
Hybrid search with neighborhood reduction for

the multiple traveling salesman problem

Pengfei He and Jin-Kao Hao ∗

LERIA, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers, France

Computers & Operations Research
https://doi.org/10.1016/j.cor.2022.105726

Abstract

We present an e�ective hybrid algorithm with neighborhood reduction for solving the
multiple traveling salesman problem (mTSP). This problem aims to optimize one of
the two objectives: to minimize the total traveling distance (the minsum mTSP) or to
minimize the longest tour (the minmax mTSP). The proposed algorithm hybridizes
inter-tour optimization with an e�cient neighborhood search based on tabu search
and intra-tour optimization using the traveling salesman heuristic EAX. A dedicated
neighborhood reduction strategy is introduced to avoid the examination of non-
promising candidate solutions and thus speed up the neighborhood search. Results of
extensive computational experiments are shown on 41 popular instances from several
sources and 36 new large instances. Comparisons with �ve state-of-the-art methods
in the literature demonstrate a high competitiveness of the proposed algorithm.
Additional experiments on applying a classical TSP heuristic to the minsum mTSP
instances show excellent results.

Keywords: Traveling salesman; Multiple traveling salesman; Hybrid heuristic; Neigh-
borhood reduction.

1 Introduction

The multiple traveling salesman problem (mTSP) generalizes the popular NP-
hard traveling salesman problem (TSP) with multiple salespersons. Formally,
the mTSP is the following graph theoretic problem. Let G=(V, A) be a graph
with vertex set V = {0, 1, . . . , n} and a set of arcs A, where 0 of V is the depot
and the remaining vertices N = {1, . . . , n} represent n cities. Let C = (cij) be
a non-negative cost (distance) matrix associated with A, which satis�es the

∗ Corresponding author.
Email addresses: pengfeihe606@gmail.com (Pengfei He),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Elsevier 10 November 2022

triangle inequality (cij + cjk > cik for any i, j, k ∈ V and i 6= j 6= k). The
matrix C is said to be symmetric when cij = cji, (i, j) ∈ A and asymmetric
otherwise. A feasible solution is a partition of the set of cities N intom distinct
Hamiltonian tours {r1, r2, . . . , rm}, such that each tour rk (k ∈ {1, · · · ,m})
starts and ends at the depot, and includes at least one city. The minsum
mTSP, �rst proposed in [39], is to minimize the total traveling tour-length of
a given mTSP instance and can be described by the following mathematical
model [10].

(minsum mTSP) min F (ϕ) =
∑m
k=1 TSP (rk)

subject to ∪mk=1 rk = V

rk ∩ rk′ = {0}, k 6= k′, 1 ≤ k, k′ ≤ m

(1)

where ϕ = {r1, r2, . . . , rm} is a feasible solution with rk (k ∈ {1, · · · ,m})
representing the kth tour composed of the vertices visited by the kth salesman,
and TSP (rk) is the length of the tour rk. It is easy to observe that the minsum
mTSP becomes the conventional TSP when m = 1 (only one salesman).

By minimizing the total tour-length of all the salesmen, the minsum mTSP
aims to optimize the total e�ciency of a solution. In some contexts, it is useful
to consider the equity criterion by avoiding excessive tour-length di�erences
among the salesmen. To this end, the minmax mTSP was introduced in [13],
which minimizes the longest tour and can be formulated by the mathematical
model as follows [10].

(minmax mTSP) min F (ϕ) = maxk∈{1,··· ,m}{TSP (rk)}

subject to ∪k∈{1,··· ,m} rk = V

rk ∩ rk′ = {0}, k 6= k′, 1 ≤ k, k′ ≤ m

(2)

From an application perspective, these mTSP models are useful for a number
of real problems that cannot be formulated conveniently with the classical
TSP model [10]. Representative examples include news paper delivery [46],
hot rolling scheduling [41], 3D path planning [12], multi-unit service schedul-
ing [9], path planning for robot and UAV [48,23], container drayage services
[49,36], and harvesters scheduling [19,18]. Additional practical problems can
be formulated by extended mTSP variants [5,29,33].

On the other hand, as a generalization of the NP-hard TSP problem, the
mTSP is computationally challenging from the perspective of optimization.

Due to its theoretical and practical interest, the mTSP has received much

2

attention from various �elds including engineering, operations research and
computer science. There are exact algorithms for the minsum mTSP, includ-
ing a branch-and-bound algorithm [16] and a cutting plane algorithm [24].
Optimal results were reported on instances with up to 500 vertices and 10
salesmen. There are also exact algorithms for variants of the minmax mTSP.
For example, a branch-and-cut algorithm [1] was presented to solve a minmax
vehicle routing problem on instances up to 120 cities and 4 vehicles. Benders
decomposition algorithms [5] were proposed to optimally solve the mTSP with
load balancing on instances with up to 171 cities and 10 salesmen. Given the
NP-hard nature of the problem, a number of heuristic and metaheuristic al-
gorithms have been developed to �nd suboptimal solutions for large instances
that cannot be optimally solved, as reviewed in Section 2.

We observe that computational results have been improved continually with
the introduction of new solution approaches and algorithms. Meanwhile, our
literature review (see Section 2) indicates that existing methods lack stability
and their performances typically degrade when large instances are solved (e.g.
n > 1000). Moreover, some algorithms were designed only for one mTSP
objective (minsum or minmax).

In this work, we aim to advance the state-of-the-art of solving large-scale
instances of the mTSP for both objectives. For this purpose, we introduce
an e�ective hybrid search algorithm that performs well especially on large
mTSP instances. The proposed algorithm bene�ts from the symbiosis of inter-
tour optimization and intra-tour optimization. The inter-tour optimization
uses neighborhood search to improve the solution by exchanging information
between two tours (via the insert and cross-exchange operators). The intra-
tour optimization applies a TSP method (the EAX heuristic [30]) to keep
each individual tour as short as possible. We carry out extensive experiments
to show the competitiveness of the proposed algorithm. We perform additional
experiments to assess the usefulness of its key ingredients. Finally, we present
for the �rst time computational experiments of applying the TSP heuristic
EAX to the minsum mTSP, and draw conclusions regarding the e�ectiveness
of this approach.

The remainder of this paper is organized as follows. Section 2 provides a
literature review on heuristic algorithms for the mTSP. Section 3 presents the
details of the proposed algorithm. Section 4 shows computational results and
comparisons. Section 5 investigates key ingredients of the proposed algorithm.
Section 6 draws conclusions with research perspectives.

2 Literature review

In this section, we provide a literature review of the most representative
heuristic algorithms for the mTSP. These algorithms are divided into three

3

categories: population-based evolutionary algorithms, swarm intelligence algo-
rithms and neighborhood-based local optimization. The reviewed algorithms
are summarized in Table 1, where �both" means the corresponding algorithm
solves both the minsum and minmax mTSP. For a comprehensive survey of
exact and heuristic methods, the reader is referred to [4] and [10].

Table 1
Summary and taxonomy of representative heuristic algorithms for the mTSP
Algorithm Population-based evo-

lutionary algorithms
Swarm intelligence
algorithms

Neighborhood-
based local search

Problem solved

Carter and Ragsdale [8] X both

Brown et al. [7] X both

Singh and Baghel [37] X both

Yuan et al. [47] X both

Wang et al. [45] X minmax

Karabulut et al. [22] X both

Pan and Wang [31] X both

Liu et al. [26] X both

Pandiri and Singh [32] X both

Lu and Yue [28] X minmax

Soylu [38] X both

Penna et al. [34] X minsum

Uchoa et al. [43] X minsum

Various population-based evolutionary algorithms have been proposed for
solving the mTSP. In 2006, Carter and Ragsdale [8] presented a grouping
genetic algorithm for the mTSP using a two-part chromosome to represent a
solution. Compared to two previous chromosome representations, the two-part
chromosome representation avoids redundant solutions and thus reduces the
solution space. This work also introduced a set of benchmark instances with
50-150 cities and 3-30 salesmen, and showed comparisons with genetic algo-
rithms using other representations. Similarly, in 2007, Brown et al. [7] showed
a follow-up study [8] of using another two-part chromosome representation
where both real-valued genes and integer-valued genes are used. Another group
of benchmark instances was proposed for their computational studies. Subse-
quently, in 2009, Singh and Baghel [37] presented another grouping genetic
algorithm with the so-called m-tour chromosome representation, where each
tour is represented by an array and no ordering is imposed among tours. This
algorithm employed a steady-state population replacement method, and out-
performed the genetic algorithms of [8,7] in terms of the minsum mTSP and
the minmax mTSP. In 2013, Yuan et al. [47] investigated a speci�c crossover
operator (called TCX) based on the two-part chromosome of [8]. The proposed
crossover aims to better preserve building block information during solution
recombination while ensuring a good diversity. They showed a superior per-
formance of their TCX-based genetic algorithm over genetic algorithms using
three other crossover operators including the algorithm of [8]. In 2017, Wang et

4

al. [45] designed a memetic algorithm (MASVND) for the minmax mTSP. The
algorithm employs recombination and mutation operators based on spatial dis-
tribution [32] and incorporates four neighborhood search operators (one-point
move, Or-opt2 move, Or-opt3 move and Or-opt4 move) for the variable neigh-
borhood descent. They introduced a new set of (large) benchmark instances
and assessed MASVND for the minmax mTSP compared to ABC [32], IWO
[32] and GVNS [38]. The results indicated that MASVND outperforms its
competitors on large instances (with 532�1173 cities), but performs worse
than IWO on small instances (with 51�318 cities). In 2021, Karabulut et al.
[22] proposed an evolution strategy (ES) approach for solving the mTSP and
multi-depots mTSP with non-predetermined depots. This approach adopts a
self-adaptive Ruin and Recreate heuristic to generate o�spring solutions, and
a local search, including 3-opt, to further enhance the solution quality. The
computational experiments showed the competitiveness of this approach on
the minsum and minmax mTSP instances.

Another popular approach for solving the mTSP concerns swarm intelligence
methods. In 2006, Pan and Wang [31] presented a basic ant colony optimiza-
tion (ACO) algorithm and showed a limited comparison with a genetic algo-
rithm. In 2009, Liu et al. [26] exposed another ACO algorithm which inte-
grates local search for search intensi�cation. They showed competitive results
for the minsum mTSP and the minmax mTSP compared to a genetic algo-
rithm on some benchmark instances. In 2019, Lu and Yue [28] introduced a
mission-oriented ant-team ACO algorithm and reported comparative studies
with previous algorithms on the instances of [8]. In 2015, Pandiri and Singh
[32] presented several algorithms based on arti�cial bee colony (ABC) and
invasive weed optimization (IWO) for the minsum mTSP and the minmax
mTSP, which use local search for the post-optimization. There are two ver-
sions of the ABC algorithm, where neighboring solutions are generated from
the original solution based on di�erent distance strategies. IWO can be con-
sidered as a reinforced ABC algorithm because it generalizes ABC, by visiting
more neighboring solutions at each generation. These algorithms showed ex-
cellent performances and updated a majority of the best results of previous
algorithms for the benchmark instances of [8,7,37].

Compared to the aforementioned approaches, there are relatively few studies
using neighborhood-based local optimization to solve the mTSP, among which
the general variable neighborhood search heuristic (GVNS) presented by Soylu
[38] is a representative example. Based on the m-tour solution representation,
this algorithm applies six neighborhood search operators (one-point move,
two types of Or-opt move, two-point move and three-point move, as well as
2-opt) to �nd local optima and uses a random shaking method to escape local
optimum traps. Experimental results indicated that the algorithm globally
competes well with previous methods, except IWO [32] which showed superior
results on the instances of [8].

5

One notices that iterated local search (ILS) algorithms were designed for the
related capacitated vehicle routing problem (CVRP), that becomes the min-
sum mTSP when the capacity is set to 1. In particular, Penna et al. [34]
proposed an ILS algorithm which uses a variable neighborhood descent proce-
dure, with a random neighborhood ordering, in the local search phase. Uchoa
et al. [43] tested an ILS-based matheuristic algorithm on a set of new CVRP
benchmark instances and reported several good results for the CVRP with ca-
pacity of 1, which is equivalent to the minsum mTSP. Local search algorithms
were also proposed for the balanced mTSP [14] and balanced dynamic mTSP
[15].

Among the reviewed studies, the following algorithms hold the best-known re-
sults on the commonly used mTSP benchmark instances introduced in [8,7,45]:
ABC(VC), IWO [32], GVNS [38], MASVND [45] (for the minmax mTSP only)
and ES [22]. Thus they can be considered to be the state-of-the-art methods
for solving the mTSP, and are used as the main reference algorithms for the
computational studies in this work. Nevertheless, none of the existing mTSP
algorithms can be considered as the most e�ective for all benchmark instances
for both the minsum and minmax objectives of the mTSP.

According to the reviewed studies, we observe that most existing mTSP al-
gorithms are based on population-based and swarm intelligence approaches.
These algorithms have fast convergences, and typically performed well on
small instances. However, they showed inferior performances on large instances
[45,22]. To advance the state-of-the-art of solving the mTSP, especially on large
instances, this work introduces a hybrid algorithm that combines an e�cient
neighborhood search (for inter-tour optimization) and a traveling salesman
heuristic (for intra-tour optimization).

Finally, it is known that the minsum mTSP can be conveniently transformed
to the conventional TSP [21,35]. For a minsum mTSP instance G with n
vertices and m tours, this transformation leads to an equivalent TSP instance
GT with n + m − 1 vertices. GT is an extension of G with m − 1 additional
vertices such that each new vertex is a duplicate of the depot in G and each
pair of depots have a large enough (e.g., in�nite) distance between them. Then
a mTSP solution of G with m tours (m > 1) can be obtained from a TSP
solution of GT (one single tour) by splitting the TSP solution of GT with each
depot as the delimiter. As the result, the minsum mTSP can be solved by any
TSP algorithm in principle. However, this approach has not been investigated
experimentally in the literature. We �ll the gap in this study by reporting the
�rst computational results obtained by a TSP heuristic algorithm. We also use
these results as additional references to assess our algorithm on the minsum
mTSP instances.

6

3 Hybrid Search with Neighborhood Reduction

This section introduces the hybrid search algorithm with neighborhood reduc-
tion (HSNR) designed to solve the minsum mTSP and the minmax mTSP.
The general procedure is �rst exposed, followed by the detailed presentation
of the search components.

3.1 General procedure

HSNR is a hybrid algorithm combining inter-tour optimization by exchanging
information between tours and intra-tour optimization by optimizing individ-
ual tours. The inter-tour optimization component aims to improve the solution
by relocating cities among di�erent tours, while the intra-tour optimization
component tries to improve an individual tour by considering it as a TSP
tour. By alternating these two complementary optimization components, the
algorithm is o�ered the promise of exploring the search space e�ectively. To
ensure a high computational e�ciency, HSNR additionally adopts a speci�c
neighborhood reduction technique to accelerate the examination of candidate
solutions.

As shown in Algorithm 1, starting from a feasible solution given by the initial-
ization procedure (Section 3.2) (line 2), the algorithm performs a number of
iterations to improve the current solution (ϕ) (lines 4-8). At each iteration, the
solution ϕ is �rst improved by tabu search (Section 3.3.4) with the insert op-
erator (Section 3.3.1) and the cross-exchange operator (Section 3.3.2), where
cities are displaced among di�erent tours. Once this insert and cross-exchange
based inter-tour optimization is exhausted, the intra-tour optimization using
the TSP heuristic EAX (Section 3.4) is triggered to improve each individ-
ual tour that was previously modi�ed by insert and cross-exchange during
inter-tour optimization. The above steps are then iterated until the stopping
condition (typically a cuto� time limit) is met. During the search process, the
best solution found (ϕ∗) is updated whenever it is needed and �nally returned
at the end of the algorithm.

3.2 Initial solution

The initialization procedure of HSNR �rst constructs µ good candidate so-
lutions and then selects the best one as the starting solution of the HSNR
algorithm. To generate each of these µ solutions, the depot 0 and a random
unassigned city in N are used to initiate each of the m tours of the solu-
tion. Then the remaining cities (denoted by N−) are added one by one and
in a random order into the solution according to a greedy heuristic such that
each city is inserted at the best position that increases the least either the
total tour-length (for the minsum mTSP) or the current shortest tour (for the

7

Algorithm 1: Main framework of HSNR for the mTSP

Input: Instance I, number of initial solutions µ, parameter τ , depth of
tabu search γ, tabu tenure parameter β;

Output: The best solution ϕ∗ found so far;
1 begin
2 ϕ← Initialization(I, µ); /* Generate an initial solution,

Section 3.2 */

3 ϕ∗ ← ϕ; /* ϕ∗ records the best solution found so far */

4 while Stopping condition is not met do
5 < ϕ,ϕ∗, R >← Insert_based_TS(ϕ, ϕ∗, γ, β); /* Inter-tour

optimization by tabu search with the insert operator,

Sections 3.3.1 & 3.3.4 */

6 < ϕ,ϕ∗, R >← CrossExchange_based_TS(ϕ, ϕ∗, γ, β, τ);
/* Inter-tour optimization by tabu search with the

cross-exchange operator, Sections 3.3.2 & 3.3.4 */

7 ϕ← EAX(ϕ,R); /* Intra-tour optimization with the TSP

heuristic EAX, Section 3.4 */

8 end
9 return ϕ∗;

10 end

minmax mTSP).

Speci�cally, in the case of the minsum mTSP, a random tour rk is picked �rst
among the m initial tours including only the depot and another city. Then the
unassigned cities in N− are randomly considered one after the other and each
selected city is greedily inserted into the tour rk at the position that leads
to the smallest increase of the minsum objective. For the minmax mTSP, the
unassigned cities are also randomly considered one by one. However, given
that its objective is to minimize the longest tour, each selected city is inserted
into the current shortest tour rcs at the position with the least increase of
this shortest tour rcs. It is worth noting that for the minsum mTSP, the same
tour rk is used to host all the unassigned cities in N−, while for the minmax
mTSP, the shortest tour rcs used for each city insertion could change between
two successive iterations.

Finally, when all cities are assigned, a feasible solution is obtained. To raise
its quality, the solution is improved by the best improvement descent based
on the insert and cross-exchange operators (Sections 3.3.1 and 3.3.2), followed
by the optimization with the TSP heuristic EAX (Section 3.4).

8

3.3 Inter-tour optimization with insert and cross-exchange

The inter-tour optimization component of HSNR relies on the insert and cross-
exchange operators, which are popular for solving a variety of vehicle routing
problems (e.g., [2,40,44]). For the mTSP, the insert operator was previously
used in the GVNS algorithm [38] as one of its six move operators and the
MASVND algorithm [45] one of the four move operators. In this work, in
addition to the basic insert operator, we adopt for the �rst time the cross-
exchange operator for solving the mTSP. Compared to insert, cross-exchange
is a large neighborhood operator, which may help the algorithm to attain
solutions that cannot be accessed with the insert operator.

3.3.1 Insert

Let ϕ = {r1, r2, . . . , rm} be a candidate solution composed of m tours where
rk (k ∈ {1, · · · ,m}) represents the kth tour including the cities visited by the
kth salesman. For each city, the insert operator looks for the best alternative
position for the city with the minimal move gain (i.e., objective variation).
When all cities are examined, the best move involving a pair of cities a and πb
is identi�ed. Then the insert operator removes city a from tour ra and reinserts
a after city πb in rb (ra 6= rb). After that, tour ra is reconnected by linking
the city preceding a and the city succeeding a, while tour rb is updated by
removing the link between the city preceding b and b. Fig. 1 illustrates one
insert operation with the reconnection of the two impacted tours ra and rb.

a


b


a


b


a

b

a
r

b
r

Fig. 1. Illustrative example of the insert operator. Removed links are marked with
a cross and new links are marked in red.

Let ϕ′ be the neighboring solution that is obtained by applying the insert
operator to ϕ and NI(ϕ) be the induced neighborhood that comprises all the
neighboring solutions of ϕ. NI(ϕ) is bounded by O(n2) in size in the general
case because there are n2 pairs of cities.

For the minsum mTSP, this neighborhood is directly exploited by our algo-
rithm. However, for the minmax mTSP, given that the goal is to minimize the
longest tour, we limit the candidate cities to be moved by the insert operator
to those of the longest tour in ϕ. This naturally reduces the general neighbor-
hood NI(ϕ) to a much smaller neighborhood. In the HSNR algorithm, this
reduced NI(ϕ) neighborhood is used in the case of the minmax mTSP.

9

Given the solution ϕ and a neighboring solution ϕ′ generated by displacing
city a from tour ra to tour rb, and the move gain ∆ = F (ϕ) − F (ϕ′) (F is
the minsum or minmax objective function) is calculated as follows. For the
minsum mTSP, the move gain ∆ is computed by Eq. (3) in O(1) time.

∆ = cπaδa + cπba + cab − cπaa − caδa − cπbb (3)

where πa and δa are the city preceding and succeeding a in tour ra, respectively,
while πb and δb are the city preceding and succeeding b in tour rb, respectively.

For the minmax mTSP, ∆ is also obtained in constant time by Eq. (4).

∆ = max{F ′(ra), F ′(rb)} − F (ra), if rb = rs

∆ = max{F ′(ra), F ′(rb), F (rs)} − F (ra), if rb 6= rs

F ′(ra) = F (ra) + cπaδa − cπaa − caδa
F ′(rb) = F (rb) + cπba + cab − cπbb

(4)

where ra and rs are the longest tour and the second longest tour, respectively

3.3.2 Cross-exchange

Given a solution ϕ = {r1, · · · , rm}, the cross-exchange operator modi�es two
tours (say ra and rb) to generate a neighboring solution by removing four arcs
in ra and rb, and then adding four other arcs (see Fig. 2). Equivalently, a cross-
exchange operation can be viewed as exchanging a substring r̂a = (a, . . . , σa)
from ra and a substring r̂b = (b, . . . , σb) from another tour rb. Besides, one
of the two substrings is reversible when they are exchanged, as shown in Fig.
2 (right) where the substring r̂a = (a, . . . , σa) is reversed. Clearly, without
any additional condition, this operator can lead to an extremely large neigh-
borhood (denoted by NCE) due to the size of the two exchanged substrings,
making its exploration highly time-consuming.

To reduce the cross-exchange neighborhood to a reasonable size, we follow the
idea of [40] developed for the vehicle routing problem (VRP) and limit the
number of cities (the substring size) of the two candidate substrings r̂a and r̂b
to τ cities at most (i.e., |r̂a| ≤ τ and |r̂b| ≤ τ) where τ is a parameter. With
this constraint, the cardinality of NCE(ϕ) is bounded by O(n2 × τ 2) in the
general case.

Speci�cally, as shown in Fig. 2 (left), given a city a, a new neighbor in another
tour needs to be found. Let πb be such a neighbor. Suppose that (πb, a) is

10

a


b


a


b


a

b

a
r

b
r

a


b


a


b


a


b


a

b

a
r

b
r

a


b


Fig. 2. Illustrative example of the cross-exchange operator. The removed arcs are
marked with a cross and the added arcs are marked in red.

added as a new edge and the edge (πa, a) needs to be removed, since vertex
a can only have two adjacent vertices. For each determined pair of vertices
a and πb, the corresponding substrings r̂a and r̂b can consist of at most τ
consecutive cities (i.e., 1 ≤ |r̂a| ≤ τ and 1 ≤ |r̂b| ≤ τ). For a given pair
of vertices, there are τ 2 neighborhood solutions which need to be evaluated.
For the speci�c case where the substring r̂a only consists of a city (|r̂a|=1),
the size of r̂b can vary from 1 to τ (1 ≤ |r̂b| ≤ τ), and thus τ neighborhood
solutions need to be evaluated. Similarly, the size of substring r̂a can also vary
from 1 to τ . Therefore, once a pair of vertices is given, the two corresponding
substrings have τ 2 combinations, leading to τ 2 neighborhood solutions needed
to be evaluated. Furthermore, given that there are n2 pairs of vertices, NCE(ϕ)
is thus bounded by O(n2 × τ 2) in size. To explore the neighborhood NCE(ϕ),
the cross-exchange operator needs to identify, among all pairs of cities, the
best pair of cities, and then exchanges their corresponding substrings.

For the minsum mTSP, the move gain ∆ is computed by Eq. (5).

∆ = cπab + cπba + cσaδb + cσbδa − cπaa − cπbb − cσaδa − cσbδb (5)

For the minmax mTSP whose objective is to minimize the longest tour, one
of the two substrings is always selected from the longest tour. Let ra be the
longest tour. We �rst determine the start of substring r̂a as city a. Then, we
determine the start of the substring r̂b in another tour rb. Finally, the length
of each substring based on the minimal move gain ∆ is determined by Eq. (6),
where rs and rt are the second and third longest tours, respectively.

∆ = max{F ′
(ra), F

′
(rb), F (rs)} − F (ra), if rb 6= rs

∆ = max{F ′
(ra), F

′
(rb), F (rt)} − F (ra), if rb = rs

F
′
(ra) = F (ra) + cπab + F (r̂b) + cσbδa − cπaa − F (r̂a)− cσaδa

F
′
(rb) = F (rb) + cπba + F (r̂a) + cσaδb − cπbb − F (r̂b)− cσbδb

(6)

It is obvious that the move gain ∆ can be calculated in O(1) time for both

11

the minsum and minmax objectives.

By limiting the number of cities in the two candidate substrings using the τ pa-
rameter, the cross-exchange neighborhood is reduced to the size of O(n2×τ 2).
However, such a neighborhood is still too large to be e�ciently explored for
high n values. To an ensure high computational e�ciency of the proposed al-
gorithm, we introduce in Section 3.3.3 an additional neighborhood reduction
technique that allows to reduce drastically the neighborhood without scarify-
ing the search capacity of the algorithm. This technique is also applicable to
the insert neighborhood.

3.3.3 Neighborhood reduction

The di�culty of exploring the large cross-exchange neighborhood has been
recognized in the VRP communities for a long time. To cope with the di�-
culty related to large neighborhoods, neighborhood pruning techniques have
been introduced for the VRP, such as δ-nearest neighbors [3] and granular
neighborhoods [42]. Rather than examining the entire neighborhood, pruning
techniques limit the considered neighboring solutions to speci�cally identi�ed
(promising) solutions. Similar neighborhood reduction techniques have been
proposed to accelerate TSP algorithms for solving large instances. One popu-
lar technique is the α-nearness strategy [20] that was designed to improve the
computational e�ciency of the well known Lin-Kernighan (LK) heuristic for
the TSP [25] and was also applied to the VRP [2].

The α-nearness strategy is developed by Helsgaun [20] based on sensitivity
analysis using minimum spanning 1-trees and showing a high similarity be-
tween a minimum 1-tree and an optimal TSP solution (they typically have
70% to 80% of edges in common). In other words, edges that belong to a min-
imum 1-tree stand a good chance of also belonging to an optimal tour and vice
versa. Based on this, the α-nearness strategy uses minimum 1-trees to identify
a set of promising edges S that are more likely involved in the optimal TSP
solution. Given that the mTSP is an extension of the TSP, it is reasonable to
use minimum 1-trees as a nearness measure for the mTSP as well. As such,
the edges belonging to minimum 1-trees will be considered as promising in the
sense that they are highly probably part of the optimal solution of the mTSP.
Therefore, the set of promising edges S identi�ed by the α-nearness strategy
[20] can be bene�cially adopted for solving the mTSP.

In this work, we explore for the �rst time the idea of using the α-nearness to
accelerate the insert and cross-exchange operations for the mTSP and show
its practical e�ectiveness especially for handling large instances. The basic
rationale is that one can ignore many neighboring solutions of low quality in-
duced by the insert and cross-exchange operators and focus only on promising
neighboring solutions. Consider the insert operator shown in Fig. 1 and let S

12

be the set of promising edges identi�ed by the α-nearness as explained next.
If an edge (say (πb, a)) belongs to S, then the corresponding move gain ∆ is
evaluated; otherwise, the corresponding neighboring solution is ignored. When
all the edges of S are considered and the corresponding move gains are eval-
uated, the best neighboring solution is selected. Because the time complexity
of evaluating a move gain is O(1) and |S| neighboring solutions are evalu-
ated, the time complexity of evaluating the insert neighborhood is reduced to
O(|S|). Similarly, for the cross-exchange operator shown in Fig. 2, if an arc
(say (πb, a)) belongs to S, then the corresponding τ 2 move gains need to be
evaluated. When all the edges of the set S are considered, the best neighbor-
ing solution is acquired. Therefore, the time complexity of exploring the NCE

neighborhood is reduced to O(|S| × τ 2).

Algorithm 2: Generation of the set of promising edges S by the α-
nearness technique

Input: Input graph G = (V,A), parameter α;
Output: The set of promising edges S;

1 begin
2 S ← ∅;
3 Generate a minimum spanning tree (T−) for the cities of N ;

/* Prim's algorithm */

4 Generate a minimum 1-tree (T); /* By adding to T− two

shortest edges of A incident to the depot 0 */

5 for i = 0 to n do
6 for j = 0 to n do
7 Add edge (i, j) to T ;
8 Generate a new 1-tree (T+) /* By deleting the longest

edge from the new cycle containing edge (i,j) in the

tree (T) */

9 Calculate the length of T+;

10 end
11 Get the α shortest 1-trees from n 1-trees;
12 Get the α edges (E) corresponding to the α shortest 1-trees;
13 S ← S ∪ E;
14 end
15 return S;

16 end

We now explain how the set of promising edges S is identi�ed with the α-
nearness technique based on the notion of 1-tree. As shown in Algorithm
2, the minimum 1-tree (T) for a graph G = (V,A) is a minimum spanning
tree covering the cities of N together with two edges of A incident to the
depot 0 (lines 3-4). By inserting a new edge (i, j) to T , a cycle containing
edge (i, j) in the spanning tree is generated (line 7). Then, a new 1-tree is
obtained by removing the longest edge on the cycle (line 8). When all edges

13

from V incident to vertex i are considered, the α edges (α is a parameter)
corresponding to the α shortest 1-trees (T+) are saved in the set S (lines
11-12). This process continues until all the vertices in V are considered, and
then the set of promising edges S is obtained. Based on the implementation
techniques in [20], building the set S with the α-nearness technique requires
O(n2) time.

It is worth mentioning that no neighborhood reduction technique was em-
ployed in the existing mTSP algorithms including the neighborhood search
algorithm GVNS [38]. As we show in Section 5.1, the α-nearness technique
contributes positively to the performance of the HSNR algorithm.

3.3.4 Neighborhood exploration with tabu search

To examine candidate solutions of a mTSP instance, HSNR employs the well-
known tabu search (TS) metaheuristic [17]. One notices that TS is a popular
method for solving routing problems (e.g., [40,42]), that are more general
models than the mTSP. In our case, we design the �rst tabu search procedure
to explore the insert neighborhood NI and the cross-exchange neighborhood
NCE that are reduced by the α-nearness technique of Section 3.3.3.

As described in Algorithm 3, the TS procedure starts by the initialization of
the tabu list L and the set R containing the tours that are modi�ed by the
insert and cross-exchange operations. Then it performs a number of iterations
until the best solution ϕ∗ cannot be improved during γ consecutive iterations.
At each iteration, tabu search identi�es within the given neighborhood, the
best eligible neighboring solution ϕ′ according to the mTSP objectives and
uses ϕ′ to replace the current solution ϕ. A neighboring solution is quali�ed
eligible if it is not forbidden by the tabu list or its quality is better than the
best solution found so far ϕ∗. After each solution transition, the two modi�ed
tours are recorded in R and the underlying insert or cross-exchange move
leading to the new solution ϕ′ is added in the tabu list L to avoid re-visiting
the replaced solution. For the tabu list, we use the following mechanism. For
a neighboring solution ϕ′ where the city a is displaced from the tour ra to
another tour, a is recorded in L and not allowed to join the tour ra again for
the next t iterations, where t (called tabu tenure) is set to β + rand(β) with
rand(β) being a random integer number in {0, . . . , β}.

During the tabu search, if its best solution found (ϕ∗) is not updated during
γ consecutive iterations, the search is judged to be exhausted and terminates
while returning the best solution found, the current solution (ϕ) and the set
of modi�ed tours (R).

14

Algorithm 3: General tabu search

Input: Input solution ϕ, best solution ϕ∗, neighborhood N , depth of
tabu search γ, tabu tenure parameter β;

Output: Updated best solution ϕ∗, ending solution ϕ, set of modi�ed
tours R;

1 begin
2 i← 0;
3 R ← ∅;
4 Initialize tabu list L;
5 while i ≤ γ do
6 Choose the best eligible neighboring solution ϕ′ ∈ N(ϕ);
7 ϕ← ϕ′;
8 Update L and R; /* Udpdate the tabu list and set of

modified tours */

9 if F (ϕ) < F (ϕ∗) then
10 ϕ∗ ← ϕ; /* Update the best solution ϕ∗ */

11 i← 0;

12 else
13 i← c+ 1;
14 end

15 end
16 return <ϕ,ϕ∗,R>;

17 end

3.4 Intra-tour optimization with the TSP heuristic EAX

Given a candidate solution ϕ = {r1, · · · , rm}, it is easy to observe that each
individual tour rk can be considered as a TSP tour. As the result, existing TSP
algorithms (e.g., 2-opt and LK) can directly be used to optimize the mTSP
objectives by minimizing an individual tour without the need for designing
new optimization methods. Indeed, this idea proved to be quite e�ective for
several VRPs [2,3] and has been used in the GVNS algorithm for the mTSP
(with the 2-opt heuristic) [38] as well. In this work, the EAX heuristic [30] 1 ,
which is among the best TSP heuristics, is adopted for intra-tour optimization.

Speci�cally, for each tour rk in the set R (It records the tours modi�ed by the
insert and cross-exchange operators during tabu search), EAX is applied to
minimize the tour as follows. First, the tour rk is mapped to a standard TSP
tour, by renaming the cities of the tour with consecutive numbers. Second,
EAX is run to optimize the TSP tour. Given that the number of cities in
a tour is relatively small (typically from several tens to several hundreds of
cities for the mTSP benchmark instances), EAX needs a short time to make

1 https://github.com/sugia/GA-for-TSP

15

the TSP tour optimal or close-to-optimal. Third, we map the optimized TSP
tour back to the corresponding mTSP tour. Experiments showed that the
intra-tour optimization using EAX contributes favorably to the performance
of the HSNR algorithm.

The EAX heuristic �rstly constructs randomly a population of solutions by
using the coordinates of the cities and then performs a number of generations
to improve the tour length. At each generation, two parents solutions are
selected randomly and recombined to generate o�spring solutions. Let pA and
pB be the parent solutions, and let EA and EB be the sets of edges in pA and
pB. An o�spring solution is created according to the following steps.

(1) De�ne the undirected multigraph GAB = (V,EA∪EB) from edge sets EA
and EB;

(2) Partition the edges of EA ∪ EB into AB-cycles, where an AB-cycle is a
cycle in GAB, such that edges of EA and edges of EB are alternatively
linked;

(3) Build an Eset by selecting some AB-cycles according to a selection crite-
rion;

(4) Build an intermediate solution EC from pA by removing the edges of EA
that appear in Eset and adding the edges of EB that appear in Eset, i.e.,
EC := (EA\(Eset ∩ EA)) ∪ (Eset ∩ EB);

(5) Generate an o�spring solution by connecting all subtours of EC to obtain
a single tour.

As we show in Section 5.1, the EAX heuristic is quite bene�cial for the pro-
posed algorithm. This is the �rst application of this TSP heuristic within a
mTSP algorithm.

4 Computational Results and Comparisons

This section assesses the proposed algorithm for solving both the minsum
mTSP and the minmax mTSP. We show computational results on benchmark
instances and comparisons with the state-of-the-art algorithms.

4.1 Benchmark instances

Our experiments are based on two sets of 77 instances covering small, medium
and large instances (available from the link of footnote 3).

Set I (41 instances): These instances were introduced in [8,7,45]. Carter
and Ragsdale [8] presented 12 instances using 3 TSP graphs (with 51, 100,
150 cities and 3, 5, 10, 20 and 30 tours), while Brown et al. [7] also de�ned
12 instances using 3 TSP graphs (from 51 cities and 3 tours up to 150 cities
and 30 tours). Note that among these 3 graphs adopted in [7], only one graph

16

(gtsp150) is not used in [8]. Therefore, most of the instances in [8] and [7]
share the same features. We thus exclude the redundant instances and keep
17 distinct instances out of these 24 instances. For these 17 instances, the
best-known objective values are available in the literature for both mTSP
objectives. Wang et al. [45] de�ned 31 instances using 8 graphs (with 51-1173
cities and 3-20 tours) and tested them only for the minmax mTSP. Among
the 8 used graphs, one is a graph used in [8] and one is a graph used in [7].
By eliminating these redundant instances, we retain 24 instances out of the 31
instances. For these instances, the best-known objective values are available
only for the minmax mTSP. The instances of Set I are limited to 1173 cities
and 30 tours and their optimal values are still unknown in the literature.

Set II (36 instances): This is a new set of large instances with 1379-
5915 cities and 3-20 tours introduced in this study. Like previous benchmark
instances, these instances were generated from 9 TSP graphs in TSPlib 2

(nrw1379, �1400, d1655, u2152, pr2392, pcb3038, �3795, fnl4461, rl5915),
which come from di�erent practical problems. The optimal values for these
instances are unknown.

Note that most of these instances involve distance matrices whose values are
real numbers. Our HSNR algorithm operates directly with these real number
distances and reports its results in real numbers.

4.2 Experimental protocol and reference algorithms

Parameter setting. HSNR has 5 parameters: number of candidate solutions
for initialization µ, neighborhood reduction parameter α, substring size τ ,
depth of tabu search γ and tabu tenure parameter β. In order to calibrate these
parameters, the "IRACE" package [27] was used to automatically identify a
set of suitable values. The tuning was performed on 8 representative instances
(with 150-1173 cities). For the experiment, the tuning budget was set to 1080
runs, with a cuto� time of n/100 minutes. The candidate values of these
parameters and their �nal values given by IRACE are shown in Table 2.

Reference algorithms. According to the literature, �ve algorithms (IWO &
ABC(VC) [32], GVNS [38], MASVND [45] and ES [22]) represent the state-
of-the-art for solving the mTSP (MASVND for the minmax mTSP only).
Thus these algorithms are adopted as the main references for our compar-
ative studies. Given that only one code is available (an executable code of
ES kindly provided by its authors), we faithfully re-implemented ABC(VC),
IWO, GVNS and MASVND (denoted by re-ABC(VC), re-IWO, re-GVNS and
re-MASVND) and veri�ed that our implementations were able to match the
results reported in [32,38,45].

2 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

17

Finally, as indicated in Section 2, the minsum mTSP can be transformed to
the standard TSP. We provide the results obtained by the TSP heuristic EAX
[30] in Appendix A.2.

Experimental setting. HSNR and the re-implemented reference algorithms
were programmed in C++ 3 and complied with the g++ compiler with the
-O3 option. All the experiments were conducted on a computer with an Intel
Xeon E5-2670 processor of 2.5 GHz CPU and 6 GB RAM running Linux.
Given the stochastic nature of the compared algorithms, each algorithm was
run 20 times on each instance with di�erent random seeds. We used the default
parameter setting of Table 2 to run HSNR, while for the reference algorithms,
we adopted their default parameter settings given in [32,38,45].

Stopping condition. Each run of the compared algorithm was given the same
cuto� time of (n/100)×4 minutes. This cuto� time allows all the compared al-
gorithms to converge to their best possible solutions. Additional results under
shorter cuto� conditions are reported in Appendix A.1.

Table 2
Parameters tuning results
Parameters Section Description Considered values Final value

Minsum Minmax

µ 3.2 candidate initial solutions {1,5,10,15,20} 15 20

α 3.3.3 α-nearness in 1-tree {5,10,15,20,25,30} 20 10

τ 3.3.2 substring size {2,3,4,5,6,7} 4 7

γ 3.3.4 depth of tabu search {10,30,50,70,90,100} 10 50

β 3.3.4 tabu tenure parameter {20,40,60,80,100} 60 20

4.3 Computational results and comparison

This section reports the comparative results between the proposed HSNR
algorithm and the reference algorithms for the minsum mTSP and the minmax
mTSP. The results are obtained according to the experimental protocol above
and reported for the two sets of 77 benchmark instances (listed in increasing
order of numbers of cities). Note that the executable code of ES failed to run
on the instances of Set II due to unknown reasons. So its results are ignored
as far as Set II is concerned.

For each instance, we show the best-known objective value BKS ever reported
in the literature (when it is available), the best objective value obtained by an
algorithm Best and the average objective value Avg.. For our HSNR algorithm,
we additionally report the gap of its best objective value to the previous best
objective value calculated as Gap(%) = 100(Best − AllBest)/AllBest with

3 The source codes of these algorithms and the instances will be available at https:
//github.com/pengfeihe-angers/mTSP

18

https://github.com/pengfeihe-angers/mTSP
https://github.com/pengfeihe-angers/mTSP

Best and AllBest being respectively the best objective value of HSNR and the
best objective value from all reference algorithms (including those published
in the literature). Given that the mTSP is a minimization problem, a negative
gap indicates an improved best result. The background of the top results for
each instance is highlighted in dark gray; the second best results in medium
gray; and the worst results in the lightest gray. Note that in the literature, the
results are rounded to the nearest integers, and we report our results in more
precise real values.

For each set of instances, we additionally report the following information. For
the best and average objective values of each algorithm, AVG is the average
value over the instances of one benchmark set. For each algorithm, BKS#
indicates the number of instances out of all the instances of the set for which
the algorithm reports the best objective value.

Finally, to assess the statistically signi�cant di�erence between the results of
the HSNR algorithm and the results of each reference algorithm, we show the
p-values from the Wilcoxon signed-rank test applied to the best and average
objective values with a con�dence level of 0.05. A p-value smaller than 0.05
rejects the null hypothesis.

4.3.1 Results for the minsum mTSP

Tables 3 and 4 show the comparative results of the compared algorithms for
the 77 instances of Set I and Set II, respectively.

From Table 3, we can make the following comments about the instances of
Set I. First, for the 17 instances for which the best-known results (BKS) are
available, HSNR �nds 6 improved results (with an improvement gap up to
-0.24%), 7 equal results and 4 worse results. Second, for the remaining 24
instances of Set I, HSNR clearly outperforms the reference algorithms both in
terms of the best and average results, with more important improvements for
the largest instances with at least 200 cities (improvement gap up to 10.39%
for the largest instance). Also, even the average results of HSNR are better
than the best results of the reference algorithms. Third, the small p-values
from the Wilcoxon signed-rank tests con�rm the statistical di�erence between
the HSNR algorithm and the reference algorithms in terms of the best and
average results.

From Table 4 on the large instances of Set II, we observe that the dominance
of the HSNR algorithm over the reference algorithms is even more signi�cant.
Indeed, HSNR consistently reports better results in terms of the best and
average values, with improvement gaps from 2.37% to 19.45% compared to the
best results of the reference algorithms. Once again, even the average results
of HSNR are far better than the best results of the compared algorithms.

19

T
ab
le
3.
T
he

m
in
su
m

m
T
SP

:
co
m
pa
ra
ti
ve

re
su
lt
s
b
et
w
ee
n
H
SN

R
an
d
fo
ur

re
fe
re
nc
e
al
go
ri
th
m
s
on

th
e
41

in
st
an
ce
s
of

Se
t
I
w
it
h
a
cu
to
�

ti
m
e
of

(n
/1

0
0
)
×

4
m
in
ut
es
.

re
-A
B
C
(V
C
)
(2
0
1
5
)

re
-I
W
O
(2
0
1
5
)

re
-G
V
N
S
(2
0
1
5
)

E
S
(2
0
2
1
)

H
S
N
R
(t
h
is
w
o
rk
)

In
st
a
n
c
e

B
K
S

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

G
a
p
(%

)

m
ts
p
5
1
-3

4
4
6

4
4
5
.9
9

4
4
5
.9
9

4
4
5
.9
9

4
4
5
.9
9

4
4
5
.9
9

4
4
5
.9
9

4
4
9
.0
1

4
5
2
.1
8

4
4
5
.9
9

4
4
5
.9
9

0
.0
0

m
ts
p
5
1
-5

4
7
2

4
7
1
.6
9

4
7
1
.6
9

4
7
1
.6
9

4
7
1
.6
9

4
7
1
.6
9

4
7
1
.6
9

4
7
4
.7
5

4
7
6
.1
7

4
7
1
.6
9

4
7
1
.6
9

0
.0
0

m
ts
p
5
1
-1
0

5
8
0

5
8
0
.7
2

5
8
0
.7
2

5
8
0
.7
2

5
8
0
.7
2

5
8
0
.7
2

5
8
0
.7
2

5
8
5
.4
7

5
8
8
.0
0

5
8
0
.7
2

5
8
0
.7
2

0
.0
0

m
ts
p
1
0
0
-3

2
1
7
9
8

2
1
7
9
7
.6
0

2
1
8
2
5
.6
6

2
1
7
9
7
.6
0

2
1
9
2
0
.6
0

2
1
7
9
7
.6
0

2
1
8
0
7
.5
4

2
1
7
9
7
.6
0

2
1
9
5
2
.9
4

2
1
7
9
7
.6
0

2
1
7
9
7
.6
0

0
.0
0

m
ts
p
1
0
0
-5

2
3
1
7
5

2
3
2
5
6
.1
0

2
3
3
3
4
.9
4

2
3
1
7
4
.9
0

2
3
2
8
2
.4
5

2
3
1
7
4
.9
0

2
3
2
0
3
.0
9

2
3
1
8
8
.7
0

2
3
3
2
5
.0
2

2
3
1
7
4
.9
0

2
3
1
7
4
.9
0

0
.0
0

m
ts
p
1
0
0
-1
0

2
6
9
2
7

2
7
4
7
4
.7
0

2
7
7
7
5
.2
8

2
6
9
6
1
.1
0

2
7
0
6
5
.5
7

2
7
0
7
4
.8
0

2
7
2
2
7
.8
4

2
7
1
3
7
.6
0

2
7
2
3
5
.1
8

2
6
9
2
6
.6
0

2
6
9
8
3
.5
1

0
.0
0

m
ts
p
1
0
0
-2
0

3
8
2
4
5

3
9
5
8
1
.3
0

4
0
8
7
6
.6
6

3
8
5
2
9
.6
0

3
9
1
6
5
.7
8

3
8
8
4
4
.9
0

3
9
1
0
5
.6
7

3
8
6
0
3
.8
0

3
8
6
0
3
.8
0

3
8
2
4
5
.1
0

3
8
2
5
9
.9
8

0
.0
0

ra
n
d
1
0
0
-3

-
8
0
1
2
.1
3

8
0
3
3
.1
6

8
0
1
2
.1
3

8
0
1
8
.9
1

8
0
1
2
.1
3

8
0
4
6
.3
2

8
0
1
2
.1
3

8
1
8
6
.5
6

8
0
1
2
.1
3

8
0
1
2
.1
3

0
.0
0

ra
n
d
1
0
0
-5

-
8
2
5
7
.8
4

8
3
3
7
.7
9

8
2
2
3
.9
1

8
2
5
2
.3
7

8
2
3
2
.9
1

8
3
3
1
.3
5

8
3
0
8
.8
8

8
4
5
0
.0
0

8
2
2
3
.9
1

8
2
2
3
.9
1

0
.0
0

ra
n
d
1
0
0
-1
0

-
9
6
3
5
.3
9

9
7
6
2
.6
2

9
3
6
6
.8
0

9
4
8
5
.7
9

9
3
7
7
.2
8

9
5
5
0
.0
8

9
3
6
6
.8
0

9
4
1
2
.1
7

9
3
6
6
.8
0

9
3
6
6
.8
0

0
.0
0

ra
n
d
1
0
0
-2
0

-
1
4
1
7
5
.0
0

1
4
4
5
0
.3
3

1
3
5
2
9
.2
0

1
3
6
2
7
.8
9

1
3
5
8
7
.7
0

1
3
7
4
7
.4
5

1
3
4
8
7
.8
0

1
3
5
2
2
.6
8

1
3
4
0
4
.1
0

1
3
4
0
4
.1
0

-
0
.
6
2

m
ts
p
1
5
0
-3

3
7
9
5
7

3
8
1
8
2
.3
0

3
8
3
0
7
.7
2

3
8
0
2
5
.4
0

3
8
2
5
1
.4
3

3
8
4
7
6
.6
0

3
8
7
5
3
.0
9

3
8
2
0
6
.0
0

3
8
8
1
0
.8
9

3
7
9
1
0
.7
0

3
7
9
1
0
.7
0

-
0
.
1
2

m
ts
p
1
5
0
-5

3
8
7
1
4

3
9
1
7
3
.3
0

3
9
4
7
2
.8
4

3
8
8
1
3
.9
0

3
9
1
5
5
.6
6

3
9
4
5
6
.2
0

3
9
7
4
3
.7
2

3
9
1
3
2
.1
0

3
9
4
7
0
.0
6

3
8
7
1
4
.4
0

3
8
7
2
2
.2
4

0
.0
0

m
ts
p
1
5
0
-1
0

4
2
2
0
3

4
3
4
2
9
.1
0

4
3
5
9
8
.3
8

4
2
4
8
2
.3
0

4
2
8
9
7
.2
6

4
3
0
2
8
.6
0

4
3
4
1
5
.4
4

4
2
6
9
0
.7
0

4
2
8
0
9
.4
7

4
2
2
3
4
.3
0

4
2
3
1
0
.8
2

0
.0
7

m
ts
p
1
5
0
-2
0

5
3
3
4
3

5
5
0
5
9
.6
0

5
5
6
3
5
.9
2

5
3
9
0
2
.9
0

5
4
3
7
7
.6
1

5
4
7
9
7
.8
0

5
5
0
8
7
.5
6

5
3
9
0
2
.3
0

5
4
0
7
8
.2
1

5
3
3
5
1
.3
0

5
3
4
8
3
.1
3

0
.0
2

m
ts
p
1
5
0
-3
0

6
8
5
4
1

7
0
6
6
9
.3
0

7
1
2
3
0
.9
3

6
9
0
5
2
.8
0

6
9
7
5
7
.7
7

6
9
8
4
1
.4
0

7
0
2
8
1
.7
2

6
8
9
5
5
.1
0

6
9
1
8
6
.8
3

6
8
4
5
5
.9
0

6
8
5
3
9
.0
7

-
0
.
1
2

g
ts
p
1
5
0
-3

6
5
9
0

6
6
0
6
.7
5

6
6
3
6
.4
4

6
5
9
5
.6
0

6
6
6
1
.4
7

6
6
6
3
.1
9

6
7
3
2
.9
7

6
6
1
5
.6
2

6
6
7
3
.4
4

6
5
7
4
.2
0

6
5
7
4
.5
2

-
0
.
2
4

g
ts
p
1
5
0
-5

6
6
5
2

6
7
6
8
.6
4

6
8
1
5
.2
5

6
6
8
3
.1
3

6
7
6
5
.0
3

6
7
4
4
.6
4

6
8
4
6
.1
2

6
6
8
8
.9
0

6
7
4
6
.8
1

6
6
5
5
.1
1

6
6
5
5
.1
1

0
.0
5

g
ts
p
1
5
0
-1
0

7
3
4
2

7
5
8
9
.8
5

7
7
3
0
.5
4

7
4
0
1
.7
6

7
4
3
7
.6
8

7
4
1
3
.1
9

7
6
3
7
.6
5

7
3
6
0
.1
3

7
4
0
1
.7
2

7
3
3
2
.1
1

7
3
3
2
.1
1

-
0
.
1
3

g
ts
p
1
5
0
-2
0

9
5
2
5

1
0
1
1
4
.9
0

1
0
4
8
0
.5
7

9
6
2
5
.1
5

9
8
7
5
.0
1

9
8
9
1
.2
1

1
0
0
4
8
.8
2

9
5
3
5
.0
7

9
5
6
2
.9
0

9
5
1
2
.2
3

9
5
1
3
.3
8

-
0
.
1
3

g
ts
p
1
5
0
-3
0

1
2
9
7
6

1
3
8
7
0
.5
0

1
4
2
8
9
.7
5

1
3
1
8
0
.8
0

1
3
4
7
4
.5
5

1
3
5
7
6
.8
0

1
3
7
6
7
.7
8

1
2
9
8
0
.8
0

1
3
0
6
2
.2
4

1
2
9
6
6
.5
0

1
2
9
6
9
.0
5

-
0
.
0
7

k
ro
A
2
0
0
-3

-
2
9
7
3
5
.1
0

2
9
9
5
9
.4
5

2
9
5
8
4
.9
0

2
9
6
4
4
.3
1

3
0
1
1
4
.1
0

3
0
6
1
6
.5
9

2
9
6
4
9
.0
0

2
9
9
2
1
.1
5

2
9
5
3
9
.5
0

2
9
5
3
9
.5
0

-
0
.
1
5

k
ro
A
2
0
0
-5

-
3
0
8
0
7
.1
0

3
1
0
6
2
.4
1

2
9
9
8
2
.4
0

3
0
4
6
9
.7
1

3
0
3
1
4
.2
0

3
1
1
8
8
.1
1

3
0
2
1
3
.2
0

3
0
4
1
0
.3
6

2
9
9
1
6
.2
0

2
9
9
1
6
.2
0

-
0
.
2
2

k
ro
A
2
0
0
-1
0

-
3
3
9
7
1
.5
0

3
4
9
2
7
.9
9

3
3
0
7
7
.0
0

3
3
4
9
9
.4
8

3
3
5
5
8
.5
0

3
3
9
5
8
.5
2

3
2
9
0
1
.7
0

3
3
1
4
9
.4
7

3
2
6
1
3
.4
0

3
2
6
1
3
.4
0

-
0
.
8
8

k
ro
A
2
0
0
-2
0

-
4
5
5
9
0
.3
0

4
6
7
9
7
.2
2

4
3
2
9
0
.6
0

4
4
2
0
1
.8
1

4
3
2
5
3
.5
0

4
4
0
8
1
.3
2

4
1
6
8
6
.6
0

4
1
9
9
7
.9
4

4
1
4
3
9
.2
0

4
1
5
2
2
.4
5

-
0
.
5
9

li
n
3
1
8
-3

-
4
3
5
1
4
.9
0

4
3
8
2
3
.4
8

4
2
4
4
7
.6
0

4
2
7
9
2
.4
1

4
4
3
8
8
.4
0

4
6
4
2
2
.3
9

4
3
1
8
1
.2
0

4
3
6
4
3
.2
5

4
2
4
0
4
.6
0

4
2
4
0
4
.6
0

-
0
.
1
0

li
n
3
1
8
-5

-
4
5
0
0
0
.3
0

4
5
6
8
1
.2
9

4
3
5
5
3
.7
0

4
3
9
4
9
.9
8

4
6
1
7
2
.4
0

4
7
6
8
4
.5
3

4
4
2
3
6
.5
0

4
4
5
9
5
.9
4

4
3
3
1
5
.0
0

4
3
3
1
5
.0
0

-
0
.
5
5

li
n
3
1
8
-1
0

-
5
2
3
3
5
.3
0

5
3
3
9
9
.1
7

4
8
4
5
9
.8
0

4
9
7
4
4
.2
7

5
0
4
0
9
.5
0

5
3
3
3
6
.2
1

4
8
3
8
9
.7
0

4
8
7
9
8
.7
9

4
7
3
2
5
.5
0

4
7
3
3
3
.2
1

-
2
.
2
0

li
n
3
1
8
-2
0

-
7
5
8
1
9
.0
0

8
1
6
6
1
.4
6

6
8
8
8
3
.5
0

7
3
4
4
8
.1
0

6
5
7
5
7
.8
0

6
8
5
3
0
.1
9

6
0
5
6
6
.0
0

6
1
2
0
4
.8
2

5
9
8
9
3
.2
0

6
0
4
1
6
.3
5

-
1
.
1
1

a
tt
5
3
2
-3

-
2
9
6
2
1
.0
0

2
9
7
5
0
.2
0

2
9
2
9
5
.0
0

2
9
5
1
7
.3
5

2
9
9
3
1
.0
0

3
0
8
3
5
.2
5

2
9
3
2
1
.0
0

2
9
6
3
4
.4
0

2
8
2
4
2
.0
0

2
8
2
4
2
.0
0

-
3
.
5
9

a
tt
5
3
2
-5

-
3
0
6
9
2
.0
0

3
0
9
6
2
.9
0

3
0
3
9
3
.0
0

3
0
6
9
5
.7
5

3
0
8
2
9
.0
0

3
1
9
0
3
.5
0

3
0
2
5
3
.0
0

3
0
5
2
3
.1
0

2
8
9
4
5
.0
0

2
8
9
4
5
.0
0

-
4
.
3
2

a
tt
5
3
2
-1
0

-
3
5
1
5
9
.0
0

3
5
7
1
5
.7
5

3
4
2
3
4
.0
0

3
4
8
8
3
.7
5

3
3
9
4
6
.0
0

3
5
0
2
4
.3
0

3
2
4
2
2
.0
0

3
2
5
7
3
.9
0

3
1
0
0
1
.0
0

3
1
0
3
8
.8
0

-
4
.
3
8

a
tt
5
3
2
-2
0

-
4
7
4
8
0
.0
0

4
8
3
3
3
.2
5

4
5
6
7
2
.0
0

4
6
8
3
1
.9
5

3
9
7
0
6
.0
0

4
1
5
2
9
.9
0

3
7
8
1
3
.0
0

3
8
1
2
7
.1
0

3
6
3
0
5
.0
0

3
6
6
9
6
.6
5

-
3
.
9
9

ra
t7
8
3
-3

-
9
7
5
5
.6
0

9
7
8
6
.5
5

9
6
9
8
.5
1

9
7
6
8
.6
9

9
5
6
9
.5
8

9
8
0
7
.8
3

9
7
2
8
.6
7

9
7
9
2
.5
8

8
8
8
0
.0
3

8
8
8
0
.6
4

-
7
.
2
1

ra
t7
8
3
-5

-
9
9
7
1
.0
1

1
0
0
1
1
.9
1

9
9
2
2
.5
6

9
9
8
2
.2
6

9
8
3
8
.5
5

1
0
1
5
6
.8
7

9
8
1
5
.5
0

9
8
9
8
.4
1

8
9
6
4
.8
0

8
9
6
4
.9
0

-
8
.
6
7

ra
t7
8
3
-1
0

-
1
0
7
4
5
.8
0

1
0
8
6
2
.3
5

1
0
6
4
3
.7
0

1
0
7
7
1
.5
3

1
0
1
5
8
.4
0

1
0
5
8
2
.9
9

1
0
0
5
6
.8
0

1
0
2
0
2
.0
8

9
2
6
5
.6
4

9
2
7
5
.1
6

-
7
.
8
7

ra
t7
8
3
-2
0

-
1
3
6
5
9
.6
0

1
3
9
1
4
.4
7

1
3
1
8
6
.9
0

1
3
7
4
7
.1
3

1
1
1
0
4
.9
0

1
1
9
6
2
.3
8

1
0
7
4
1
.8
0

1
0
9
2
6
.5
1

1
0
1
7
2
.6
0

1
0
2
7
2
.9
5

-
5
.
3
0

p
c
b
1
1
7
3
-3

-
6
4
5
5
3
.7
0

6
4
8
4
6
.1
1

6
4
5
3
3
.5
0

6
4
7
3
9
.4
9

6
1
9
2
9
.5
0

6
3
8
2
8
.0
1

6
5
0
0
7
.2
0

6
5
6
6
4
.8
4

5
7
1
6
7
.2
0

5
7
1
7
4
.1
2

-
7
.
6
9

p
c
b
1
1
7
3
-5

-
6
5
8
4
5
.6
0

6
6
2
3
1
.0
5

6
5
8
2
7
.0
0

6
6
1
0
5
.0
2

6
4
1
5
4
.6
0

6
6
5
9
5
.5
2

6
4
8
1
8
.4
0

6
6
7
9
2
.8
2

5
7
6
2
8
.8
0

5
7
6
5
4
.2
0

-
1
0
.
1
7

p
c
b
1
1
7
3
-1
0

-
7
0
9
0
7
.6
0

7
1
6
8
3
.9
7

6
9
9
9
4
.8
0

7
1
1
9
8
.9
1

6
5
8
1
6
.9
0

6
8
8
8
2
.0
0

6
6
6
1
1
.6
0

6
7
6
0
0
.2
9

5
9
2
4
1
.9
0

5
9
2
9
9
.0
7

-
9
.
9
9

p
c
b
1
1
7
3
-2
0

-
8
5
8
0
7
.5
0

8
8
1
2
2
.0
7

8
5
2
2
8
.6
0

8
8
1
3
6
.8
3

7
3
4
8
2
.8
0

7
6
7
2
7
.2
4

7
1
4
8
9
.7
0

7
3
9
0
5
.5
2

6
4
0
6
3
.6
0

6
5
1
0
2
.0
8

-
1
0
.
3
9

A
V
G

-
3
1
1
2
4
.9
9

3
1
6
4
9
.4
2

3
0
3
6
0
.1
6

3
0
8
5
6
.1
0

2
9
9
0
0
.6
3

3
0
6
9
4
.7
9

2
9
4
2
3
.9
5

2
9
7
4
0
.7
5

2
8
3
0
9
.2
8

2
8
3
7
4
.0
9

-

B
K
S
#

-
0

0
0

0
0

0
0

0
2
7

3
8

-

p
-
v
a
lu
e

-
1
.6
8
E
-0
7

3
.5
7
E
-0
7

5
.3
9
E
-0
7

5
.2
6
E
-0
7

2
.4
8
E
-0
7

7
.7
4
E
-0
8

7
.7
4
E
-0
8

2
.4
2
E
-0
8

-
-

-

20

Table 4
The minsum mTSP: comparative results between HSNR and three reference algo-
rithms on the 36 instances of Set II with a cuto� time of (n/100)× 4 minutes.

re-ABC(VC) (2015) re-IWO (2015) re-GVNS (2015) HSNR (this work)

Instance Best Avg. Best Avg. Best Avg. Best Avg. Gap(%)

nrw1379-3 62099.80 62413.66 62211.90 62384.95 62449.60 63614.69 56775.70 56775.70 -8.57

nrw1379-5 62853.40 63036.26 62788.40 63011.51 63593.80 65998.39 56992.60 56999.16 -9.23

nrw1379-10 64985.10 65396.08 65147.40 65392.47 65011.90 69268.91 57636.20 57795.15 -11.31

nrw1379-20 72415.90 73267.10 71915.30 73075.37 69900.30 74382.44 59618.40 60278.03 -14.71

�1400-3 21733.90 21819.77 21682.60 21771.70 24456.90 25566.53 21169.40 21169.47 -2.37

�1400-5 23051.40 23179.70 22841.20 23068.25 24030.00 26993.65 22066.20 22238.10 -3.39

�1400-10 27960.10 28563.58 27556.10 27933.99 28276.70 30150.92 24373.90 25069.65 -11.55

�1400-20 44588.20 47458.31 44715.00 45981.11 32713.30 34886.35 29579.20 31966.86 -9.58

d1655-3 76672.20 77095.10 76471.40 76887.31 78155.30 79462.89 68364.40 68370.50 -10.60

d1655-5 83908.00 84208.31 83221.80 83962.59 86806.30 89456.39 74273.50 74292.65 -10.75

d1655-10 102457.00 103865.80 102268.00 103386.30 100732.00 105478.45 89262.50 89856.83 -11.39

d1655-20 146870.00 149739.75 147454.00 149130.20 134860.00 143426.30 121373.00 124263.45 -10.00

u2152-3 75107.40 75322.56 74957.90 75399.52 73757.10 75777.34 65064.90 65072.31 -11.78

u2152-5 75533.50 76109.51 75686.10 76083.68 74271.40 78510.40 65201.70 65219.93 -12.21

u2152-10 78836.20 79676.56 78726.40 79471.17 75482.90 83485.66 65762.50 66291.71 -12.88

u2152-20 89564.50 91776.90 89331.80 91322.73 80486.60 85760.90 67993.10 71115.74 -15.52

pr2392-3 428886.00 430482.05 428802.00 429994.15 423607.00 433789.50 378661.00 378661.00 -10.61

pr2392-5 433633.00 437696.40 435449.00 438130.75 426073.00 444213.90 380061.00 380069.40 -10.80

pr2392-10 462078.00 465864.35 458177.00 465361.70 441436.00 476382.30 387498.00 389012.85 -12.22

pr2392-20 539219.00 549174.10 542251.00 549066.05 459442.00 502937.95 417424.00 421532.30 -9.15

pcb3038-3 156742.00 157141.25 156844.00 157227.80 153338.00 155312.45 137916.00 137925.00 -10.06

pcb3038-5 158160.00 158614.05 157607.00 158559.90 156678.00 159923.10 138121.00 138123.20 -11.84

pcb3038-10 162709.00 164019.75 163743.00 164470.35 156525.00 162016.80 139142.00 139379.85 -11.11

pcb3038-20 181677.00 183532.75 181894.00 183531.15 153084.00 170283.40 144295.00 146491.65 -5.74

�3795-3 32749.00 32983.87 32678.10 32817.07 34634.30 37772.26 29589.90 29823.75 -9.45

�3795-5 33924.60 34497.01 33833.20 34198.05 37162.40 40342.25 30480.80 31048.26 -9.91

�3795-10 39470.20 40288.27 38864.50 39779.70 36823.70 41088.57 32729.60 35467.72 -11.12

�3795-20 53852.70 55606.56 53723.40 55121.13 41337.00 45838.94 39083.80 45437.27 -5.45

fnl4461-3 204334.00 204844.15 204490.00 204833.45 203756.00 206706.75 182888.00 182890.85 -10.24

fnl4461-5 205639.00 206196.00 205745.00 206132.15 207600.00 212214.50 183074.00 183076.50 -10.97

fnl4461-10 210341.00 211064.95 210158.00 210906.80 215447.00 224158.65 183808.00 184811.75 -12.54

fnl4461-20 224749.00 225855.50 223448.00 225219.15 221402.00 236283.55 191025.00 193356.10 -13.72

rl5915-3 676316.00 678576.60 676268.00 679179.35 666852.00 707708.75 565949.00 566066.70 -15.13

rl5915-5 678177.00 680809.90 673768.00 680248.85 703003.00 746016.20 566626.00 566780.55 -15.90

rl5915-10 692109.00 694947.55 689402.00 694087.15 783210.00 811408.35 569619.00 573689.20 -17.37

rl5915-20 744400.00 752084.65 742284.00 750748.75 777638.00 861515.54 597878.00 609385.79 -19.45

AVG 206327.84 207978.02 206011.24 207718.79 204834.24 216892.61 173371.56 174716.80 -

BKS# 0 0 0 0 0 0 36 36 -

p-value 1.68E-07 1.68E-07 1.68E-07 1.68E-07 1.68E-07 1.68E-07 - - -

Finally, the Wilcoxon signed-rank tests con�rm the statistical di�erence of
these comparisons.

To further assess the compared algorithms, we also present the performance
pro�les [11] to visually illustrate the performance of each algorithm. Perfor-
mance pro�les rely on a speci�c performance metric (in our case, we use fbest
and favg). To compare a set of algorithms S over a set of problems Q, the

performance ratio is de�ned by rs,q = fs,q
min{fs,q:s∈S,q∈Q}

. If an algorithm does not

report result for a problem q, rs,q = +∞. The performance function of an

algorithm s is computed by Qs(τ) = |q∈Q|rs,q≤τ |
|Q| . The value Qs(τ) computes

the fraction of problems that algorithm s can solve with at most τ many times
the cost of the best algorithm. For example, Qs(1) equals the number of prob-
lems that algorithm s solved better than, or as good as the other algorithms
in Q. Similarly, the value Qs(rf) is the maximum number of problems that
algorithm s solved. Therefore, Qs(1) and Qs(rf) represent the e�ciency and
robustness of algorithm s. Fig. 3 visually illustrates the competitiveness of
HSNR in terms of the best and average values on the benchmark 77 instances.

21

Indeed, HSNR has a much higher Qs(1) value compared to the reference algo-
rithms, by �nding better or equal results for nearly all instances. Furthermore,
HSNR also reaches Qs(rf) �rst, indicating a high robustness of our approach.
In brief, compared with the reference algorithms, HSNR is the best solution
approach for the minsum mTSP on both small and large scale instances.

Finally, since the minsum mTSP can be transformed to the TSP, we show in
Appendix A.2 the results obtained by the e�ective TSP heuristic EAX [30].

0

0.2

0.4

0.6

0.8

1

1 1.1 1.2 1.3 1.4 1.5

P
e
rc

en
ta

g
e

o
f

p
ro

b
le

m
s

so
lv

ed
 (

f b
e
st
)

Performances ratio

re-ABC(VC)

re-IWO

re-GVNS

ES

HSNR

(a)

0

0.2

0.4

0.6

0.8

1

1 1.1 1.2 1.3 1.4 1.5

P
er

ce
n

ta
g
e

o
f

p
ro

b
le

m
s

so
lv

ed
 (

f a
vg

)

Performance ratio

re-ABC(VC)

re-IWO

re-GVNS

ES

HSNR

(b)

Fig. 3. The minsum mTSP: performance pro�les of HSNR and four reference algo-
rithms on all the 77 benchmark instances. The left �gure corresponds to the best
results while the right �gure is for the average results.

4.3.2 Results for the minmax mTSP

We now assess the performance of the HSNR algorithm for the minmax mTSP.
For this problem, ABC(VC) [32], IWO [32], GVNS [38], MASVND [45] and
ES [22] are the state-of-the-art algorithms, which are used for our comparative
study. Note that for three graphs kroA200, lin318, att532, the initial solutions
of HSNR are generated in such a way that each city is greedily inserted in an
arbitrary random tour, not limited to the shortest tour.

Tables 5 and 6 report the computational results of the compared algorithms
on Set I and Set II. From the tables, we observe that in terms of the best
objective values, HSNR reaches the best results on 48 out of the 77 instances
and matches the best results of the compared algorithms on 25 instances. Only
for four instances, HSNR reports a slightly worse result with a gap to the best
objective value no larger than 0.61%. In terms of the average objective value,
HSNR reports 54 dominating values. It is worth noting that the average results
of HSNR are better than the best results of the reference algorithms. Third,
the dominance of HSNR over the reference algorithms is better demonstrated
on the large instances of Set II with up to 32.81% improvements of their
best results. Finally, the small p-values (� 0.05) con�rm the statistically
signi�cant di�erences between HSNR and the reference algorithms for the

22

best and average results.

Once again, the performance pro�les of Fig. 4 clearly show the competitiveness
of HSNR over the compared algorithms. Indeed, HSNR has a much higher
Qs(1) value compared to the reference algorithms, indicating that HSNR �nds
better or equal results for nearly all instances. Furthermore, HSNR reaches
Qs(rf) �rst, implying a high robustness of our approach. Therefore, HSNR
competes favorably with the state-of-the-art algorithms for the minmax mTSP.
Its competitiveness is particularly demonstrated on large instances in terms
of the best and average results.

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8

P
er

ce
n

ta
g

e
o

f
p

r
o

b
le

m
s

so
lv

ed
 (

f b
e
st
)

Performance ratio

re-ABC(VC)

re-IWO

re-GVNS

ES

re-MASVND

HSNR

(a)

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8

P
er

ce
n

ta
g

e
o

f
p

ro
b

le
m

s
so

lv
ed

 (
f a

vg
)

Performance ratio

re-ABC(VC)

re-IWO

re-GVNS

ES

re-MASVND

HSNR

(b)

Fig. 4. The minmax mTSP: performance pro�les of HSNR and �ve reference algo-
rithms on all the 77 benchmark instances. The left �gure corresponds to the best
results while the right �gure is for the average results.

Finally, Table 7 summaries the comparative results of each pair of compared
algorithms on the 77 benchmark instances, by providing the number of in-
stances for which HSNR obtained a better (#Wins), equal (#Ties) or worse
(#Losses) result compared to each reference algorithm and the BKS value.

We conclude that HSNR signi�cantly dominates the reference algorithms for
both the minsum mTSP and the minmax mTSP. Its competitiveness is even
more evident on large-scale instances.

5 Analysis

The computational results and comparisons with the state-of-the-art algo-
rithms presented in Section 4 showed high e�ectiveness of the HSNR algo-
rithm. This section aims to investigate the contributions of two important
ingredients of HSNR: the neighborhood reduction strategy (Section 3.3.3) for
e�cient neighborhood examination and the EAX heuristic (Section 3.4) for
e�ective intra-tour optimization. For this purpose, we performed additional
experiments to compare HSNR with several HSNR variants where the studied
component (i.e., neighborhood reduction and EAX) was disabled and replaced
by another alternative method. These experiments were based on 20 represen-
tative instances with di�erent sizes (n from 150 to 2392, m from 3 to 20) and

23

T
ab
le

5.
T
he

m
in
m
ax

m
T
SP

:
co
m
pa
ra
ti
ve

re
su
lt
s
of

H
SN

R
an
d
�v
e
re
fe
re
nc
e
al
go
ri
th
m
s
on

Se
t
I
w
it
h
a
cu
to
�
ti
m
e
of

(n
/1

00
)
×

4
m
in
ut
es
.

re
-A
B
C
(V
C
)
(2
0
1
5
)

re
-I
W
O
(2
0
1
5
)

re
-G
V
N
S
(2
0
1
5
)

E
S
(2
0
2
1
)

re
-M

A
S
V
N
D
(2
0
1
7
)

H
S
N
R
(t
h
is
w
o
rk
)

In
st
a
n
c
e

B
K
S

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

G
a
p
(%

)

m
ts
p
5
1
-3

1
5
9
.5
7

1
5
9
.5
7

1
5
9
.5
7

1
5
9
.5
7

1
5
9
.5
7

1
5
9
.5
7

1
5
9
.8
5

1
5
9
.5
7

1
5
9
.5
7

1
5
9
.5
7

1
5
9
.5
7

1
5
9
.5
7

1
5
9
.8
5

0
.0
0

m
ts
p
5
1
-5

1
1
8
.1
3

1
1
8
.1
3

1
1
8
.1
3

1
1
8
.1
3

1
1
8
.1
3

1
1
8
.1
3

1
1
8
.1
3

1
1
8
.1
3

1
1
8
.1
3

1
1
8
.1
3

1
1
8
.1
3

1
1
8
.1
3

1
1
8
.1
3

0
.0
0

m
ts
p
5
1
-1
0

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

0
.0
0

m
ts
p
1
0
0
-3

8
5
0
9
.0
0

8
5
4
4
.6
9

8
5
9
0
.0
7

8
5
0
9
.1
6

8
5
1
0
.8
6

8
5
4
4
.3
4

8
5
9
0
.9
7

8
5
0
9
.1
6

8
6
4
9
.7
5

8
5
0
9
.1
6

8
6
0
2
.3
0

8
5
0
9
.1
6

8
5
1
3
.7
5

0
.0
0

m
ts
p
1
0
0
-5

6
7
6
6
.0
0

6
8
1
9
.8
0

6
9
2
1
.3
5

6
7
8
0
.3
7

6
8
3
3
.4
5

6
7
6
7
.8
2

6
7
7
6
.6
1

6
7
6
7
.0
2

6
8
3
2
.7
4

6
7
6
7
.0
2

6
8
0
1
.7
5

6
7
6
5
.7
3

6
7
7
0
.6
7

0
.0
0

m
ts
p
1
0
0
-1
0

6
3
5
8
.0
0

6
3
5
8
.4
9

6
3
6
0
.8
6

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

0
.0
0

m
ts
p
1
0
0
-2
0

6
3
5
8
.0
0

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

6
3
5
8
.4
9

0
.0
0

ra
n
d
1
0
0
-3

-
3
0
3
2
.5
8

3
0
4
4
.0
1

3
0
3
1
.9
5

3
0
3
1
.9
5

3
0
5
7
.8
3

3
0
7
4
.5
5

3
0
3
1
.9
5

3
0
8
4
.4
9

3
0
3
1
.9
5

3
0
4
7
.7
1

3
0
3
1
.9
5

3
0
3
2
.6
7

0
.0
0

ra
n
d
1
0
0
-5

-
2
4
3
8
.1
9

2
4
6
2
.7
5

2
4
0
9
.9
0

2
4
2
9
.5
0

2
4
1
3
.5
7

2
4
2
7
.7
5

2
4
0
9
.6
3

2
4
2
2
.4
1

2
4
0
9
.6
3

2
4
2
8
.3
5

2
4
1
1
.6
8

2
4
1
5
.0
0

0
.0
9

ra
n
d
1
0
0
-1
0

-
2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

0
.0
0

ra
n
d
1
0
0
-2
0

-
2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

2
2
9
9
.1
6

0
.0
0

m
ts
p
1
5
0
-3

1
3
1
5
1
.0
0

1
3
4
9
7
.2
0

1
3
6
4
5
.6
4

1
3
0
7
8
.4
0

1
3
2
5
9
.9
7

1
3
5
9
5
.3
0

1
3
7
3
0
.7
0

1
3
3
0
3
.8
0

1
3
5
2
6
.7
0

1
3
2
3
4
.1
0

1
3
4
1
1
.2
6

1
3
0
7
5
.8
0

1
3
1
6
9
.3
7

-
0
.
0
2

m
ts
p
1
5
0
-5

8
4
6
6
.0
0

8
8
9
5
.2
2

9
3
2
9
.9
5

8
4
7
7
.9
6

8
6
5
0
.1
1

8
9
2
8
.3
5

8
9
8
4
.9
9

8
5
6
3
.0
8

8
7
5
7
.2
2

8
4
9
3
.6
2

8
6
8
6
.6
1

8
4
7
7
.9
6

8
5
3
8
.8
3

0
.1
4

m
ts
p
1
5
0
-1
0

5
5
5
7
.0
0

6
0
2
0
.3
4

6
1
8
9
.7
4

5
7
5
1
.4
1

5
8
5
1
.7
9

5
8
2
5
.8
3

5
8
6
2
.6
5

5
6
2
5
.3
2

5
7
1
8
.4
5

5
6
6
6
.4
5

5
7
6
3
.2
8

5
5
9
0
.6
4

5
6
0
4
.9
2

0
.6
1

m
ts
p
1
5
0
-2
0

5
2
4
6
.0
0

5
2
6
2
.5
5

5
3
0
7
.2
0

5
2
4
6
.4
9

5
2
4
7
.6
2

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
7
.2
1

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
6
.4
9

0
.0
0

m
ts
p
1
5
0
-3
0

5
2
4
6
.0
0

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
6
.4
9

5
2
4
6
.4
9

0
.0
0

g
ts
p
1
5
0
-3

2
4
0
7
.3
4

2
4
4
5
.9
2

2
4
8
6
.4
3

2
4
0
7
.3
4

2
4
2
1
.4
0

2
4
4
3
.1
0

2
4
6
7
.0
7

2
4
2
3
.1
7

2
4
9
1
.0
0

2
4
3
3
.8
0

2
4
6
8
.1
2

2
4
0
7
.3
4

2
4
3
5
.4
9

0
.0
0

g
ts
p
1
5
0
-5

1
7
4
2
.0
0

1
8
5
8
.9
4

1
8
9
4
.7
8

1
7
4
4
.5
7

1
7
7
7
.9
0

1
7
9
5
.7
5

1
8
0
7
.3
6

1
7
5
1
.8
5

1
7
9
7
.7
1

1
7
4
4
.2
6

1
7
7
9
.3
2

1
7
4
1
.7
1

1
7
4
3
.4
8

-
0
.
0
2

g
ts
p
1
5
0
-1
0

1
5
5
4
.0
0

1
5
6
2
.1
3

1
5
7
8
.4
9

1
5
5
4
.6
4

1
5
5
7
.2
2

1
5
5
4
.6
4

1
5
5
6
.1
0

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
9
.1
0

1
5
5
4
.6
4

1
5
5
4
.6
4

0
.0
0

g
ts
p
1
5
0
-2
0

1
5
5
4
.0
0

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

0
.0
0

g
ts
p
1
5
0
-3
0

1
5
5
4
.0
0

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

0
.0
0

k
ro
A
2
0
0
-3

1
0
7
6
8
.1
0

1
1
2
2
3
.3
0

1
1
5
1
1
.6
9

1
0
8
0
1
.3
0

1
0
9
6
5
.5
9

1
1
0
6
1
.6
0

1
1
2
5
6
.6
0

1
0
8
8
3
.3
0

1
1
1
7
4
.7
0

1
0
8
3
3
.6
0

1
1
1
3
6
.7
0

1
0
7
4
8
.1
0

1
0
9
8
7
.6
9

-
0
.
1
9

k
ro
A
2
0
0
-5

7
4
1
5
.5
4

8
4
1
7
.8
1

8
6
8
9
.6
4

7
4
9
7
.2
1

7
6
9
7
.4
5

7
6
9
3
.6
5

7
7
6
3
.6
1

7
5
3
6
.9
1

7
7
7
0
.4
3

7
4
8
4
.1
7

7
6
3
4
.6
1

7
4
1
8
.8
7

7
4
9
4
.4
4

0
.0
4

k
ro
A
2
0
0
-1
0

6
2
2
3
.2
2

6
2
9
9
.7
7

6
4
5
6
.5
8

6
2
2
3
.2
2

6
2
5
5
.3
7

6
2
2
4
.3
9

6
2
7
0
.3
8

6
2
2
3
.2
2

6
2
4
0
.5
2

6
2
2
3
.2
2

6
2
6
6
.4
4

6
2
2
3
.2
2

6
2
2
3
.2
2

0
.0
0

k
ro
A
2
0
0
-2
0

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

0
.0
0

li
n
3
1
8
-3

1
6
0
8
8
.7
3

1
7
3
3
9
.3
0

1
8
1
1
9
.7
2

1
6
1
3
3
.4
0

1
7
0
0
6
.9
2

1
6
3
6
2
.3
0

1
6
5
3
2
.0
8

1
6
3
4
9
.6
0

1
6
7
9
7
.8
0

1
6
5
5
1
.6
0

1
6
8
8
6
.0
1

1
5
9
0
2
.5
0

1
6
2
0
7
.0
5

-
1
.
1
6

li
n
3
1
8
-5

1
1
5
2
4
.2
9

1
3
8
9
3
.6
0

1
4
1
9
7
.2
5

1
2
2
9
1
.6
0

1
2
8
8
2
.3
8

1
1
9
0
3
.0
0

1
2
0
6
9
.8
3

1
1
6
1
9
.6
0

1
1
9
0
7
.9
0

1
1
7
4
1
.6
0

1
2
0
2
3
.7
4

1
1
2
9
5
.2
0

1
1
5
9
6
.3
5

-
1
.
9
9

li
n
3
1
8
-1
0

9
7
3
1
.1
7

1
0
4
4
4
.4
0

1
0
5
8
8
.9
4

9
8
6
1
.6
4

9
9
6
3
.3
1

9
7
4
2
.9
8

9
7
5
4
.7
6

9
7
3
1
.1
8

9
7
3
6
.1
7

9
7
3
1
.1
7

9
7
9
7
.3
8

9
7
3
1
.1
7

9
7
3
1
.1
7

0
.0
0

li
n
3
1
8
-2
0

9
7
3
1
.1
7

9
7
5
0
.6
8

9
7
8
7
.1
1

9
7
3
1
.1
7

9
7
3
1
.1
8

9
7
3
1
.1
7

9
7
3
1
.1
7

9
7
3
1
.1
7

9
7
3
1
.1
8

9
7
3
1
.1
7

9
7
3
1
.1
7

9
7
3
1
.1
7

9
7
3
1
.1
7

0
.0
0

a
tt
5
3
2
-3

-
1
2
0
1
1
.0
0

1
2
1
6
9
.1
5

1
1
2
5
8
.0
0

1
1
5
2
5
.5
0

1
0
6
5
6
.0
0

1
0
7
6
2
.9
5

1
0
5
8
5
.0
0

1
0
9
5
3
.9
0

1
0
5
6
6
.0
0

1
0
8
5
3
.0
5

1
0
2
3
1
.0
0

1
0
5
6
5
.3
0

-
3
.
1
7

a
tt
5
3
2
-5

-
8
8
9
9
.0
0

9
2
1
5
.8
5

8
5
1
8
.0
0

8
8
9
5
.8
0

8
0
1
9
.0
0

8
1
4
6
.8
5

7
3
4
4
.0
0

7
4
6
3
.5
0

7
2
7
9
.0
0

7
4
2
9
.5
0

7
0
6
7
.0
0

7
3
3
4
.0
0

-
2
.
9
1

a
tt
5
3
2
-1
0

-
6
6
9
6
.0
0

6
8
2
9
.1
0

6
4
2
7
.0
0

6
5
5
2
.9
0

6
4
4
9
.0
0

6
6
5
0
.0
0

5
7
6
1
.0
0

5
8
0
6
.7
5

5
7
4
5
.0
0

5
8
0
9
.0
0

5
7
0
9
.0
0

5
7
3
8
.9
0

-
0
.
6
3

a
tt
5
3
2
-2
0

-
5
9
1
2
.0
0

6
0
0
8
.1
5

5
7
4
5
.0
0

5
8
3
6
.9
0

5
9
9
1
.0
0

6
0
9
0
.7
0

5
5
8
0
.0
0

5
5
8
0
.0
5

5
5
8
0
.0
0

5
5
8
2
.9
0

5
5
8
0
.0
0

5
5
8
0
.0
0

0
.0
0

ra
t7
8
3
-3

3
2
7
2
.9
5

3
8
2
1
.0
6

3
9
4
8
.6
7

3
6
8
8
.7
9

3
7
8
6
.1
6

3
3
5
9
.9
5

3
4
0
6
.7
2

3
4
4
4
.2
0

3
4
8
5
.7
4

3
2
9
5
.9
0

3
3
6
4
.2
0

3
1
8
7
.9
0

3
2
3
7
.2
9

-
2
.
6
0

ra
t7
8
3
-5

2
0
9
2
.7
7

2
7
4
8
.9
1

2
8
2
4
.5
9

2
6
2
7
.7
4

2
7
8
1
.7
1

2
2
5
2
.9
3

2
2
8
9
.4
8

2
1
2
5
.5
3

2
1
8
9
.9
2

2
1
2
0
.7
4

2
1
4
5
.3
8

2
0
0
6
.4
6

2
0
4
4
.3
2

-
4
.
1
2

ra
t7
8
3
-1
0

1
3
6
0
.8
9

1
7
2
5
.4
5

1
7
6
6
.7
8

1
6
9
2
.3
1

1
7
1
8
.7
5

1
4
4
0
.5
5

1
4
5
7
.2
6

1
3
7
3
.4
6

1
3
9
6
.7
8

1
3
9
6
.9
2

1
4
2
4
.7
6

1
3
3
4
.7
6

1
3
4
5
.8
8

-
1
.
9
2

ra
t7
8
3
-2
0

1
2
3
1
.6
9

1
3
8
6
.9
6

1
4
1
6
.1
3

1
3
7
1
.3
2

1
3
9
0
.0
9

1
2
3
5
.2
1

1
2
4
0
.9
6

1
2
3
1
.6
9

1
2
3
1
.6
9

1
2
3
7
.9
7

1
2
4
4
.2
6

1
2
3
1
.6
9

1
2
3
1
.6
9

0
.0
0

p
c
b
1
1
7
3
-3

2
2
2
5
2
.3
1

2
7
0
1
1
.1
0

2
7
4
6
6
.5
2

2
5
5
5
7
.9
0

2
6
4
3
9
.8
3

2
1
7
8
1
.1
0

2
2
2
6
0
.0
7

2
3
1
9
3
.1
0

2
3
6
4
0
.0
0

2
2
2
5
5
.2
0

2
2
9
4
1
.1
9

2
0
8
1
3
.8
0

2
1
1
4
4
.9
2

-
4
.
4
4

p
c
b
1
1
7
3
-5

1
4
0
9
9
.5
0

1
8
6
9
2
.2
0

1
9
2
9
2
.0
7

1
8
7
0
3
.5
0

1
9
2
2
6
.8
2

1
4
5
6
6
.2
0

1
4
8
5
3
.2
4

1
4
3
3
3
.0
0

1
4
6
0
1
.3
0

1
4
0
8
8
.4
0

1
4
3
0
5
.5
7

1
3
0
3
2
.3
0

1
3
2
1
6
.9
9

-
7
.
5
0

p
c
b
1
1
7
3
-1
0

8
1
6
0
.2
5

1
1
4
6
3
.3
0

1
1
6
6
3
.9
9

1
1
1
7
0
.0
0

1
1
3
8
8
.4
1

8
6
7
9
.0
8

8
9
3
2
.0
6

8
2
2
2
.4
0

8
3
5
2
.0
7

8
4
5
2
.2
8

8
6
3
7
.9
5

7
7
5
8
.2
6

7
8
9
7
.2
0

-
4
.
9
3

p
c
b
1
1
7
3
-2
0

6
5
4
9
.1
4

8
2
2
0
.9
3

8
5
1
9
.7
4

8
1
3
2
.0
8

8
3
5
6
.5
3

6
6
0
4
.1
4

6
6
2
7
.6
5

6
5
4
9
.1
4

6
5
7
7
.5
9

6
5
4
9
.1
4

6
6
2
3
.9
1

6
5
2
8
.8
6

6
5
2
8
.8
6

-
0
.
3
1

A
V
G

-
6
7
9
5
.5
7

6
9
3
1
.9
1

6
5
5
3
.8
4

6
6
8
9
.2
1

6
2
4
9
.0
3

6
3
1
4
.7
8

6
1
7
7
.7
5

6
2
6
8
.4
0

6
1
5
2
.1
5

6
2
4
1
.8
5

6
0
1
5
.3
3

6
0
7
6
.7
3

-

B
K
S
#

3
0

0
0

4
0

0
0

0
0

0
1
5

2
1

-

p
-
v
a
lu
e

-
1
.1
7
E
-0
6

4
.3
7
E
-0
7

3
.0
9
E
-0
5

1
.2
1
E
-0
5

5
.6
1
E
-0
6

3
.7
9
E
-0
6

6
.0
8
E
-0
5

1
.0
2
E
-0
6

4
.0
3
E
-0
5

1
.9
2
E
-0
6

-
-

-

24

T
ab
le

6.
T
he

m
in
m
ax

m
T
SP

:
co
m
pa
ra
ti
ve

re
su
lt
s
of

H
SN

R
an
d
fo
ur

re
fe
re
nc
e
al
go
ri
th
m
s
on

Se
t
II

w
it
h
a
cu
to
�
ti
m
e
of

(n
/
10

0)
×

4
m
in
ut
es
.

re
-A
B
C
(V
C
)
(2
0
1
5
)

re
-I
W
O
(2
0
1
5
)

re
-G
V
N
S
(2
0
1
5
)

re
-M

A
S
V
N
D
(2
0
1
7
)

H
S
N
R
(t
h
is
w
o
rk
)

In
st
a
n
c
e

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

G
a
p
(%

)

n
rw
1
3
7
9
-3

2
5
5
6
6
.1
0

2
6
1
7
3
.2
2

2
4
4
0
1
.2
0

2
5
2
0
4
.3
0

2
1
7
4
6
.0
0

2
1
9
4
6
.3
4

2
2
2
3
6
.4
0

2
3
3
4
9
.1
2

2
0
4
9
5
.9
0

2
0
7
6
5
.7
0

-
5
.
7
5

n
rw
1
3
7
9
-5

1
7
7
6
5
.0
0

1
8
0
9
7
.0
4

1
7
6
3
6
.7
0

1
8
0
1
9
.8
8

1
4
1
0
5
.5
0

1
4
3
8
2
.1
6

1
3
3
6
8
.8
0

1
3
8
4
7
.1
4

1
2
4
1
6
.5
0

1
2
6
5
2
.5
6

-
7
.
1
2

n
rw
1
3
7
9
-1
0

1
0
1
8
5
.6
0

1
0
5
9
5
.0
8

1
0
1
4
5
.4
0

1
0
4
0
4
.2
9

8
0
2
6
.7
8

8
2
4
0
.1
4

7
5
8
3
.5
9

7
7
4
8
.6
9

7
1
1
4
.7
1

7
2
1
2
.2
4

-
6
.
1
8

n
rw
1
3
7
9
-2
0

7
3
0
6
.7
9

7
4
0
7
.5
3

7
0
8
2
.1
1

7
3
1
0
.7
4

5
4
9
2
.3
6

5
5
7
9
.5
7

5
4
9
5
.3
1

5
5
7
1
.0
1

5
3
7
0
.8
2

5
3
7
1
.0
8

-
2
.
2
1

�
1
4
0
0
-3

1
0
0
0
0
.8
0

1
0
2
0
6
.2
1

9
8
6
0
.6
3

1
0
1
4
0
.9
2

9
1
9
2
.6
5

9
5
6
3
.0
3

9
5
6
2
.2
5

1
0
0
9
4
.4
9

9
1
9
2
.3
8

9
6
2
1
.5
9

0
.
0
0

�
1
4
0
0
-5

8
4
7
8
.3
4

8
6
5
6
.8
4

8
4
2
2
.0
9

8
5
9
0
.9
5

6
3
0
5
.3
1

6
4
7
7
.5
2

6
8
0
3
.4
2

7
1
3
4
.6
9

6
2
6
8
.2
5

6
7
8
3
.6
2

-
0
.
5
9

�
1
4
0
0
-1
0

7
4
0
2
.6
0

7
5
5
4
.9
5

7
3
5
9
.7
4

7
4
8
5
.4
3

5
7
6
3
.2
6

5
7
6
3
.2
6

5
7
6
3
.2
6

5
7
6
3
.7
4

5
7
6
3
.2
6

5
7
6
3
.2
6

0
.0
0

�
1
4
0
0
-2
0

6
5
6
4
.3
8

6
8
4
8
.5
0

6
6
8
7
.7
9

6
8
1
9
.0
1

5
7
6
3
.2
6

5
7
6
3
.2
6

5
7
6
3
.2
6

5
7
6
3
.2
6

5
7
6
3
.2
6

5
7
6
3
.2
6

0
.0
0

d
1
6
5
5
-3

3
2
7
4
3
.4
0

3
3
7
4
8
.3
2

3
2
2
9
3
.3
0

3
3
0
5
1
.9
2

2
6
5
0
3
.1
0

2
7
1
8
9
.5
3

3
0
1
4
3
.3
0

4
2
8
1
3
.4
8

2
5
2
2
9
.3
0

2
5
6
3
5
.9
8

-
4
.
8
1

d
1
6
5
5
-5

2
4
4
5
6
.1
0

2
4
8
5
2
.6
9

2
4
1
4
6
.8
0

2
4
8
5
4
.6
6

1
9
0
0
3
.5
0

1
9
3
6
9
.4
6

1
8
7
1
9
.1
0

1
9
3
7
6
.1
5

1
7
1
8
1
.2
0

1
7
4
5
4
.3
2

-
8
.
2
2

d
1
6
5
5
-1
0

1
6
5
7
7
.8
0

1
6
7
7
7
.5
4

1
5
8
6
8
.5
0

1
6
5
6
9
.2
1

1
2
7
4
7
.1
0

1
2
9
7
5
.0
6

1
2
4
5
4
.0
0

1
2
6
2
3
.9
2

1
1
6
6
0
.0
0

1
1
8
1
6
.0
4

-
6
.
3
8

d
1
6
5
5
-2
0

1
2
4
1
7
.0
0

1
2
7
6
6
.9
0

1
2
1
6
5
.2
0

1
2
6
0
5
.3
3

9
8
5
7
.2
2

9
9
1
9
.5
9

9
8
9
3
.0
4

1
0
1
2
0
.0
3

9
5
9
8
.9
4

9
6
0
7
.7
3

-
2
.
6
2

u
2
1
5
2
-3

3
3
6
8
8
.2
0

3
4
1
7
7
.3
5

3
2
3
5
4
.7
0

3
3
2
4
6
.7
3

2
5
9
4
9
.7
0

2
6
5
6
9
.8
4

4
3
7
2
4
.7
0

4
4
1
8
7
.2
4

2
4
2
0
7
.4
0

2
4
7
4
7
.0
1

-
6
.
7
1

u
2
1
5
2
-5

2
3
2
2
8
.3
0

2
3
5
7
1
.5
6

2
3
3
5
6
.0
0

2
3
5
3
4
.9
8

1
6
9
5
0
.5
0

1
7
3
8
7
.2
5

1
7
6
5
3
.1
0

1
8
4
0
4
.2
2

1
5
0
5
5
.1
0

1
5
3
9
4
.8
5

-
1
1
.
1
8

u
2
1
5
2
-1
0

1
3
8
2
4
.9
0

1
4
2
1
1
.3
8

1
3
4
5
4
.4
0

1
3
9
8
5
.9
8

9
9
2
7
.9
7

1
0
1
9
3
.2
5

9
4
5
8
.6
0

9
6
0
0
.7
9

8
6
2
4
.6
1

8
7
8
0
.9
1

-
8
.
8
2

u
2
1
5
2
-2
0

9
3
4
1
.2
7

9
6
0
9
.4
8

9
2
2
3
.9
8

9
5
3
2
.8
7

6
6
5
2
.6
8

6
8
1
1
.7
8

6
5
5
0
.7
3

6
7
2
7
.1
3

6
1
7
1
.8
9

6
2
2
5
.8
2

-
5
.
7
8

p
r2
3
9
2
-3

1
9
2
3
4
8
.0
0

1
9
5
3
8
8
.2
5

1
8
6
0
1
3
.0
0

1
9
0
5
8
4
.7
0

1
5
1
3
0
0
.0
0

1
5
5
7
4
2
.3
0

2
5
4
0
3
4
.0
0

2
5
6
0
5
2
.6
5

1
4
1
6
2
7
.0
0

1
4
3
7
0
3
.0
0

-
6
.
3
9

p
r2
3
9
2
-5

1
3
4
4
9
6
.0
0

1
3
5
6
7
6
.4
0

1
3
3
7
8
0
.0
0

1
3
5
0
7
3
.3
0

1
0
2
0
8
7
.0
0

1
0
4
6
0
3
.9
0

1
0
4
9
7
7
.0
0

1
3
2
6
2
6
.1
0

8
8
0
8
3
.2
0

8
9
5
8
2
.8
3

-
1
3
.
7
2

p
r2
3
9
2
-1
0

8
2
8
3
4
.8
0

8
4
1
4
9
.4
5

8
0
1
3
5
.1
0

8
3
1
3
1
.0
4

5
8
9
5
5
.7
0

6
0
8
6
0
.4
2

5
5
3
3
7
.6
0

5
6
6
5
0
.6
3

5
1
0
8
5
.3
0

5
2
1
0
0
.8
0

-
7
.
6
8

p
r2
3
9
2
-2
0

5
6
4
1
5
.6
0

5
8
3
3
8
.6
8

5
6
9
4
1
.0
0

5
8
4
9
0
.1
8

3
9
0
2
1
.2
0

3
9
7
7
6
.0
0

3
8
1
7
5
.6
0

3
9
4
2
0
.3
3

3
5
3
2
5
.3
0

3
5
7
0
9
.0
2

-
7
.
4
7

p
c
b
3
0
3
8
-3

6
7
4
6
4
.2
0

7
0
0
0
3
.3
1

6
6
1
5
9
.2
0

6
8
9
3
1
.9
9

5
5
8
4
1
.9
0

5
6
6
6
1
.8
0

8
5
7
9
5
.4
0

8
6
4
8
1
.3
9

5
1
0
4
9
.9
0

5
1
5
8
2
.3
8

-
8
.
5
8

p
c
b
3
0
3
8
-5

4
6
2
0
9
.6
0

4
6
8
5
8
.0
6

4
6
4
6
5
.7
0

4
6
9
3
8
.1
0

3
6
1
1
5
.8
0

3
7
1
2
6
.4
7

6
6
5
6
0
.4
0

6
7
0
7
1
.9
0

3
1
1
4
0
.2
0

3
1
4
9
5
.5
9

-
1
3
.
7
8

p
c
b
3
0
3
8
-1
0

2
7
2
9
4
.5
0

2
7
7
0
0
.3
6

2
6
9
5
4
.2
0

2
7
6
5
9
.0
7

2
0
2
8
0
.4
0

2
0
8
5
1
.1
1

1
9
1
9
8
.2
0

1
9
6
2
0
.4
1

1
6
9
4
9
.9
0

1
7
4
5
0
.4
4

-
1
1
.
7
1

p
c
b
3
0
3
8
-2
0

1
8
1
0
6
.1
0

1
8
5
0
7
.8
4

1
7
7
7
2
.5
0

1
8
3
2
3
.5
9

1
2
5
6
0
.3
0

1
2
9
5
5
.6
5

1
2
0
1
2
.2
0

1
2
6
4
3
.5
4

1
0
8
3
5
.0
0

1
1
0
0
4
.4
0

-
9
.
8
0

�
3
7
9
5
-3

1
7
1
5
6
.1
0

1
7
4
6
6
.6
0

1
6
6
1
1
.7
0

1
7
2
0
7
.0
3

1
3
1
5
8
.3
0

1
3
7
9
3
.3
6

2
2
4
4
4
.5
0

2
2
8
0
1
.5
0

1
1
9
7
1
.0
0

1
2
8
1
5
.5
4

-
9
.
0
2

�
3
7
9
5
-5

1
3
4
7
6
.1
0

1
3
7
6
6
.9
5

1
3
3
9
1
.0
0

1
3
8
0
9
.9
3

9
0
1
9
.7
5

9
4
9
4
.5
1

1
9
6
9
8
.5
0

1
9
8
7
7
.8
1

7
9
2
3
.7
1

8
6
1
0
.8
4

-
1
2
.
1
5

�
3
7
9
5
-1
0

1
0
4
6
4
.9
0

1
0
5
9
4
.8
6

1
0
1
3
2
.3
0

1
0
5
0
0
.2
7

5
7
6
4
.8
5

6
1
5
6
.6
1

6
7
1
5
.0
7

7
1
2
0
.4
6

5
7
6
3
.2
6

5
8
2
3
.8
9

-
0
.
0
3

�
3
7
9
5
-2
0

8
5
7
3
.6
5

8
7
0
8
.4
5

8
5
1
9
.2
6

8
6
7
9
.6
9

5
7
6
3
.2
6

5
7
6
3
.2
6

5
7
6
3
.2
6

5
7
6
3
.7
5

5
7
6
3
.2
6

5
7
6
3
.2
6

0
.0
0

fn
l4
4
6
1
-3

9
0
8
5
0
.0
0

9
1
8
8
6
.0
8

9
0
0
6
2
.1
0

9
1
1
4
3
.2
4

7
6
2
4
5
.0
0

7
7
3
3
0
.3
0

1
0
8
6
2
2
.0
0

1
0
9
7
9
8
.5
0

6
6
9
0
3
.7
0

6
7
9
7
1
.3
4

-
1
2
.
2
5

fn
l4
4
6
1
-5

5
9
2
4
6
.1
0

6
0
0
4
7
.2
2

5
9
5
3
2
.7
0

6
0
1
7
0
.6
8

4
8
3
5
2
.6
0

4
9
3
4
3
.1
3

8
3
6
5
0
.4
0

8
4
4
3
0
.8
7

4
0
7
2
1
.2
0

4
1
7
7
7
.1
1

-
1
5
.
7
8

fn
l4
4
6
1
-1
0

3
4
6
7
1
.8
0

3
4
9
4
2
.8
4

3
4
0
6
8
.2
0

3
4
7
4
1
.0
6

2
6
1
8
2
.1
0

2
6
8
7
1
.3
5

2
5
3
8
5
.2
0

4
3
5
8
1
.6
3

2
2
0
4
1
.5
0

2
2
8
9
1
.4
5

-
1
3
.
1
7

fn
l4
4
6
1
-2
0

2
2
1
1
3
.0
0

2
2
7
9
8
.5
3

2
2
1
4
2
.8
0

2
2
8
5
2
.8
0

1
5
8
1
0
.1
0

1
6
3
4
1
.6
0

1
4
6
1
1
.3
0

1
5
2
6
2
.9
7

1
2
6
3
0
.1
0

1
3
0
4
6
.3
8

-
1
3
.
5
6

rl
5
9
1
5
-3

3
2
9
2
9
6
.0
0

3
3
4
6
0
6
.9
5

3
2
8
0
2
0
.0
0

3
3
2
3
2
7
.1
5

2
8
4
1
7
6
.0
0

3
1
4
5
3
1
.0
5

4
4
3
7
4
8
.0
0

4
4
5
9
7
9
.0
0

2
1
3
8
6
4
.0
0

2
2
6
8
1
9
.7
5

-
2
4
.
7
4

rl
5
9
1
5
-5

2
2
4
2
0
6
.0
0

2
2
6
3
9
6
.9
0

2
2
1
4
9
5
.0
0

2
2
5
5
6
6
.6
5

1
9
8
6
4
1
.0
0

2
0
1
4
2
3
.6
5

3
6
2
7
7
6
.0
0

3
6
4
7
1
7
.6
5

1
3
3
4
5
7
.0
0

1
4
5
1
7
3
.0
7

-
3
2
.
8
1

rl
5
9
1
5
-1
0

1
3
5
0
9
6
.0
0

1
3
7
6
4
9
.8
0

1
3
3
2
6
6
.0
0

1
3
7
7
3
7
.5
5

8
9
3
5
3
.0
0

9
8
4
3
6
.4
7

2
6
7
2
9
5
.0
0

2
7
0
3
5
4
.4
5

7
6
5
8
5
.2
0

8
4
4
5
9
.0
2

-
1
4
.
2
9

rl
5
9
1
5
-2
0

8
8
0
8
1
.7
0

9
2
8
7
0
.9
1

8
8
0
8
1
.7
0

9
2
7
1
6
.2
5

6
8
7
2
4
.0
0

7
0
6
9
2
.6
0

5
1
1
1
5
.2
0

5
3
0
6
6
.7
7

4
8
9
5
8
.5
0

6
0
3
0
6
.2
2

-
4
.
2
2

A
V
G

5
3
2
7
6
.3
0

5
4
2
6
7
.0
3

5
2
6
1
1
.1
7

5
3
8
3
1
.7
1

4
2
2
5
9
.4
2

4
4
0
8
0
.1
8

6
3
1
4
1
.3
2

6
5
4
5
6
.8
7

3
5
0
7
7
.5
5

3
6
7
1
3
.4
0

-

B
K
S
#

0
0

0
0

0
2

0
0

3
3

3
3

-

p
-
v
a
lu
e

1
.6
8
E
-0
7

1
.6
8
E
-0
7

1
.6
8
E
-0
7

1
.6
8
E
-0
7

5
.3
9
E
-0
7

7
.7
9
E
-0
7

5
.3
9
E
-0
7

1
.4
7
E
-0
6

-
-

-

25

Table 7
Summary of comparative results between HSNR and the reference algorithms.

Pair #Instances
Best Avg.

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

Minsum

HSNR vs. BKS 17 7 6 4 - - - - -

HSNR vs. re-ABC(VC) 77 72 5 0 1.66E-13 74 3 0 7.73E-14

HSNR vs. re-IWO 77 69 8 0 5.21E-13 74 3 0 7.73E-14

HSNR vs. re-GVNS 77 71 6 0 2.43E-13 74 3 0 7.73E-14

HSNR vs. ES 41 38 3 0 7.74E-08 41 0 0 2.42E-08

Minmax

HSNR vs. BKS 33 12 18 3 - - - - -

HSNR vs. re-ABC(VC) 77 66 11 0 1.64E-12 67 9 1 5.69E-13

HSNR vs. re-IWO 77 57 19 1 3.69E-11 62 10 5 3.75E-12

HSNR vs. re-GVNS 77 60 17 0 1.63E-11 59 16 2 4.84E-11

HSNR vs. ES 41 21 19 1 6.08E-05 28 12 1 1.02E-06

HSNR vs. re-MASVDN 77 54 22 1 1.27E-10 63 13 2 3.74E-11

followed the experimental protocol of Section 4.2.

5.1 Importance of the the α-nearness technique for neighborhood reduction

-0.2

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

G
a

p
 t

o
 H

S
N

R
 (

%
)

Instances

Best value of HSNR1

Best value of HSNR2

Best value of HSNR

(a)

-5.5

-4.5

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

1 3 5 7 9 11 13 15 17 19

G
a

p
 t

o
 H

S
N

R
 (

%
)

Instances

Average value of HSNR1

Average value of HSNR2

Average value of HSNR

(b)

Fig. 5. Minsum mTSP: comparative results of HSNR with HSNR1 (using δ-nearest
neighbors) and HSNR2 (without pruning).

-5

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19

G
a

p
 t

o
 H

S
N

R
 (

%
)

Instances

Best value of HSNR1

Best value of HSNR2

Best value of HSNR

(a)

-5

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19

G
a

p
 t

o
 H

S
N

R
 (

%
)

Instances

Average value of HSNR1

Average value of HSNR2

Average value of HSNR

(b)

Fig. 6. Minmax mTSP: comparative results of HSNR with HSNR1 (using δ-nearest
neighbors) and HSNR2 (without pruning).

To study the bene�t of the α-nearness pruning technique (Section 3.3.3), we
compared HSNR with two alternative versions: HSNR1 where the α-nearness

26

pruning technique was replaced by the method of δ-nearest neighbors [2,6], and
HSNR2 where no pruning technique was used. As such, at each neighborhood
search iteration of HSNR1, city a must be one of the δ-nearest cities of city πb
(δ was set to 40), as shown in the illustrative example of Fig. 1. For HSNR2,
there is no any restriction between city a and πb.

The experimental results of HSNR, HSNR1 and HSNR2 are summarized in
Figs. 5 and 6 as well as Table 8. In the �gures, the results of HSNR are used
as the baseline and the results of HSNR1 and HSNR2 are showed relative to
this baseline. From these results, the following observations can be made.

For the minsum mTSP, compared to HSNR2 which doesn't use any neigh-
borhood pruning technique, both reductions (α-nearness pruning for HSNR
and δ-nearest pruning for HSNR1) led to slightly better results in terms of
the best objectives values, while the average quality was slightly scari�ed in
several cases. The Wilcoxon signed-rank tests in Table 8, however, don't con-
�rm statistically signi�cant di�erences between the compared algorithms. For
the minmax mTSP, both HSNR and HSNR1 signi�cantly outperformed the
HSNR2 variant in terms of the best and average values (con�rmed by the
Wilcoxon signed-rank tests). The importance of the pruning techniques is even
more ampli�ed on large instances. One also observes that HSNR using the
α-nearness pruning technique consistently showed better performances than
HSNR1 using the δ-nearest neighbors technique. As an example, the conver-
gence charts shown in Fig. 7 also illustrate the usefulness of the α-nearness
pruning technique on a representative instance.

This experiment con�rms the interest of heuristic pruning techniques, espe-
cially the α-nearness technique adopted in the HSNR algorithm. By avoiding
useless examinations of non-promising neighboring solutions, the neighbor-
hood reduction strategy is particularly useful for solving large instances of the
minmax mTSP, even if its contribution to the minsum mTSP is less signi�cant.

5.2 Importance of the EAX heuristic for intra-optimization

To evaluate the bene�ts of the EAX heuristic for intra-tour optimization (Sec-
tion 3.4), we compare HSNR with two alternative algorithms: HSNR3 where
EAX is replaced by the popular 2-opt heuristic, and HSNR4 where EAX is
replaced by the LK algorithm [25]. The comparative results are shown in Figs.
8 and 9 as well as Table 8.

For the minsum mTSP, HSNR with EAX signi�cantly dominates its variants
with the 2-opt and LK heuristics in terms of the best and average results (con-
�rmed by the Wilcoxon signed-rank tests). For the minmax mTSP, HSNR also
performs better than its competitors except for a small number of instances.
This experiment demonstrates clearly the usefulness of the TSP heuristic EAX

27

16100

16200

16300

16400

16500

16600

16700

16800

16900

17000

17100

0 200 400 600 800

O
b

je
c
ti

v
e
 v

a
lu

e

Time (seconds)

HSNR

HSNR1

HSNR2

Fig. 7. Convergence chart (running pro�les) of HSNR and two HSNR variants for
solving instance lin318-3 with the minmax mTSP. The results were obtained from
20 independent executions of each algorithm.

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19

G
a

p
 t

o
 H

S
N

R
 (

%
)

Instances

Best value of HSNR3

Best value of HSNR4

Best value of HSNR

(a)

-2

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19

G
a

p
 t

o
 H

S
N

R
 (

%
)

Instances

Average value of HSNR3

Average value of HSNR4

Average value of HSNR

(b)

Fig. 8. Minsum mTSP: comparative results of HSNR (using EAX) with HSNR3
(using the 2-opt heuristic) and HSNR4 (using the LK algorithm).

-2

-1

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19

G
a

p
 t

o
 H

S
N

R
 (

%
)

Instances

Best value of HSNR3

Best value of HSNR4

Best value of HSNR

(a)

-2

-1

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19

G
a

p
 t

o
 H

S
N

R
 (

%
)

Instances

Average value of HSNR3

Average value of HSNR4

Average value of HSNR

(b)

Fig. 9. Minmax mTSP: comparative results of HSNR (using EAX) with HSNR3
(using the 2-opt heuristic) and HSNR4 (using the LK algorithm).

28

as a critical intra-tour optimization tool for the mTSP.

Table 8
Summary of comparative results between HSNR and the four compared algorithms.

Best Avg.

Pair #Instances #Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

Minsum

HSNR vs. HSNR1 20 2 18 0 5.00E-01 3 5 12 3.00E-03

HSNR vs. HSNR2 20 3 17 0 2.50E-01 5 5 10 7.90E-02

HSNR vs. HSNR3 20 20 0 0 8.85E-05 20 0 0 8.85E-05

HSNR vs. HSNR4 20 20 0 0 8.85E-05 19 0 1 1.20E-04

Minmax

HSNR vs. HSNR1 20 12 6 2 5.00E-02 12 6 2 2.00E-02

HSNR vs. HSNR2 20 15 5 0 6.10E-05 15 5 0 6.10E-05

HSNR vs. HSNR3 20 12 6 2 1.00E-02 10 6 4 4.90E-01

HSNR vs. HSNR4 20 10 7 3 9.00E-02 7 6 7 6.30E-01

6 Conclusions

This work studied the multiple traveling salesman problem, which is a rele-
vant model to formulate a number of practical applications. The presented
hybrid search with neighborhood reduction algorithm combines tabu search
based inter-tour optimization (with 2 complementary neighborhoods) and a
TSP heuristic based intra-tour optimization. A dedicated neighborhood reduc-
tion technique was introduced, which avoids the evaluations of non-promising
candidate solutions and thus speeds up the neighborhood search.

Extensive computational results on the set of 41 benchmark instances com-
monly tested in the literature indicate that the algorithm is highly competitive
compared with the existing leading algorithms. In particular, for the minsum
mTSP, the proposed algorithm reports 27 best results while matching 10 best-
known results. For the minmax mTSP, the algorithm performs also well by
reporting 15 best bounds. To assess the presented algorithm on still larger
instances, we introduced a new set of 36 large instances and reported the
�rst computational results, which further demonstrated the superiority of the
algorithm over the reference algorithms. These new large instances and the
presented results can be used to assess other mTSP algorithms.

The TSP heuristic EAX was also used for the �rst time to solve the minsum
mTSP, based on the fact that the minsum mTSP can be conveniently trans-
formed to the TSP. The results showed that this transformation approach
performs remarkably well on most minsum mTSP instances and signi�cantly
dominates all algorithms dedicated to the minsum mTSP.

For future work, there are several perspectives. First, it would be interesting
to adopt the main idea of this study (i.e., neighborhood reduction, TSP tool)
to design e�ective heuristics for other TSP variants and routing problems,
including practical problems faced in real-life applications. Second, even if
the minsum mTSP can be e�ectively solved by popular TSP algorithms, this

29

is not the case for the minmax mTSP. As such, more e�orts are needed to
design e�ective algorithms for the minmax mTSP. In this regard, it is worth
investigating other search framework such as memetic algorithms integrating
dedicated crossover operators. Also, few exact algorithms exist for the minmax
mTSP, there is much room for making progressive in this area.

Declaration of competing interest

The authors declare that they have no known competing interests that could
have appeared to in�uence the work reported in this paper.

Acknowledgments

We are grateful to the reviewers for their useful comments and suggestions
which helped us to signi�cantly improve the paper. We would like to thank
authors of [22,32,45,47]: Prof. K. Karabulut and Prof. M. F. Tasgetiren for
sharing their executable code; Prof. A. Singh, Dr. Y. Wang, and Dr. S. Yuan for
providing their test problems and answering our questions. Support from the
China Scholarship Council (CSC, grant No. 2019068500) for the �rst author
is acknowledged.

References

[1] D. Applegate, W. Cook, S. Dash, A. Rohe, Solution of a min-max vehicle routing
problem, INFORMS Journal on Computing 14 (2) (2002) 132�143.

[2] F. Arnold, M. Gendreau, K. Sörensen, E�ciently solving very large-scale routing
problems, Computers & Operations Research 107 (2019) 32�42.

[3] F. Arnold, K. Sörensen, Knowledge-guided local search for the vehicle routing
problem, Computers & Operations Research 105 (2019) 32�46.

[4] T. Bektas, The multiple traveling salesman problem: an overview of formulations
and solution procedures, Omega 34 (3) (2006) 209�219.

[5] T. Bekta³, Formulations and benders decomposition algorithms for multidepot
salesmen problems with load balancing, European Journal of Operational
Research 216 (1) (2012) 83�93.

[6] J. Brandão, A memory-based iterated local search algorithm for the multi-depot
open vehicle routing problem, European Journal of Operational Research 284 (2)
(2020) 559�571.

[7] E. C. Brown, C. T. Ragsdale, A. E. Carter, A grouping genetic algorithm for
the multiple traveling salesperson problem, International Journal of Information
Technology & Decision Making 6 (02) (2007) 333�347.

30

[8] A. E. Carter, C. T. Ragsdale, A new approach to solving the multiple traveling
salesperson problem using genetic algorithms, European Journal of Operational
Research 175 (1) (2006) 246�257.

[9] A. E. Carter, C. T. Ragsdale, Quality inspection scheduling for multi-unit service
enterprises, European Journal of Operational Research 194 (1) (2009) 114�126.

[10] O. Cheikhrouhou, I. Khou�, A comprehensive survey on the multiple traveling
salesman problem: Applications, approaches and taxonomy, Computer Science
Review 40 (2021) 100369.

[11] E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance
pro�les, Mathematical Programming 91 (2) (2002) 201�213.

[12] H. Ergezer, K. Leblebicio§lu, 3d path planning for multiple UAVs for maximum
information collection, Journal of Intelligent & Robotic Systems 73 (1-4) (2014)
737�762.

[13] P. M. França, M. Gendreau, G. Laporte, F. M. Müller, The m-traveling salesman
problem with minmax objective, Transportation Science 29 (3) (1995) 267�275.

[14] W. Garn, Closed form distance formula for the balanced multiple travelling
salesmen, arXiv preprint arXiv:2001.07749.

[15] W. Garn, Balanced dynamic multiple travelling salesmen: Algorithms and
continuous approximations, Computers & Operations Research 136 (2021)
105509.

[16] B. Gavish, K. Srikanth, An optimal solution method for large-scale multiple
traveling salesmen problems, Operations Research 34 (5) (1986) 698�717.

[17] F. W. Glover, M. Laguna, Tabu Search, Kluwer, 1997.

[18] P. He, J. Li, H. Qin, Y. He, G. Cao, Using hybrid algorithm to reduce
non-working distance in intra-and inter-�eld logistics simultaneously for
heterogeneous harvesters, Computers & Electronics in Agriculture 167 (2019)
105065.

[19] P. He, J. Li, X. Wang, Wheat harvest schedule model for agricultural machinery
cooperatives considering fragmental farmlands, Computers & Electronics in
Agriculture 145 (2018) 226�234.

[20] K. Helsgaun, An e�ective implementation of the Lin�Kernighan traveling
salesman heuristic, European Journal of Operational Research 126 (1) (2000)
106�130.

[21] S. Hong, M. W. Padberg, A note on the symmetric multiple traveling salesman
problem with �xed charges, Operations Research 25 (5) (1977) 871�874.

[22] K. Karabulut, H. Öztop, L. Kandiller, M. F. Tasgetiren, Modeling and
optimization of multiple traveling salesmen problems: An evolution strategy
approach, Computers & Operations Research 129 (2021) 105192.

31

[23] A. Koubâa, O. Cheikhrouhou, H. Bennaceur, M.-F. Sriti, Y. Javed, A. Ammar,
Move and improve: a market-based mechanism for the multiple depot multiple
travelling salesmen problem, Journal of Intelligent & Robotic Systems 85 (2)
(2017) 307�330.

[24] G. Laporte, Y. Nobert, A cutting planes algorithm for the m-salesmen problem,
Journal of the Operational Research Society 31 (11) (1980) 1017�1023.

[25] S. Lin, B. W. Kernighan, An e�ective heuristic algorithm for the traveling-
salesman problem, Operations Research 21 (2) (1973) 498�516.

[26] W. Liu, S. Li, F. Zhao, A. Zheng, An ant colony optimization algorithm for the
multiple traveling salesmen problem, in: 2009 4th IEEE Conference on Industrial
Electronics and Applications, pages 1533�1537, IEEE, 2009.

[27] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, T. Stützle, The
irace package: Iterated racing for automatic algorithm con�guration, Operations
Research Perspectives 3 (2016) 43�58.

[28] L.-C. Lu, T.-W. Yue, Mission-oriented ant-team ACO for min�max MTSP,
Applied Soft Computing 76 (2019) 436�444.

[29] Y. Lu, U. Benlic, Q. Wu, A population algorithm based on randomized tabu
thresholding for the multi-commodity pickup-and-delivery traveling salesman
problem, Computers & Operations Research 101 (2019) 285�297.

[30] Y. Nagata, S. Kobayashi, A powerful genetic algorithm using edge assembly
crossover for the traveling salesman problem, INFORMS Journal on Computing
25 (2) (2013) 346�363.

[31] J. Pan, D. Wang, An ant colony optimization algorithm for multiple travelling
salesman problem, in: First International Conference on Innovative Computing,
Information and Control, pages 210�213, IEEE Computer Society, 2006.

[32] V. Pandiri, A. Singh, Two metaheuristic approaches for the multiple traveling
salesperson problem, Applied Soft Computing 26 (2015) 74�89.

[33] M. M. Paydar, I. Mahdavi, I. Sharafuddin, M. Solimanpur, Applying simulated
annealing for designing cellular manufacturing systems using MDmTSP,
Computers & Industrial Engineering 59 (4) (2010) 929�936.

[34] P. H. V. Penna, A. Subramanian, L. S. Ochi, An iterated local search heuristic
for the heterogeneous �eet vehicle routing problem, Journal of Heuristics 19 (2)
(2013) 201�232.

[35] M. Rao, A note on the multiple traveling salesmen problem, Operations Research
28 (3-part-i) (1980) 628�632.

[36] S. Shiri, N. Huynh, Optimization of drayage operations with time-window
constraints, International Journal of Production Economics 176 (2016) 7�20.

[37] A. Singh, A. S. Baghel, A new grouping genetic algorithm approach to the
multiple traveling salesperson problem, Soft Computing 13 (1) (2009) 95�101.

32

[38] B. Soylu, A general variable neighborhood search heuristic for multiple traveling
salesmen problem, Computers & Industrial Engineering 90 (2015) 390�401.

[39] J. A. Svestka, V. E. Huckfeldt, Computational experience with an m-salesman
traveling salesman algorithm, Management Science 19 (7) (1973) 790�799.

[40] É. Taillard, P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, A tabu search
heuristic for the vehicle routing problem with soft time windows, Transportation
Science 31 (2) (1997) 170�186.

[41] L. Tang, J. Liu, A. Rong, Z. Yang, A multiple traveling salesman problem model
for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex, European
Journal of Operational Research 124 (2) (2000) 267�282.

[42] P. Toth, D. Vigo, The granular tabu search and its application to the vehicle-
routing problem, INFORMS Journal on Computing 15 (4) (2003) 333�346.

[43] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, A. Subramanian, New
benchmark instances for the capacitated vehicle routing problem, European
Journal of Operational Research 257 (3) (2017) 845�858.

[44] T. Vidal, T. G. Crainic, M. Gendreau, C. Prins, Heuristics for multi-
attribute vehicle routing problems: A survey and synthesis, European Journal
of Operational Research 231 (1) (2013) 1�21.

[45] Y. Wang, Y. Chen, Y. Lin, Memetic algorithm based on sequential variable
neighborhood descent for the minmax multiple traveling salesman problem,
Computers & Industrial Engineering 106 (2017) 105�122.

[46] Whizzkids'96, https://www.win.tue.nl/whizzkids/1996/ (1996).

[47] S. Yuan, B. Skinner, S. Huang, D. Liu, A new crossover approach for solving
the multiple travelling salesmen problem using genetic algorithms, European
Journal of Operational Research 228 (1) (2013) 72�82.

[48] C. Zhan, Y. Zeng, Completion time minimization for multi-UAV-enabled data
collection, IEEE Transactions on Wireless Communications 18 (10) (2019) 4859�
4872.

[49] R. Zhang, H. Zhao, I. Moon, Range-based truck-state transition modeling
method for foldable container drayage services, Transportation Research Part
E: Logistics and Transportation Review 118 (2018) 225�239.

A Appendix

This appendix includes computational results of two additional experiments.
The �rst experiment concerns a comparison between the proposed HSNR al-
gorithm and the reference algorithms under a short cuto� time for the minsum
mTSP and the minmax mTSP. The second experiment is about solving the
minsum mTSP by running a TSP solver, given that the minsum mTSP can
be transformed to the TSP [21,35]. Even if this transformation is known for

33

https://www.win.tue.nl/whizzkids/1996/

a long time, to our knowledge, this is the �rst study reporting extensive com-
putational results using this approach.

A.1 Additional computational results and comparisons

We compare the results of the HSNR algorithm with the best results of the
reference algorithms directly extracted from the literature. Given that the
reference algorithms were coded by di�erent persons and run on di�erent
computers under various stopping conditions, this comparison is presented
for indicative purposes only. For this study, we used the following reference
algorithms.

- IWO [32], which reports results on 17 instances of Set I for the minsum
mTSP and the minmax mTSP. The algorithm was written in C and run on
a computer with a 2.83 GHz CPU and the stopping condition is a maximum
of 1000 iteration steps.

- ABC(VC) [32], which reports results on 17 instances of Set I for the minsum
mTSP and the minmax mTSP. The algorithm was written in C and run on
the same computer under the same stopping condition as IWO.

- GVNS [38], which reports results on 12 instances of Set I for the minsum
mTSP and the minmax mTSP. The algorithm was written in C++ and
run on a computer with a 2.4 GHz CPU, and the stopping condition is a
maximum running time of n seconds.

- MASVND [45], which is designed for the minmax mTSP only and reports
results on 31 out of the 41 instances of Set I. The algorithm was written
in Java and run on a computer with a 3.4 GHz CPU, and the stopping
condition is a maximum running time of n/5 seconds.

- ES [22], which reports results on 12 instances of Set I for the minsum mTSP
and 31 out of the 41 instances of Set I for the minmax mTSP. The algorithm
was written in C++ and run on a computer with a 2.66 GHz CPU, and the
stopping condition is a maximum time of n and n/5 seconds for the minsum
mTSP and the minmax mTSP, respectively.

To make the comparison as meaningful as possible, we adopted as our stop-
ping condition the shortest cuto� time among those used by the reference
algorithms, i.e., n/5 seconds used in [45]. We used the CPU frequency to con-
vert this cuto� time to our computer, leading to a cuto� time of (1.36× n)/5
seconds for our HSNR algorithm on our computer. Note that MASVND re-
ports results for the minmax mTSP only, while the other reference algorithms
report results for both the minsum mTSP and the minmax mTSP.

34

A.1.1 Comparative results for the minsum mTSP

Table A.1 shows the computational results of the compared algorithms for the
minsum mTSP with the same information as in Section 4.

From Table A.1, one observes that the proposed HSNR algorithm performs
better than ABC(VC), GVNS, by matching more BKS values, while its per-
formance is slightly worse than the fast IWO algorithm and ES. Interestingly,
HSNR reports three new best-known results. This experiment indicates that
under short stopping conditions, the fast IWO and ES algorithms perform the
best for the minsum mTSP, while HSNR remains competitive by reporting
three new upper bounds.

A.1.2 Comparative results for the minmax mTSP

We show in Table A.2 the computational results of the compared algorithms
for the the minmax mTSP with the same information as in Section 4. In this
table, we included the results of IWO-Wang [45], which is a re-implementation
of the IWO algorithm of [32].

Table A.2 indicates that HSNR performs competitively compared to the main
reference algorithms, that is MASVND [45] and ES [22]. In terms of the best
objective value, HSNR updates the best upper bounds (BKS) for 9 out of 33
instances and reaches the BKS values for 17 instances. Given that the BKS
values are compiled from the best results ever reported by all existing algo-
rithms in the literature, the performance of HSNR for the minmax mTSP can
be considered as remarkable. In summary, these results con�rm the competi-
tiveness of HSNR over the state-of-the-art algorithms for the minmax mTSP
also under this short cuto� limit.

A.2 Computational results for the minsum mTSP with a TSP heuristic

We report computational results of running the EAX heuristic [30] on the TSP
instances transformed from the minsum mTSP instances. Given that most of
the 77 instances involve distance matrices of real numbers, we updated the
data type of EAX from integer numbers to real numbers. For this experi-
ment, we ran the EAX code with its default parameter setting under the same
stopping condition as HSNR (i.e., (n/100) × 4 minutes, see Section 4). Each
instance was solved 20 times by EAX with di�erence random seeds. Note that
EAX may also terminate if the gap between the average tour length and the
shortest tour length in the population becomes less than 0.0001.

Tables A.3 and A.4 show the comparative results of EAX and HSNR with the
same information as in Section 4.3.1. The background of the top results for
each instance is highlighted in dark gray; the second best results in medium

35

T
ab
le

A
.1
.
M
in
su
m

m
T
SP

:
co
m
pa
ra
ti
ve

re
su
lt
s
b
et
w
ee
n
H
SN

R
an
d
fo
ur

st
at
e-
of
-t
he
-a
rt

al
go
ri
th
m
s
on

17
in
st
an
ce
s
of

Se
t
I
w
it
h
th
e

sh
or
t
cu
to
�
ti
m
e
of

(1
.3

6
×
n

)/
5
se
co
nd

s
on

ou
r
co
m
pu

te
r.

A
B
C
(V
C
)
[3
2
]

IW
O
[3
2
]

G
V
N
S
[3
8
]

E
S
[2
2
]

H
S
N
R
(t
h
is
w
o
rk
)

In
st
a
n
c
e

B
K
S

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

G
a
p
(%

)

m
ts
p
5
1
-3

4
4
6

4
4
6

4
4
8

4
4
6

4
4
8

4
4
6

4
4
9

4
4
6

4
4
6
.6

4
4
6

4
4
6

0
.0
0

m
ts
p
5
1
-5

4
7
2

4
7
2

4
7
5

4
7
2

4
7
8

4
7
2

4
7
4

4
7
2

4
7
2
.6

4
7
2

4
7
2

0
.0
0

m
ts
p
5
1
-1
0

5
8
0

5
8
0

5
8
1

5
8
1

5
8
3

5
8
0

5
8
0

5
8
0

5
8
0
.7

5
8
0

5
8
3
.4

0
.0
0

m
ts
p
1
0
0
-3

2
1
7
9
8

2
1
7
9
8

2
1
8
1
4

2
1
7
9
8

2
1
9
4
1

2
1
8
7
9

2
2
0
6
8

2
1
7
9
8

2
1
8
3
9

2
1
7
9
7
.6

2
1
8
5
2
.4
2

0
.0
0

m
ts
p
1
0
0
-5

2
3
1
7
5

2
3
1
8
2

2
3
2
2
2

2
3
2
9
4

2
3
3
1
9

2
3
1
7
5

2
3
3
8
3

2
3
1
7
5

2
3
2
5
2

2
3
1
7
4
.9

2
3
1
9
5
.3
1

0
.0
0

m
ts
p
1
0
0
-1
0

2
6
9
2
7

2
6
9
6
1

2
7
0
0
4

2
6
9
6
1

2
7
0
7
2

2
7
0
0
8

2
7
3
6
8

2
6
9
2
7

2
6
9
2
7

2
7
0
2
6
.4

2
7
0
8
1
.4
7

0
.3
7

m
ts
p
1
0
0
-2
0

3
8
2
4
5

3
8
3
3
3

3
8
3
9
7

3
8
2
4
5

3
8
3
5
7

3
8
3
2
6

3
8
8
6
7

3
8
2
4
5

3
8
2
5
7

3
8
2
9
7
.1

3
8
8
8
2
.6
1

0
.1
4

m
ts
p
1
5
0
-3

3
7
9
5
7

3
8
0
6
6

3
8
2
6
3

3
7
9
5
7

3
8
0
5
5

3
8
4
3
0

3
8
8
2
7

3
8
0
7
2

3
8
2
4
1
.1

3
7
9
1
0
.7

3
7
9
1
2
.8
8

-
0
.
1
2

m
ts
p
1
5
0
-5

3
8
7
1
4

3
8
9
7
9

3
9
2
0
2

3
8
7
1
4

3
8
8
8
1

3
9
1
7
1

3
9
5
6
6

3
8
9
0
7

3
9
1
3
2
.5

3
8
7
1
4
.4

3
8
7
6
8
.5
4

0
.0
0

m
ts
p
1
5
0
-1
0

4
2
2
0
3

4
2
4
4
1

4
2
7
1
2

4
2
2
3
4

4
2
4
6
2

4
2
7
3
0

4
2
9
2
2

4
2
2
0
3

4
2
4
2
8
.1

4
2
2
6
8
.4

4
2
3
9
3
.1
1

0
.1
5

m
ts
p
1
5
0
-2
0

5
3
3
4
3

5
3
6
0
3

5
3
8
7
7

5
3
4
7
5

5
3
6
1
2

5
3
5
7
6

5
3
8
5
4

5
3
3
4
3

5
3
5
1
6
.4

5
3
6
0
8
.3

5
4
1
4
2
.5
7

0
.5
0

m
ts
p
1
5
0
-3
0

6
8
5
4
1

6
8
8
6
5

6
9
0
4
6

6
8
5
4
1

6
8
7
5
1

6
8
5
5
8

6
8
8
0
4

6
8
6
0
6

6
8
7
7
4
.7

6
8
7
8
7
.3

6
9
2
2
4
.9
7

0
.3
6

g
ts
p
1
5
0
-3

6
5
9
0

6
5
9
0

6
6
1
4

6
5
9
3

6
6
2
8

-
-

-
-

6
5
7
4
.2

6
5
7
5
.5

-
0
.
2
4

g
ts
p
1
5
0
-5

6
6
5
2

6
7
0
8

6
7
2
5

6
6
5
2

6
7
1
6

-
-

-
-

6
6
5
5
.1
1

6
6
5
7
.9
7

0
.0
5

g
ts
p
1
5
0
-1
0

7
3
4
2

7
3
7
7

7
4
1
4

7
3
4
2

7
3
8
8

-
-

-
-

7
3
3
2
.1
1

7
3
4
6
.0
9

-
0
.
1
3

g
ts
p
1
5
0
-2
0

9
5
2
5

9
5
4
2

9
5
9
6

9
5
2
5

9
5
8
3

-
-

-
-

9
5
4
2
.2
9

9
6
3
7
.4
5

0
.1
8

g
ts
p
1
5
0
-3
0

1
2
9
7
6

1
3
0
5
5

1
3
1
1
5

1
2
9
7
6

1
3
1
2
7

-
-

-
-

1
3
0
5
9
.8

1
3
1
9
0
.4
1

0
.6
5

A
V
G
.

2
3
2
6
3
.8
8

2
3
3
5
2
.8
2

2
3
4
4
1
.4
7

2
3
2
8
2
.7
1

2
3
3
7
6
.5
3

-
-

-
-

2
3
3
0
8
.6
2

2
3
4
3
3
.1

-

B
e
st
#

-
0

3
0

3
0

1
3

0
3

9
-

p
-
v
a
lu
e

6
.0
0
E
-0
2

3
.0
0
E
-0
2

9
.8
0
E
-0
1

2
.3
0
E
-0
1

7
.2
0
E
-0
1

-
-

-
-

-
-

-

36

T
ab
le
A
.2
.
M
in
m
ax

m
T
SP

:
co
m
pa
ra
ti
ve

re
su
lt
s
of

H
SN

R
an
d
si
x
st
at
e-
of
-t
he
-a
rt

al
go
ri
th
m
s
on

th
e
in
st
an
ce
s
of

Se
t
I.
T
he

cu
to
�
ti
m
e
is

(1
.3

6
×
n

)/
5
se
co
nd

s
on

ou
r
co
m
pu

te
r.

A
B
C
(V
C
)
[3
2
]

IW
O
[3
2
]

G
V
N
S
[3
8
]

IW
O
-W

a
n
g
[4
5
]

M
A
S
V
N
D
[4
5
]

E
S
[2
2
]

H
S
N
R
(t
h
is
w
o
rk
)

In
st
a
n
c
e

B
K
S

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

B
e
s
t

A
v
g
.

G
a
p
(%

)

m
ts
p
5
1
-3

1
5
9
.5
7

1
6
0
.0
0

1
6
0
.0
0

1
6
0
.0
0

1
6
0
.0
0

1
6
0
.0
0

1
6
2
.0
0

1
5
9
.5
7

1
5
9
.5
7

1
5
9
.5
7

1
5
9
.7
3

1
5
9
.5
7

1
6
0
.2
8

1
5
9
.5
7

1
5
9
.9
9

0
.0
0

m
ts
p
5
1
-5

1
1
8
.0
0

1
1
8
.0
0

1
1
8
.0
0

1
1
8
.0
0

1
1
8
.0
0

1
1
8
.0
0

1
2
0
.0
0

1
1
8
.1
3

1
1
8
.1
3

1
1
8
.1
3

1
2
0
.5
4

1
1
8
.1
3

1
1
8
.6
2

1
1
8
.1
3

1
1
8
.1
3

0
.0
0

m
ts
p
5
1
-1
0

1
1
2
.0
0

1
1
2
.0
0

1
1
2
.0
0

1
1
2
.0
0

1
1
2
.0
0

1
1
2
.0
0

1
1
2
.0
0

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

1
1
2
.0
7

0
.0
0

m
ts
p
1
0
0
-3

8
5
0
9
.0
0

8
5
0
9
.0
0

8
5
7
4
.0
0

8
5
0
9
.0
0

8
5
5
0
.0
0

8
5
0
9
.0
0

8
5
7
1
.0
0

-
-

-
-

8
5
0
9
.0
0

8
5
0
9
.0
0

8
5
0
9
.1
6

8
5
7
8
.5
1

0
.0
0

m
ts
p
1
0
0
-5

6
7
6
5
.7
3

6
7
6
8
.0
0

6
7
8
9
.0
0

6
7
6
7
.0
0

6
7
6
9
.0
0

6
7
6
7
.0
0

6
8
3
5
.0
0

-
-

-
-

6
7
6
6
.0
0

6
7
6
6
.9
0

6
7
6
5
.7
3

6
7
7
4
.2
4

0
.0
0

m
ts
p
1
0
0
-1
0

6
3
5
8
.0
0

6
3
5
8
.0
0

6
3
5
8
.0
0

6
3
5
8
.0
0

6
3
5
8
.0
0

6
3
5
8
.0
0

6
3
5
8
.0
0

-
-

-
-

6
3
5
8
.0
0

6
3
5
8
.0
0

6
3
5
8
.4
9

6
3
5
8
.4
9

0
.0
0

m
ts
p
1
0
0
-2
0

6
3
5
8
.0
0

6
3
5
8
.0
0

6
3
5
8
.0
0

6
3
5
8
.0
0

6
3
5
8
.0
0

6
3
5
8
.0
0

6
3
5
8
.0
0

-
-

-
-

6
3
5
8
.0
0

6
3
5
8
.0
0

6
3
5
8
.4
9

6
3
5
8
.4
9

0
.0
0

m
ts
p
1
5
0
-3

1
3
1
5
1
.0
0

1
3
3
1
3
.0
0

1
3
7
6
1
.0
0

1
3
1
6
8
.0
0

1
3
3
1
3
.0
0

1
3
3
7
6
.0
0

1
3
6
2
8
.0
0

-
-

-
-

1
3
1
5
1
.0
0

1
3
2
7
2
.2
0

1
3
1
7
4
.3
0

1
3
3
5
2
.3
7

0
.1
8

m
ts
p
1
5
0
-5

8
4
6
6
.0
0

8
5
6
7
.0
0

8
7
9
5
.0
0

8
4
7
9
.0
0

8
5
6
7
.0
0

8
4
6
7
.0
0

8
6
0
1
.0
0

-
-

-
-

8
4
6
6
.0
0

8
5
7
2
.5
0

8
4
7
9
.6
0

8
6
0
2
.1
5

0
.1
6

m
ts
p
1
5
0
-1
0

5
5
5
7
.0
0

5
6
5
1
.0
0

5
8
3
4
.0
0

5
5
9
4
.0
0

5
6
5
4
.0
0

5
6
7
4
.0
0

5
7
3
6
.0
0

-
-

-
-

5
5
5
7
.0
0

5
6
0
9
.6
0

5
6
1
6
.7
1

5
6
6
8
.5
9

1
.0
7

m
ts
p
1
5
0
-2
0

5
2
4
6
.0
0

5
2
4
6
.0
0

5
2
8
1
.0
0

5
2
4
6
.0
0

5
2
4
6
.0
0

5
2
4
6
.0
0

5
2
4
6
.0
0

-
-

-
-

5
2
4
6
.0
0

5
2
4
6
.0
0

5
2
4
6
.4
9

5
2
4
6
.4
9

0
.0
0

m
ts
p
1
5
0
-3
0

5
2
4
6
.0
0

5
2
4
6
.0
0

5
2
4
7
.0
0

5
2
4
6
.0
0

5
2
4
6
.0
0

5
2
4
6
.0
0

5
2
4
6
.0
0

-
-

-
-

5
2
4
6
.0
0

5
2
4
6
.0
0

5
2
4
6
.4
9

5
2
4
6
.4
9

0
.0
0

g
ts
p
1
5
0
-3

2
4
0
7
.5
9

2
4
5
1
.0
0

2
4
7
9
.0
0

2
4
0
8
.0
0

2
4
3
9
.0
0

-
-

2
4
1
3
.2
4

2
4
3
5
.4
2

2
4
2
9
.4
9

2
4
5
0
.1
3

2
4
0
7
.5
9

2
4
7
7
.3
4

2
4
2
5
.8
7

2
4
4
9
.6
5

0
.7
6

g
ts
p
1
5
0
-5

1
7
4
1
.6
1

1
7
6
6
.0
0

1
7
7
5
.0
0

1
7
4
2
.0
0

1
7
4
2
.0
0

-
-

1
7
5
2
.1
1

1
7
6
1
.3
2

1
7
5
8
.0
8

1
7
9
6
.8
6

1
7
4
1
.6
1

1
7
9
2
.1
9

1
7
4
4
.2
6

1
7
5
5
.1
3

0
.1
5

g
ts
p
1
5
0
-1
0

1
5
5
4
.0
0

1
5
5
7
.0
0

1
5
6
0
.0
0

1
5
5
4
.0
0

1
5
5
4
.0
0

-
-

1
5
5
4
.6
4

1
5
5
8
.0
3

1
5
5
4
.6
4

1
5
5
7
.1
6

1
5
5
4
.6
4

1
5
5
5
.7
0

1
5
5
4
.6
4

1
5
5
4
.6
4

0
.0
0

g
ts
p
1
5
0
-2
0

1
5
5
4
.0
0

1
5
5
4
.0
0

1
5
5
4
.0
0

1
5
5
4
.0
0

1
5
5
4
.0
0

-
-

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

1
5
5
4
.6
4

0
.0
0

g
ts
p
1
5
0
-3
0

1
5
5
4
.0
0

1
5
5
4
.0
0

1
5
5
4
.0
0

1
5
5
4
.0
0

1
5
5
4
.0
0

-
-

-
-

-
-

-
-

1
5
5
4
.6
4

1
5
5
4
.6
4

0
.0
0

k
ro
A
2
0
0
-3

1
0
7
6
8
.1
0

-
-

-
-

-
-

1
0
8
1
4
.1
8

1
0
9
4
7
.7
9

1
0
8
3
1
.6
6

1
1
0
4
5
.9
1

1
0
7
6
8
.1
0

1
1
0
9
9
.6
3

1
0
8
0
1
.8
0

1
1
1
6
9
.8
2

0
.3
1

k
ro
A
2
0
0
-5

7
4
1
5
.5
4

-
-

-
-

-
-

7
4
9
3
.2
4

7
5
9
3
.1
5

7
4
1
5
.5
4

7
5
8
2
.0
8

7
5
7
2
.3
2

7
6
8
4
.7
3

7
4
1
8
.8
7

7
5
7
5
.8
0

0
.0
4

k
ro
A
2
0
0
-1
0

6
2
2
3
.2
2

-
-

-
-

-
-

6
2
3
7

6
2
7
8
.9
9

6
2
2
3
.2
2

6
2
4
9
.1
7

6
2
2
3
.2
2

6
2
3
1
.9
7

6
2
2
3
.2
2

6
2
2
3
.2
2

0
.0
0

k
ro
A
2
0
0
-2
0

6
2
2
3
.2
2

-
-

-
-

-
-

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

6
2
2
3
.2
2

0
.0
0

li
n
3
1
8
-3

1
6
0
8
8
.7
3

-
-

-
-

-
-

1
6
2
0
0
.2
1

1
6
3
4
0
.3

1
6
2
0
6
.2
5

1
6
4
7
7
.8
9

1
6
2
7
3
.8
0

1
6
7
5
3
.2
4

1
6
0
9
4
.9
0

1
6
4
8
2
.0
0

0
.0
4

li
n
3
1
8
-5

1
1
5
2
4
.2
9

-
-

-
-

-
-

1
1
7
3
0
.0
3

1
1
9
0
8
.1
8

1
1
7
5
2
.4
1

1
1
8
9
6
.7
1

1
1
6
0
4
.2
0

1
1
8
7
6
.4
2

1
1
4
5
8
.2
0

1
1
8
5
1
.8
7

-
0
.
5
7

li
n
3
1
8
-1
0

9
7
3
1
.1
7

-
-

-
-

-
-

9
8
4
5
.7
2

9
9
5
5
.4
2

9
7
3
1
.1
7

9
8
1
8
.7
5

9
7
3
1
.1
7

9
7
4
2
.2
0

9
7
3
1
.1
7

9
7
3
1
.1
7

0
.0
0

li
n
3
1
8
-2
0

9
7
3
1
.1
7

-
-

-
-

-
-

9
7
3
1
.1
7

9
7
3
1
.1
7

9
7
3
1
.1
7

9
7
3
1
.1
7

9
7
3
1
.1
7

9
7
3
1
.1
7

9
7
3
1
.1
7

9
7
3
1
.1
7

0
.0
0

ra
t7
8
3
-3

3
2
7
2
.9
5

-
-

-
-

-
-

3
4
5
7
.9
7

3
4
9
7
.5
6

3
2
7
9
.1
6

3
3
3
6
.5
7

3
3
6
9
.4
0

3
4
1
8
.0
6

3
2
6
2
.5
2

3
3
3
3
.5
5

-
0
.
3
2

ra
t7
8
3
-5

2
0
9
2
.7
7

-
-

-
-

-
-

2
2
7
3
.8

2
3
0
3
.1
4

2
0
9
2
.7
7

2
1
3
4
.0
3

2
1
2
7
.9
9

2
1
6
3
.8
9

2
0
6
6
.3
8

2
1
1
5
.4
1

-
1
.
2
6

ra
t7
8
3
-1
0

1
3
6
0
.8
9

-
-

-
-

-
-

1
5
4
2
.0
5

1
5
6
4
.7

1
4
3
2
.3
4

1
4
5
2
.6
7

1
3
6
0
.8
9

1
3
8
8
.6
4

1
3
5
8
.0
6

1
3
8
6
.2
6

-
0
.
2
1

ra
t7
8
3
-2
0

1
2
3
1
.6
9

-
-

-
-

-
-

1
3
1
1
.3

1
3
3
3
.1
2

1
2
6
0
.8
8

1
2
7
0
.3
1

1
2
3
1
.6
9

1
2
3
3
.8
8

1
2
3
1
.6
9

1
2
3
1
.6
9

0
.0
0

p
c
b
1
1
7
3
-3

2
2
2
5
2
.3
1

-
-

-
-

-
-

2
4
0
0
8
.4
7

2
4
3
0
0
.2
5

2
2
4
4
3
.2
2

2
2
7
8
1
.6
1

2
2
6
0
1
.7
0

2
3
0
9
5
.0
2

2
1
4
3
0
.1
0

2
1
9
2
8
.1
6

-
3
.
9
6

p
c
b
1
1
7
3
-5

1
4
0
9
9
.5
0

-
-

-
-

-
-

1
6
0
5
7
.1
9

1
6
2
7
4
.6
4

1
4
5
5
7
.3

1
4
8
6
1
.4

1
4
0
9
9
.5
0

1
4
3
4
6
.7
6

1
3
4
0
2
.3
0

1
3
7
4
3
.6
7

-
4
.
9
4

p
c
b
1
1
7
3
-1
0

8
1
6
0
.2
5

-
-

-
-

-
-

1
0
5
1
7
.9
4

1
0
6
6
7
.9
7

9
2
2
2
.9
2

9
3
5
2
.2
8

8
1
6
0
.2
5

8
2
6
0
.9
9

8
1
2
0
.4
5

8
3
6
7
.3
4

-
0
.
4
9

p
c
b
1
1
7
3
-2
0

6
5
4
9
.1
4

-
-

-
-

-
-

8
0
6
3
.1
7

8
2
0
7
.8
8

7
0
6
3
.2
3

7
2
7
6
.6
9

6
5
4
9
.1
4

6
5
9
2
.5
0

6
5
2
8
.8
6

6
5
4
0
.1
3

-
0
.
3
1

A
V
G
.

6
4
1
1
.6
0

-
-

-
-

-
-

-
-

-
-

-
-

6
3
6
5
.5
2

6
4
5
6
.9
4

-

B
e
st
#

-
0

0
0

3
-

0
0

3
1

0
5

5
8

1
2

-

p
-
v
a
lu
e

7
.1
8
E
-0
1

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

37

gray. The results of Tables A.3 and A.4 clearly indicate that EAX signi�-
cantly dominates HSNR in terms of the best and average results for both sets
of instances. Only on three large instances of Set II, HSNR reported better
results. Given that HSNR perfoms better than the existing minsum mTSP al-
gorithms in the literature, we can safely say that EAX dominates all existing
minsum mTSP algorithms. Finally, even if we did not show detailed run-time
information, we mention that EAX converges much faster than the existing
algorithms (by at least one order of magnitude). EAX requires no more than
30 seconds for Set I and no more than 400 seconds for Set II.

We conclude that the transformation approach of the minsum mTSP to the
TSP is particularly e�ective and can be considered as the current best solu-
tion method for the minsum mTSP. It is worth mentioning that this is the
�rst study that demonstrates the high interest of solving the minsum mTSP
via TSP algorithms. This �nding will bene�t future research on the minsum
mTSP.

38

Table A.3
Minsum mTSP: comparative results of HSNR and EAX on Set I with a cuto� time
of (n/100)× 4 minutes.

EAX [30] HSNR (this work)

Instance Best Avg. σ Best Avg. σ

mtsp51-3 445.99 445.99 0.00 445.99 445.99 0.00

mtsp51-5 471.69 471.69 0.00 471.69 471.69 0.00

mtsp51-10 579.70 579.70 0.00 580.72 580.72 0.00

mtsp100-3 21797.60 21797.60 0.00 21797.60 21797.60 0.00

mtsp100-5 23174.90 23174.90 0.00 23174.90 23174.90 0.00

mtsp100-10 26926.60 26926.60 0.00 26926.60 26983.51 50.63

mtsp100-20 38245.10 38245.10 0.00 38245.10 38259.98 51.79

rand100-3 8012.13 8012.13 0.00 8012.13 8012.13 0.00

rand100-5 8223.91 8223.91 0.00 8223.91 8223.91 0.00

rand100-10 9366.80 9366.80 0.00 9366.80 9366.80 0.00

rand100-20 13404.10 13404.10 0.00 13404.10 13404.10 0.00

mtsp150-3 37910.70 37910.70 0.00 37910.70 37910.70 0.00

mtsp150-5 38714.40 38714.40 0.00 38714.40 38722.24 11.83

mtsp150-10 42202.80 42202.80 0.00 42234.30 42310.82 36.72

mtsp150-20 53305.90 53305.90 0.00 53351.30 53483.13 95.76

mtsp150-30 68442.90 68442.90 0.00 68455.90 68539.07 123.03

gtsp150-3 6574.20 6574.20 0.00 6574.20 6574.52 1.45

gtsp150-5 6655.11 6655.11 0.00 6655.11 6655.11 0.00

gtsp150-10 7332.11 7332.11 0.00 7332.11 7332.11 0.00

gtsp150-20 9512.23 9512.23 0.00 9512.23 9513.38 4.17

gtsp150-30 12966.50 12966.50 0.00 12966.50 12969.05 9.86

kroA200-3 29539.50 29539.50 0.00 29539.50 29539.50 0.00

kroA200-5 29916.20 29916.20 0.00 29916.20 29916.20 0.00

kroA200-10 32613.40 32613.40 0.00 32613.40 32613.40 0.00

kroA200-20 41439.20 41439.20 0.00 41439.20 41522.45 207.47

lin318-3 42404.60 42404.60 0.00 42404.60 42404.60 0.00

lin318-5 43315.00 43315.00 0.00 43315.00 43315.00 0.00

lin318-10 47325.50 47325.50 0.00 47325.50 47333.21 9.50

lin318-20 59893.20 59893.20 0.00 59893.20 60416.35 742.66

att532-3 28242.00 28242.00 0.00 28242.00 28242.00 0.00

att532-5 28945.00 28945.00 0.00 28945.00 28945.00 0.00

att532-10 31001.00 31001.00 0.00 31001.00 31038.80 88.22

att532-20 36303.00 36303.00 0.00 36305.00 36696.65 482.00

rat783-3 8880.03 8880.03 0.00 8880.03 8880.64 2.72

rat783-5 8964.80 8964.80 0.00 8964.80 8964.90 0.45

rat783-10 9265.64 9265.64 0.00 9265.64 9275.16 17.08

rat783-20 10172.10 10172.10 0.00 10172.60 10272.95 106.03

pcb1173-3 57167.20 57169.20 4.40 57167.20 57174.12 19.79

pcb1173-5 57628.80 57628.80 0.00 57628.80 57654.20 17.40

pcb1173-10 59241.90 59242.10 3.30 59241.90 59299.07 187.13

pcb1173-20 64052.00 64052.00 0.00 64063.60 65102.08 646.01

Avg. 28306.72 28306.77 - 28309.28 28374.09 -

Best# 7 23 - 0 0 -

p-value 1.95E-02 3.25E-05 - - - -

39

Table A.4
Minsum mTSP: comparative results of HSNR and EAX on Set II with a cuto� time
of (n/100)× 4 minutes.

EAX [30] HSNR (this work)

Instance Best Avg. σ Best Avg. σ

nrw1379-3 56775.70 56775.70 0.00 56775.70 56775.70 0.00

nrw1379-5 56992.60 56994.40 1.81 56992.60 56999.16 5.27

nrw1379-10 57636.10 57637.00 1.10 57636.20 57795.15 168.81

nrw1379-20 59539.80 59542.70 4.14 59618.40 60278.03 426.66

�1400-3 21169.40 21176.40 14.74 21169.40 21169.47 0.31

�1400-5 22066.20 22069.70 11.06 22066.20 22238.10 239.95

�1400-10 24373.90 24380.40 14.75 24373.90 25069.65 531.24

�1400-20 29480.40 29492.70 16.14 29579.20 31966.86 1516.54

d1655-3 68364.40 68367.70 3.61 68364.40 68370.50 8.69

d1655-5 74272.70 74273.10 1.78 74273.50 74292.65 43.66

d1655-10 89261.10 89262.40 2.03 89262.50 89856.83 717.31

d1655-20 120016.00 120019.00 5.21 121373.00 124263.45 1190.66

u2152-3 65064.90 65066.10 2.70 65064.90 65072.31 10.68

u2152-5 65197.20 65200.70 11.15 65201.70 65219.93 8.60

u2152-10 65748.30 65750.50 3.85 65762.50 66291.71 526.37

u2152-20 67493.40 67494.20 1.76 67993.10 71115.74 1344.28

pr2392-3 378661.00 378661.00 0.00 378661.00 378661.00 0.00

pr2392-5 380061.00 380061.00 0.00 380061.00 380069.40 28.64

pr2392-10 387498.00 387498.00 0.00 387498.00 389012.85 1621.15

pr2392-20 407678.00 407680.00 9.39 417424.00 421532.30 2665.82

pcb3038-3 137916.00 137917.00 2.69 137916.00 137925.00 3.08

pcb3038-5 138121.00 138122.00 2.69 138121.00 138123.20 4.51

pcb3038-10 139142.00 139142.00 0.00 139142.00 139379.85 369.30

pcb3038-20 142401.00 142402.00 3.67 144295.00 146491.65 1068.88

�3795-3 29601.20 29661.50 72.21 29589.90 29823.75 394.67

�3795-5 30508.20 30560.50 50.68 30480.80 31048.26 634.63

�3795-10 32779.80 32866.60 75.61 32729.60 35467.72 1551.01

�3795-20 37333.30 37419.10 70.10 39083.80 45437.27 3166.39

fnl4461-3 182888.00 182890.00 2.43 182888.00 182890.85 7.74

fnl4461-5 183074.00 183076.00 1.79 183074.00 183076.50 4.70

fnl4461-10 183803.00 183806.00 3.49 183808.00 184811.75 874.86

fnl4461-20 186618.00 186619.00 3.58 191025.00 193356.10 1527.51

rl5915-3 565949.00 566001.00 70.32 565949.00 566066.70 58.80

rl5915-5 566626.00 566684.00 69.02 566626.00 566780.55 100.60

rl5915-10 569619.00 569653.00 75.52 569619.00 573689.20 3457.21

rl5915-20 578212.00 578278.00 77.77 597878.00 609385.79 7492.50

Avg. 172276.16 172291.68 - 173371.56 174716.80 -

Best# 15 33 - 3 1 -

p-value 6.50E-03 5.39E-07 - - - -

40

	Introduction
	Literature review
	Hybrid Search with Neighborhood Reduction
	General procedure
	Initial solution
	Inter-tour optimization with insert and cross-exchange
	Intra-tour optimization with the TSP heuristic EAX

	Computational Results and Comparisons
	Benchmark instances
	Experimental protocol and reference algorithms
	Computational results and comparison

	Analysis
	Importance of the the -nearness technique for neighborhood reduction
	Importance of the EAX heuristic for intra-optimization

	Conclusions
	References
	Appendix
	Additional computational results and comparisons
	Computational results for the minsum mTSP with a TSP heuristic

