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Abstract

The minmax multiple traveling salesman problem with single depot (the minmax
mTSP) or multiple depots (the minmax multidepot mTSP) aims to minimize the
longest tour among a set of tours. These two minmax problems are useful for a
variety of real-life applications and typically studied separately in the literature. We
propose a uni�ed memetic approach to solving both cases of the minmax mTSP and
the minmax multidepot mTSP. The proposed algorithm features a generalized edge
assembly crossover to generate o�spring solutions, an e�cient variable neighbor-
hood descent to ensure local optimization as well as an aggressive post-optimization
for additional solution improvement. Extensive experimental results on 77 minmax
mTSP benchmark instances and 43 minmax multidepot mTSP instances commonly
used in the literature indicate a high performance of the algorithm compared to the
leading algorithms. Additional experimental investigations are conducted to shed
light on the rationality of the key algorithmic ingredients.

Keywords: Traveling salesman; Combinatorial optimization; Heuristics; Minmax;
Multidepot.

1 Introduction1

In the popular traveling salesman problem (TSP), a salesman needs to visit a2

set of cities exactly once and returns to the starting city (or the depot) while3

minimizing the traveling distance. The multiple traveling salesmen problem4

(mTSP) involves multiple salesmen who visit the given cities starting from and5
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ending at the depot. The mTSP is a suitable model for a number of practical6

real-life applications related to robotics [12], transportation [2,23,24], precision7

agriculture [13,43] and unmanned aerial vehicles [5,31].8

The mTSP can be described as follow. Let G=(V ,A) be an edge-weighted9

graph, where V = {0, 1, . . . , n} is the vertex set with 0 being the starting-10

ending city (depot) and N = {1, · · · , n} representing n other cities and A is11

the set of arcs (edges). Let C = (cij) be a non-negative cost (distance) matrix12

associated with A, which satis�es the triangle inequality (cij+ cjk > cik for all13

i, j, k ∈ V and i 6= j 6= k). The matrix C is said to be symmetric when cij =14

cji, (i, j) ∈ A and asymmetric otherwise. The basic mTSP is to partition the15

set of citiesN intom distinct Hamiltonian tours {r1, r2, . . . , rm} starting at the16

depot (vertex 0), such that 1) each tour rk (k ∈ {1, 2, . . . ,m}) includes at least17

two vertices, and 2) an objective function is minimized. From an application18

perspective, one of the following minimization objectives is considered in the19

literature: 1) the minsum mTSP which minimizes the total traveling distance20

of the m tours [46], and 2) the minmax mTSP which minimizes the longest21

tour among the m tours [15].22

It is known for a long time that the minsum mTSP can be conveniently trans-23

formed to the TSP [20,40]. Recently, it was shown that this transformation24

approach is quite powerful and able to e�ectively solve the existing minsum25

mTSP benchmark instances by leading TSP methods [17]. On the other hand,26

the situation is di�erent for the minmax mTSP for which a number of ded-27

icated methods have been developed (see the review of Section 2). In this28

work, we focus on the minmax mTSP including both cases of single depot and29

multiple depots.30

The minmax mTSP with single depot can be used to formulate many ap-31

plications. Meanwhile, there are other situations where multiple depots need32

to be considered. For example, in humanitarian logistics, several depots are33

deployed in di�erent locations to ensure an e�cient delivery of relief supplies34

to speci�c places [9]. The minmax multidepot vehicle routing problem was35

�rst proposed to formulate such applications, where the objective is to mini-36

mize the longest tour [10]. If the capacity constraint is ignored, the problem37

becomes the minmax multidepot mTSP [10,52]. Clearly, the minmax multi-38

depot mTSP generalizes the minmax mTSP and has interesting applications39

such as allocating targets to unmanned vehicles [41] and allocating computer40

networks resources where the objective is to minimize the maximum latency41

between a server and a client [52].42

Due to the practical relevance and computational challenge of these mTSP43

problems, a number of solution methods have been developed. According to the44

review of Section 2, the existing methods are based on general frameworks such45

as evolutionary algorithms, bio-inspired methods and local searches. These46
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methods have contributed to continually improve the state-of-the-art of solving47

these problems. Meanwhile, their performances vary typically according to48

the di�culty and scale of the problem instances. Moreover, existing methods49

have been developed for either the minmax mTSP or the minmax multidepot50

mTSP. In this work, we present a uni�ed population-based memetic algorithm51

(MA) able to e�ectively deal with both the minmax mTSP and the minmax52

multidepot mTSP. The contributions of this work are summarized as follows.53

• The proposed MA algorithm features several complementary search compo-54

nents. First, it integrates a generalized edge assembly crossover to generate55

o�spring solutions, which is inspired by the well-known EAX crossover for56

the TSP [34,35]. Second, MA uses an e�cient variable neighborhood de-57

scent (with streamlining techniques) to improve o�spring solutions. Third,58

the algorithm adopts an aggressive post-optimization procedure to further59

optimize some particularly promising o�spring solutions.60

• The MA algorithm reports record-breaking best results (new upper bounds)61

for a number of benchmark instances commonly used in the literature. These62

new results are useful for future research on these problems and performance63

assessments of new algorithms.64

• We provide the code of the proposed algorithm, which can be used by re-65

searchers and practitioners to solve various problems that can be recast to66

the minmax mTSP or the minmax multidepot mTSP.67

Next section provides a literature review of the studies on solving the minmax68

mTSP and the minmax multidepot mTSP. Section 3 provides a detailed de-69

scription of the MA algorithm. Section 4 is dedicated to computational results70

on benchmark instances and comparisons with the literature. Key components71

of the algorithm are investigated in Section 5. Section 6 draws conclusions and72

discusses research perspectives.73

2 Literature review74

We review the representative heuristic algorithms for the minmax mTSP and75

the minmax multidepot mTSP. Given that the minmax mTSP was introduced76

much earlier than the minmax multidepot mTSP (1995 vs. 2009), there are77

more studies on the minmax mTSP than on the minmax multidepot mTSP.78

2.1 The minmax mTSP79

The minmax mTSP was introduced in 1995 by França et al. [15]. Since then80

many studies have been devoted to the problem. Comprehensive surveys about81

the applications, solution approaches and taxonomy are available in [7,12]. In82

this section, we focus on the most recent and representative heuristics for the83

problem.84
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Population-based metaheuristics have been presented for solving the minmax85

mTSP. Carter and Ragsdale [11] proposed a genetic algorithm in 2006. The86

algorithm was based on a two-part chromosome representation and applied87

classic TSP crossover operators to generate o�spring solutions. One year later,88

Brown et al. [8] introduced another genetic algorithm, which adopted a two-89

part chromosome representation with real values. In 2009, Singh and Baghel90

[44] showed a grouping genetic algorithm, which features a new chromosome91

representation and a concise crossover operator such that the most promising92

tour (the shortest) from the parents was inherited by the o�spring. In 2013,93

Yuan et al. [54] presented a crossover operator based on the two-part chromo-94

some representation of [11]. In 2017, Wang et al. [53] investigated a memetic95

algorithm based on sequential variable neighborhood descent (MASVND) and96

the crossover operator of [44]. Computational experiments on 31 instances with97

51-1173 cities and 3-20 tours indicated MASVND was competitive compared98

to other algorithms, especially for instances with a large number of cities. In99

2021, Karabulut et al. [22] introduced an evolution strategy algorithm (ES),100

where a self-adaptive Ruin and Recreate heuristic was employed to generate101

o�spring solutions. ES reported excellent results by improving 14 best-known102

solutions with 51-1173 cities and 3-30 tours among 51 minmax mTSP in-103

stances. One notices that these algorithms are based on crossover operators104

that focus on cities and tours, contrary to powerful TSP crossovers such as105

EAX [34,35] that focus on how to inherit set of edges (subtours) from parents106

to o�spring solutions.107

Swarm intelligence algorithms have been studied for solving the minmax mTSP,108

which showed good performances. In 2015, Pandiri and Singh [38] presented109

two bio-inspired algorithms (ABC and IWO). The IWO algorithm delivered110

excellent results and updated 12 best results reported in [8,11,44,54] for the 25111

tested instances. Additional studies on swarm intelligence algorithms for the112

minmax mTSP were presented in [27,57]. However, they are less competitive113

compared to the best algorithms such as ES [22] and IWO [38].114

Neighborhood-based local optimization has also been investigated for solving115

the minmax mTSP. In 2015, Soylu [45] presented a general variable neighbor-116

hood search algorithm based on several move operators including 2-opt and117

or-opt moves. Experimental results indicated a good performance of the algo-118

rithm, though it is less competitive compared to the IWO algorithm [38]. In119

2022, He and Hao [17] introduced a hybrid search algorithm with neighbor-120

hood reduction (HSNR), which uses tabu search to explore the Insert and121

Cross-exchange neighborhoods for inter-tour optimization and the leading122

TSP heuristic EAX [35] for intra-tour optimization. HSNR achieved a re-123

markable performance by updating the best-known solutions for 15 out of the124

41 popular benchmark instances (with 51-1173 cities and 3-30 tours). Addi-125

tional results were reported on a new set of 36 large instances with 1379-5915126

cities and 3-20 tours. Also in 2022, Zheng et al. [56] proposed an e�ective127
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iterated two-stage heuristic algorithm (ITSHA), which combines a clustering-128

based random greedy initialization procedure and a variable neighborhood129

search with three move operators (2-opt, Insert and Swap). Experimental re-130

sults indicated that ITSHA obtained a good performance by improving 22131

upper bounds among 44 instances.132

Among the reviewed studies, �ve algorithms (IWO [38], MASVND [53], ES133

[22], HSNR [17] and ITSHA [56]) hold the best-known results for the minmax134

mTSP on the benchmark instances. Thus, these methods serve as the main135

reference algorithms for our comparative study in this work.136

2.2 The minmax multidepot mTSP137

In 2009, Carlsson et al. [10] introduced the minmax multidepot vehicle routing138

problem with unbounded vehicle capacity. Interestingly, this problem is strictly139

equivalent to the minmax multidepot mTSP studied in this work. To solve the140

problem, Carlsson et al. presented a linear programming based heuristic. In141

2013, Narasimha et al. [36] exposed an ant colony optimization algorithm for142

the problem and showed interesting computational results on 11 test instances.143

Later in 2015, Wang et al. [52] proposed two highly e�ective heuristics (MD144

and VNS) for solving the problem. The MD algorithm consists of three stages:145

(1) the multidepot problem is transformed to a single depot problem, which146

is then solved; (2) the longest tour is improved with TSP heuristics; (3) all147

tours are improved by exchanging cities between tours. The VNS algorithm148

combines variable neighborhood search with the powerful LKH solver [19].149

Computational results on a new set of 43 instances with 10-500 cities and 3-150

20 tours indicated a high performance of these heuristics. Among the reviewed151

studies, the latest MD and VNS algorithms in [52] represent the best ones for152

solving the minmax multidepot mTSP (i.e., the minmax multidepot vehicle153

routing problem with unbounded capacity).154

One notices that until now, the minmax mTSP and the minmax multidepot155

mTSP have been studied separately, even if they are tightly related. In this156

paper, we present a uni�ed memetic search approach to handle both problems.157

3 Problem solving methodology158

Memetic search is a general hybrid search framework based on population-159

based genetic search and neighborhood-based local optimization [37]. The160

basic rationale behind this approach is take advantage of these two comple-161

mentary search strategies [16]. Indeed, population-based search o�ers more162

facilities for exploration while local optimization provides convenient means163

for exploitation. A suitable combination of these two types of methods would164

lead to a good balance between exploitation and exploration of the search165
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process.166

Population-based evolutionary algorithms have been successfully applied to167

the TSP [34,35], capacitated vehicle routing problem (CVRP) [32,49] and its168

variants [33,50,29,51,42]. In this work, we present an original memetic algo-169

rithm (MA) for solving both the minmax mTSP and the minmax multide-170

pot mTSP. The algorithm integrates a population initialization procedure,171

a generalized edge assembly crossover (mEAX), a variable neighborhood de-172

scent (VND), a post-optimization and a population management procedure.173

Among these search components, we identify the mEAX crossover and the174

post-optimization as the most innovative while VND features a streamlining175

techniques to accelerate its search.176

The general scheme of the MA algorithm is illustrated in Algorithm 1. The al-177

gorithm starts with a population of initial solutions (or individuals) generated178

by the population initialization procedure (Line 2, Algorithm 1). After record-179

ing the best solution ϕ∗ found so far (Line 3), the algorithm performs a number180

of generations to evolve the population (Lines 4-15). For this, it applies the181

dedicated mEAX crossover (Line 6) to combine two random parent solutions,182

yielding γ (a parameter) new o�spring solutions. Then each o�spring solution183

is �rst improved by the VND procedure (Line 8) and then conditionally fur-184

ther improved by the post-optimization (Lines 9-12). The post-optimization185

is applied only to elite o�spring solutions with a quality better than the best186

recorded solution ϕ∗. Finally, each improved o�spring solution is considered187

by the population management procedure to update the population (Line 13).188

The algorithm stops and returns the best solution found ϕ∗ when a prede�ned189

stopping condition is reached, which is either a maximum cuto� time or a190

maximum number of iterations. In the later case, one iteration corresponds to191

one call to the (expensive) VND procedure at Line 8 of Algorithm 1.192

3.1 Generation of the initial population193

The MA algorithm starts its search from a population P of µ initial solutions.194

The construction process of each solution is composed of three steps. First,195

m tours are initialized with the depot. For the minmax multidepot mTSP,196

each salesman is located at one of the depots, and the tour is initialized by197

its corresponding depot. Second, a random unassigned city is selected and198

inserted into the shortest tour at the position with the least length increase of199

this tour. When all cities are assigned, a feasible solution is obtained. Finally,200

the solution is improved by the VND procedure (Section 3.3) and then added201

into the population. The initialization procedure stops when µ solutions are202

obtained.203
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Algorithm 1: Pseudo code of the memetic algorithm

Input: Problem instance I with a minimization objective f , population
size µ, number of o�spring γ;

Output: The best solution ϕ∗ found;
1 begin

2 P = {ϕ1, ϕ2, · · · , ϕµ} ← PopulationInitial (I); /* Section 3.1 */

3 ϕ∗ ← arg min {f(ϕi) : i = 1, 2, · · · , µ}; /* ϕ∗ records the best

solution found */

4 while Stopping condition is not met do
5 {ϕA, ϕB} ← ParentSelection(P); /* Random parent selection

*/

6 {ϕ1
O, ϕ

2
O, · · · , ϕ

γ
O} ← mEAX(ϕA, ϕB, γ); /* To generate γ

offspring solutions, Section 3.2 */

7 for i = 1 to γ do
8 ϕiO ← VND(ϕiO); /* To improve each offspring

solution, Section 3.3 */

9 if f(ϕiO) < f(ϕ∗) then
10 ϕiO ← PostOptimization(ϕiO); /* To further improve

each elite offspring solution, Section 3.4 */

11 ϕ∗ ← ϕiO;

12 end

13 P ← PoolUpdating(P , ϕi
O); /* Section 3.5 */

14 end

15 end

16 return ϕ∗;

17 end

3.2 The mEAX crossover based on edge assembly204

The conventional edge assembly crossover operator (EAX) was �rst presented205

for solving the TSP [34,35]. It was subsequently applied to the CVRP [32] and206

the vehicle routing problem with time windows (VRPTW) [33]. In this work,207

we introduce mEAX, which generalizes the idea of EAX to the minmax mTSP208

and the minmax multidepot mTSP. It is worth noting that these mTSPs are209

di�erent from the TSP, CVRP and VRPTW. As such, the proposed mEAX210

crossover must consider the speci�c features of the minmax mTSP problems.211

Given a graph G = (V , E), a candidate solution ϕ for the minmax mTSP or212

minmax multidepot mTSP corresponds to a partial graph Gϕ = (V , Eϕ), where213

Eϕ is the set of edges traversed by ϕ. Let ϕA and ϕB be two parent solutions.214

Let GA = (V , EA) and GB = (V , EB) be the corresponding partial graphs. The215

proposed mEAX crossover consists of the following six steps (see Algorithm 2216

for the general procedure and Fig. 1 for an illustrative example).217
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AB cycles E sets Intermediate solutions Offspring solutions

Step 5Step 4Step 3

Step 2

Step 1

1

2

3

4

a a

b b

c c

b

c

d d  d 

A


B


a

Fig. 1. Illustration of the mEAX crossover steps of the minmax mTSP

Algorithm 2: Procedures of mEAX for the minmax mTSP

Input: Parent ϕA and ϕB, parameter γ;
Output: γ o�spring solutions;

1 begin

2 Construct GAB = (V , (EA ∪ EB)\(EA ∩ EB));
3 Generate AB-cycles by decomposing GAB;
4 Construct E-sets from AB-cycles with the block strategy;
5 Generate intermediate solutions according to E-sets and a basic

solution;
6 Split giant tours in intermediate solutions for the minmax multidepot

mTSP;
7 Eliminating isolated subtours in intermediate solutions to generate

feasible solutions;
8 Select γ best feasible solutions;
9 return γ o�spring solutions ;

10 end

(1) Creation of a joint graph GAB. From the parent solutions ϕA and ϕB,218

the joint graph GAB = (V , (EA ∪ EB)\(EA ∩ EB)) is constructed by the219

symmetric di�erence of EA and EB.220

(2) Generation of AB-cycles. Given the joint graph GAB, a number of AB-221

cycles are generated where each new AB-cycle is constructed as follows.222

A random vertex associated with its edges from GAB is selected to ini-223

tialize an AB-cycle. Then the edges of EA and EB are traced alternatively224
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to extend the ongoing AB-cycle. When the add of a new edge leads to a225

closed cycle and the number of edges is even, the AB-cycle is formed suc-226

cessfully. All the edges belonging to the AB-cycle are removed from GAB227

before building the next AB-cycle. This process continues until GAB = ∅228

and returns all AB-cycles obtained.229

(3) Generation of E-sets. From the set of AB-cycles, the block strategy is230

used to generate the so-called E-sets. If two AB-cycles share at least one231

vertex (e.g., AB-cycles 1 and 3 in Fig. 1), these two cycles are combined232

to generate the E-set. In the example of Fig. 1, the four AB-cycles should233

be combined to form one single E-set since the depot is shared. However,234

for illustrative purpose of steps 4 and 5 blow, we suppose there are four235

E-sets as showed in Fig. 1.236

(4) Generation of intermediate solutions. For each E-set (say Ei), an inter-237

mediate solution ϕ′i is created based on ϕA by removing from it the edges238

of EA shared with Ei and adding the edges of EB shared with Ei, i.e.,239

ϕ′i = (EA \ (Ei ∩ EA)) ∪ (Ei ∩ EB). This strategy ensures the preservation240

of all common edges of ϕA and ϕB in the intermediate solution. Fur-241

thermore, all edges in an intermediate solution exclusively come from the242

parent solutions.243

(5) Elimination of giant tours. For the minmax multidepot mTSP, giant tours244

that visit more than one depot, may occur in intermediate solutions (e.g.,245

the tour in the intermediate solution in Fig. 2 includes two depots rep-246

resented by squares). These giant tours are split by the 2-opt* operator247

[39]. If a giant tour visits k depots, two new Hamiltonian tours are �rst248

generated by the 2-opt* operator, where one of the two new tours only249

visits one single depot while the other tour visits the remaining k -1 de-250

pots. We repeat this split operations k -1 times until k new Hamiltonian251

tours are generated. During the split process, the objective is to make the252

new tours have similar length and avoid too longer tours. For the giant253

tour with two depots in Fig. 2 (lower part of the intermediate solution),254

it includes two segments (each segment refers to the set of cities between255

two depots). The 2-opt* operator works as follows. Two edges (dash lines)256

from the two segments based on the α-nearness technique (Section 3.3.1)257

are replaced to create two new single depot tours such that the length258

of the new shorter tour is as close as possible half of the giant tour. We259

thus obtain two feasible tours which have similar lengths.260

(6) Elimination of isolated subtours. Isolated subtours may appear in inter-261

mediate solutions (e.g., the two triangle tours in intermediate solutions262

a′ and b′ in Fig. 1). We apply the 2-opt* approach to accommodate the263

particular feature of our problem as follows. For each isolated subtour, its264

adjacency tours are de�ned if a vertex u is an α neighbor (Section 3.3.1)265

of vertex v visited by the subtour. Then, the merges of the subtour into266

its adjacency tours are evaluated by 2-opt* and the best merge leading to267

the shortest tour is performed. Once all isolated subtours are eliminated,268

a feasible o�spring solution composed of m distinct Hamiltonian tours is269
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obtained (see the last sub-�gure in Fig. 1).270

E set

Step 5

Step 1

B
A



Steps 2 and 3

2

4

Intermediate solutionOffspring solution

Step 4

Fig. 2. Illustration of the mEAX crossover steps of the minmax multidepot mTSP

One notes that mEAX di�ers from EAX by the last two steps because contrary271

to the TSP and the CVRP, giant tours may appear in the case of the minmax272

multidepot mTSP.273

The above mEAX process typically generates numerous o�spring solutions,274

many of them being of bad quality and thus uninteresting. Given that the275

subsequent VND local optimization (Section 3.3) is time consuming, we �lter276

out non-promising o�spring solutions with a mediocre quality to retain only277

the γ (a parameter) best o�spring solutions for solution improvement.278

The mEAX crossover for the minmax mTSP and minmax multidepot mTSP279

follows the idea of the EAX operator initially designed for the TSP [34,35].280

Meanwhile, adaptations are necessary to take into account the particular fea-281

tures concerning the minmax objective and the presence of possible multiple282

depots. The main adaptations concern the processing of giant tours and iso-283

lated subtours in intermediate solutions (steps (5) and (6)).284

Our way of handling isolated subtours is similar to the technique presented in285

[32] where EAX is adapted to the CVRP. In [32], isolated subtours are elim-286

inated by testing all possible combinations with the 2-opt* heuristic [39] and287

performing the best combination which minimizes the total traveling distance.288

In mEAX, since the objective is to minimize the longest tour instead of total289

traveling distance, the 2-opt* heuristic is applied with this speci�c minimiza-290

tion objective. Furthermore, for the minmax multidepot mTSP, giant tours291

which include two or more depots may occur in intermediate solutions due292

to the presence of multiple depots. This feature cannot be resolved by the293

conventional EAX operator. In mEAX, the 2-opt* based splitting strategy is294

introduced to split each giant tour into feasible tours while keeping all tours295
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are as similar in length as possible. In sum, the mEAX crossover renders the296

idea of the EAX operator applicable to routing problems with the minmax297

objective.298

Since a minmax mTSP solution contains n+m−1 edges, the space complexity299

of mEAX is bounded by O(n+m). During the �rst four steps, 2× (n+m−1)300

edges are involved, and the time complexity is bounded by O(n+m). In step301

5, suppose that there are g giant tours and the cycle with the largest number302

of edges includes |Eg| edges, the time complexity is bounded by O(|Eg| × α).303

Furthermore, suppose that there are h isolated tours and the longest tour304

includes |Eh| edges, the time complexity of step 6 is bounded by O(|Eh| × α).305

3.3 Variable neighborhood descent306

Variable neighborhood descent (VND) [30] is a general local search approach307

which has been applied successfully to a number of routing and TSP-like prob-308

lems [21,45,48,53]. VND explores local optima with several ordered neighbor-309

hoods Nθ (θ = 1, 2, · · · , θmax). VND starts its descent search from the �rst310

neighborhood and switches to the next neighborhood once a local optimum311

is reached. When neighborhood Nθ is examined, VND switches to the �rst312

neighborhood N1 immediately if a better solution is found; otherwise when313

neighborhood Nθ (θ > 1) is exhausted, VND moves to the next neighborhood314

Nθ+1. Once the last neighborhood Nθmax is exhausted and no better solution315

can be found, VND stops and returns the last local optimum. In this work, we316

use VND to exploit six neighborhoods, where two neighborhoods (2-opt* and317

κ-opt) are employed to solve the minmax mTSP and the minmax multidepot318

mTSP for the �rst time. To speed up neighborhood examination, two new319

data structures are introduced to accelerate the search process of VND.320

3.3.1 Neighborhoods321

The six neighborhoods adopted in this work include �ve inter-tour neighbor-322

hoods and one intra-tour neighborhood. Let r(π) denote the tour containing323

vertex π in the incumbent solution. Let vertex δ be a neighbor of vertex π,324

and vertices x and y the successor of π in r(π) and δ in r(δ), and (πa, πb) a325

substring from πa to πb. To avoid the examination of non-promising candidate326

solutions, we use the α-nearness technique [17,19] and consider, for a vertex327

π, only α neighbor vertices. The six neighborhoods are given by the following328

move operators M1-M6.329

M1: If r(π) 6= r(δ) and r(π) is the longest tour rl, then remove π and place it330

after δ.331

M2: If r(π) 6= r(δ) and one of them is the longest tour rl, then, swap π and δ.332
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M3: If r(π) 6= r(δ) and one of them is the longest tour rl, then replace (π, x)333

and (δ, y) by (π, y) and (δ, x).334

M4: If r(π) 6= r(δ) and one of them is the longest tour rl, then swap two335

sequencing substrings (πa, πb) and (δa, δb).336

M5: If r(π) 6= r(δ) and one of them is the longest tour rl, then swap a se-337

quencing substring (πa, πb) and a reversing substring (δb, δa).338

M6: This is an intra-tour optimization operator to improve a standard TSP339

tour. Each tour is re�ned by the κ-opt heuristic [25], which was previously340

used in several best heuristics for related routing problems [3,4,28]. In this341

work, the upper limit of κ is set to four.342

M1 corresponds to insertion or relocation, while M2 is called swap. M3 is343

the 2-opt* inter-tour move [39]. M4 and M5 correspond to the cross-exchange344

operator, where two substrings from two tours are exchanged [47,17]. The345

cross-exchange operator generalizes M1 and M2, and has been successfully346

used to solve the minmax mTSP [18]. In this work, we limit the maximum347

length of each substring in M4 and M5 to β (a parameter).348

It is worth mentioning that M6 is used for the �rst time in this work and M3349

was independently used in [56], while the other moves were previously applied350

to the minmax mTSP (e.g., [18,45,53,22,52,56]). For the minmax multidepot351

mTSP, it is to be noted that M3 cannot be used because each salesman must352

start and end at the same depot. Therefore, when solving the minmax mul-353

tidepot mTSP, M3 is disabled from the VND procedure. Furthermore, this is354

the �rst time that M4-M6 are adopted to solve the minmax multidepot mTSP.355

3.3.2 Auxiliary data structures356

In order to enhance the computational e�ciency of our VND procedure, we357

introduce two auxiliary arrays to store useful information regarding each city.358

A1: A one-dimensional array of length n. It stores the variation of distance359

of the current tour when a vertex is removed from the tour. For example,360

A1[π]=-100 means that if vertex π is removed from tour ra, the length of tour361

ra is shortened by 100.362

A2: A two-dimensional array of size n×n. It stores the variation of distance of363

the tour when vertex π is inserted after vertex δ. For example, A2[π][δ]=100364

indicates that if π is placed after δ in tour ra, the length of tour ra is increased365

by 100.366

In general, a neighboring solution can be obtained from the incumbent solution367

by exchanging several edges. Therefore, most edges in the incumbent solution368
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are common with its neighboring solutions. This insight has been used to369

design static move descriptors for several vehicle routing problems [1,6,55]. For370

the minmax mTSP, these two auxiliary arrays (A1 and A2) enable the VND371

procedure to avoid unnecessary redundant calculations. As shown in Fig. 3,372

city δb is removed from tour ra and placed after δa in tour rb. Therefore, we can373

easily compute the length of r′a and r
′
b as follows: f(r

′
a) = f(ra) + A1[δb] and374

f(r′b) = f(rb) +A2[δb][δa]. After placing δb after δa in tour rb, only �ve values375

in A1 and 3×n values in A2 need to be updated, respectively. In general, the376

time complexity of updating A1 and A2 is O(n).377

a
r

b
r

a
r b

r

a


b


a


b


c


a


c


a


b


c


Fig. 3. Illustration of M1 move

In the VND procedure, these two auxiliary arrays are used to speed up the378

calculations of M1 and M2. Furthermore, the ejection chain operator, intro-379

duced in Section 3.4, also bene�ts from these data structures to accelerate the380

neighborhood examination.381

3.4 Post-optimization382

In addition to the above mEAX crossover and the VND procedure, the pro-383

posed MA algorithm includes an original post-optimization phase to further384

improve the quality of each global best o�spring solution. The main purpose385

of the post-optimization is to perform an intensi�ed search around each elite386

o�spring solution to �nd possible still better solutions. This post-optimization387

phase is ensured jointly by an ejection chain operator (EC) and the conven-388

tional EAX heuristic for the TSP (denoted by EAX-TSP hereafter) [34,35].389

As shown in Algorithm 3, the post-optimization applies �rst the EC operator390

to improve the solution by displacing cities among di�erent tours. A binary391

array T is employed to record the tours that are modi�ed during the EC392

phase, such that T [i] = 1 (i = 1, ...,m) if the ith tour is changed by EC.393

Then for each modi�ed tour, the EAX-TSP heuristic is applied to shorten394

its distance. When neither EC nor EAX-TSP can improve the solution, the395

post-optimization stops and returns the best solution.396

The ejection chain approach has been used to perform inter-tour optimization397
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Algorithm 3: Pseudo code of the post-optimization procedure

Input: A solution ϕ;
Output: The best solution ϕ found;

1 begin

2 fit← M; /* M is a big number */

3 while fit > f(ϕ) do
4 �t← f(ϕ);
5 < ϕ, T >← EC(ϕ); /* Ejection chain, */

6 ϕ← EAX-TSP(ϕ, T );

7 end

8 return ϕ;

9 end
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Fig. 4. Illustration of the ejection chain with two relocations

for the CVRP [1,4]. We adopt the same approach for the �rst time to handle398

the minmax mTSP. Using Fig. 4 where the incumbent solution is composed399

of three tours, we illustrate the EC process as follows. EC starts by greedily400

relocating a city δc from the longest tour ra into another tour rb. This re-401

location operation is followed by the relocation of another city σb from the402

extended tour rb into another tour rc, where ra and rc may be same. This403

process continues until a maximum number of relocation moves is reached.404

The EC approach is based on the following observation. Single relocation405

moves between two tours may increase the length of the longest tour. For406

example, relocating a city from the longest tour ra into rb shortens ra, but407

may increase tour rb such that rb becomes the longest tour with a distance408

longer than ra. However, if we perform immediately another move to relocate409

a city from tour rb into tour rc, then it is possible that the longest tour of the410

solution is de�nitively shorten.411

Eq. (1) illustrates the calculation of the move gain of an EC move based on412

the two auxiliary arrays introduced in Section 3.3.2, where b, c, s, t and q are413
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indexes of rb, rc, the second, third and fourth longest tours, respectively.414

∆ = max{f(r
′
a), f(r

′
b), f(r

′
c), f(rs)} − f(ra), if {b, c} ∩ {s, t} = ∅

∆ = max{f(r
′
a), f(r

′
b), f(r

′
c), f(rt)} − f(ra), if {b, c} ∩ {s, t} = {s}

∆ = max{f(r
′
a), f(r

′
b), f(r

′
c), f(rq)} − f(ra), if {b, c} ∩ {s, t} = {s, t}

f(r
′
a) = f(ra) +A1[δc]

f(r
′
b) = f(rb) +A2[δc][δb] +A1[σb]

f(r
′
c) = f(rc) +A2[σb][σa]

(1)

415

Based on the M1 move introduced in Section 3.3.1, if the number of relocation416

is 1, the time complexity is O(n × α). When we continue the EC move by417

performing the second relocation, the time complexity becomes O((n× α)2).418

To keep the time complexity at an acceptable level, we limit the number of419

relocations to 2 in this work.420

One notes two di�erences between the EC move applied to the CVRP [1,4]421

and the EC move applied in this study. First, the EC operator in our case does422

not need to consider the capacity constraint. Second and more importantly,423

even if the move gain of an EC move can be obtained in O(1) time in both424

cases, the practical computation in our case is more complicated. Indeed, for425

the CVRP, the move gain is simply obtained by adding up the values of A1426

and A2, which themselves can be computed e�ciently with the static move427

descriptor technique [1]. In our case, the static move descriptor is no more428

available and furthermore as shown in Eq. (1), the EC move gain evaluation429

needs to consider the second, third and fourth longest tours.430

After the EC phase, the EAX-TSP heuristic 1 is triggered to optimize each431

individual tour that has been modi�ed by the EC procedure. Each EAX-TSP432

optimization stops when the di�erence between the �tness of the best solution433

and the average �tness of individuals in the population is less than 0.01. The434

reason to choose the EAX-TSP heuristic is that it can e�ectively optimize435

each tour to being optimal or near-optimal in a very short time.436

3.5 Population updating437

The population updating mechanism is known to be a key component of suc-438

cessful memetic algorithms [16]. The proposed algorithm adopts the variable439

population scheme presented in [49,51].440

1 The code of EAX-TSP is available at: https://github.com/sugia/GA-for-TSP
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The population P contains between µ and µ+λ individuals, where parameter441

µ is the minimum size and parameter λ is the generation size. Unlike [51],442

clone solutions are not permitted to join the population. In each generation443

of MA, o�spring solutions ϕiO are progressively added to the population (Line444

13, Algorithm 1). Once the population reaches µ+λ individuals, the survivors445

selection is used to eliminate λ individuals based on their contributions to the446

diversity of the population. The biased �tness of each individual is calculated447

with respect to its �tness and diversity rank in the population.448

Furthermore, if the global best solution is not improved during η consecutive449

iterations, the algorithm is considered to be stagnating in deep local optima. In450

this case, diversity is introduced into the population as follows. The survivors451

selection phase is triggered to reduce the number of individuals in P to µ indi-452

viduals. Then, µ/2 individuals of the population are randomly and uniformly453

selected and replaced by new solutions generated by the initial population454

procedure of Section 3.1.455

4 Computational Results and Comparisons456

This section is dedicated to an extensive performance assessment of the MA457

algorithm on popular benchmark instances.458

4.1 Benchmark instances459

Three sets of benchmark instances are used in our experiments: Sets S and L460

for the minmax mTSP and Set M for the minmax multidepot mTSP.461

Set S: This set includes 41 small and medium-sized instances with 51-1173462

cities and 3-30 tours. These instances were introduced in [53,8,11] and used in463

[17,22,38,53,56].464

Set L: This set consists of 36 large-sized instances with 1379-5915 cities and465

3-20 tours, which were introduced in [17].466

Set M: This set includes 43 instances with 10-500 cities and 3-20 tours, which467

were introduced in [52] 2 .468

These benchmark instances and the solution certi�cates for them obtained by469

the MA algorithm are available online 3 .470

2 The benchmark instances of the minmax multidepot mTSP is available at
https://drum.lib.umd.edu/handle/1903/18710
3 https://github.com/pengfeihe-angers/minmax-mTSP.git
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4.2 Experimental protocol and reference algorithms471

Parameter setting. The MA algorithm has six parameters: population size472

µ, generation size λ, number of the best o�spring solutions γ, neighborhood473

reduction parameter α, substring size β, maximum consecutive iterations (η)474

without an improvement. To calibrate these parameters, we employed the475

automatic parameters tuning package Irace [26]. The tuning was performed476

on 8 instances with 150-1655 cities for the minmax mTSP and 10 instances477

with 100-500 cities for the minmax multidepot mTSP. The tunning budget478

was set to be 2000 runs. Table 1 shows, for each parameter, the interval of479

values tested by Irace, and the best value returned by the method. For the480

experiments presented hereafter, we used consistently these parameter values,481

which can be considered to be the default setting of the MA algorithm.482

Table 1
Parameters tuning results.

Parameters Section Description Considered values
Final values

mTSP multidepot mTSP

µ 3.1 population size {10,15,20,25,30} 30 30

λ 3.5 generation size in P {0,5,15,20,25,30} 20 15

γ 3.2 number of the best o�spring {1,2,3,4,5,6,7} 1 5

α 3.3.1 neighborhood reduction {10,15,20,25,30} 15 10

β 3.3.1 substring size {1,2,3,4,5,6,7} 4 7

η 3.5 maximum iterations without
improvement

{2000,4000,6000,8000,10000,12000} 4000 2000

Reference algorithms. For the minmax mTSP, �ve algorithms (IWO [38],483

MASVND [53], ES [22], HSNR [17] and ITSHA [56]) represent the state-of-the-484

art for solving the problem. In [17], the authors thoroughly assessed HSNR,485

IWO and MASVND on the same computing platform as used in this work.486

The executable code of ES [22] and the source code of ITSHA [56] were kindly487

provided by their authors. For the minmax multidepot mTSP, the MD and488

VNS algorithms from [52] are the leading algorithms in the literature (their489

codes are unavailable). Thus, the results of these algorithms (obtained on a490

computer with an Intel Pentium CPU of a 2.2 GHz processor) are used as491

reference values to evaluate the performance of the MA algorithm. According492

to [52], both MD and VNS terminate after �ve consecutive iterations without493

an improvement.494

Experimental setting and stopping condition. The MA algorithm was495

written in C++ and compiled using the g++ complier with the -O3 option 4 .496

All experiments were conducted, like [17], on a computer with a Xeon E5-2670497

v2 processor of 2.5GHz CPU and 8GB RAM running Linux.498

To make the comparison as fair as possible, for the minmax mTSP, we ran499

20 times our MA algorithm and the codes of the reference algorithms ES500

and ITSHA on our machine to solve each instance under the cuto� limit of501

4 https://github.com/pengfeihe-angers/minmax-mTSP.git
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(n/100)×4 minutes per run (this is the same stopping condition used in [17] to502

assess IWO, MASVND and HSNR). For the other reference algorithms (IWO,503

MASVND, HSNR), we cite the results reported in [17], which were obtained504

on the same computer as used in this work. For the minmax multidepot mTSP,505

MA terminates when it reaches a maximum of 30,000 iterations.506

4.3 Computational results and comparison507

To compare MA and the reference algorithms, we report a summary of the508

results in Table 2 and the detailed results in the Appendix. The 'BKS' val-509

ues show the best-known results compiled from the literature. To check the510

statistically signi�cant di�erence between MA and each reference algorithm,511

the Wilcoxon signed-rank test is applied. With a con�dence level of 0.05, a p-512

value lower than 0.05 indicates a signi�cant di�erence. Furthermore, a popular513

benchmark tool, performance pro�le [14], is used to compare the algorithms514

in a visual way. Given a set of algorithms S over a set of instances Q, the515

performance ratio is de�ned by rs,q = fs,q
min{fs,q:s∈S}

, which represents the per-516

formance of algorithm s on instance q compared to the best performance by517

any approach on q. If algorithm s fails to solve an instance q, rs,q = +∞. The518

performance function of algorithm s is de�ned by Qs(τ) = |q∈Q|rs,q≤τ |
|Q| , which519

calculates the fraction of instances that algorithm s can reach with at most τ520

many times the cost of the best algorithm.521

Table 2
Summary of comparative results between MA and reference algorithms on the three
sets of 120 instances. Sets S and L for the minmax mTSP and Set M for the minmax
multidepot mTSP.

Instances Pair algorithms
fbest favg

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

Set S (41)

MA vs. BKS 16 23 2 1.37E-03 - - - -

MA vs. ITSHA [56] 19 21 1 2.93E-04 23 13 5 2.25E-04

MA vs. HSNR [17] 18 22 1 8.37E-04 22 13 6 7.51E-04

MA vs. ES [22] 20 20 1 9.22E-05 28 9 4 7.61E-06

MA vs. re-MASVND 20 20 1 1.23E-04 27 13 1 6.53E-06

MA vs. re-IWO 24 17 0 1.82E-05 29 12 0 3.52E-06

Set L (36)

MA vs. BKS 28 3 5 2.50E-06 - - - -

MA vs. ITSHA [56] 32 3 1 5.91E-07 36 0 0 1.68E-07

MA vs. HSNR [17] 28 3 5 2.50E-06 29 2 5 3.18E-06

MA vs. re-MASVND 33 3 0 5.39E-07 35 1 0 2.48E-07

MA vs. re-IWO 36 0 0 1.68E-07 36 0 0 1.68E-07

Set M (43)

MA vs BKS 39 1 3 3.15E-08 - - - -

MA vs. MD [52] 40 1 2 2.28E-08 - - - -

MA vs. VNS [52] 41 0 2 2.04E-08 - - - -

4.3.1 Results on the minmax mTSP522

The comparative results on the 77 instances of Sets S and L for the minmax523

mTSP are shown in Tables A.1 and A.2 with the summary information in524

Table 2, where re-IWO and re-MASVND are the re-implemented IWO [38]525
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and MASVND [53] algorithms in [17]. According to these tables, the MA al-526

gorithm outperforms the �ve reference algorithms by achieving the best result527

for the vast majority of the instances. MA improves the best-known solutions528

of 44 instances, and matches the best-known solutions of 26 other instances.529

Furthermore, in terms of the average result, MA also outperforms the refer-530

ence algorithms. Speci�cally, for n ≤ 100, MA and the reference algorithms531

perform similarly in terms of fbest. For n ≥ 150, MA outperforms the other532

algorithms (improvement gap up to 8.72%). As the number of cities increases,533

the di�erence becomes more signi�cant, especially for the instances with few534

tours (e.g., m = 3, 5). The small p-values from the Wilcoxon signed-rank test535

con�rm the statistically signi�cant di�erence between MA and the reference536

algorithms for the best and average values.537
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Fig. 5. The minmax mTSP: performance pro�les of MA and the �ve reference algo-
rithms on the 77 instances of Sets S and L.

In Fig. 5, the average gap of MA and the �ve reference algorithms are analyzed538

through their performance pro�les. Intuitively, MA dominates the reference539

algorithms in terms of both the best and average results. Indeed, MA has a540

much higher Qs(1), meaning that it �nds better or equal results for nearly all541

instances. Furthermore, MA reaches 1 �rstly, which indicates MA has a higher542

robustness.543

4.3.2 Results on the minmax multidepot mTSP544

Tables 2 and A.3 show the results of MA as well as the two reference algo-545

rithms (MD [52] and VNS [52]) on the 43 instances of Set M. According to546

the results, MA dominates the reference algorithms by providing 39 new best-547

known solutions. Only for three instances, MA obtains slightly worse results.548

The small p-values (� 0.05) also con�rm the statistically signi�cant di�er-549

ences between MA and the compared algorithms. The performance pro�les in550

Fig. 6 illustrate that MA has a much higher Qs(1) and Qs(τ) reaches 1 �rst.551

Therefore, MA competes very favorably with the best existing algorithms for552

solving the minmax multidepot mTSP.553
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Fig. 6. The minmax multidepot mTSP: performance pro�les of the MA and two
reference algorithms on 43 instances of Set M.

Given that MA, MD and VNS were run on di�erent computers and reported554

results of di�erent qualities, it is not straightforward to make a fair comparison555

of their computation time. One observes that for the 18 instances where the556

time information is available for the compared algorithms, MA is able to reach557

the best-known results with a time of the same order of magnitude compared558

to MD and VNS, and then continue to improve these results during the rest559

of its execution.560

According to the results of Sections 4.3.1 and 4.3.2, we conclude that the MA561

algorithm is highly e�ective for solving the minmax mTSP and the minmax562

multidepot mTSP compared to the best performing algorithms.563

5 Additional experiments564

The computational results and comparisons with the existing algorithms on565

three sets of instances illustrated the high e�ectiveness and e�ciency of the566

MA algorithm. In this section, we assess the contributions of two key com-567

ponents: the mEAX crossover, the post-optimization and two new neighbor-568

hood operators. Experiments are performed to compare MA and its variants569

where the assessed components are disabled. Furthermore, we investigate the570

long-term convergence behavior of the MA algorithm under a relaxed timing571

condition. The experiments reported in this section are based on the minmax572

mTSP.573

5.1 Bene�ts of the mEAX crossover and the post-optimization procedure574

To study the bene�ts of the mEAX operator and the post-optimization pro-575

cedure, we created two MA variants MA1 and MA2 as follows. For MA1,576

we removed the mEAX operator (i.e., lines 5 and 6) in Algorithm 1 and re-577

placed γ by µ in line 7. To make sure that MA1 consumes the given time578

budget e�ectively like MA, we repetitively re-start the algorithm until the579
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Fig. 7. Comparative results of MA with the variants MA1 (without mEAX) and
MA2 (without the post-optimization) on the 77 instances of Sets S and L.
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Fig. 8. Performance pro�les of MA and its variants MA1 and MA2 on the 77 instances
of Sets S and L.

time limit is reached. In other words, MA1 uses the VND procedure and the580

post-optimization to improve the solutions of the population within the given581

time limit. For the variant MA2, we just removed the post-optimization (i.e.,582

lines 9-12) in Algorithm 1.583

We ran MA1 and MA2 under the same condition of Section 4.2 to solve the584

77 instances of Sets S and L. The results are summarized in Figs. 7 and 8.585

Fig. 7 shows the deviations of the two variants MA1 and MA2 compared to586

MA (the reference line) in terms of the best results and the average results.587

From these �gures, we can make the following observations.588

First, the results of MA1 indicate that removing mEAX deteriorates consid-589

erably the performance of the MA algorithm on a large majority of the tested590

instances in terms of the best and average results. The deterioration is more591

signi�cant on large instances than on small instances. These results con�rm592

the critical role of the proposed mEAX crossover.593

Second, the results of MA2 indicate that the post-optimization doesn't really594
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impact the performance of the MA algorithm on the �rst 29 small instances595

(n ≤ 318). However, disabling this component deteriorates much MA's perfor-596

mance on many larger instances with n > 318. These results demonstrate the597

positive contributions of the post-optimization for solving large (and hard)598

instances.599

Third, though both mEAX and post-optimization contribute to the high per-600

formance of the MA algorithm, the mEAX crossover plays a more general and601

more signi�cant role compared to the post-optimization component.602

To further study the MA1 and MA2 variants, Fig. 8 shows the performance603

pro�les of MA, MA1 and MA2 based on their best results and their average re-604

sults. We observe that MA dominates its two variants in terms of the best and605

average values. MA has a much higher Qs(1) compared with MA1 and MA2.606

Indeed, MA reaches Qs(τ) = 1 �rstly, much earlier than the two variants,607

which indicates a higher robustness of the MA algorithm. In summary, these608

experiments con�rm that both the mEAX crossover and the post-optimization609

contribute positively to the performance of MA, while the post-optimization610

component is especially useful for solving large instances.611

5.2 Bene�ts of the new neighborhood operators612

Six neighborhood operators are applied in the local search to ameliorate o�-613

spring solutions. We assess the contributions of the two new neighborhood614

operators: M3 independently used in [56] and M6 introduced in this work.615

For this purpose, two MA variants, MA3 (without M3) and MA4 (without616

M6), are compared, along with the standard MA associated with all neigh-617

borhood operators. To ensure a fair comparison, we ran MA3 and MA4 under618

the same condition of Section 4.2 to conduct the experiments. The results are619

summarized in Table 3 and illustrated in Fig. 9.620

Table 3
Summary of comparative results between MA and two variants.

Pair algorithms
fbest favg

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

MA vs. MA3 39 35 3 3.90E-08 47 20 10 4.42E-09

MA vs. MA4 47 26 4 9.15E-08 63 14 0 5.17E-12

According to Table 3, the two operators are critical to ensure the performance621

of the MA algorithm (con�rmed by the small p-value � 0.05). Indeed, dis-622

abling them signi�cantly worsens the results in terms of both the best and623

average values. Moreover, as shown in Fig. 9, disabling the M3 operator dete-624

riorates MA's performance more than disabling the M6 operator on many large625

instances with n > 2152. These results demonstrate the positive contributions626

of the M3 operator for solving large instances. Finally, both neighborhood627

operators have marginal contributions when solving small and medium-sized628

instances (n ≤ 532) in terms of the best results.629
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Fig. 9. Comparative results of MA with two variants MA3 (without operator M3)
and MA4 (without operator M6) on the 77 instances of Sets S and L.

5.3 Convergence analysis of the MA algorithm630
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Fig. 10. Running pro�les of the MA on four representative instances

In Section 4.3.1, the stopping condition for solving the minmax mTSP was631

set to the maximum time of (n/100) × 4 minutes in line with the literature.632

This section aims to verify the convergence behavior of the MA algorithm633

in the long run by using a relaxed stopping condition of 50,000 iterations.634

Four representative instances (rat783-3, pcb1173-5, d1655-3, pr2392-5) with635

di�erent sizes (n from 783 to 2392, m from 3 to 5) were selected and each636

instance was solved 20 times while the best objective values are recorded637

during the search. Fig. 10 shows the evolution of the gap between the current638

value and the best value along the iterations. The four colored dots indicate639

the average objective values obtained at the end of the standard cuto� time of640

(n/100)×4 minutes for the four instances. For these instances, 50,000 iterations641

lead to 4061.67, 4058.71, 16858.6, 13983.4 seconds, respectively.642

From Fig. 10, one observes that with a higher time budget, MA is able to643

further improve its results reached at the end of the standard cuto� time644
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(n/100)×4 minutes). Speci�cally, the best result can be even improved by645

1.19% while the average result can be improved by 1.03%. This experiment646

demonstrates that the MA algorithm has a highly desirable long-term search647

behavior and can e�ectively take advantage of a prolonged cuto� time limit648

to discover still better solutions.649

6 Conclusions650

We introduced a uni�ed memetic algorithm for solving both the minmax651

mTSP and the minmax multidepot mTSP. The proposed algorithm inte-652

grates a dedicated edge assembly crossover operator (mEAX), an e�cient653

variable neighborhood descent and an aggressive post-optimization procedure.654

By properly inheriting edges from high-quality parent solutions, mEAX con-655

tributes to propagate favorable characteristics from elite parent solutions to656

o�spring. The variable neighborhood descent is able to locate local optimal657

solutions e�ectively. The post-optimization procedure takes full advantage of658

the ejection chain method and a leading TSP heuristic to further improve the659

quality of new elite solutions.660

The performance of the algorithm was evaluated on two sets of 77 minmax661

mTSP instances and one set of 43 minmax multidepot mTSP instances. The662

computational results indicated that the algorithm reaches a high performance663

compared to the reference algorithms for both problems. Speci�cally, it reports664

44 and 39 new upper bounds for the minmax mTSP and the minmax mul-665

tidepot mTSP, respectively. We performed additional experiments to assess666

the contributions of the two key algorithmic components (i.e., mEAX and667

post-optimization). We also conducted a long term convergence analysis of668

the algorithm to illustrate its capacity of �nding still better solutions if more669

time is allowed.670

For further work, several directions can be envisaged. First, improved local671

search techniques can be investigated to identify promising neighborhoods and672

speed up neighborhood examinations. Second, given the contributions of the673

mEAX operator for the studied problems, it would be interesting to investigate674

its use or adaptations to solve other routing problems, such as the multidepot675

capacitated vehicle routing problem. Finally, e�cient exact algorithms are still676

missing for the minmax mTSP and minmax mutlidepot mTSP. Research in677

this direction is thus quite valuable.678

Acknowledgments679

We are grateful to the reviewers for their insightful and constructive comments,680

which helped us to improvement the paper. We also would like to thank au-681

thors of [22,52,53,56]: Dr. Jiongzhi Zheng for sharing their source code; Dr.682

24



Korhan Karabulut and Prof. M. Fatih Tasgetiren for sharing their executable683

code; Prof. Xingyin Wang and Dr. Yongzhen Wang for providing their test684

problems and answering our questions. Support from the China Scholarship685

Council (CSC, No. 201906850087) for the �rst author is also acknowledged.686

References687

[1] L. Accorsi, D. Vigo, A fast and scalable heuristic for the solution of large-scale688

capacitated vehicle routing problems, Transportation Science 55 (4) (2021) 832�689

856.690

[2] D. Applegate, W. Cook, S. Dash, A. Rohe, Solution of a min-max vehicle routing691

problem, INFORMS Journal on Computing 14 (2) (2002) 132�143.692

[3] F. Arnold, M. Gendreau, K. Sörensen, E�ciently solving very large-scale routing693

problems, Computers & Operations Research 107 (2019) 32�42.694

[4] F. Arnold, K. Sörensen, Knowledge-guided local search for the vehicle routing695

problem, Computers & Operations Research 105 (2019) 32�46.696

[5] T. Bai, D. Wang, Cooperative trajectory optimization for unmanned aerial697

vehicles in a combat environment, Science China Information Sciences 62 (1)698

(2019) 1�3.699

[6] O. Beek, B. Raa, W. Dullaert, D. Vigo, An e�cient implementation of a static700

move descriptor-based local search heuristic, Computers & Operations Research701

94 (2018) 1�10.702

[7] T. Bektas, The multiple traveling salesman problem: an overview of formulations703

and solution procedures, Omega 34 (3) (2006) 209�219.704

[8] E. C. Brown, C. T. Ragsdale, A. E. Carter, A grouping genetic algorithm for705

the multiple traveling salesperson problem, International Journal of Information706

Technology & Decision Making 6 (02) (2007) 333�347.707

[9] A. M. Campbell, D. Vandenbussche, W. Hermann, Routing for relief e�orts,708

Transportation Science 42 (2) (2008) 127�145.709

[10] J. Carlsson, D. Ge, A. Subramaniam, A. Wu, Y. Ye, Solving min-max multi-710

depot vehicle routing problem, Lectures on Global Optimization 55 (2009) 31�711

46.712

[11] A. E. Carter, C. T. Ragsdale, A new approach to solving the multiple traveling713

salesperson problem using genetic algorithms, European Journal of Operational714

Research 175 (1) (2006) 246�257.715

[12] O. Cheikhrouhou, I. Khou�, A comprehensive survey on the multiple traveling716

salesman problem: Applications, approaches and taxonomy, Computer Science717

Review 40 (2021) 100369.718

25



[13] J. Conesa-Muñoz, G. Pajares, A. Ribeiro, Mix-opt: A new route operator for719

optimal coverage path planning for a �eet in an agricultural environment, Expert720

Systems with Applications 54 (2016) 364�378.721

[14] E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance722

pro�les, Mathematical Programming 91 (2) (2002) 201�213.723

[15] P. M. França, M. Gendreau, G. Laporte, F. M. Müller, The m-traveling salesman724

problem with minmax objective, Transportation Science 29 (3) (1995) 267�275.725

[16] J.-K. Hao, Memetic algorithms in discrete optimization, in: F. Neri, C. Cotta,726

P. Moscato (eds.), Handbook of Memetic Algorithms, vol. 379 of Studies in727

Computational Intelligence, Springer, 2012, pp. 73�94.728

[17] P. He, J.-K. Hao, Hybrid search with neighborhood reduction for the multiple729

traveling salesman problem, Computers & Operations Research 142 (2022)730

105726.731

[18] P. He, J.-K. Hao, Q. Wu, Grouping memetic search for the colored traveling732

salesmen problem, Information Sciences 570 (2021) 689�707.733

[19] K. Helsgaun, An e�ective implementation of the lin�kernighan traveling734

salesman heuristic, European Journal of Operational Research 126 (1) (2000)735

106�130.736

[20] S. Hong, M. W. Padberg, A note on the symmetric multiple traveling salesman737

problem with �xed charges, Operations Research 25 (5) (1977) 871�874.738

[21] A. Imran, S. Salhi, N. A. Wassan, A variable neighborhood-based heuristic739

for the heterogeneous �eet vehicle routing problem, European Journal of740

Operational Research 197 (2) (2009) 509�518.741

[22] K. Karabulut, H. Öztop, L. Kandiller, M. F. Tasgetiren, Modeling and742

optimization of multiple traveling salesmen problems: An evolution strategy743

approach, Computers & Operations Research 129 (2021) 105192.744

[23] P. Kitjacharoenchai, M. Ventresca, M. Moshref-Javadi, S. Lee, J. M. Tanchoco,745

P. A. Brunese, Multiple traveling salesman problem with drones: Mathematical746

model and heuristic approach, Computers & Industrial Engineering 129 (2019)747

14�30.748

[24] F. Lehuédé, O. Péton, F. Tricoire, A lexicographic minimax approach to the749

vehicle routing problem with route balancing, European Journal of Operational750

Research 282 (1) (2020) 129�147.751

[25] S. Lin, B. W. Kernighan, An e�ective heuristic algorithm for the traveling-752

salesman problem, Operations Research 21 (2) (1973) 498�516.753

[26] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, T. Stützle, The754

irace package: Iterated racing for automatic algorithm con�guration, Operations755

Research Perspectives 3 (2016) 43�58.756

26



[27] L.-C. Lu, T.-W. Yue, Mission-oriented ant-team aco for min�max mtsp, Applied757

Soft Computing 76 (2019) 436�444.758

[28] Y. Lu, U. Benlic, Q. Wu, A highly e�ective hybrid evolutionary algorithm for759

the covering salesman problem, Information Sciences 564 (2021) 144�162.760

[29] A. Maskooki, K. Deb, M. Kallio, A customized genetic algorithm for bi-objective761

routing in a dynamic network, European Journal of Operational Research762

297 (2) (2022) 615�629.763

[30] N. Mladenovi¢, P. Hansen, Variable neighborhood search, Computers &764

Operations Research 24 (11) (1997) 1097�1100.765

[31] C. C. Murray, R. Raj, The multiple �ying sidekicks traveling salesman problem:766

Parcel delivery with multiple drones, Transportation Research Part C: Emerging767

Technologies 110 (2020) 368�398.768

[32] Y. Nagata, O. Bräysy, Edge assembly-based memetic algorithm for the769

capacitated vehicle routing problem, Networks: An International Journal 54 (4)770

(2009) 205�215.771

[33] Y. Nagata, O. Bräysy, W. Dullaert, A penalty-based edge assembly memetic772

algorithm for the vehicle routing problem with time windows, Computers &773

Operations Research 37 (4) (2010) 724�737.774

[34] Y. Nagata, S. Kobayashi, Edge assembly crossover: A high-power genetic775

algorithm for the travelling salesman problem, in: T. Bäck (ed.), Proceedings776

of the 7th International Conference on Genetic Algorithms, East Lansing, MI,777

USA, July 19-23, 1997, Morgan Kaufmann, 1997.778

[35] Y. Nagata, S. Kobayashi, A powerful genetic algorithm using edge assembly779

crossover for the traveling salesman problem, INFORMS Journal on Computing780

25 (2) (2013) 346�363.781

[36] K. V. Narasimha, E. Kivelevitch, B. Sharma, M. Kumar, An ant colony782

optimization technique for solving min�max multi-depot vehicle routing783

problem, Swarm and Evolutionary Computation 13 (2013) 63�73.784

[37] F. Neri, C. Cotta, P. Moscato (eds.), Handbook of Memetic Algorithms, vol.785

379 of Studies in Computational Intelligence, Springer, 2012.786

[38] V. Pandiri, A. Singh, Two metaheuristic approaches for the multiple traveling787

salesperson problem, Applied Soft Computing 26 (2015) 74�89.788

[39] J.-Y. Potvin, J.-M. Rousseau, An exchange heuristic for routeing problems with789

time windows, Journal of the Operational Research Society 46 (12) (1995) 1433�790

1446.791

[40] M. Rao, A note on the multiple traveling salesmen problem, Operations Research792

28 (3-part-i) (1980) 628�632.793

[41] S. Rasmussen, P. Chandler, J. Mitchell, C. Schumacher, A. Sparks, Optimal794

vs. heuristic assignment of cooperative autonomous unmanned air vehicles, in:795

AIAA Guidance, Navigation, and Control Conference and Exhibit, 2003.796

27



[42] J. Ren, J.-K. Hao, F. Wu, Z.-H. Fu, An e�ective hybrid search algorithm for797

the multiple traveling repairman problem with pro�ts, European Journal of798

Operational Research (2022) (in press).799

URL https://doi.org/10.1016/j.ejor.2022.04.007800

[43] H. Seyyedhasani, J. S. Dvorak, E. Roemmele, Routing algorithm selection for801

�eld coverage planning based on �eld shape and �eet size, Computers and802

Electronics in Agriculture 156 (2019) 523�529.803

[44] A. Singh, A. S. Baghel, A new grouping genetic algorithm approach to the804

multiple traveling salesperson problem, Soft Computing 13 (1) (2009) 95�101.805

[45] B. Soylu, A general variable neighborhood search heuristic for multiple traveling806

salesmen problem, Computers & Industrial Engineering 90 (2015) 390�401.807

[46] J. A. Svestka, V. E. Huckfeldt, Computational experience with an m-salesman808

traveling salesman algorithm, Management Science 19 (7) (1973) 790�799.809

[47] É. Taillard, P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, A tabu search810

heuristic for the vehicle routing problem with soft time windows, Transportation811

Science 31 (2) (1997) 170�186.812

[48] R. Todosijevi¢, S. Hana�, D. Uro²evi¢, B. Jarboui, B. Gendron, A general813

variable neighborhood search for the swap-body vehicle routing problem,814

Computers & Operations Research 78 (2017) 468�479.815

[49] T. Vidal, Hybrid genetic search for the cvrp: Open-source implementation and816

swap* neighborhood, Computers & Operations Research 140 (2022) 105643.817

[50] T. Vidal, T. G. Crainic, M. Gendreau, C. Prins, A hybrid genetic algorithm with818

adaptive diversity management for a large class of vehicle routing problems with819

time-windows, Computers & Operations Research 40 (1) (2013) 475�489.820

[51] T. Vidal, T. G. Crainic, M. Gendreau, C. Prins, A uni�ed solution framework821

for multi-attribute vehicle routing problems, European Journal of Operational822

Research 234 (3) (2014) 658�673.823

[52] X. Wang, B. Golden, E. Wasil, The min-max multi-depot vehicle routing824

problem: Heuristics and computational results, Journal of the Operational825

Research Society 66 (9) (2015) 1430�1441.826

[53] Y. Wang, Y. Chen, Y. Lin, Memetic algorithm based on sequential variable827

neighborhood descent for the minmax multiple traveling salesman problem,828

Computers & Industrial Engineering 106 (2017) 105�122.829

[54] S. Yuan, B. Skinner, S. Huang, D. Liu, A new crossover approach for solving830

the multiple travelling salesmen problem using genetic algorithms, European831

Journal of Operational Research 228 (1) (2013) 72�82.832

[55] E. E. Zachariadis, C. T. Kiranoudis, A strategy for reducing the computational833

complexity of local search-based methods for the vehicle routing problem,834

Computers & Operations Research 37 (12) (2010) 2089�2105.835

28

https://doi.org/10.1016/j.ejor.2022.04.007


[56] J. Zheng, Y. Hong, W. Xu, W. Li, Y. Chen, An e�ective iterated two-stage836

heuristic algorithm for the multiple traveling salesmen problem, Computers &837

Operations Research 143 (2022) 105772.838

[57] H. Zhou, M. Song, W. Pedrycz, A comparative study of improved ga and pso in839

solving multiple traveling salesmen problem, Applied Soft Computing 64 (2018)840

564�580.841

Appendix842

A Detailed computational results843

This appendix presents detailed computational results of the proposed MA al-844

gorithm together with the results of reference algorithms: re-IWO, re-MASVND,845

ES [22], HSNR [17] and ITSHA [56]. In the tables presented hereafter, col-846

umn `Instances' indicates the name of the benchmark instance; column `BKS'847

shows the best-known solution summarized from the literature. For the min-848

max mTSP, the starred BKS values are optimal values. `fbest' and `favg' are849

the best and average solution found by the algorithm in the column header,850

respectively. `Gap' is calculated as Gap = 100×(fbest-fbk)/fbk where fbest and851

fbk are the best objective value of MA and the best objective value from852

all reference algorithms (including BKS), respectively. Since both problems853

have a minimization objective, a negative Gap indicates an improvement over854

the BKS value (i.e., a new upper bound). Furthermore, the dark gray color855

indicates that the algorithm obtains the best result among the compared al-856

gorithms on the corresponding instance; the medium gray color displays the857

second best result, and so on. We provide additionally information for each858

algorithm in terms of the best and average value. `Average' is the average value859

over the instances of a benchmark set.860

As shown in Table A.3, the time information in Table A.3 is provided only for861

indicative purposes (The `-' symbol indicates the time information is unavail-862

able for MD and VNS or non-applicable for MA). The time (in seconds) for863

MD and VNS corresponds to the average time of one run under the stopping864

conditions indicated in Section 4.2. For the MA algorithm, `TTB' indicates865

the average time in seconds needed for MA to hit the BKS values, while `AT'866

is the average time of one run.867
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Table A.3
The minmax multidepot mTSP: comparative results of MA with two reference al-
gorithms on the 43 instances of Set M.

MD [52] VNS [52] MA
Instances BKS

fbest Time (s) fbest Time (s) fbest favg Gap(%) TTB (s) AT (s)

MM1 170.109 170.909 1 170.909 1 170.908 170.908 0.470 - 2

MM2 130.8 130.800 11 131.497 6 124.067 125.8095 -5.148 18 277

MM3 238.973 238.973 18 240.397 13 230.821 231.9083 -3.411 28 371

MM4 479.676 479.676 18 481.595 340 438.039 442.2707 -8.680 52 1446

MM5 315.889 315.889 33 333.376 18 299.751 299.9226 -5.109 13 1546

MM6 82.187 82.226 44 82.226 16 85.356 86.94082 3.856 - 306

MM7 189.016 189.016 2 189.016 5 189.017 189.017 0.001 - 9

MM8 217.383 217.383 30 231.493 27 203.585 204.2455 -6.347 12 460

MM9 152.504 152.504 112 156.972 57 142.355 143.4553 -6.655 55 840

MM10 182.926 197.390 4 182.926 9 181.382 181.382 -0.844 1 33

MM11 102.346 102.346 3 103.663 8 102.346 102.346 0.000 12 99

MM12 78.903 78.903 3 80.828 5 72.921 73.23033 -7.581 1 83

MM13 120.688 121.872 5 120.688 11 117.681 117.7794 -2.492 13 215

MM14 134.613 134.613 8 137.219 11 125.585 126.0707 -6.707 11 262

MM15 96.524 99.805 5 96.524 7 90.787 91.27053 -5.943 11 221

MM16 101.68 101.680 23 103.696 28 96.068 98.70936 -5.519 204 548

MM17 248.588 248.588 235 259.255 28 236.859 238.7844 -4.718 98 1038

MM18 390.16 390.160 619 400.269 58 383.617 385.4731 -1.677 324 985

MM19 365.657 365.657 616 395.371 159 339.333 344.665 -7.199 6 1046

MM20 339.92 339.920 360 356.176 152 311.737 315.116 -8.291 10 1213

MM21 259.14 259.140 - 274.100 - 245.165 246.5903 -5.393 18 551

MM22 400.6 400.600 - 413.270 - 390.934 393.2435 -2.413 61 510

MM23 374.97 374.970 - 378.710 - 363.504 363.5538 -3.058 22 280

MM24 204 204.000 - 206.220 - 195.992 198.7478 -3.925 146 801

MM25 272.61 272.610 - 274.840 - 230.690 233.9735 -15.377 4 746

MM26 364.56 364.560 - 369.100 - 349.459 351.2541 -4.142 40 1047

MM27 290.37 290.370 - 298.460 - 285.220 286.3728 -1.774 75 568

MM28 354.31 354.310 - 367.720 - 348.377 351.8489 -1.675 556 1343

MM29 364.01 364.010 - 376.180 - 357.100 359.0724 -1.898 246 1001

MM30 140.34 140.340 - 149.540 - 128.349 130.7342 -8.544 85 995

MM31 112.52 124.320 - 112.520 - 106.189 107.7453 -5.627 29 415

MM32 98.45 103.150 - 98.450 - 96.260 96.35376 -2.225 1 50

MM33 97.56 97.560 - 100.930 - 92.820 92.8197 -4.859 1 469

MM34 84.64 84.640 - 85.580 - 78.796 80.94745 -6.905 168 703

MM35 107.86 109.300 - 107.860 - 99.928 99.92959 -7.354 2 282

MM36 153.27 155.990 - 153.270 - 135.947 136.9038 -11.302 8 1187

MM37 151.19 156.410 - 151.190 - 132.937 132.937 -12.073 1 744

MM38 155.46 155.460 - 166.300 - 149.556 149.764 -3.798 10 331

MM39 209.85 209.850 - 223.670 - 195.788 198.0532 -6.701 28 676

MM40 243.47 243.470 - 250.680 - 235.961 236.2019 -3.084 15 213

MM41 255.27 257.160 - 255.270 - 237.959 241.4352 -6.781 158 1312

MM42 357.17 367.440 - 357.170 - 314.451 318.7805 -11.960 23 1046

MM43 375.16 375.160 - 375.550 - 349.380 351.95 -6.872 32 811

Average 222.449 223.794 - 227.923 - 211.132 212.964 - - -
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