85 4292.05 4296.29 -0.05 573.55 416.70
p04-150 1023.66 1042.37 103.69 1079.55 2217.67 1023.66 1026.89 250.37 1023.23 1024.44 -0.04 190.31 85.11
p04-150D1 866.31 875.61 100.27 891.10 2640.95 866.31 866.31 120.92 866.31 866.31 0.00 168.47 19.19
p04-150D2 1861.63 1878.71 147.89 1929.91 755.08 1861.63 1866.95 1041.64 1865.12 1869.29 0.19 255.43 176.79
p04-150D3 2527.96 2561.65 224.89 2647.17 470.34 2527.96 2531.50 1445.25 2523.87 2530.27 -0.16 341.16 263.57
p04-150D4 3988.64 4045.87 244.91 4151.90 451.95 3988.64 3996.55 1901.05 3979.53 3985.62 -0.23 610.69 517.32
p04-150D5 3985.76 4045.87 244.86 4151.90 449.34 3985.76 3995.25 1836.14 3979.53 3985.62 -0.15 607.89 515.09
p04-150D6 6232.37 6267.48 401.62 6416.12 678.94 6232.37 6234.56 1543.69 6223.33 6235.82 -0.14 1396.79 1306.96
p05-199 1286.92 1311.59 353.84 1339.49 4514.28 1286.92 1293.71 1298.10 1283.27 1293.19 -0.28 258.95 174.95
p05-199D1 1017.28 1018.71 356.22 1069.24 11.215.52 1017.28 1018.59 431.97 1017.28 1018.99 0.00 236.00 76.64
p05-199D2 2305.70 2340.14 347.14 2408.16 1544.36 2305.70 2313.04 2296.08 2301.06 2316.42 -0.20 371.31 309.70
p05-199D3 3156.02 3191.25 436.20 3296.69 1216.69 3156.02 3163.26 3316.93 3146.79 3156.56 -0.29 532.41 438.04
p05-199D4 4843.83 4941.22 725.69 5066.24 108.63 4843.83 4855.49 3739.98 4836.17 4843.71 -0.16 1390.29 1251.93
p05-199D5 5063.89 5155.36 749.94 5281.55 119.04 5063.89 5072.74 4222.85 5054.50 5065.53 -0.18 1322.26 1218.41
p05-199D6 8037.88 8081.58 571.70 8333.61 153.12 8037.88 8048.57 4616.79 8022.89 8033.28 -0.19 3832.93 3738.14
p06-120 1037.88 1041.20 50.92 1051.24 1944.19 1037.88 1039.13 81.50 1037.88 1037.98 0.00 141.58 43.15
p06-120D1 975.96 976.57 72.98 990.59 2736.34 975.96 976.57 44.82 975.96 975.96 0.00 141.15 29.09
p06-120D2 2707.52 2720.38 144.19 2744.74 463.97 2707.52 2710.15 704.44 2702.26 2705.74 -0.19 243.22 193.95
p06-120D3 3907.27 3934.39 163.14 4010.80 340.53 3907.27 3909.28 1487.97 3909.11 3910.94 0.05 411.09 331.21
p06-120D4 6195.37 6318.37 196.14 6308.76 418.98 6195.37 6219.01 1805.91 6194.55 6197.79 -0.01 894.16 787.48
p06-120D5 6373.24 6424.71 271.39 6511.08 436.80 6373.24 6376.25 2303.70 6329.30 6331.17 -0.68 1103.03 948.83
p06-120D6 10003.99 10063.47 298.08 10186.06 30.32 10003.99 10005.29 2161.59 10003.80 10006.26 0.00 2985.43 2721.87
p07-100 819.56 819.56 42.89 819.60 75.33 819.56 819.56 27.67 819.56 819.56 0.00 121.23 1.19
p07-100D1 632.63 649.73 34.97 658.99 461.75 632.63 636.76 12.28 632.63 633.90 0.00 115.49 28.64
p07-100D2 1413.85 1417.28 43.27 1441.48 98.31 1413.85 1413.99 128.52 1413.85 1413.85 0.00 163.04 43.11
p07-100D3 1967.41 1994.59 51.31 2010.00 84.50 1967.41 1968.09 265.71 1967.41 1968.08 0.00 213.56 85.31
p07-100D4 3088.47 3113.72 52.13 3157.48 97.58 3088.47 3089.41 416.34 3087.93 3088.73 -0.02 305.53 178.16
p07-100D5 3125.47 3155.69 91.31 3200.62 96.39 3125.47 3125.98 568.97 3125.29 3125.53 -0.01 339.51 157.26
p07-100D6 4903.00 4919.48 180.11 4996.88 152.92 4903.00 4906.56 799.40 4901.06 4903.27 -0.04 614.40 429.07
Average 2591.68 2616.83 152.73 2672.32 553.59 2591.68 2595.18 872.02 2588.43 2591.03 -0.08 744.91 611.60
Best# - 0 - 0 - 2 9 - 28 34 - - -
p-value 1.81E-06 1.74E-09 - 1.11E-09 - 1.81E-06 3.63E-05 - - - - - -
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Table 15 Results for the SDVRP-UF on the instances of Set III.

FBTS SplitILS SplitMA
Instances LB BKS ABHC

Best Time Best Avg. Time Best Avg. Gap(%) Time TMB
p01-50 - 524.61 524.61 532.00 18.00 524.61 524.61 1.88 524.61 524.61 0.00 65.49 0.61
p01-50D1 459.50 459.50 - 461.00 31.00 459.50 459.50 1.16 459.50 459.50 0.00 54.10 0.24
p01-50D2 754.45 757.15 776.42 759.80 307.00 757.15 761.12 13.24 756.71 758.08 -0.06 88.35 38.35
p01-50D3 999.06 1005.75 1012.56 1026.50 210.00 1005.75 1005.75 20.70 1005.75 1005.75 0.00 105.14 23.10
p01-50D4 1487.16 1487.18 1489.64 1552.10 134.00 1488.58 1488.89 43.04 1487.18 1488.01 0.00 152.96 49.01
p01-50D5 1474.34 1481.71 1488.28 1498.10 151.00 1481.71 1483.36 44.11 1481.71 1482.30 0.00 148.07 82.21
p01-50D6 2149.42 2155.80 2174.54 2191.41 107.60 2156.14 2161.31 78.49 2155.80 2155.80 0.00 229.40 71.22
p02-75 - 823.89 829.89 827.40 320.00 823.89 825.06 29.69 823.89 823.89 0.00 104.76 12.03
p02-75D1 612.45 617.85 - 637.00 44.00 617.85 619.59 5.70 617.85 617.85 0.00 86.26 3.36
p02-75D2 1095.65 1109.62 1123.97 1118.10 325.00 1109.62 1112.11 53.26 1109.24 1110.45 -0.03 130.05 45.96
p02-75D3 1482.50 1502.05 1508.73 1525.70 318.00 1502.05 1503.57 108.37 1502.05 1502.91 0.00 145.45 70.57
p02-75D4 2272.05 2298.58 2340.09 2358.80 322.00 2298.58 2301.85 207.22 2296.98 2298.01 -0.07 266.02 177.53
p02-75D5 2195.44 2219.97 2243.93 2280.30 406.00 2219.97 2224.06 265.00 2217.63 2219.51 -0.11 221.39 134.90
p02-75D6 3192.55 3223.40 3266.78 3259.00 200.00 3223.40 3226.20 378.95 3216.67 3219.88 -0.21 410.77 268.82
p03-100 - 826.14 826.14 847.40 188.00 826.14 826.45 40.52 826.14 826.70 0.00 124.75 37.31
p03-100D1 749.42 760.00 - 792.20 87.00 760.00 760.46 21.65 760.00 760.02 0.00 124.23 35.02
p03-100D2 1437.78 1458.46 1478.59 1476.90 326.00 1458.46 1462.68 179.69 1458.46 1461.61 0.00 170.89 69.89
p03-100D3 1971.34 1996.76 2035.91 2023.20 318.00 1996.76 2002.23 362.02 1996.76 2002.33 0.00 223.39 112.41
p03-100D4 3042.93 3085.69 3145.33 3181.30 339.00 3085.69 3093.64 736.52 3085.69 3089.11 0.00 366.24 274.55
p03-100D5 2945.42 2989.30 3014.08 3044.10 325.00 2989.30 2992.75 742.88 2990.34 2991.23 0.03 355.86 162.60
p03-100D6 4334.44 4387.32 4447.47 4441.70 300.00 4387.32 4389.43 675.01 4378.33 4384.69 -0.20 659.74 364.76
p04-150 - 1023.87 1028.42 1081.60 426.00 1023.87 1027.28 233.73 1023.23 1024.44 -0.06 188.78 84.70
p04-150D1 895.46 921.91 - 953.00 369.00 921.91 923.69 161.90 921.20 922.06 -0.08 183.29 75.86
p04-150D2 1986.34 2016.97 2055.18 2060.40 375.00 2016.97 2021.36 1109.88 2016.93 2026.05 0.00 268.00 166.31
p04-150D3 2811.98 2849.66 2912.08 2910.80 394.00 2849.66 2857.28 1518.82 2849.66 2853.02 0.00 374.35 261.46
p04-150D4 4474.92 4545.46 4638.74 4681.70 389.00 4545.46 4550.85 2410.48 4537.82 4548.81 -0.17 884.75 768.45
p04-150D5 4267.33 4334.71 4435.95 4483.40 372.00 4334.71 4341.15 2357.52 4328.77 4339.85 -0.14 722.75 662.86
p04-150D6 6284.76 6395.41 6467.17 6459.80 300.00 6395.41 6402.15 1926.20 6380.51 6391.51 -0.23 1463.21 1320.52
p05-199 - 1289.89 1302.89 1342.50 477.00 1289.89 1293.24 1355.25 1287.18 1293.19 -0.21 258.40 174.50
p05-199D1 1042.37 1074.18 - 1126.60 449.00 1074.18 1080.64 626.12 1074.06 1081.46 -0.01 237.69 154.62
p05-199D2 2423.99 2478.40 2540.06 2525.00 418.00 2478.40 2486.54 2661.25 2476.06 2485.54 -0.09 389.77 335.06
p05-199D3 3420.23 3471.41 3581.66 3542.50 429.00 3471.41 3480.76 3014.82 3469.18 3477.51 -0.06 559.50 477.57
p05-199D4 5422.95 5521.57 5669.26 5700.70 500.00 5521.57 5529.06 4349.61 5515.50 5519.99 -0.11 1666.05 1477.85
p05-199D5 5304.09 5409.76 5541.09 5585.10 438.00 5409.76 5417.75 4524.33 5398.71 5409.49 -0.20 1386.87 1318.93
p05-199D6 8062.14 8192.03 8297.71 8255.40 300.00 8192.03 8195.67 3258.29 8176.30 8190.21 -0.19 3462.49 3422.14
p11-120 - 1037.88 1042.12 1048.30 177.00 1037.88 1043.38 84.84 1037.88 1037.98 0.00 141.91 43.34
p11-120D1 1023.39 1043.19 - 1119.20 344.00 1043.19 1043.22 109.76 1042.80 1042.88 -0.04 139.01 66.96
p11-120D2 2867.79 2898.50 2913.09 2953.10 344.00 2898.50 2907.07 895.11 2898.25 2900.15 -0.01 294.04 199.85
p11-120D3 4156.68 4219.01 4270.38 4298.40 345.00 4219.01 4220.79 1957.37 4216.10 4219.56 -0.07 447.07 355.21
p11-120D4 6780.19 6854.09 6890.39 7206.20 358.00 6854.09 6865.23 3442.31 6850.78 6856.60 -0.05 1412.36 1171.14
p11-120D5 6593.28 6658.52 6671.04 6858.10 354.00 6673.95 6678.11 2354.02 6639.96 6645.18 -0.28 1019.33 780.82
p11-120D6 10113.55 10204.81 10233.37 10285.70 300.00 10204.81 10216.80 2279.57 10193.20 10197.45 -0.11 2718.38 2305.72
Average - 2800.28 - 2864.56 300.82 2800.69 2804.92 1062.86 2797.27 2801.08 - 534.55 420.44
Best# - - 0 0 - 1 4 - 25 35 - - -
p-value - 9.46E-06 - 1.65E-08 - 4.20E-06 8.68E-07 - - - - - -

Table 16 Results for the SDVRP-UF on the instances of Set IV.
TSVBA SplitILS SplitMA

Instances LB BKS
Best Time Best Avg. Time Best Avg. Gap(%) Time TMB

SD1 228.28 228.28 228.28 0.00 228.28 228.28 0.05 228.28 228.28 0.00 7.34 0.41
SD2 708.28 708.28 708.28 0.02 708.28 708.28 0.63 708.28 708.28 0.00 37.30 0.06
SD3 430.58 430.58 430.58 0.03 430.58 430.58 0.62 430.58 430.58 0.00 32.63 0.06
SD4 631.05 631.05 631.05 0.08 631.05 631.05 2.26 631.05 631.05 0.00 73.23 0.22
SD5 1390.57 1390.57 1390.57 0.13 1390.57 1390.57 6.07 1390.57 1390.57 0.00 149.36 0.64
SD6 831.24 831.24 831.24 0.14 831.24 831.24 5.81 831.24 831.24 0.00 118.25 0.54
SD7 3639.97 3640.00 3640.00 0.09 3640.00 3640.00 14.12 3640.00 3640.00 0.00 215.58 0.25
SD8 5068.28 5068.28 5068.28 0.14 5068.28 5068.28 24.93 5068.28 5068.28 0.00 208.20 2.62
SD9 2044.18 2044.20 2071.03 0.36 2044.20 2044.20 38.78 2044.20 2044.20 0.00 204.59 2.75
SD10 2684.86 2684.88 2747.83 0.89 2684.88 2684.88 101.10 2684.88 2684.88 0.00 279.78 5.62
SD11 13280.00 13280.00 13280.00 0.41 13280.00 13280.00 152.42 13280.00 13280.00 0.00 445.85 5.24
SD12 7135.27 7213.61 7213.62 0.84 7213.61 7216.60 210.71 7213.61 7213.61 0.00 431.13 50.94
SD13 9992.74 10110.58 10110.58 1.20 10110.58 10110.58 189.45 10110.60 10110.60 0.00 507.67 10.88
SD14 10502.76 10717.53 10802.87 2.31 10717.53 10723.79 479.85 10715.50 10716.60 -0.02 602.92 310.92
SD15 14787.05 15094.48 15153.45 3.20 15094.48 15105.90 731.98 15089.60 15091.78 -0.03 863.71 500.17
SD16 3379.33 3379.33 3446.43 7.59 3381.26 3394.48 930.72 3381.25 3381.25 0.06 1100.32 458.89
SD17 26166.80 26493.56 26493.56 7.27 26496.06 26499.32 577.29 26493.60 26493.96 0.00 934.31 350.03
SD18 13892.74 14202.53 14323.04 27.95 14202.53 14205.07 834.60 14194.70 14203.06 -0.06 803.83 560.56
SD19 19584.84 19995.69 20157.10 11.95 19995.69 20007.52 1524.67 19991.30 20004.14 -0.02 1058.17 856.28
SD20 38901.37 39635.51 39722.86 11.02 39635.51 39647.61 1563.38 39635.50 39637.02 0.00 1601.22 1057.46
SD21 11254.83 11271.06 11458.76 111.56 11345.68 11365.37 5034.56 11294.50 11307.54 0.21 2156.59 2087.82
Average - 9002.44 9043.31 8.91 9006.20 9010.17 591.62 9002.74 9004.62 - 563.43 298.21
Best# - - 0 - 0 1 - 5 9 - - -
p-value - 8.53E-01 1.62E-02 - 3.47E-02 1.14E-02 - - - - - -
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Arnold F, Sörensen K, 2019 What makes a vrp solution good? the generation of problem-specific knowledge755

for heuristics. Computers & Operations Research 106:280–288.756

Belenguer JM, Martinez M, Mota E, 2000 A lower bound for the split delivery vehicle routing problem.757

Operations Research 48(5):801–810.758
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racing for automatic algorithm configuration. Operations Research Perspectives 3:43–58.790
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