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Abstract

The colored traveling salesmen problem (CTSP) is a generalization of the popular
traveling salesman problem with multiple salesmen. In CTSP, the cities are divided
into m exclusive city sets (m is the number of salesmen) and one shared city set.
The goal of CTSP is to determine a shortest Hamiltonian circuit (also called route
or tour) for each of the m salesmen satisfying that 1) each route includes all cities
of an exclusive city set and some (or all) cities of the shared city set, and 2) each
city of the shared city set is included in one unique route. CTSP is a relevant
model for a number of practical applications and is known to be computationally
challenging. We present the �rst iterated two-phase local search algorithm for this
important problem which combines a local optima exploration phase and a local
optima escaping phase. We show computational results on 65 common benchmark
instances to demonstrate its e�ectiveness and especially report 22 improved upper
bounds. We make the source code of the algorithm publicly available to facilitate its
use in future research and real applications.

Keywords: colored traveling salesman problem; routing; combinatorial optimiza-
tion; heuristics; local search.

1 Introduction1

The colored traveling salesmen problem (CTSP), introduced by Li et al. [19],2

is a generalization of the popular traveling salesman problem with multiple3
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salesmen. In CTSP, the set V of n cities are divided into m exclusive city sets4

(m is the number of salesmen) and one shared city set S. The goal of CTSP5

is to determine a shortest Hamiltonian circuit (also called route or tour) for6

each of the m salesmen satisfying that 1) each route includes all cities of an7

exclusive city set and some (or all) cities of the shared city set, and 2) each8

city of the shared city set is included in one unique route. One observes that9

when we have only one salesman and the shared city set (i.e., m = 1 and10

S = V ), CTSP degenerates to the very popular symmetric traveling salesman11

problem (TSP) [1]. On the other hand, if all cities are shared (i.e., m > 112

and S = V ), then CTSP becomes the multiple traveling salesmen problem13

(MTSP) [2,11,24], which is a classical TSP variant. Finally, it is worth noting14

that CTSP is related to, but di�erent from the site-dependent vehicle routing15

problem (SDVRP) [4,29] due to the absence of capacity constraint in CTSP.16

Like other TSP models, CTSP has a number of practical applications [19],17

such as collision-free scheduling of multi-bridge machining systems [18] and18

rice harvesting schedules [14]. However, as a generalization of the NP-hard19

TSP, CTSP is computationally challenging, especially when one needs to solve20

large scale problem instances. Given its theoretical and practical signi�cance,21

a number of studies have been reported in recent years. As the literature22

review in Section 2.2 shows, several algorithms have been developed for solving23

CTSP, including genetic algorithms [19], arti�cial bee colony [8,27], ant colony24

optimization (ACO) [7] and variable neighborhood search [23]. We notice that25

existing studies except [23] concern population-based algorithms. No study has26

investigated the conceptually simpler iterated local search approach, which is27

known to be very successful for numerous optimization problems including28

routing problems [3,25,30] and other NP-hard problems [9,16,37]. This work29

�lls this gap by introducing the �rst iterated two-phase local search (ITPLS)30

algorithm for CTSP. We summarize the work as follows.31

First, the proposed algorithm relies on an iterated two-phase process to explore32

the search space. The local optima exploration phase aims to examine various33

local optimal solutions of increasing quality within a limited search regions.34

This is achieved by alternating between an inter-route optimization procedure35

and an intra-route optimization procedure. When this search phase is observed36

to get trapped in a deep local optimum, the local optima escaping phase37

is triggered to help the algorithm out of the trap and guide the search to38

an unvisited region, from where the local optima exploration phase resumes.39

These two phases are thus repeated until a stopping condition is met.40

Second, we report results of extensive computational experiments on three41

sets of 65 benchmark instances from the literature and show comparisons42

with existing reference algorithms. In particular, we present improved best-43

known results (new upper bounds) for 22 instances, which are useful for future44

research on CTSP.45
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Third, we make the source code of our algorithm publicly available, which can46

be used by researchers and practitioners to solve other problems that can be47

modeled by CTSP.48

The rest of this paper is organized as follows. In Section 2, we formulate49

the problem and present a literature review of existing studies on CTSP. In50

Section 3, we introduce the general framework of the proposed algorithm and51

its components. In Section 4, we show computational results on benchmark52

instances and comparisons with the literature. In Section 5, we summarize the53

�ndings of the work and present research perspectives.54

2 Problem De�nition and Literature Review55

In this section, we �rst introduce the colored traveling salesmen problem and56

then present the related works in the literature.57

2.1 Problem De�nition58

Given a complete undirected graph G = (V,E) with a set of vertices (or59

cities) V = {0, 1, 2, . . . , n − 1} and a set of weighted edges E where each60

vertex represents a city and each non-negative edge weight cij represents the61

traveling distance between cities i and j (cij = cji). The city set V is divided62

into m+ 1 disjoint sets: m exclusive city sets C1, C2, . . . , Cm, and one shared63

city set S such that ∪mk=1Ck ∪ S = V and ∩kk=1Ci ∩ S = ∅. The cities of each64

exclusive set Ck (k = 1, 2, . . . ,m) are to be visited by the salesmen k and each65

city from the shared city set S is to be visited by one of the m salesmen. City 066

(the depot) belongs to the shared set S and is visited by all salesmen. CTSP is67

to �nd a group of m Hamiltonian circuits (also called routes or tours) starting68

from the depot and ending at the depot for the m salesmen to minimize the69

total traveling distance of the m routes, where the exclusive cities of a set Ck70

are visited exactly once by the salesman k and the shared cities are visited71

exactly once by any of the m salesmen. Formally, CTSP can be described by72

the following mathematical model [19], where M = {1, 2, . . . ,m} represents73

the set of the m salesmen.74

Min F =
m∑
k=1

n−1∑
i=0

n−1∑
j=0

cijxijk (1)

n−1∑
i=1

x0ik = 1,∀k ∈M (2)
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n−1∑
i=1

xi0k = 1,∀k ∈M (3)

∑
i

∑
j

xijk = 0, i ∈ (Ck ∪ S), j ∈ V \(Ck ∪ S),∀k ∈M (4)

n−1∑
j=0

m∑
k=1

xjik = 1, j 6= i, i ∈ V \{0} (5)

∑
l

xjlk =
∑
i

xijk, i 6= j 6= l, j, i, l ∈ Ck ∪ S,∀k ∈M (6)

uik − ujk + n× xijk ≤ n− 1, j 6= i, i, j ∈ V \{0}, ∀k ∈M (7)

In this model, the binary variable xijk = 1 indicates that the kth salesman75

passes through edge (i, j), and otherwise xijk = 0. uik is the number of cities76

visited on the kth route from the depot up to city i. The objective function of77

CTSP is given by Eq. (1) and Eqs. (2-7) are the constraints of the problem.78

Eqs. (2) and (3) require that each salesman starts from the depot and returns79

to the depot. Eq. (4) indicates that each salesman can only visit its own80

exclusive cities and the shared cities. Eq. (5) means that each city except the81

depot can only be visited exactly once. Eq. (6) indicates that a salesman can82

only arrive at its exclusive and the shared cities, and continue its route. Eqs.83

(6 - 7) are employed to eliminate the sub-tours for each salesman.84

2.2 Literature Review85

CTSP was introduced in [19] to optimize routes of a dual-bridge waterjet86

cutting machine tool. The tool consists of two independent bridge machines87

with an overlapping workspace for both machines to enter and two exclusive88

workspaces at both ends of an overlapping workspace for each machine only.89

Besides, CTSP could also be formulated several practical problems arising90

in agricultural engineering. For example, He et al. [14] scheduled combine-91

harvesters to visit geographically dispersed �elds under constraints of moist92

�elds, that is moist �elds could only be visited by crawler-harvesters and93

however non-moist �elds could be visited by any harvester. In this model,94

moist �elds can be considered as exclusive cities and non-moist �elds are95

shared cities. Similar problems could be also found in [36].96

Given its interest, the CTSP model has received increasing attention and sev-97

eral solution algorithms have been developed for solving the problem. In [19],98

Li et al. presented four genetic algorithms (basic GA, GA with greedy ini-99

tialization, hill-climbing GA and simulated annealing GA), and introduced100

the �rst set of 20 small scale benchmarks based on existing symmetric TSP101
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instances (with up to 101 vertices). They demonstrated that their algorithms102

performed better than the general mixed integer programming tool Lingo.103

Meng et al. [23] employed variable neighborhood search and reported improved104

results on the instances introduced in [19]. Later, Pandiri and Singh [27] pre-105

sented an arti�cial bee colony algorithm (ABC). In their work, they not only106

reported better results on the 20 small instances compared to the previous107

algorithms [19,23], but also presented the �rst results for 8 new medium scale108

instances (with 229 to 666 vertices). At the same time, Dong et al. [7] employed109

ant colony optimization (ACO) with multi-tasks learning. They showed that110

their ACO algorithm did not compete well with the ABC algorithm [27] on111

the set of 20 small instances. This study also provided 6 medium (with 202 to112

431 vertices) and 5 large instances (with 1002 vertices). Finally, Dong et al.113

[8] implemented another ABC algorithm and reported computational results114

on 26 new large instances (with 2461 to 7397 vertices).115

The above studies have greatly contributed to advancing the state-of-the-art116

of practically solving CTSP and reported interesting computational results on117

benchmark instances. Meanwhile, one notices that most existing algorithms118

are based on bio-inspired approaches, which rely on a population of candi-119

date solutions to explore the search space. In this work, we are interested in120

investigating the conceptually simpler single trajectory iterated local search121

approach [21] for solving CTSP. The proposed algorithm employes an iter-122

ated two-phase procedure to examine candidate solutions by performing local123

optimization. As shown in Section 4, the algorithm is able to compete favor-124

ably with the best CTSP algorithms on the benchmark instances from the125

literature.126

3 An Iterated Two-Phase Local Search127

We now present the iterated two-phase local search algorithm for solving128

CTPS. After introducing the solution representation, we show the general129

framework and its composing ingredients.130

3.1 Solution Representation and Search Space131

As a multi-route problem, CTSP can bene�t from the solution representa-132

tions of MTSP including the m-tour encoding [31], dual-chromosome encod-133

ing [28] and one-chromosome encoding [33]. For instance, the m-tour and134

dual-chromosome representations were used in [26] and [19] for CTSP, respec-135

tively. Besides, Pandiri and Singh [27] showed that the m-tour encoding was136

more space e�cient than the dual-chromosome representation. In this work,137
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we adapted the adjacency representation introduced in [13] for TSP (see Fig.138

1) to the case of CTSP. Speci�cally, a solution is composed of m routes where139

each route is represented by an array such that city j of the route occupies140

position i in the array if the route goes from city i to city j. For the cities141

which are not on the route, the corresponding positions are �lled by -1. Fig. 1142

illustrates a solution with 2 routes: 0-1-3-2-7 and 0-4-5-6-8-10-9. Compared to143

other representations such as the m-tour encoding used in [27], our represen-144

tation has the advantage of easing the insert operation between two routes.145

For example, if city 8 is deleted from route 2 and inserted behind city 1 of146

route 1, the time complexity for this operation is O(1) with our representation147

because it is unnecessary to displace other cities. This is to be contrasted to148

the time complexity O(|S| + |Cm|) of the m-tour encoding, because cities 3,149

2, 7 need to move back one position in route 1 while in route 2 cities 10 and150

9 need to move forward one position.151

4 10-16 85-1-1-1

1 -10-1 -1-1273

0 875 64321

0

-1

9

9

-1

10

Route 1

Route 2

Fig. 1. Illustrative example of the adjacency representation for a solution with 2
routes

For a solution s = (s1, s2, . . . , sm), where sk (k = 1, 2, . . . ,m) represents the152

kth route which includes the cities visited by the kth salesman, its objective153

value F (s) is given by the total traveling distance calculated as follows.154

F (s) =
m∑
k=1

(
|sk|−1∑
i=1

csk(i)sk(i−1) + csk(0)sk(|sk|−1)) (8)

where |sk| indicates the number of cities in route sk.155

3.2 General Procedure156

Start
Greedy  randomised 

initilization

Local optima 

exploration
Stop

Local optima 

escaping max
t t

Yes

No

Fig. 2. Flow chart of the general ITPLS procedure

The proposed iterated two-phase local search (ITPLS) for CTSP relies on the157

iterated local search framework [21], which has been applied with success to158
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a number of routing problems [3,25,30]. Generally, ITPLS iterates a local op-159

tima exploration phase and a local optima escaping phase (see the illustrative160

�ow chart in Fig. 2). As shown in Algorithm 1, before entering the �rst main161

'while' loop, a greedy randomized heuristic is employed to construct an initial162

solution (line 2, Sections 3.3). Then, the algorithm repeats a number of 'while'163

iterations to �nd solutions of increasing quality. At each iteration, the local164

optima exploration phase is �rst performed to investigate di�erent local opti-165

mal solutions (line 5, Section 3.4) by alternating an intra-route optimization166

of the m routes and an inter-route optimization between two routes. The best167

solution sb found during this phase is used to update the recorded best solution168

s∗ if needed (lines 6-8). When the local optima exploration phase terminates,169

the search is considered to be stagnating. The algorithm then switches to the170

local optima escaping phase to guide the search process to a new region from171

where the local optima exploration phase resumes (line 9, Sections 3.5). This172

process is repeated until a stopping condition is met, which is typically an173

allowable cuto� time (tmax) or maximum number of iterations.174

Algorithm 1: General procedure of ITPLS for CTSP

Input: Instance I, probability Pi, search depth of SbTS Omax,
probability Ps, parameter α, probability Pa

Output: The best solution s∗ found
1 begin

/* Solution initialization, Sections 3.3 */

2 s← Greedy_randomized_heuristic(I, Pi)
3 s∗ ← s
4 while a Stopping condition is not met do

/* Stage 1: local optima exploration, Section 3.4 */

5 sb ← Local_optima_exploration(s,Omax, Ps, α)
6 if F (sb) < F (s∗) then
7 s∗ ← sb /* update the best solution ever found */

8 end
/* Stage 2: local optima escaping, Sections 3.5 */

9 s← Local_optima_escaping(s, Pa)

10 end
11 return s∗

12 end

3.3 Greedy Randomized Initialization175

The initial solution of the ITPLS is generated by a greedy randomized ini-176

tialization procedure which includes two steps. The �rst step builds a partial177

route for each of the m salesmen by using its exclusive set of cities. The sec-178

ond step dispatches the shared cities among the m partial routes to obtain a179
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complete solution. To build the kth (k = 1, . . . ,m) partial route sk, a random180

city i in Ck is used to initiate the greedy construction. Then the remaining181

cities of Ck are considered in a random order and greedily inserted into sk to182

minimize the distance of the route. The �rst step terminates when all the cities183

of each exclusive set Ck are included in one partial route. Then, the second184

step follows to insert greedily and probabilistically the cities of the shared set185

into the m routes as follows. For each city in S (except the depot 0 which is186

the starting city of all routes), it is inserted into the best position among all187

the m routes if the greedy probability Pi is veri�ed, otherwise, it is inserted188

into a random position of a random route. With this greedy randomized ini-189

tialization procedure, we can obtain multiple diverse initial solutions. Indeed,190

with Pi = 0, we have a pure greedy procedure. By varying Pi, we control the191

acceptance of random insertions. Finally, the �rst step has a time complexity192

of O(|Cm|2 ×m), while the second step is bounded by O(|S| × n). Therefore,193

the time complexity of the greedy randomized heuristic is O(|S| × n).194

3.4 Local Optima Exploration195

Start

Inter-route optimization with 

Insert applied to two routes

Probability 

verified ?

b
s

Intra-route 

optimization 

Search 

stagnation ?

Intra-route optimization of the 

modified routes

Update the best solution 

found  

b
s

Output the best solution 

found 

Yes

No

Yes

No

Fig. 3. Flow chart of the local optima exploration phase

The local optima exploration phase (LOEP) is the key search component of the196

proposed algorithm and combines a (global) inter-routing optimization proce-197

dure and a (local) intra-route optimization procedure to explore various local198

optimal solutions. The inter-routing optimization aims to �nd better solutions199
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Algorithm 2: The framework of local optima exploration

1 Function Local_optima_exploration(s,Omax, Ps, α)
Input: Input solution s, search depth Omax, parameter α
Output: The best solution sb found

2 begin
3 R← s
4 s← intra− route optimization(R) /* intra-routing

optimization to improve all routes */

5 R← ∅
6 sb ← s
7 for i← 0 to L− 1 do
8 H1[i]← 0; H2[i]← 0; /* initialization of hash vectors */

9 end
10 Ni ← 0

/* Main search */

11 while Ni ≤ Omax do
/* Enter inter-routing optimization */

12 δ ← F (s⊕ Insert(·))− F (s) /* calculate the move gain,

Sections 3.4.1 and 3.4.2 */

13 s← s⊕ Insert(k1, i1, k2, i2) /* perform the best non-tabu

move, Sections 3.4.1 and 3.4.2 */

14 F (s)← F (s) + δ(k1, i1, k2, i2)
15 H1[h1(s)]← 1;H2[h2(s)]← 1 /* enter the solution into

tabu list */

16 Update matrix δ /* update move gains with the fast

computation technique, Appendix A */

17 R← R ∪ {sk1 , sk2} /* record the two modified routes sk1
and sk2 involved in the performed move Insert(k1, i1, k2, i2)
*/

18 if Probability(m,α) is veri�ed then
19 s← intra− route optimization(R,Ps, ) /* intra-route

optimization to improve the two modified routes,

Section 3.4.3 */

20 R← ∅
21 end
22 if F (s) < F (sb) then
23 sb ← s
24 Ni ← 0

25 else
26 Ni ← Ni + 1
27 end

28 end
29 return sb
30 end
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by moving cities between two routes while the intra-route optimization focuses200

on the distance minimization of each individual route. Both inter-routing op-201

timization and intra-route optimization are based on the tabu search meta-202

heuristic [12]. Speci�cally, inter-route optimization uses the so-called solution203

based tabu search (SbTS) [17,34,35] while intra-route optimization mixes the204

2-opt heuristic [5,15,20] and a simple tabu search heuristic.205

The pseudo-code of the optima exploration phase is shown in Algorithm 2206

(see also the illustrative �ow chart in Fig. 3), where s is the current solution207

composed of m routes, sb records the current best solution found during the208

local optima exploration phase and, R stores the set of routes modi�ed by209

inter-route optimization and Hi (i = 1, 2) are hash tables used as the tabu210

list of SbTS and explained in Section 3.4.2. After the preparatory operations211

including a �rst intra-route optimization and initialization of the hash tables212

(lines 3-9), the procedure enters the main 'while' loop to repeat inter-routing213

optimization and intra-route optimization.214

At each 'while' loop in Algorithm 2, LOEP �rst performs inter-route opti-215

mization (lines 12-17). For this, LOEP uses a |S| × n matrix δ to store the216

distance variation (called move gain) of inserting a city taken from a route217

to another route (see Section 3.4.1). Based on δ, the best Insert(k1, i1, k2, i2)218

move (i.e., city i2 of route sk2 is inserted after city i1 on route sk1) is se-219

lected and performed to obtain a neighbor solution (line 13). The matrix δ220

and tabu list are updated accordingly (lines 15-16, see Section 3.4.2). The221

two modi�ed routes sk1 and sk2 are collected in R (line 17). After that, one222

decides whether the modi�ed routes in R are to be further improved by the223

intra-route optimization procedure (lines 18-21). In principle, it would be de-224

sirable to re-optimize the modi�ed routes sk1 and sk2 . However, intra-route225

optimization is time consuming and running this procedure too often could226

be counterproductive. As a compromise, the intra-route optimization proce-227

dure is performed according to a probability P (m,α), which depends on the228

number of routes m and parameter α. The idea is that short routes have more229

chances to be further optimized by intra-route optimization than long routes230

considering that optimizing short routes is less time consuming. Finally, during231

the LOEP phase, the best solution sb is updated each time an improved best232

solution is discovered. If the best solution sb cannot be updated for Omax (a233

parameter called search depth) consecutive LOEP iterations, the local optima234

exploration phase is considered to be trapped in a deep local optimum. As235

a result, this LOEP phase terminates and returns the best recorded solution236

sb. To go beyond the local optimum trap, the algorithm triggers the local op-237

tima escaping phase (Section 3.5), which applies a destruction-reconstruction238

procedure to generate a new starting solution for the next round of LOEP.239

The ingredients of the local optima exploration phase, including the neigh-240

borhood, tabu strategy, and intra-route optimization, are explained in the241
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following subsections.242

3.4.1 Inter-route optimization243

Inter-routing optimization focuses on moving cities between routes. For this,244

we adopt the popular Insert operator to de�ne a neighborhood which is ex-245

plored by solution-based tabu search. Speci�cally, Insert(k1, i1, k2, i2) denotes246

the operation that deletes city i2 from route sk2 and inserts i2 after city i1 of247

route sk1 . To ensure that each Insert operation generates a feasible solution,248

the displaced city i2 must be a shared city of set S (excluding the depot). Thus249

given the current solution s, applying Insert to s generates the following set250

N(s) of neighbor solutions.251

N(s) = {s′ ← s⊕ Insert(k1, i1, k2, i2) : k1 ∈M,k2 ∈M, i1 ∈ V, i2 ∈ S\{0}}
(9)

where s′ ← s ⊕ Insert(k1, i1, k2, i2) denotes the neighbor solution of s given252

by applying Insert(k1, i1, k2, i2). It is clear that the size of this neighborhood253

is bounded by O(|S| × n).254

Given this neighborhood, the inter-route optimization procedure identi�es the255

best eligible neighbor solution identi�ed by the best Insert(k1, i1, k2, i2) with256

the largest move gain according to the δ matrix. A neighbor solution is eligible257

if it is not forbidden by the tabu list (see Section 3.4.2).258

So each inter-routing optimization application with the Insert(·) operator can259

be performed in O(|S|×n) time. In the Appendix A, we present a streamlined260

technique for fast computation and update of move gains in the δ matrix, which261

reduces the time complexity to O(n).262

3.4.2 Tabu strategy263

With tabu search [12], each visited candidate solution is recorded in a data264

structure called tabu list to avoid revisiting the same solution during subse-265

quent search. In this work, we adopt the so-called solution-based tabu search266

[17,34,35], where the tabu list is implemented with hash tables. It is worth267

mentioning that to our knowledge, this is the �rst application of this approach268

to a routing problem.269

Speci�cally, the tabu list relies on two hash vectors H1 and H2 of length L (L270

is a large number, set to be 108 in this work) associated to two hash functions271
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h1 and h2 de�ned by Eqs. (10) and (11).272

h1(s) =
m∑
k=1

(k ×
|sk|−1∑
i=1

sk(i)) (10)

h2(s) =
m∑
k=1

|sk|−1∑
i=2

sk(i− 1) ∗ sk(i) (11)

where sk(i) represents the ith city in route sk and |sk| is the number of cities273

in route sk.274

Given a candidate solution s, it is forbidden by the tabu list (i.e., excluded275

for consideration) if H1(h1(s) mod L) ∧H2(h2(s) mod L) = 1; and otherwise,276

this solution is eligible for consideration.277

Let s′ ← s⊕ Insert(k1, i1, k2, i2) be a neighbor solution. The two hash values278

for s′ can be calculated by Eqs. (12,13)279

h1(s
′) = h1(s) + i2 ∗ k1 − i2 ∗ k2 (12)

h2(s
′) = h2(s) + i2 ∗ i1 + i2 ∗ in1 − i1 ∗ in1 + ∗in2 − i

p
2 ∗ i2 − i2 ∗ in2 (13)

where in1 is the next city after i1 in route sk1 , i
p
2 and in2 are the previous and280

next city to i2 in route sk2 , respectively. Therefore, the time complexity of281

determining the tabu status for a neighbor solution s′ is O(1) based on Eqs.282

(12,13).283

3.4.3 Intra-route Optimization284

Since each route could be regarded as a case of TSP, the well-known fast 2-opt285

heuristic for TSP [5,15,20] is a natural choice for intra-route optimization. Ba-286

sically the 2-opt heuristic iteratively reduces the tour distance by performing287

edge exchanges as follows: disconnect the current tour by removing 2 edges288

and reconnect the tour by 2 other edges in such a way that the new tour has289

a shorter distance. This process continues until no improving edge exchange290

exists. The 2-opt heuristic has the advantages of be simple and very fast. For291

this reason, several previous studies on CTSP such as [26,31,32] used the 2-opt292

heuristic for individual route optimization. However, given that 2-opt follows293

the strict descent principle, it can be easily trapped in local optima.294

In this work, our intra-route optimization procedure adopts an enhanced strat-295
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Algorithm 3: Intra-route optimization

Input: Set of routes to be optimized R, probability Ps
Output: Set of improved routes Rb

1 begin
2 Rb ← ∅
3 for each route sk in R do
4 s∗k ← sk
5 if rand() > Ps then

/* Route-optimization with 2-opt */

6 ∆← F (sk)− F (sk ⊕ 2− opt)
7 while there exist improving 2-opt move (∆ < 0) do
8 sk ← sk ⊕ 2− opt /* perform the best improving

2-opt move */

9 F (sk)← F (sk)−∆
10 ∆← F (sk)− F (sk ⊕ 2− opt)
11 end
12 s∗k ← sk
13 else

/* Route-optimization with simple tabu search */

14 ni ← 0
15 while ni < |sk| do
16 ∆← F (sk)− F (sk ⊕ 2− opt) /* perform the best

eligible 2-opt move */

17 F (sk)← F (sk)−∆
18 sk ← sk ⊕ 2− opt
19 Update the tabu list
20 if F (s∗k) > F (sk) then
21 s∗k ← sk
22 ni ← 0

23 else
24 ni ← ni + 1
25 end

26 end

27 end
28 Rb ← Rb ∪ s∗k
29 end
30 return Rb

31 end

egy, which applies the 2-opt heuristic and a simple tabu search (STS) heuristic296

in a probabilistic way (See Algorithm 3). Speci�cally, With probability Ps, we297

perform STS, and with probability 1−Ps, we apply 2-opt. The STS heuristic298

used in the intra-route optimization follows the conventional attribute-based299

tabu approach [12]. STS relies on the same edge exchange operation as for the300
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2-opt heuristic and uses a tabu list to record the exchanged edges. As such,301

each time an edge is exchanged (removed or added) in the current route sk,302

it will not be considered by STS for the next tl consecutive iterations where303

tl is called the tabu tenure �xed to be Tl ∗ |sk| (Tl = 0.3 in this work). STS304

terminates if the best route s∗k is not updated within |sk| steps.305

Finally, one notices that intra-route optimization is applied at two places of306

the local optima exploration phase: to improve all routes of the input solution307

s (line 3, Algorithm 2) and to improve the two modi�ed routes after each308

inter-route optimization step (line 19, Algorithm 2).309

3.5 Local Optima Escaping310

When the local optima exploration phase terminates, the search is considered311

to be trapped in some deep local optimum. To get rid of the trap, the local312

optima escaping phase is launched. Our local optima escaping procedure is313

composed of two steps. The �rst step destroys the input solution s by deleting314

some shared cities while the second step re-inserts these deleted cities into315

di�erent routes. In the �rst step, each shared city is deleted according to a316

destruction probability Pd de�ned by Pd = 1 − e−β/T

2
, where β is the number317

of non-improvement iterations in Algorithm 1 and T is a parameter. The318

second step is similar to the second step of the greedy randomized initialization319

heuristic in Section 3.3. Each deleted city is inserted to the position which320

minimizes the distance if the greedy probability Pa is veri�ed; Otherwise this321

position is discarded. After all deleted shared cities are inserted, a new solution322

is obtained, which serves as the new starting solution of the next round of323

the local optima exploration phase. The probabilities Pd and Pa control the324

diversi�cation degree of the algorithm. We show a sensitive analysis of these325

parameters in Section 4.3. The time complexity of the local optima escaping326

procedure is O(|S| × n).327

3.6 Computational Complexity of ITPLS328

As shown in Algorithm 1, each iteration of ITPLS performs two subroutines:329

local optima exploration and local optima escaping. The local optima explo-330

ration part includes intra-route optimization and inter-route optimization. The331

time complexity of each iteration of intra-route optimization and inter-route332

optimization is O((|S +Ck|)2) and O(|S| × n), respectively. Furthermore, the333

time complexity of local optima escaping is O(|S| × n).334
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4 Experimental Results and Comparisons335

In this section, we report computational experiments on three sets of 65 bench-336

mark instances from the literature. The benchmark instances, the experiment337

protocol and parameters, and computational results are presented in the fol-338

lowing subsections.339

4.1 Benchmark Instances340

For CTSP, three sets of 65 benchmark instances are available in the literature.341

Set I: this set contains small 20 instances, generated from six graphs by342

varying the number of routes and exclusive cities in each instance. The number343

of cities is between 21 to 101, while the number of salesmen m is between 2344

and 7. These instances were �rst introduced by Li et al. [19], and tested in345

[7,8,19,23,27].346

Set II: this set contains medium 14 instances, generated from four graphs347

by varying the number of routes and exclusive cities in each instance. The348

number of cities n is between 202 and 666, and the number of salesmen m is349

between 10 and 40. The 6 instances related to the two graphs with 202 and350

431 cities were proposed by Dong et al.[7], while the remaining instances were351

proposed by Pandiri and Singh [27].352

Set III: this set includes large 31 instances, generated from �ve graphs by353

varying the number of routes and exclusive cities in each instance. The number354

of cities n in this set is between 1002 and 7397, and the number of salesmen m355

is between 3 and 60. The 5 instances related to the �rst graph were presented356

by Dong et al. [7], and the remaining instances were proposed by Dong et al.357

[8].358

4.2 Experimental Protocol359

The ITPLS algorithm was coded in C++, and complied by g++ with the -O3360

option 1 . Our computational experiments were conducted on a computer with361

an AMD-6134 processor (2.3GHz and 2G RAM) under Linux.362

Reference algorithms. There are �ve heuristic algorithms for CTSP re-363

ported in the literature.364

1 The code of our algorithm will be made available at http://www.info.univ-
angers.fr/pub/hao/CTSP.html
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- Genetic algorithms (GAs) [19] (2014), which report results on Set I only.365

Their experiments were performed on a computer with a 3.3GHz processor366

and under the stopping condition of10 minutes.367

- Variable neighborhood search (VNS) [23] (2017), which reports results on368

Set I only. Their experiments were performed on a computer with a 3.4GHz369

processor and under the stopping condition of a maximum of 10000 epochs.370

- Arti�cial bee colony (ABC) [27] (2018), which reports results on Set I and371

8 out of 14 instances of Set II. Their experiments were performed on a372

computer with a 3.4GHz processor. The stopping condition for instances373

with 21 − 41 cities, 51 − 101 cities and 229 − 666 cities was 1 second, 5374

seconds, and 60 seconds, respectively.375

- Ant colony optimization (ACO) [7] (2018), which reports results on Set I,376

6 out of 14 instances of Set II and 5 out of 31 instances of Set III. Their377

experiments were performed on a computer with a 3.01GHz processor and378

the stopping condition was not indicated.379

- Arti�cial bee colony (ABC) [8] (2019), which reports results on 26 out of380

31 instances of Set III. They used a computer with a 3.4GHz processor,381

and the stopping condition is the maximum non-updated iteration number,382

which was �xed to 60.383

From the results reported in these studies, we identify ABC by Pandiri and384

Singh [27] as the current best algorithm for CTSP and use it as our principal385

reference algorithm for our comparative study. Since the source code of this386

algorithm (and the other reference algorithms) is unavailable, we faithfully387

re-implemented the ABC algorithm of [27] 2 . We veri�ed that our implemen-388

tation was able to reproduce the results reported in [27] (and in fact, our389

ABC implementation even obtained some better results than those in [27]).390

To ensure a fair comparison, we ran our algorithm and ABC on our computer391

under the same cuto� limits. Speci�cally, we ran ITPLS 20 times with the392

parameter setting of Table 1 and ABC 20 times with the parameter setting393

given in [27] on each instance. The cuto� time tmax per run was set to be 1, 10394

and 60 minutes for sets I, II and III, respectively, except tmax = 240 minutes395

for the large instances with at least 7000 cities.396

For the other algorithms (VNS [23], ABC [27], ACO [7], ABC [8]), we repli-397

cate the published results, while excluding GAs of [19] given that they are398

fully dominated by the other algorithms. Since the reference algorithms did399

not report results on all benchmark sets, their results are included only for400

indicative purposes.401

2 Our implementation of the ABC algorithm [27] is available from the page given
in footnote 1.
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4.3 Parameter Calibration402

We now conduct a sensitivity analysis of the parameters of the ITPLS algo-403

rithm. For this study, we �rst identi�ed a rough value range for each param-404

eter and analyzed one parameter at a time. Speci�cally, we varied the values405

of the studied parameter in its range while keeping the other parameters to406

their default values as shown in Table 1. The value ranges of the parame-407

ters are: Pi = {0, 0.1, 0.2, 0.3, 0.4, 0.5}, Omax = {20, 50, 80, 120, 150, 200}, Ps =408

{0, 0.1, 0.2, 0.3, 0.4, 0.5}, Tl = {0.1, 0.3, 0.5, 0.7, 0.9}, T = {10, 30, 50, 70, 100, 200},409

Pa = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. This experiment was based on 8 representa-410

tive instances (gr229-30, gr431-25, gr666-20, pr1002-10, fnl2461-3, fnl3461-12,411

pla5397-50, pla6397-30) covering both medium and larger instances. To assess412

a parameter setting (PS), we measure the gaps between the results by ITPLS413

with this particular setting and the results of ITPLS with its default parameter414

setting in terms of the best and average values, calculated as follows.415

Avggap =
∑ FPS_avg − FITPLS_avg

FITPLS_avg
(14)

Bestgap =
∑ FPS_best − FITPLS_best

FITPLS_best
(15)

For each instance, we ran 20 times ITPLS with each parameter setting and416

the results are shown in Fig. 4, where the Avggap and Bestgap (the smaller,417

the better) are de�ned in Eqs. (14) and (15).418

Fig. 4(a) indicates that the probability Pi in the greedy randomized heuristic419

does not in�uence much the results. As for Omax (the depth of SbTS), Fig. 4(b)420

shows that this parameter impacts the performance of ITPLS slightly. Fig. 4(c)421

reveals that the simple tabu search (STS) plays an important role for intra-422

route optimization in ITPLS. Indeed, if only 2-opt is used (Ps = 0), the results423

are the worst. When tabu search is also employed (Ps > 0), the performances424

are improved considerably, with Ps = 0.3 leading to the best performance425

(de�ned as the default value for ITPLS). Fig. 4(d) indicates that the tabu426

tenure of STS also in�uences the performances of ITPLS, with Tl = 0.3 being427

the best value. As shown in Fig. 4(e), the number of the deleted cities in428

the local optima escaping phase impacts slightly the performance of ITPLS,429

with T = 50 being a suitable value. Finally, the probability Pa used in the430

same phase in�uences the performance of ITPLS and Pa = 0.4 (Fig. 4(f)) is431

identi�ed as the best value and used as the default value for ITPLS.432

The values of Table 1 can be considered to de�ne the default setting of ITPLS.433

And this setting was consistently used to conduct all the experiments reported434

below, except Pa = 0.1 (instead of its default value of 0.4) was used to solve435
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Fig. 4. Analysis of the e�ects of the parameters

the instances with at least 7000 vertices (cities).436
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Table 1
Settings of parameters
Parameters Section Description Values

Pi 3.3 Greedy probability in initial solution 0.1

Omax 3.4 Search depth of SbTS 50

Ps 3.4.3 Select probability in intra-route op-
timization

0.3

Tl 3.4.3 Parameter of the tabu tenure of STS 0.3

T 3.5 used to de�ne the destruction prob-
ability)

50

Pa 3.5 Greedy probability in local optima
escaping

0.4

4.4 Computational Results437

We show comparative results of our ITPLS algorithm 3 and the main ABC438

reference algorithm in Table 2 (Set I and Set II) and Table 3 (Set III). For each439

algorithm, we present the best and average objective value and the standard440

derivation based on 20 independent runs. We also include the best objective441

values reported in the literature for VNS [23], ABC [27], ACO [7] and ABC442

[8].443

From each instance, the best (smallest) values among the compared values are444

indicated in boldface, while the '-' sign indicates that no result is available.445

From the results reported in these tables, we can make the following comments.446

For the small instances of Set I, our ITPLS algorithm and ABC (of [27] and447

our ABC implementation) achieve the same performance in terms of the best448

and average objective value and the standard derivation (notice that our ABC449

implementation and ABC [27] report strictly the same results). Moreover, both450

ITPLS and ABC dominate the other competitors (VNS and ACO).451

For the medium instances of Set II, we observe that only very partial results are452

available for the compared algorithms. We thus focus on comparing ITPLS and453

ABC. We observe that TPLS performs slightly better than ABC by reporting454

11 (8) dominating Fbest (Favg) values against 9(7) superior Fbest (Favg) values455

for ABC). Besides, the Wilcoxon signed-rank test on the Fbest and Favg values456

of ITPLS and ABC (see Table 5) indicate that the di�erences between the457

two compared algorithms in terms of Fbest and Favg are marginal for Set II.458

For the large instances of Set III, compared with ABC, ITPLS obtains 25459

(21) superior Fbest (Favg) values out of the 31 instances against 6 (10) superior460

3 The certi�cates of the best solutions of our ITPLS algorithm are available from
the page given in footnote 1.
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Fbest values for ABC. The statistically signi�cant di�erence in terms of the best461

values between ITPLS and ABC is con�rmed by the small p-value of 0.0012462

(<0.05), while the di�erence in terms of average values remains marginal (p-463

value of 0.0599) (see Table 5). One also notices that the 5 best results reported464

for ACO [7] are greatly updated by ABC and ITPLS, while 17 of the 26 best465

results reported for the other ABC algorithm [8] are improved by ABC (1 case)466

and ITPLS (16 cases). These results also consolidate the above observation467

that our ITPLS algorithm competes very favorably with the ABC approach468

as implemented in [8,27].469

To complement these results, we present in Appendix B (Table B.1) an addi-470

tional comparison of ABC [27], our ABC implementation and ITPLS under471

the stopping condition of [27], i.e., a cuto� time of 1 second for instances with472

21− 41 cities, 5 seconds for instances with 51− 101 cities and 60 seconds for473

instances with 202 − 666 cities. Since ABC in [27] only reported results on474

Set I and some instances of Set II, this comparison is limited to these two475

benchmark sets. From Table B.1, we observe that ITPLS globally competes476

well with the two ABC implementations, which, however, converge faster than477

ITPLS on several small instances of Set I. Notice that our 2.3GHz processor478

is slower than the 3.4GHz processor used to run the ABC algorithm in [27].479

To sum, our ITPLS algorithm is highly competitive compared with all exist-480

ing approaches and its advantage is best demonstrated on medium and large481

instances. In particular, ITPLS is able to obtain new record-breaking results482

(new upper bounds) for 4 instances of Set II and 18 instances of Set III.483

4.5 Convergence Analysis484

To study the behaviors of ABC [27] and ITPLS throughout the execution, we485

perform an experiment to obtain the running pro�les of the two algorithms486

on four representative instances of Set II (gr202-12, gr229-30, gr431-12, gr666-487

20). To eliminate the possible in�uence of randomness, we ran each algorithm488

20 times to solve each instance with the cuto� time of 600 seconds per run,489

and record the best objective values during the process. Fig. 5 illustrates490

the running pro�les which show how the average best objective values found491

evolve with the running time. We notice that the two algorithms are able to492

improve the solution quality quickly in the beginning (during the �rst 100 to493

150 seconds), but ABC converges more quickly. However, ITPLS has generally494

a better performance on the long term. Indeed, ABC began to slow down or495

even stagnate on the best solution after 150 seconds, while ITPLS continued496

its search to �nd still better solutions. This experiment indicates that ABC497

converges faster than ITPLS, but ITPLS can bene�t more run time to �nd498

better solutions.499
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Fig. 5. Convergence charts (running pro�les) of ITPLS and ABC (our implementa-
tion of [27]) for solving four representative instances of Set II (gr202-12, gr229-30,
gr431-12, gr666-20). The results were obtained from 20 independent executions of
each compared algorithm

4.6 Additional Computational Results of ITPLS500

In this section, we are interested in the following question. Can we use our501

ITPLS algorithm as a post-optimizer to further improve high-quality solutions502

provided by another method? Such a study is relevant and allows us to test503

the ability of an algorithm to boost another powerful method [22].504

For this purpose, we choose solutions achieved by the ABC algorithm of [27],505

which proves to be among the best performing algorithms. For this experiment,506

we disabled, in ITPLS, its greedy randomized initialization procedure of Sec-507

tion 3.3 and ran, under the same conditions as before, the algorithm with the508

best solution from ABC as its starting solution (denoted by ABC+ITPLS).509

The cuto� time of ABC+ITPLS is thus twice that of ITPLS. Since the in-510

stances of Set I are rather easy, we conducted this experiment only on Sets II511

and III. The results are reported in Tables 4 whereGapITPLS = (FITPLS+ABC−512

FITPLS)/FITPLS × 100 and GapABC = (FITPLS+ABC − FABC)/FABC × 100,513

while the p-values from the Wilcoxon signed-rank test for di�erent pairwise514

comparisons are shown in Table 5.515
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Table 4
Computational results of ABC+ITPLS on Sets II and III.

ABC+ITPLS

Instance Fbest Favg σF GapABC GapITPLS

Set II

gr202-12 99871 99925.45 100.37 0.00 0.00

gr202-25 173439 173558.35 52.25 -0.06 0.01

gr202-35 233749 233811.8 64.38 0.00 0.00

gr229-10 222167 222330.15 150.73 0.00 0.00

gr229-15 264146 264146 0 0.00 0.00

gr229-20 319669 319669 0 0.00 0.00

gr229-30 406664 406851.05 236.23 0.00 0.00

gr431-12 249031 249598.15 277.54 0.00 -0.16

gr431-25 348056 348419.15 205.6 0.00 -0.04

gr431-40 416189 416749.45 245.35 0.00 -0.09

gr666-10 388344 390898.4 1597.63 -0.47 -0.32

gr666-15 448240 449287.7 526.7 -0.08 0.00

gr666-20 520245 522339.15 922.95 -0.37 -0.17

gr666-30 651767 652998.7 784.45 -0.13 -0.01

Avg. 338684.07 339327.32

Set III

pr1002-5 316436 317180.85 534.12 0.00 -0.68

pr1002-10 381977 382711 417.75 -0.06 -0.30

pr1002-20 516238 517357.7 537.22 0.00 -0.32

pr1002-30 663247 665439.75 733.72 -0.21 -0.16

pr1002-40 805650 806890.45 971.64 -0.05 -0.04

fnl2461-3 109381 109956.25 268.56 -4.21 -0.57

fnl2461-6 118480 118880.45 350.81 -3.13 -0.03

fnl2461-12 143763 144287.4 306.39 -1.40 -0.87

fnl2461-24 221212 221421.95 159.32 -0.56 -0.13

fnl2461-30 267296 267498.5 156.51 -0.42 -0.02

fnl3461-3 156129 156850 335.96 -3.82 -0.40

fnl3461-6 165021 165474.75 329.31 -3.36 -0.26

fnl3461-12 187969 188572.1 326.99 -2.54 -0.13

fnl3461-24 264423 264917.85 224.25 -0.85 -0.25

fnl3461-30 307406 307589.65 137.97 -0.43 -0.05

fnl3461-40 384715 384817.3 49.5 -0.19 -0.11

pla5397-20 38144800 38210130 39590.88 -0.50 -0.49

pla5397-30 51180300 51216895 16850.28 -0.23 -0.31

pla5397-40 64199900 64267840 40279.67 -0.32 -0.13

pla5397-50 73996500 74001165 3625.53 -0.02 -0.07

pla5397-60 85269500 85282115 9904.29 -0.04 -0.06

pla6397-20 36161900 36247120 62012.04 -1.39 -0.67

pla6397-30 47419400 47479965 26265.17 -0.57 -0.28

pla6397-40 56677400 56746670 36123.05 -0.48 -0.32

pla6397-50 67222700 67271750 27741.9 -0.29 -0.19

pla6397-60 74850900 74906385 24934.32 -0.30 -0.18

pla7397-20 41464300 41658850 137498.13 -1.89 -0.81

pla7397-30 52813400 53010650 86252.3 -1.56 -0.70

pla7397-40 65075300 65234890 67013.38 -1.17 -0.56

pla7397-50 76554400 76635565 55852.77 -0.83 -0.19

pla7397-60 86382900 86484395 58943.59 -0.76 -0.28

Avg. 29755579 29795943
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The results show that ITPLS can greatly raise the quality of the solutions516

provided by ABC in terms of the best and the average objective values and517

performs better than ITPLS with its greedy randomized initialization. The518

p-values from the Wilcoxon signed-rank test indicate that the improvements519

are statistically signi�cant. This experiment demonstrates that ITPLS can be520

bene�cially combined with other algorithms to �nd high-quality solutions that521

cannot be discovered by running the underlying algorithms separately.522

Table 5
Statistical results (p-values) from the Wilcoxon signed-rank test with a con�dence
level of 95% of di�erent pairwise comparisons for the three benchmark sets
Algorithm pair Set I Set II Set III

Fbest Favg Fbest Favg Fbest Favg

ITPLS vs ABC 1 1 0.3125 0.9460 0.0012 0.0599

ABC+ITPLS vs ABC - - 0.0234 0.0017 1.17E-06 1.17E-06

ABC+ITPLS vs ITPLS - - 0.0391 1.22E-04 7.89E-06 3.62E-04

To push this study even further, we performed a complementary experiment to523

investigate the in�uence of the initial solution on the performance of ITPLS.524

For this purpose, we replaced the greedy randomized initialization procedure of525

ITPLS by ABC (denoted by ABC+ITPLS). For this experiment, we adopted526

the same experimental protocol of Section 4.2. Since ABC converges faster527

than ITPLS, we only assigned a fraction of the total run time to ABC and528

used the remaining time to run ITPLS. We experimented two cases where529

ABC was given the �rst 10% and 20% of the total run time, respectively. We530

use ITPLS+ABC(1) and ITPLS+ABC(2) to represent these two cases. We531

conducted this experiment only on Sets II and III since Set I is too easy for532

this study. Computational results are illustrated in Table C.1, where Gap =533

(FITPLS+ABC − FITPLS)/FITPLS × 100, while the p-values from the Wilcoxon534

signed-rank test for di�erent pairwise comparisons are shown in Table C.2.535

The results show that with the same run time, the combined use of ABC536

and ITPLS can reach better results than ITPLS alone in terms of the best537

and average values, especially for instances of Set III. In other words, high-538

quality initial solutions can help ITPLS to �nd still better solutions. The p-539

values from the Wilcoxon signed-rank test indicate that the improvements are540

statistically signi�cant. One notices that the results of ABC+ITPLS(2) are541

better than ABC+ITPLS(1). Thus, ITPLS could be bene�cially combined542

with other algorithms to �nd high-quality solutions that cannot be accessed543

by running the underlying algorithms separately.544
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5 Conclusions545

We introduced the iterated two-phase local search algorithm for the challeng-546

ing colored traveling salesman problem which has a number of real appli-547

cations. The proposed algorithm relies on a combination of a local optima548

exploration phase and a local optima escaping phase. The local optima ex-549

ploration phase is responsible for �nding solutions of increasing quality by550

alternating inter-route optimization between routes and intra-route optimiza-551

tion of individual route, while the local optima escaping phase uses a solution552

destruction-reconstruction procedure to create new starting solutions for the553

local optima exploration phase.554

Computational results of the proposed algorithm on three sets of 65 bench-555

mark instances from the literature demonstrated its e�ectiveness and com-556

petitiveness compared to the existing methods. Especially, the algorithm was557

able to update the previous best-known results (improved upper bounds) for558

22 instances (4 instances in Set II and 18 instances in Set III). These new559

upper bounds can be used by researchers for future research on CTSP (e.g.,560

as reference values for new algorithm assessment, as initial bounds for exact561

algorithms). Moreover, given that CTSP can model several real problems, the562

code of our algorithm (that will be publicly available) can help practitioners563

to solve these practical applications.564

For future research, there are several possibilities. First, given that existing565

studies on CTSP mainly focused on bio-inspired population frameworks such566

as genetic algorithms, ant colony optimization, and arti�cial bee colony, this567

work opens the way for designing e�ective algorithms based on other search568

frameworks such as local search and hybrid methods. Second, since CTSP569

is tightly related to other routing problems, it would be interesting to ver-570

ify whether proven methods developed for these related problems could be571

e�ective for solving CTSP. Third, the basic idea of the proposed approach,572

in particular, mixing inter-route optimization and intra-route optimization is573

of general nature. It is worth investigating similar ideas to solve other rout-574

ing problems such as the multiple traveling salesmen problem [2,11] and the575

colored balanced traveling salesman problem [6]. Finally, to the best of our576

knowledge, no exact algorithm exists for CTSP in the literature. There is thus577

much room for research in this direction.578
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A Streamlined computation technique682

This Appendix presents the streamlined computation technique for fast up-683

dates of the move gain matrix δ used by the solution-based tabu search proce-684

dure. In this procedure, all neighbor solutions are represented by s⊕Insert(·)685

where s is the current solution. The cost variation between the two solu-686

tions (i.e., the move gain of Insert(k1, i1, k2, i2)) is given by δ(k1, i1, k2, i2) =687

F (s⊕ Insert(·))− F (s). The move gain δ(k1, i1, k2, i2) can be calculated e�-688

ciently by Eq. (A.1),689

δ(k1, i1, k2, i2) = ci1i2 + ci2in1 − ci1in1 + cip2in2 − cip2i2 − ci2in2 (A.1)
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where ip2 and in2 are the previous and next city of i2. The matrix δ saves the690

move gains of all neighbor solutions s ⊕ Insert(·). Computing δ(k1, i1, k2, i2)691

with Eq. (A.1) needs O(1) time, instead of O(n) by Eq. (8).692

However, the solution-based tabu search procedure needs to select the best693

eligible neighbor solution to update the current solution, and this requires694

O(|S| ×n) time by computing δ for all neighbor solutions based on Eq. (A.1).695

To accelerate this computation and update of move gains, we adapted the696

streamlined technique [10], which was initially developed for the graph coloring697

problem.698

During the �rst step of the solution-based tabu search procedure, we �ll the699

gain matrix δ(·) for all neighbor solutions of s⊕Insert(·). If Insert(k1, i1, k2, i2)700

is performed during the search, we just need to update parts of the gain ma-701

trix. As shown in Eqs. (A.2-A.5), the gain matrix δ(·) for Insert(k3, i3, k, i)702

can be updated after performing Insert(k1, i1, k2, i2) as follows.703

δ(k3, i3, k, i) =
(
ci3i + ciin3 − ci3in3 + cipin − cipi − ciin

k3 ∈ {k1, k2}, k ∈M\{k1, k2}, i ∈ S, i3 ∈ {i1, i2, ip2})
(A.2)

δ(k3, i3, k, i) =
(
ci3i + ciin3 − ci3in3 + cipin − cipi − ciin

k3 ∈ {k1}, k ∈ {k2}, i3 ∈ {i, i2}, i ∈ S\{ip2, in2})
(A.3)

δ(k3, i3, k, i) =
(
ci3i + ciin3 − ci3in3 + cipin − cipi − ciin

k3 ∈ {k2}, k ∈ {k1}, i3 ∈ {ip2}, i ∈ S\{i1, i2, in1})
(A.4)

δ(k3, i3, k, i) =
(
ci3i + ciin3 − ci3in3 + cipin − cipi − ciin

k3 ∈M\{k}, k ∈ {k1k2}, i3 ∈ V, i ∈ {i1, i2, in1 i
p
2, i

n
2})

(A.5)

The time complexity for these operations is O(3 × S), O(2 × |sk|), O(|sk1|),704

O(5 × n) respectively. Therefore, the time complexity of updating the move705

gain matrix becomes O(n), which is signi�cantly smaller than O(|S| × n).706

This technique thus accelerates greatly the update of the move gain matrix707

by avoiding many unnecessary computations.708

B Comparative results under the cuto� times of [27]709

This Appendix (Table B.1) shows detailed results of ABC [27], our implemen-710

tation of [27] and ITPLS on 34 instances of Sets I and II under the cuto�711

times (see column `t(s)') used in [27]: 1 second for instances with 21 − 41712
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cities, 5 seconds for instances with 51−101 cities and 60 seconds for instances713

with 202− 666 cities. ABC in [27] was ran on a 3.4GHz processor, while our714

implementation of ABC and ITPLS were ran on a slower 2.3GHz processor.715

Table B.1
Comparative results of ABC [27] and ABC (our implementation of [27]) and ITPLS
under the stopping conditions of ABC [27]. Unavailable results are indicated by the
symbol `-' while the best results of the compared methods are highlighted in bold.

ABC [27] ABC (our implementation of [27]) ITPLS (this work)

Instance t(s) fbest favg fbest favg σ fbest favg σ Gap(%)

eil21-2 1 144.92 144.92 144.92 144.92 0.00 144.92 149.50 3.13 0.00

eil21-3 1 157.48 157.48 157.48 157.48 0.00 157.48 160.62 2.71 0.00

eil31-2 1 259.36 259.36 259.36 261.01 0.75 262.32 266.86 3.53 1.14

eil31-3 1 295.31 295.31 295.31 295.31 0.00 295.36 300.20 2.88 0.02

eil31-4 1 315.97 315.97 315.97 315.97 0.01 316.02 319.49 3.06 0.02

eil41-2 1 346.24 346.24 346.24 347.68 1.17 347.86 354.94 5.63 0.47

eil41-3 1 367.84 367.84 368.81 369.32 0.72 367.84 374.90 6.04 0.00

eil41-4 1 392.14 392.14 392.14 393.20 0.62 392.49 398.75 3.73 0.09

eil51-2 5 478.08 478.08 478.08 478.08 0.00 478.08 478.08 0.00 0.00

eil51-3 5 469.50 469.50 469.50 469.50 0.00 469.50 469.50 0.00 0.00

eil51-4 5 489.99 489.99 489.99 489.99 0.00 489.99 489.99 0.00 0.00

eil51-5 5 525.98 525.98 525.98 525.98 0.00 525.98 525.98 0.00 0.00

eil76-3 5 593.28 593.28 593.28 593.28 0.00 593.28 594.07 1.41 0.00

eil76-4 5 603.79 603.79 603.79 603.79 0.00 603.79 603.82 0.13 0.00

eil76-5 5 651.99 651.99 651.99 651.99 0.00 651.99 652.91 0.95 0.00

eil76-6 5 672.73 672.73 672.73 672.73 0.00 672.73 673.15 1.29 0.00

eil101-4 5 726.82 726.82 726.82 726.82 0.00 726.82 727.08 0.63 0.00

eil101-5 5 779.15 779.15 779.15 779.15 0.00 779.15 779.15 0.25 0.00

eil101-6 5 759.55 759.55 759.55 759.55 0.00 759.55 759.55 0.00 0.00

eil101-7 5 798.85 798.85 798.85 798.85 0.00 798.85 798.85 0.00 0.00

gr202-12 60 - - 100032.00 100173.10 60.41 99871.00 100073.55 158.65 -0.16

gr202-25 60 - - 173547.00 173796.90 45.77 173427.00 173566.25 85.35 -0.07

gr202-35 60 - - 233749.00 234093.75 38.01 233749.00 234017.35 109.00 0.00

gr229-10 60 222167.00 222408.40 222167.00 222722.20 170.41 222279.00 222573.50 170.83 0.05

gr229-15 60 264146.00 264225.20 264146.00 265178.85 361.58 264146.00 264280.25 324.14 0.00

gr229-20 60 319669.00 319669.90 319669.00 320298.00 288.67 319669.00 319990.30 493.09 0.00

gr229-30 60 406664.00 406768.50 406664.00 408154.75 162.49 406664.00 407181.20 382.65 0.00

gr431-12 60 - - 250535.00 251674.25 577.30 249562.00 251836.00 2117.36 -0.39

gr431-25 60 - - 349644.00 350708.30 519.31 349400.00 351285.15 1374.60 -0.07

gr431-40 60 - - 417773.00 419297.90 682.31 417161.00 420031.25 2059.85 -0.15

gr666-10 60 391831.00 393949.00 396752.00 401124.95 1680.20 399376.00 406624.00 3818.98 1.93

gr666-15 60 448981.00 449978.60 452475.00 454511.50 828.90 449369.00 458238.85 5616.10 0.09

gr666-20 60 522403.00 523358.60 527001.00 528630.21 940.14 523747.00 527617.42 3361.88 0.26

gr666-30 60 653224.00 653857.20 656486.00 658433.30 1047.39 652926.00 657084.80 3088.77 -0.05

Avg. - - - 140602.06 141136.25 217.83 140328.82 141302.27 682.25 0.09
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C Additional comparative results716

This Appendix (Tables C.1 and C.2) shows comparative results of ABC+ITPLS(1)717

and ABC+ITPLS(2) on Sets II and III. The cuto� time per run for both al-718

gorithms was set to be same as ITPLS. ABC was given the �rst 10% and 20%719

of the total run time, while the remaining time was allocated to ITPLS.720
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Table C.2
Statistical results (p-values) from the Wilcoxon signed-rank test with a con�dence
level of 95% of di�erent pairwise comparisons for the three sets.
Algorithm pair set I set II set III

Fbest Favg Fbest Favg Fbest Favg

ITPLS vs ABC 1 1 0.3125 0.9460 0.0012 0.0599

ITPLS vs ABC+ITPLS(1) - - 0.3125 0.8552 1.30E-06 1.58E-06

ITPLS vs ABC+ITPLS(2) - - 0.8438 0.6698 2.56E-06 1.58E-06

ABC vs ABC+ITPLS(1) - - 0.25 0.7354 3.75E-06 4.97E-06

ABC vs ABC+ITPLS(2) - - 0.1289 0.7354 3.10E-06 4.53E-06
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