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Abstract9

This work investigates the Monte Carlo Tree Search (MCTS) method10

combined with dedicated heuristics for solving the Weighted Vertex Col-11

oring Problem. In addition to the basic MCTS algorithm, we study12

several MCTS variants where the conventional random simulation is13

replaced by other simulation strategies including greedy and local search14

heuristics. We conduct experiments on well-known benchmark instances15

to assess these combined MCTS variants. We provide empirical evi-16

dence to shed light on the advantages and limits of each simulation17

strategy. This is an extension of the work [1] presented at EvoCOP2022.18

Keywords: Monte Carlo Tree Search, local search, graph coloring, weighted19

vertex coloring20

1 Introduction21

The well-known Graph Coloring Problem (GCP) is to color the vertices of22

a graph using as few colors as possible such that no adjacent vertices share23

the same color (legal or feasible solution). The GCP can also be considered24

as partitioning the vertex set of the graph into a minimum number of color25

groups such that no vertices in each color group are adjacent. The GCP has26

numerous practical applications in various domains [2] and has been studied27
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intensively since the 19th century in mathematics and for over 50 years in28

computer science.29

The Weighted Vertex Coloring Problem (WVCP), a variant of the GCP,30

has recently attracted much interest in the literature [3–6]. In this problem,31

each vertex of the graph has a weight and the objective is to find a legal coloring32

such that the sum of the weights of the heaviest vertex of each color group33

is minimized. Formally, given a weighted graph G = (V,E) with vertex set V34

(n = |V |) and edge set E, and let W be the set of weights w(v) associated to35

each vertex v in V , the WVCP consists in finding a partition of the vertices in V36

into k color groups S = {V1, . . . , Vk} (1 ≤ k ≤ n) such that no adjacent vertices37

belong to the same color group and such that the score
∑k

i=1 maxv∈Vi
w(v) is38

minimized. Note that the value of k is not predetermined for a WVCP instance39

and may vary during the search as a solution with more colors may have a40

better score than a solution with less colors. One can notice that when all the41

weights w(v) (v ∈ V ) are equal to one, finding an optimal solution of this42

problem with a minimum score corresponds to solving the GCP. The WVCP43

can be seen as a more general problem than the GCP and is therefore NP-hard.44

The WVCP is a relevant model for several applications such as matrix45

decomposition [7], buffer size management, and scheduling of jobs into batches46

in a multiprocessor environment [8]. Let us consider the last application as47

illustrated in Figure 1. The objective of this scheduling problem is to execute48

a set of jobs in a minimum total amount of time. There is no constraint on the49

number of jobs that can be run in parallel in this environment. However, each50

job requires a specific execution time and exclusive access to certain resources.51

Therefore, the time required to complete a batch of jobs in parallel is the time52

required to complete the longest job in that batch, and two jobs requiring the53

same resource cannot be launched in the same batch. Solving this problem54

within the WVCP modeling framework can be done in five steps as displayed55

in Figure 1: (i) a bipartite graph is used to represent the jobs and the resources56

required for each job; (ii) this bipartite graph is projected onto the resources57

to obtain a weighted graph where each vertex is a job and two jobs requiring58

the same resources are linked by an edge; (iii) a weight corresponding to the59

time needed to complete a job is set on the corresponding vertex of this graph;60

(iv) after solving the WVCP associated to this graph, a legal solution is found61

with an optimal score of 25, corresponding to the sum of the weights of the62

heaviest vertex of each color group; (v) this partition of vertices allows to set63

up a job schedule in four batches, which respects the resource constraints, and64

whose minimum total execution time is 25 seconds.65

Different methods have been proposed in the literature to solve the WVCP.66

First, this problem has been tackled with exact methods: a branch-and-price67

algorithm [9], two ILP models proposed in [10] and [11] with a transformation68

of the WVCP into a maximum weight independent set problem, and constraint69

programming in [12]. These exact methods can prove the optimality on small70

instances but tends to fail on graphs with more than 250 vertices.71
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Fig. 1 This figure shows an application of the WVCP for scheduling jobs into batches in a
multiprocessor environment with restricted access to certain resources.

To handle large graphs, several heuristics have been introduced to solve72

the problem approximately [4–7]. The first category of heuristics is based on73

the local search framework, which iteratively makes transitions from the cur-74

rent solution to a neighbor solution. Three different approaches have been75

considered to explore the search space: legal, partial legal, or penalty strate-76

gies. The legal strategy starts from a legal solution and minimizes the score77

by performing only legal moves so that no color conflict is created in the new78

solution [7]. The partial legal strategy allows only legal coloring and keeps a79

set of uncolored vertices to avoid conflicts [4]. The penalty strategy considers80

both legal and illegal solutions in the search space [5, 6], and uses a weighted81

evaluation function to minimize both the WVCP objective function and the82

number of conflicts in the illegal solutions. To escape local optima traps, these83

local search algorithms incorporate different mechanisms such as perturbation84

strategies [5, 7], tabu list [4, 5] and constraint reweighting schemes [6].85

The second category of existing heuristics for the WVCP relies on86

the population-based memetic framework that combines local search with87

crossovers. The DLMCOL algorithm [3] of this category uses a deep neural88

network to learn an invariant by color permutation regression model, useful89

to select the most promising crossovers at each generation. The AHEAD algo-90

rithm [13] involves automatic selection of crossover and local search operators91

for the WVCP and GCP.92

Research on combining such learning techniques and heuristics has received93

increasing attention in the past years for graph coloring problems [14, 15]. In94

these new frameworks, after each search trajectory, a matrix that specifies the95
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probability of a vertex belonging to each color group is updated. This matrix96

is then used to guide the local search algorithm for subsequent iterations.97

This study continues in that vein and investigates the potential benefits of98

combining Monte Carlo Tree Search (MCTS) and sequential coloring or local99

search algorithms for solving the WVCP. MCTS is a heuristic search algorithm100

that generated considerable interest due to its spectacular success for the game101

of Go [16], and in other domains (see the survey [17] on this topic). It has102

been recently revisited in combination with modern deep learning techniques103

for difficult two-player games (cf. AlphaGo [18]). MCTS has also been applied104

to combinatorial optimization problems seen as a one-player game such as the105

traveling salesman problem [19] or the knapsack problem [20]. An algorithm106

based on MCTS has recently been implemented with some success for the GCP107

in [21]. In this work, we investigate for the first time the MCTS approach for108

solving the WVCP.109

In MCTS, a tree is built incrementally and asymmetrically. For each iter-110

ation, a tree policy balancing exploration and exploitation is used to find the111

most critical node to expand. A simulation is then run from the expanded node112

and the search tree is updated with the result of this simulation. Its incre-113

mental and asymmetric properties make MCTS a promising candidate for the114

WVCP because in this problem only the heaviest vertex of each color group115

has an impact on the objective score. Therefore learning to color the heaviest116

vertices of the graph before coloring the rest of the graph seems particularly117

relevant for this problem.118

Unlike backtracking algorithms, the main aim of MCTS is not to exhaus-119

tively test all solutions as fast as possible. Instead, MCTS prioritizes the most120

promising branches of the search tree using a heuristic that balances exploita-121

tion and exploration. This approach can potentially find high-quality solutions122

faster than backtracking algorithms. However, MCTS can revisit the same123

solution multiple times during the search process. Nevertheless, as explained124

later, MCTS, like backtracking algorithms, can provide a proof of optimality125

for any given instance if it is given sufficient time.126

The contributions of this work are summarized as follows.127

First, we present a MCTS algorithm dedicated to the WVCP, which consid-128

ers the problem from the perspective of sequential coloring with a predefined129

vertex order. The exploration of the tree is accelerated with the use of spe-130

cific pruning rules, which offer the possibility to explore the whole tree in131

a reasonable amount of time for small instances and to obtain optimality132

proofs. Secondly, for large instances, when obtaining an exact result is impos-133

sible in a reasonable time, we study how this MCTS algorithm can be tightly134

coupled with other heuristics. Specifically, we investigate the integration of dif-135

ferent greedy coloring strategies and local search procedures within the MCTS136

algorithm.137

The rest of the paper is organized as follows. Section 2 introduces the138

weighted vertex coloring problem and the constructive approach with a tree.139

Section 3 describes the MCTS algorithm devised to tackle the problem. Section140
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4 presents the coupling of MCTS with local search. Section 5 reports com-141

putational results of different versions of MCTS. Section 6 discusses the142

contributions and presents research perspectives.143

2 Constructive approach with a tree for the144

weighted graph coloring problem145

This section presents a tree-based approach for the WVCP, which aims to146

explore the partial and legal search space of this problem.147

2.1 Partial and legal search space148

The search space Ω studied in our algorithm concerns legal, but potentially149

partial, k-colorings. A partial legal k-coloring S is a partition of the set of150

vertices V into k disjoint independent sets Vi (1 ≤ i ≤ k), and a set of uncolored151

vertices U = V \
⋃k

i=1 Vi. A independent set Vi is a set of mutually non adjacent152

vertices of the graph: ∀u, v ∈ Vi, (u, v) /∈ E. For the WVCP, the number of153

colors k that can be used is not known in advance. Nevertheless, it is not lower154

than the chromatic number of the graph χ(G) and not greater than the number155

of vertices n of the graph. A solution of the WVCP is denoted as partial if U ̸=156

∅ and complete otherwise. The objective of the WVCP is to find a complete157

solution S with a minimum score f(S) given by: f(S) =
∑k

i=1 maxv∈Vi
w(v).158

2.2 Tree search for weighted vertex coloring159

Backtracking-based tree search is a popular approach for the graph coloring160

problem [2, 22, 23]. In our case, a tree search algorithm can be used to explore161

the partial and legal search space of the WVCP previously defined.162

Starting from a solution where no vertex is colored (i.e., U = V ) and that163

corresponds to the root node R of the tree, child nodes C are successively164

selected in the tree, consisting of coloring one new vertex at a time. This process165

is repeated until a terminal node T is reached (all the vertices are colored).166

A complete solution (i.e., a legal coloring) corresponds thus to a branch from167

the root node to a terminal node. The maximum depth of the tree is n, the168

number of vertices in the graph.169

The selection of each child node corresponds to applying a move to the170

current partial solution being constructed. A move consists of assigning a171

particular color i to an uncolored vertex u ∈ U , denoted as < u,U, Vi >.172

Applying a move to the current partial solution S, results in a new solution173

S ⊕ < u,U, Vi >. This tree search algorithm only considers legal moves to stay174

in the partial legal space. For a partial solution S = {V1, ..., Vk, U}, a move175

< u,U, Vi > is said legal if no vertex of Vi is adjacent to the vertex u. At each176

level of the tree, there is at least one possible legal move that applies to a ver-177

tex a new color that has never been used before (or putting this vertex in a178

new empty set Vi, k + 1 ≤ i ≤ n).179
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Applying a succession of n legal moves from the initial solution results in180

a legal coloring of the WVCP and reaches a terminal node of the tree. During181

this process, at the level t of the tree (0 ≤ t < n), the current legal and182

partial solution S = {V1, ..., Vk, U} has already used k colors and t vertices183

have already received a color. Therefore |U |= n− t.184

At this level, a first naive approach could be to consider all the possible185

legal moves, corresponding to choosing a vertex in the set U and assigning to186

the vertex a color i, with 1 ≤ i ≤ n. This kind of choice can work with small187

graphs but with large graphs, the number of possible legal moves becomes188

huge. Indeed, at each level t, the number of possible legal moves can go up to189

(n− t)× n.190

To reduce the set of move possibilities, we consider the vertices of the graph191

in a predefined order (u1, . . . , un). When choosing a color for the next vertex,192

we only consider the colors already used in the partial solution plus one new193

color, as long as this number is less than the vertex degree plus one. This194

approach bounds the number of colors needed for a vertex [24]. Thus, for the195

current partial and legal solution S = {V1, . . . , Vk, U}, at most d(u)+ 1 moves196

are considered for the next vertex u to be colored. If k colors have already197

been used, the set of legal moves to place u is, if k < d(u) + 1198

L(S) = {< u,U, Vi >, 1 ≤ i ≤ k,∀v ∈ Vi, (u, v) /∈ E} ∪ {< u,U, Vk+1 >}, (1)

or, if k ≥ d(u) + 1199

L(S) = {< u,U, Vi >, 1 ≤ i ≤ d(u) + 1,∀v ∈ Vi, (u, v) /∈ E} (2)

This decision cuts symmetries in the tree while reducing the number of branch-200

ing factors at each level of the tree. The potential number of leaf nodes in the201

tree is, in the worst case, equal to
∏

i=1,...,n min(i, dui + 1).202

2.3 Predefined vertex order203

We propose to consider a predefined ordering of the vertices, sorted by weight204

and then by degree. Vertices with higher weights are placed first. If two vertices205

have the same weight, then the vertex with the higher degree is placed first.206

This order is intuitively relevant for the WVCP because it is more important207

to place first the vertices with heavy weights which have the most impact on208

the score as well as the vertices with the highest degree because they are the209

most constrained decision variables. Such ordering has already been shown210

to be effective with greedy constructive approaches for the GCP [22] and the211

WVCP [4].212

Moreover, this vertex ordering allows a simple score calculation while build-213

ing the tree. Indeed, as the vertices are sorted by descending order of their214

weights, and the score of the WVCP only counts the maximum weight of each215

color group, with this vertex order, the score only increases by the value w(v)216

when a new color group is created for the vertex v.217
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3 Monte Carlo Tree Search for weighted vertex218

coloring219

The search tree presented in the last subsection can be huge, in particular220

for large instances. Therefore, in practice, it is often impossible to perform an221

exhaustive search of this tree, due to expensive computing time and memory222

requirements. We turn now to an adaptation of the MCTS algorithm for the223

WVCP to explore this search tree. MCTS keeps in memory a tree (hereinafter224

referred to as the MCTS tree) that only corresponds to the already explored225

nodes of the search tree presented in the last subsection. In the MCTS tree,226

a leaf is a node whose children have not yet all been explored while a ter-227

minal node corresponds to a complete solution. MCTS can guide the search228

toward the most promising branches of the tree, by balancing exploitation and229

exploration and continuously learning at each iteration.230

3.1 General framework231

The MCTS algorithm for the WVCP is shown in Algorithm 1. The algorithm232

takes a weighted graph as input and tries to find a legal coloring S with the233

minimum score f(S). The algorithm starts with an initial solution where the234

first vertex is placed in the first color group. This is the root node of the235

MCTS tree. Then, the algorithm repeats several iterations until a stopping236

criterion is met. At every iteration, one legal solution is completely built, which237

corresponds to walking along a path from the root node to a leaf node of the238

MCTS tree and performing a simulation (or playout/rollout) until a terminal239

node of the search tree is reached (when all vertices are colored).240

Each iteration of the MCTS algorithm involves the execution of 5 steps to241

explore the search tree with legal moves (cf. Section 2):242

1. Selection From the root node of the MCTS tree, successive child nodes243

are selected until a leaf node is reached. The selection process balances the244

exploration-exploitation trade-off. The exploitation score is linked to the245

average score obtained after having selected this child node and is used to246

guide the algorithm to a part of the tree where the scores are the lowest (the247

WVCP is a minimization problem). The exploration score is linked to the248

number of visits to the child node and will incite the algorithm to explore249

new parts of the tree, which have not yet been explored.250

2. Expansion The MCTS tree grows by adding a new child node to the leaf251

node reached during the selection phase.252

3. Simulation From the newly added node, the current partial solution is253

completed with legal moves, randomly or by using heuristics.254

4. Update After the simulation, the average score and the number of visits255

of each node on the explored branch are updated.256

5. Pruning If a new best score is found, some branches of the MCTS tree257

may be pruned if it is not possible to improve the best current score with it.258

The algorithm continues until one of the following conditions is reached:259
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Algorithm 1 MCTS algorithm for the WVCP

1: Input: Weighted graph G = (V,W,E)
2: Output: The best legal coloring S∗ found
3: S∗ = ∅ and f(S∗) = MaxInt
4: while stop condition is not met do
5: C ← R ▷ Current node corresponding to the root node of the tree
6: S ← {V1, U} with V1 = {v1} and U = V \V1 ▷ Current solution

initialized with the first vertex in the first color group
7: /* Selection */ ▷ Section 3.2
8: while C is not a leaf do
9: C ← select best child(C) with legal move < u,U, Vi >

10: S ← S ⊕ < u,U, Vi >
11: end while
12: /* Expansion */ ▷ Section 3.3
13: if C has a potential child, not yet open then
14: C ← open first child not open(C) with legal move < u,U, Vi >
15: S ← S ⊕ < u,U, Vi >
16: end if
17: /* Simulation */ ▷ Section 3.4
18: complete partial solution(S)
19: /* Update */ ▷ Section 3.5
20: while C ̸= R do
21: update(C,f(S))
22: C ← parent(C)
23: end while
24: if f(S) < f(S∗) then
25: S∗ ← S
26: /* Pruning */ ▷ Section 3.6
27: apply pruning rules
28: end if
29: end while
30: return S∗

• there are no more child nodes to expand, meaning the search tree has been260

fully explored. In this case, the best score found is proven to be optimal.261

• a cutoff time is attained. The minimum score found so far is returned. It262

corresponds to an upper bound of the optimal score for the given instance.263

3.2 Selection264

The selection starts from the root node of the MCTS tree and selects children265

nodes until a leaf node is reached. At every level t of the MCTS tree, if the266

current node Ct corresponds to a partial solution S = {V1, ..., Vk, U} with t267

vertices already colored and k colors used, there are l possible legal moves, with268



Springer Nature 2021 LATEX template

MCTS for WVCP 9

1 ≤ l ≤ k+1. Therefore, from the node Ct, l potential children C1
t+1, . . . , C

l
t+1269

can be selected.270

If l > 1, the selection of the most promising child node can be seen as a
multi-armed bandit problem [25] with l levers. The problem of choosing the
next node can be solved with the UCT algorithm for Monte Carlo tree search
by selecting the child with the maximum value of the following expression [20]:

normalized score(Ci
t+1) + c×

√
2 ∗ ln(nb visits(Ct))

nb visits(Ci
t+1)

, for 1 ≤ i ≤ l. (3)

Here, nb visits(C) corresponds to the number of times the node C has been
chosen to build a solution. c is a real positive coefficient allowing to balance the
compromise between exploitation and exploration, which is set by default to
one.1 normalized score(Ci

t+1) corresponds to a normalized score of the child
node Ci

t+1 (1 ≤ i ≤ l) given by:

normalized score(Ci
t+1) =

rank(Ci
t+1)∑l

i=1 rank(C
i
t+1)

where rank(Ci
t+1) is defined as the rank between 1 and l of the nodes271

Ci
t+1 obtained by sorting from bad to good according to their average val-272

ues avg score(Ci
t+1) (nodes that seem more promising get a higher score).273

avg score(Ci
t+1) is the mean score on the sub-branch with the node Ci

t+1274

selected obtained after all previous simulations.275

Equation 3 can be compared with the probabilities of choice at each level276

of the tree by an Ant Colony Optimisation (ACO) algorithm, except that in277

our case, the choice of the child node is deterministic, and explicitly involves278

a trade-off between an intensification term, the normalized score of each child279

node, and an exploration term, depending on its number of visits.280

3.3 Expansion281

From the node C of the MCTS tree reached during the selection procedure,282

one new child of C is open and its corresponding legal move is applied to the283

current solution. Among the unopened children, the node associated with the284

lowest color number i is selected. Therefore the child node needing the creation285

of a new color (and increasing the score) will be selected last.286

3.4 Simulation287

The simulation takes the current partial and legal solution found after the288

expansion phase and colors the remaining vertices. In the original MCTS algo-289

rithm, the simulation consists in choosing random moves in the set of all legal290

1A sensitivity analysis of this important hyperparameter is shown in Section 5.3.
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moves L(S), defined by Equation 1 and Equation 2, until the solution is com-291

pleted. We call this first version MCTS+Random (MCTS+R). As shown in292

the experimental section, this version is not very efficient as the number of293

colors grows rapidly. Therefore, we propose three other simulation procedures:294

• a constrained greedy algorithm that chooses a legal move prioritizing the295

moves which do not locally increase the score of the current partial solution.296

The move applied for each vertex is randomly selected among the legal moves297

in L(S). It only chooses the move < u,U, Vk+1 >, consisting in opening a298

new color group and increasing the current score by w(u), only if Lg(S) = ∅.299

We call this version MCTS+Greedy-Random (MCTS+GR).300

• a greedy deterministic procedure which always chooses a legal move in301

L(S) with the first available color i. We call this version MCTS+Greedy302

(MCTS+G).303

• a greedy deterministic procedure based on DSatur [22], which colors in pri-304

ority the heaviest and most saturated vertices. The saturation of a vertex305

is the number of colors used by its adjacent vertices. We call this version306

MCTS+DSatur (MCTS+DS).307

3.5 Update308

Once the simulation is over, a complete solution S of the WVCP is obtained.309

If this solution is better than the best recorded solution found so far S∗ (i.e.,310

f(S) < f(S∗)), S becomes the new global best solution S∗.311

Then, a backpropagation procedure updates each node C of the whole312

branch of the MCTS tree which has led to this solution:313

• the running average score of each node C of the branch is updated with the
score f(S):

avg score(C)← avg score(C)× nb visits(C) + f(S)

nb visits(C) + 1
(4)

• the counter of visits nb visits(C) of each node of the branch is increased by314

one.315

3.6 Pruning316

During an iteration of MCTS, three pruning rules are applied:317

1. During expansion, if the score f(S) of the partial solution associated with318

a node visited during this iteration of MCTS is equal to or higher than the319

current best-found score f(S∗), the node is deleted as the score of such a320

partial solution cannot decrease when more vertices are colored.321

2. When the best score f(S∗) is found, the tree is cleaned. A heuristic goes322

through the whole tree and deletes children and possible children associated323

with a partial score f(S) equal or superior to the best score f(S∗).324
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3. If a node is completely explored, it is deleted and will not be explored in the325

MCTS tree anymore. A node is said completely explored if it is a leaf node326

without children, or if all of its children have already been opened once327

and have all been deleted. Note that this third pruning step is recursive as328

a node deletion can result in the deletion of its parent if it has no more329

children, and so on.330

These three pruning rules and the fact that the symmetries are cut in the331

tree by restricting the set of legal moves considered at each step (see Section332

2.2) offer the possibility to explore the whole tree in a reasonable amount of333

time for small instances. This peculiarity of the algorithm makes it possible to334

obtain an optimality proof for such instances.335

3.7 Toy example336

Figure 2 displays one iteration of MCTS for the WVCP on a small graph337

composed of seven vertices named A–G with different weights between 2 and 9.338

On each diagram is displayed the current state of the partial coloring solution339

being constructed (right) and the current state of the search tree (left). In the340

search tree, each square represents a node and the number on the bottom right341

of a square is the score of the corresponding partial solution. On top of each342

square are written the average score and the number of visits of each node. In343

Fig. 2 Toy example of one MCTS iteration
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addition to the root node (vertex A colored in blue), five nodes have already344

been opened in the search tree (five iterations of MCTS). The sixth iteration345

of MCTS proceeds as follows.346

• Selection: From the root node, the only possible child corresponding to347

vertex B in green is selected. From there, there are two options as vertex C348

can be colored in green or red. The most interesting option is chosen (vertex349

C in green) regarding the score and the number of visits of each child (cf.350

equation (3)). Then, the most promising leaf is selected (D in green).351

• Expansion: From the node D in green, a new node is added to the tree. It352

corresponds to E in red (as it cannot take the color blue nor green).353

• Simulation: From there, the solution is completed with a greedy algorithm354

to obtain a complete legal solution with a score of 24.355

• Update: This score of 24 is back-propagated on the explored branch (update356

of the average score and the number of visits of each node in the branch).357

• Pruning: Figure 3 presents the state of the tree after some iterations. As358

the best-found score is 24, every branch of the tree with a score greater than359

or equal to 24 is deleted (indicated with a red cross).360

Fig. 3 Toy example of the search tree pruning

4 Combining MCTS with Local Search361

We now explore the possibility of improving the MCTS algorithm with local362

search. Coupling MCTS with a local search algorithm is motivated by the fact363

that after the simulation phase, the complete solution obtained can be close364

to a still better solution in the search space that could be discovered by local365

search. In this work, we present the coupling of MCTS with a baseline tabu366
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search (TW) created for this work, as well as three state of the art local search367

algorithms, dedicated for the WVCP: AFISA [5], RedLS [6] and ILS-TS [4].368

During the simulation phase, the solution is first completed with a greedy369

algorithm and then improved by the local search procedure. Note that in the370

first version of this work published in [1], to stay consistent with the search371

tree learned by MCTS, we allowed the local search procedure to only move the372

vertices of the complete solution S which are still uncolored after the selection373

and expansion phases. However, we have realized in the meantime that blocking374

vertices for the local search can lead to a lot of time spent checking for blocked375

vertices in the complex neighborhood explored by the various local search376

procedures. It also leads to missing good opportunities to move in the search377

space. Therefore, in the new version of the algorithm presented in this paper,378

a more efficient version of the algorithm is presented where the vertices are not379

frozen during the local search. In this new version, when coupling MCTS with380

a local search algorithm, the resulting heuristic can be seen as an algorithm381

that attempts to learn a good starting point for the local search procedure,382

by selecting different best promising backbones of partial solutions in every383

iteration during the selection phase.384

As one iteration does not have the same meaning for each local search, we385

use a time limit of t = 0.02 × n seconds to perform the search, depending on386

the number of vertices n in the given instance. Once the local search procedure387

has reached the time limit, the score corresponding to the best legal solution388

obtained by the local search procedure is used to update all the nodes of the389

branch which has led to the simulation initiation. In the following subsections,390

the four different local search procedures used in this work are presented.391

4.1 Basic tabu search392

The first local search algorithm tested is a simple tabu search, named393

TabuWeight (TW), inspired by the classical TabuCol algorithm for the GCP394

[26]. Starting from a legal solution, TW improves it iteratively by using the395

one move operator, which consists in moving a vertex from its color group to396

another color group, without creating conflicts. At each iteration, the best one397

move which is not forbidden by the tabu list is selected. Each time a move is398

performed, the reverse move is added to the tabu list and forbidden for the399

next tt iterations where tt is a parameter called tabu tenure. A tabu move can400

still be applied exceptionally if it leads to a solution, which is better than the401

best solution found so far (aspiration criterion).402

4.2 Adaptive feasible and infeasible tabu search403

AFISA [5] is an advanced tabu search algorithm, which explores the candidate404

solutions by oscillating between illegal and legal search spaces2. To prevent405

the search from going too far from legal boundaries, AFISA uses a controlling406

2The illegal search space consists of solutions with conflicts (some adjacent vertices in the
solution have the same color), while the legal search space consists of solutions without any
conflicts.
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coefficient to adaptively make the algorithm go back and forth between illegal407

and legal spaces. The controlling coefficient encourages the algorithm to handle408

in priority the vertices in conflicts before trying to reduce the WVCP score.409

AFISA uses the popular one move operator to explore the search space.410

4.3 Local search with multiple operators411

Like AFISA, RedLS [6] explores the illegal and legal search spaces. This412

algorithm uses the configuration checking strategy [27] that applies multiple413

improvements and perturbation strategies to explore the search space. At each414

iteration, RedLS perturbs the solution by moving all the heaviest vertices from415

one color group to another group, before minimizing the number of conflicts416

to recover a new legal solution. It uses different variants of the one move oper-417

ator to reduce the number of conflicts while keeping the WVCP score as low418

as possible. Each conflicting edge has a weight that is increased each time it419

is not resolved, to give priority to its resolution for the next iterations.420

4.4 Iterated local search with tabu search421

ILS-TS [4] explores the legal and partial search spaces. From a complete422

solution, the ILS-TS algorithm iteratively performs 2 steps: (i) it deletes the423

heaviest vertices from 1 to 3 color groups Vi and places them in the set of uncol-424

ored vertices U ; (ii) it improves the solution (i.e., minimizes the score f(S)) by425

applying different variants of the one move operator and the so-called grenade426

operator until the set of uncolored vertices U becomes empty. The grenade427

operator grenade(u, Vi) moves a vertex u to Vi and relocates each adjacent428

vertex of u in Vi to another color group or in U to keep a legal solution.429

5 Experimentation430

This section first describes the experimental settings used in this work. Sec-431

ondly, we experimentally verify the impacts of the different greedy coloring432

strategies used during the MCTS simulation phase. Thirdly, an analysis of433

exploration versus exploration is performed. Lastly, the relevance of coupling434

MCTS with a local search procedure is studied.435

5.1 Experimental settings and benchmark instances436

A total of 188 instances are used for the experimental studies: 30 rxx graphs437

and 35 pxx graphs from matrix decomposition [7] and 123 from the DIMACS438

and COLOR competitions. The instances are used in a reduced version439

presented in [12]. The original and reduced instances are available online.3440

All presented algorithms are coded in C++, compiled, and optimized with441

the g++ 12.1 compiler. Differences in the results may occur compared to [1]442

as some optimisations have been done and more reduced instances have been443

3https://github.com/Cyril-Grelier/gc instances

https://github.com/Cyril-Grelier/gc_instances
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used. The source code of our algorithm (and reproduced local searches) is avail-444

able online4 with complete spreadsheets of the results. To solve each instance,445

20 independent runs were performed on a computer equipped with an Intel446

Xeon ES 2630, 2,66 GHz CPU with a time limit of one hour, except for the447

exploration vs. exploitation coefficient tests where 5 to 15 hours were used.448

Running the DIMACS Machine Benchmark procedure dfmax5 on our com-449

puter took 8.94 seconds to solve the instance r500.5 using gcc 12.1 without450

optimization flag.451

In the following subsections, summary tables allowing general comparisons452

between the different versions of the algorithms are presented. Detailed results453

on each specific instance are reported with the source code.4454

The 188 instances have been separated into four sets: (i) pxx, with the455

35 pxx instances from [7], (ii) rxx, with the 30 rxx instances from [7],456

(iii) DIMACS easy, corresponding to the easy 75 DIMACS and COLOL457

instances with 72 among them which were solved optimally by exact algo-458

rithms [11, 12], and (iv) DIMACS hard, the 48 hard DIMACS instances459

which have never been solved optimally in the literature, except for 5 which460

are really difficult to solve.461

For all the different versions of the MCTS algorithm, the coefficient c,462

allowing to balance the compromise between exploitation and exploration is set463

to the value of one (cf. equation (3)). A sensitivity analysis of this important464

hyperparameter is conducted in Section 5.3.465

5.2 Monte Carlo Tree Search with greedy strategies466

Table 1 summaries the results of MCTS with greedy heuristics for its467

simulation (cf. Section 3.4).468

Columns 2-5 present results for four instance sets: pxx, rxx, DIMACS easy,469

and DIMACS hard. Column 6 shows global results for all 188 benchmark470

instances. The table header lists the set name, number of instances, and num-471

ber of instances with proven optimality (marked with a star). For each method472

in each column, two numbers are given: the number of instances where the473

method matches the Best Known Scores (BKS) from the literature6, and the474

number of instances solved to proven optimality (marked with a star).475

First, we observe that all the MCTS variants dominate the baseline MCTS476

with greedy simulation in terms of the number of BKS obtained, highlighting477

the relevance of combining the MCTS framework and search heuristics.478

With the MCTS variants, almost all the pxx instances are optimally479

solved. The rxx instances are more difficult to solve except for the ver-480

sion MCTS+Greedy-Random. The instances from DIMACS easy are partially481

solved by each MCTS variant. The instances from DIMACS hard show a real482

challenge for all the MCTS variants.483

4https://github.com/Cyril-Grelier/gc wvcp adaptive mcts
5http://archive.dimacs.rutgers.edu/pub/dsj/clique/
6Note that some of these BKS have been found in the literature with extended search time

from several hours to several days, while our methods are only run during one hour.

https://github.com/Cyril-Grelier/gc_wvcp_adaptive_mcts
http://archive.dimacs.rutgers.edu/pub/dsj/clique/
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Table 1 Summary of the number of times the Best Known Score (BKS) is reached by
each algorithm. The values with a star indicate the number of times a score has been
proved optimal. Values in bold highlight the best results for each line.

pxx rxx DIMACS easy DIMACS hard Total
35* 30* 75 - 72* 48 - 5* 188 - 142*

R 2 0 3 0 5
MCTS+R 34 – 26* 0 41 – 22* 0 75 – 48*

GR 14 0 15 0 29
MCTS+GR 35 – 26* 22 57 – 23* 0 114 - 49*

G 14 3 10 0 27
MCTS+G 35-26* 11 46 – 22* 0 92 – 48*

DS 14 2 11 0 27
MCTS+DS 35-25* 11 47 – 22* 0 93 – 47*

To better compare these different algorithms, and not only relying on484

the number of best-known scores achieved (that can sometimes be found by485

”chance”), we performed pairwise comparisons between the algorithms based486

on the average scores obtained on each instance as displayed in Table 2.487

In Table 2, the numbers in each row correspond to the number of instances488

for which the method is significantly better than another (with a maximum of489

188 instances). A method is said significantly better than another on a given490

instance if its average score measured over 20 runs is significantly better (t-test491

with a p-value below 0.001). The column Total corresponds to the number of492

times a method is better than another.493

Table 2 shows the ranking of the different methods. Unsurprisingly, the494

pure random heuristic is completely dominated by all methods. The variant495

MCTS+DS is significantly better compared to the others. In particular, it496

stays significantly better 48 times out of 188, versus 32 times in favor of the497

MCTS+Greedy-Random. Indeed, it seems that for the WVCP, the DSatur pro-498

cedure, which colors the heaviest vertices that have the most colored neighbors,499

leads to better organization of color groups.500

Table 2 Comparison between all greedy and MCTS variants. As an example, the row for
MCTS+Random means that the method is better for 186 instances compared to the
random procedure (R), is better for 169 instances compared to the Greedy-Random
procedure (GR), and is never better compared to MCTS+GR. Values in bold highlight the
highest value between two methods. As an example, the variant MCTS+G is more often
significantly better (44 times) than MCTS+GR (which is better than MCTS+G 23 times).

/188 instances R

M
C
T
S
+
R

G
R

M
C
T
S
+
G
R

G

M
C
T
S
+
G

D
S

M
C
T
S
+
D
S

R - 0 0 0 0 0 0 0
MCTS+R 186 - 169 0 92 1 90 1

GR 186 10 - 0 4 0 7 0
MCTS+GR 186 122 178 - 151 23 152 32

G 186 36 133 10 - 0 37 1
MCTS+G 186 121 178 44 158 - 160 30

DS 186 40 139 9 47 0 - 0
MCTS+DS 186 121 178 48 157 35 158 -
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Table 3 Results of the MCTS with greedy simulation on a part of the 188 instances of
the literature. At the foot of the table, for each method, we report the number of BKS
achieved, the number of best scores, the number of average best scores compared to other
methods, and the number of instances solved to optimality. The mean is not shown if it is
equal to the best score. A star (*) indicates that the score has been proven to be optimal.

instance BKS
MCTS+R MCTS+GR MCTS+G MCTS+DSatur

best mean time best mean time best mean time best mean time

C2000.5 2144 3178 3198.3 2912 2505 2537.7 3422 2385 1685 2397 2398.8 3390
C2000.9 5477 7022 7166.3 3554 6233 6272.9 3575 6125 6147.8 3238 6275 163
DSJC125.1g 23* 27 29.4 2332 25 25.4 22 25 0 25 0
DSJC125.5g 71 78 80.8 755 74 75.3 52 77 0 74 67
DSJC125.9g 169* 173 176.8 17 170 172.7 25 171 1630 171 21
DSJC250.1 127 159 165.2 68 134 141.4 13 141 4 139 1151
DSJC250.5 392 444 457.8 2941 422 429.4 14 427 92 421 705
DSJC250.9 934* 1002 1026.2 20 973 988.7 2793 986 16 984 559
DSJC500.1 184 237 245.9 498 203 208.3 148 203 638 203 2943
DSJC500.5 685 809 824.2 899 754 765.6 136 755 635 775 780.9 3542
DSJC500.9 1662 1831 1858.5 2645 1771 1787.4 113 1794 171 1795 1797.1 3453
DSJC1000.1 300 392 440.8 3480 334 337.4 1618 333 2823 340 2474
DSJC1000.5 1185 1385 1399.2 2699 1271 1293.6 1668 1318 1437 1338 203
DSJC1000.9 2836 3164 3200.8 1750 3040 3070.4 978 3078 2863 3172 3338
DSJR500.1 169* 178 184.4 154 169 46 177 0 176 21
flat1000 50 0 924 1337 1358.5 3022 1236 1255.8 1452 1251 1251.1 3037 1303 1843
flat1000 60 0 1162 1375 1400 3400 1275 1295.8 1478 1260 1260.7 3424 1343 311
flat1000 76 0 1165 1349 1370.3 2910 1252 1269.7 1477 1244 1248.2 3557 1313 1798
GEOM120a 105* 107 111.5 14 106 106.6 330 105 1129 109 5
GEOM120b 35* 37 38 10 37 0 37 498 37 110
GEOM120 72* 74 76.8 5 72 73 0 72 0 72 36
inithx.i.1 569* 569 569.5 63 569 0 569 0 569 0
inithx.i.2 329* 330 334.6 69 329 329.9 1720 330 0 331 0
inithx.i.3 337* 338 340.9 116 337 337.7 1449 339 0 339 0
latin square 10 1480 1861 1888.6 2092 1721 1757.1 966 1726 1726.8 3418 1805 2360
le450 25a 306 315 320.2 879 307 310 3364 312 5 310 1919
le450 25b 307* 309 313.4 948 309 309.1 993 309 0 309 224
le450 25c 342 390 397.6 1501 365 372.7 2844 369 950 376 1572
le450 25d 330 384 391.8 1830 354 358.8 2802 364 1657 369 1411
myciel7gb 109* 120 133.8 18 117 118.3 476 109 42 109 38
myciel7g 29* 32 36.1 670 29 29.8 578 29 0 29 0
queen10 10 162 174 178.2 692 165 169.1 986 171 0 169 8
queen11 11 172 185 189.8 384 178 180.4 941 180 80 179 50
queen12 12 185 198 208.2 547 189 196.8 2 193 1102 197 1823
queen13 13 194 209 219.8 43 204 207.6 1125 205 5 199 71
queen14 14 215 237 241.4 247 224 226.1 38 224 13 225 2351
queen15 15 223 252 261.6 415 237 241.3 216 239 49 238 315
queen16 16 234 268 274 1799 250 252.7 127 247 86 248 420
R75 1gb 70* 73 77.5 1171 70* 73.6 2679 76 184 75 9
R75 1g 18* 18* 19.8 2579 18* 18.8 1164 18* 956 18* 1348
R75 5gb 186* 195 200.7 91 186 191.7 237 192 0 192 2234
R75 5g 51* 54 55.2 608 51 52.7 725 52 203 51 1956
R75 9gb 396* 398 400.9 1281 396 397.9 1902 396 208 396 191
R75 9g 110* 110 111.5 850 110 39 110 7 110 202
R100 1gb 81* 89 97.1 1326 84 87 0 84 0 84 1
R100 1g 21* 24 26.2 1 22 22.6 728 23 0 23 0
R100 5gb 220 232 238.9 28 224 230.7 4 230 0 225 20
R100 5g 59 63 64.7 1389 62 62.4 604 63 0 61 7
R100 9gb 518* 530 538.5 43 518 521 273 526 2696 528 46
R100 9g 141* 144 146.7 0 143 143.9 29 143 5 143 301
wap01a 545 1039 1053.3 3450 657 659.8 2965 599 3272 595 2904
wap02a 538 1021 1038 3533 645 648.7 1301 588 3265 590 262
wap03a 562 1416 1445.4 2767 746 749 803 653 1096 647 1805
wap04a 563 1480 1493.9 1750 755 757.8 3085 649 603 643 828
wap05a 541 713 724.9 3536 583 591.1 1867 566 172 565 2882
wap06a 516 747 753.8 3359 591 595.4 2280 566 9 561 664
wap07a 555 1018 1030.2 2630 693 697.2 3186 635 165 639 986
wap08a 529 984 998.2 1245 664 672 3539 612 2401 604 2583
p40 4984* 4984 4992.8 45 4984 0 4984 0 4984 0
p41 2688* 2688 2700.7 14 2688 0 2688 0 2688 0
p42 2466* 2480 2515.1 16 2466 2466.8 33 2466 0 2466 4
r28 9407* 9435 9532 3599 9407 9409.9 1530 9407 0 9407 0
r29 8693* 8750 8999.5 155 8693 8695.5 1316 8694 0 8694 3
r30 9816* 9825 9876.5 384 9816 9819.6 11 9818 0 9818 0

#BKS 75 114 92 93
#Best 79 166 111 117

#Best Avg 56 104 131 138
#Optimal 48 49 48 47
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This is particularly true for the largest instances, where choosing random501

moves in the set of all legal moves is not very efficient as the number of color502

groups grows rapidly. It explains also why the variant MCTS+Random per-503

forms badly on larger or denser instances such as the rxx instances or some504

difficult DIMACS instances.505

However, with the deterministic simulation of the MCTS+Greedy or506

MCTS+DSatur variants, there is no sampling of the legal moves like in the507

MCTS+Greedy-Random variant allowing greater exploration of the search508

space and a better estimation of the most promising branches of the search509

tree. This particularity of the MCTS+Greedy-Random variant allows us to510

find the BKS for more instances. Moreover, when exploring Table 3, which511

presents the results for a part of the 188 instances of the literature, one can512

see that the R75 1gb instance from the DIMACS easy set is proven optimal513

by MCTS+Greedy-Random but not by MCTS+Greedy or MCTS+DSatur.514

With stochastic help, the MCTS+Greedy-Random version can reach the best515

known score of 70, which leads to an early pruning of the tree and allows to516

prove the optimality earlier.517

5.3 Exploitation vs exploration coefficient analysis518

One key element of the MCTS algorithm is the coefficient c balancing the519

compromise between exploration and exploitation in Equation (3). In this sub-520

section, we investigate the importance of this coefficient by varying it and521

presenting the evolution of the score over time. For this experimentation, the522

coefficient c varied from 0 (no exploration) to 5 (encourage exploration). For523

each coefficient value, 20 runs of the MCTS+GR variant per instance are524

performed during 5h per run (15h for the very large C2000.x instances)7.525

Figure 4 displays 6 plots showing the evolution of the mean of the best526

scores over time for the instances DSJC500.5, latin square 10, le450 25a,527

wap01a, C2000.5 and C2000.9 for the different values of the coefficient c. These528

6 instances come from the set of DIMACS hard instances and can be consid-529

ered as very difficult. Four typical patterns also seen for other instances are530

observed:531

• P1: instances requiring a lot of exploration,532

• P2: instances requiring more exploration than exploitation,533

• P3: instances requiring more exploitation than exploration,534

• P4: instances requiring a lot of exploitation.535

The first pattern P1 is observed for the instance DSJC500.5 and also queen536

instances. For these instances, the lack of exploration leads to poor results,537

and better results are reached as the coefficient c increases. The pattern P2538

is observed for the instance latin square 10, but also for other instances such539

as flat1000 where the best score obtained in function of the coefficient c has a540

U-shape, with an optimal value of c between 1 and 2. This phenomenon can541

7This longer execution time explains some differences with the sensitivity analysis of this
parameter made in [1] with only 1h of computation time.
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also be observed on instances such as C2000.5 and C2000.9 where it becomes542

quickly more interesting to explore up to a certain point.543

Fig. 4 Plots of the evolution of the means of the scores over time for different values of
the coefficient c between 0 and 5, for the instances DSJC500.5, latin square 10, le450 25a,
wap01a, C2000.5, and C2000.9. For each configuration, 20 runs are launched with the
MCTS+Greedy-Random variant for 5h and 15h for the C2000.x instances.
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The pattern P3 found for the le450 instance shows the best results when544

there is only weak exploration, but the results are worse when c is set to zero.545

In general, for the patterns P1, P2 and P3, having no exploration at all546

rapidly leads to a local minimum trap and it seems better to secure a minimum547

of diversity to reach a better score, while, for the pattern P4, found for the548

wap instances (very large instances), giving a chance to the exploration leads549

the algorithm to be lost in the search space. For very large instances, as the550

search tree is huge and cannot be sufficiently explored due to the time limit, it551

seems more beneficial for the algorithm to favor more intensification to better552

search for a good solution in a small part of the tree. To sum, the most suitable553

exploration vs exploitation coefficient thus depends on the instance considered.554

Finding the right general coefficient is a challenging task. In this work, We555

adopted the coefficient c = 1 for all other experiments.556

5.4 Monte Carlo Tree Search with local search557

This section studies the effects of the combination of MCTS with a local search558

heuristic. Table 4 summarizes the results of the local search procedures pre-559

sented in Section 4 followed by the combination of MCTS with each of these560

local search procedures during the simulation phase. Each line presents the561

number of times a BKS is reached with the method. Note that the objective562

of these MCTS variants coupled with a local search procedure is not to prove563

optimality. For instances where the optimal score is known, MCTS and local564

search stop when this score is reached.565

We observe from this table that the local search procedure allowing to566

reach the highest number of BKS is ILS-TS, followed by RedLS. When coupled567

with the MCTS framework, TW, AFISA, and RedLS improve their results. In568

particular, the variant MCTS+RedLS finds the BKS for 17 difficult instances569

of the DIMACS hard set and 152 instances over 188 in total. It highlights that570

the MCTS framework proposed in this paper can help a local search algorithm571

such as RedLS to continuously find new promising starting points in the search572

space.573

Table 4 Summary of the number of times the BKS is reached for the local search
procedures and MCTS combined with the different local search procedures. Values in bold
highlight the best results for each column.

pxx rxx DIMACS easy DIMACS hard Total
35* 30* 75(72*) 48 (5*) 188 (142*)

AFISA 35 5 71 3 114
MCTS+AFISA 34 3 73 5 115

TW 29 2 61 7 99
MCTS+TW 35 16 72 9 132

RedLS 31 3 70 8 112
MCTS+RedLS 35 25 75 17 152

ILS-TS 35 30 75 19 159
MCTS+ILS-TS 35 30 75 15 155
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However, when coupled with the ILS-TS algorithm (variant MCTS+ILS-574

TS), it does not seem to improve the results. It may be explained by the fact575

that ILS-TS is an iterated local search algorithm already integrating various576

perturbation mechanisms allowing to escape local optima. Therefore, finding577

new good starting points in the search space guided by MCTS seems less578

interesting for ILS-TS than for other local search procedures such as TW,579

AFISA, and RedLS.580

Table 5 shows pairwise comparisons between all the MCTS variants and581

all the local search procedures.582

When comparing the performances of the local search algorithms between583

each other by looking at the number of times they are significantly better than584

the others RedLS is at the end of the ranking after TabuWeight and AFISA585

while ILS-TS is far more often better.586

The MCTS+local search variants always improve the number of BKS found587

and are more often significantly better than the corresponding local search588

only, except for ILS-TS, which is better on its own.589

The variant MCTS+RedLS is more often significantly better than the other590

methods, even compared to ILS-TS. These results indicate that combining591

MCTS with a local search is of interest to improve the underlying local search592

procedures such as AFISA, TW, and RedLS.593

Table 6 shows the results for each local search and MCTS+LS on a portion594

of the 188 instances in the literature, with the most difficult instances more595

represented than the easiest. The values in bold show the best results among596

the different methods for the best score or the mean score.597

Table 5 Comparison between all the MCTS variants and all the local search procedures.
Each row corresponds to the number of times the method of the row is significantly better
than the method on the column on the 188 instances. For example, out of 188 instances,
TW is better than MCTS+TW on 25 instances, 48 times against RedLS and 3 times
against MCTS+RedLS. Values in bold means that method a is more often better than
method b when we look at how many times b is significantly better than a. The Total
column corresponds to the number of times a method is more often significantly better
than the others.
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MCTS+GR - 32 77 63 77 33 85 9 0 1 4/9
MCTS+DSatur 48 - 93 72 89 42 107 22 0 2 5/9

AFISA 33 50 - 35 49 17 53 2 0 0 2/9
MCTS+AFISA 40 39 40 - 73 10 86 2 1 0 3/9
TabuWeight 56 54 40 40 - 25 48 3 0 3 1/9
MCTS+TW 52 64 74 73 78 - 101 8 1 0 6/9

RedLS 51 57 41 35 47 29 - 5 14 15 0/9
MCTS+RedLS 88 87 99 75 105 65 103 - 23 27 9/9

ILSTS 101 95 104 82 106 75 96 22 - 18 8/9
MCTS+ILSTS 101 93 102 82 103 73 92 18 2 - 7/9
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Table 6 Results of the LS alone and MCTS + LS variants on a portion of the 188
instances of the literature. At the foot of the table, for each method, we report the number
of BKS achieved, the number of best scores, the number of average best scores compared
to other methods, and the number of instances solved to optimality. The mean is not
shown if it is equal to the best score.

instance BKS
AFISA MCTS+AFISA TabuWeight MCTS+TW RedLS MCTS+RedLS ILSTS MCTS+ILSTS

best mean time best mean time best mean time best mean time best mean time best mean time best mean time best mean time

C2000.5 2144 2384 2403.4 3601 2635 2648.9 2665 2318 2332.2 3477 2410 2423.6 1578 2167 2193.8 2403 2199 2215.2 2807 2237 2266.4 3498 2318 2340.2 697
C2000.9 5477 6582 6650.1 0 6547 6570.2 1107 6049 6073.4 2819 6242 6293.6 1845 5502 5528.1 3303 5724 5742.2 1604 5910 5969.9 3587 6103 6119.9 430
DSJC125.1g 23* 23 24.4 13 23 23.5 1203 24 24.6 68 23 23.1 1684 23 23.4 0 23 37 23 2 23 5
DSJC125.5g 71 71 72.2 1360 72 529 71 71.5 1661 71 71.8 1686 72 257 71 71.2 1462 71 126 71 40
DSJC125.9g 169* 170 174.1 2 169 169.1 1047 169 170.7 747 169 169.8 959 169 0 169 0 169 182 169 171
DSJC250.1 127 129 133.6 3294 133 133.8 1764 134 136.8 25 132 133.5 780 130 131.6 1 127 128.4 867 127 127.8 1608 127 128 642
DSJC250.5 392 411 424.2 541 421 428.8 2586 397 406 2717 406 408.6 2349 398 401.2 103 394 398.4 1989 393 397.6 2567 397 399.8 1695
DSJC250.9 934* 949 976.1 232 962 978.8 1380 959 963.2 1766 950 956 2292 934 935.6 718 935 935.5 1279 936 942.1 3053 948 953.4 2604
DSJC500.1 184 198 201.5 1817 220 228.6 165 194 197 1526 201 202.1 1312 187 201.9 537 187 188.1 2087 188 188.8 1744 187 188.6 3168
DSJC500.5 685 762 778.1 1307 848 863.5 1474 733 741.3 3571 751 756 2233 706 716.1 2840 710 713.6 2626 724 735.5 1744 729 734.7 3410
DSJC500.9 1662 1744 1775.5 652 1909 1919.3 2002 1733 1755.1 228 1764 1775 1705 1670 1675.1 945 1674 1680.1 404 1720 1742 3039 1762 1775.7 77
DSJC1000.1 300 319 325 2182 396 401.9 357 313 316.2 2943 365 368.8 2604 305 307.2 1235 304 306.5 2814 305 307.4 1574 303 304.9 1176
DSJC1000.5 1185 1308 1330 3531 1463 1475 2226 1271 1282.3 3460 1304 1311.1 2562 1198 1213.7 2381 1214 1218.7 2278 1245 1269.2 231 1257 1274.2 1890
DSJC1000.9 2836 3066 3107 3601 3303 3325.1 2793 3034 3061.1 1381 3135 3152.9 546 2840 2858.5 2953 2884 2892.8 2211 3026 3066.8 3580 3098 3123.7 3003
DSJR500.1 169* 169 54 169 157 171 178.2 21 169 169.2 1273 171 184.5 0 169 169.2 1270 169 0 169 5
flat1000 50 0 924 1267 1293.3 2736 1421 1431.3 1512 1238 1247.5 3230 1271 1274.9 2194 1155 1173.8 3238 1173 1179.1 1005 1222 1235 1712 1221 1231.3 42
flat1000 60 0 1162 1309 1323.2 3584 1465 1476.8 1575 1275 1288 2275 1305 1313.5 21 1191 1205.7 1080 1208 1216 201 1250 1270 125 1259 1266.2 3360
flat1000 76 0 1165 1288 1304.4 3278 1442 1449.8 2341 1237 1263 2975 1285 1292.8 693 1176 1194 1107 1189 1196.6 201 1232 1247.5 1198 1237 1246.5 1008
GEOM120a 105* 105 106.6 136 105 105.1 515 105 106.1 453 105 351 105 109.2 9 105 67 105 0 105 0
GEOM120b 35* 35 36.2 422 35 36 2557 35 35.3 1156 35 35.3 2051 35 35.5 0 35 5 35 0 35 0
GEOM120 72* 72 73 0 72 8 74 76.2 0 72 73 2097 72 75.2 0 72 77 72 0 72 0
inithx.i.1 569* 569 573.1 0 569 19 569 572.4 0 569 25 569 11 569 12 569 16 569 8
inithx.i.2 329* 334 337.6 448 331 333.9 150 338 342.5 0 332 334.1 2510 329 329.1 311 329 127 329 8 329 7
inithx.i.3 337* 340 346.4 1184 339 341 985 342 347.1 3 338 340.4 3380 337 341.6 75 337 643 337 29 337 30
latin square 10 1480 1607 1652.4 2257 2037 2055.9 2394 1816 1855.2 45 1774 1789.8 247 1505 1523 2369 1518 1527.1 543 1559 1581.2 1368 1572 1585.8 3458
le450 25a 306 311 316.3 2699 316 318.9 283 321 325.4 83 313 315.9 1456 306 307.4 503 306 441 306 174 306 736
le450 25b 307* 308 312.6 1891 308 310.1 2114 308 312.9 219 307 308.5 1491 307 313.4 56 307 203 307 10 307 18
le450 25c 342 355 364.4 3436 386 398.2 3375 361 366 677 371 373.6 1908 351 354.8 43 348 349.6 2165 348 351.8 3207 351 353.1 1689
le450 25d 330 351 357.8 1630 383 391.8 1494 351 356.4 1955 363 366.3 3415 332 338.9 154 334 335.2 2477 339 342.5 1999 342 343.8 2283
myciel7gb 109* 109 111.8 1129 109 109.1 1343 114 115.8 738 112 113.5 2646 109 116.4 0 109 109.1 955 109 4 109 5
myciel7g 29* 29 30.7 2542 29 497 29 29.2 324 29 115 29 29.8 244 29 66 29 0 29 4
queen10 10 162 165 166.9 524 162 164.1 2994 163 163.9 1629 162 162.3 1249 162 166.2 504 162 122 162 13 162 10
queen11 11 172 179 181.1 722 176 178.8 2859 172 172.9 1731 172 173.2 1071 174 177.1 761 172 173.8 2575 172 172.6 1820 172 172.8 1703
queen12 12 185 193 196.7 2062 191 193.9 3216 187 188.1 1881 187 188.4 2603 188 190.2 7 186 186.9 2494 185 186.1 1261 186 186.4 1572
queen13 13 194 203 206.7 288 202 205.2 1684 198 201.2 2205 199 200.5 2765 195 198.7 1528 194 194.7 2243 194 195.7 3475 195 196.6 2480
queen14 14 215 224 230.5 3113 226 229.2 184 217 218.4 1678 219 220.1 2014 217 222.4 18 216 217.3 3040 216 217.3 2018 217 218.4 1514
queen15 15 223 236 240.2 1572 241 242.9 1745 233 236.8 2417 233 235.5 1835 227 229.7 1109 225 226.6 1794 227 228.4 2167 227 229.2 1925
queen16 16 234 248 255.2 1055 255 258.2 3012 239 242.3 2745 243 244.8 1002 237 239.9 91 235 237.4 1300 238 240.2 2938 240 241.2 1204
R75 1gb 70* 70 73.7 0 70 17 76 80.3 0 70 70.5 1432 70 78.3 0 70 60 70 0 70 0
R75 1g 18* 18 94 18 15 19 19.6 0 18 164 18 19.1 0 18 24 18 0 18 0
R75 5gb 186* 186 188.6 28 186 45 186 186.3 135 186 9 186 192.1 0 186 72 186 1 186 1
R75 5g 51* 51 51.9 17 51 13 51 0 51 0 51 51.3 108 51 31 51 0 51 0
R75 9gb 396* 396 396.4 8 396 12 396 396.6 1911 396 396.1 1380 396 0 396 0 396 10 396 16
R75 9g 110* 110 110.2 3 110 0 110 0 110 0 110 0 110 0 110 0 110 0
R100 1gb 81* 81 82.5 1627 81 246 86 90 0 81 82.8 2664 82 84.5 0 81 594 81 1 81 1
R100 1g 21* 21 22.1 812 21 21.2 1591 23 23.1 8 21 21.1 899 21 22.1 0 21 480 21 8 21 4
R100 5gb 220 220 223 1970 220 220.7 1924 220 72 220 92 220 220.7 87 220 189 220 5 220 7
R100 5g 59 59 358 59 42 59 0 59 3 59 17 59 26 59 0 59 3
R100 9gb 518* 519 524 10 518 518.2 1288 518 518.4 1275 518 312 518 0 518 0 518 518.8 1853 518 879
R100 9g 141* 141 144.6 0 141 102 141 141.1 1138 141 289 141 0 141 0 141 608 141 183
wap01a 545 653 664.5 3413 676 680.9 792 636 645.9 3392 671 678.6 2068 563 688.4 252 561 628.6 1728 548 552 3263 584 590.9 484
wap02a 538 658 666.2 3416 665 671.6 1440 633 642.9 3450 666 671.9 2925 552 586.5 589 548 559.8 444 540 542.7 2658 579 584 630
wap03a 562 767 788 0 759 770.8 1104 767 787.8 0 765 770.1 3496 569 573.1 2893 572 573.8 2738 576 578.6 3102 699 711.2 2714
wap04a 563 773 792.9 0 773 779.6 1782 773 792.6 0 772 778.2 396 564 572.5 3280 567 569.9 2949 569 574.6 3529 710 727.1 297
wap05a 541 563 572.5 3378 614 626 2822 565 573.2 2213 595 599.9 1275 543 544.5 970 543 543.8 1870 541 543.4 3306 548 549.2 1499
wap06a 516 559 567.2 2859 612 621.3 774 542 547.5 2550 590 595 1458 518 590.4 1005 520 522 1662 519 522.4 1123 529 531.1 2358
wap07a 555 670 683.2 3584 719 725.2 2555 641 650.1 3513 711 720 3500 729 745.7 0 560 725.8 1384 564 569.5 2680 607 610.1 2381
wap08a 529 654 665.3 3402 692 697.6 1620 627 634 3456 680 692.2 1584 536 613.9 3035 538 541 716 543 549.5 3585 572 581.1 2308
p40 4984* 4984 4986.9 64 4984 4984.4 907 4985 5029.2 0 4984 73 4987 5055.7 0 4984 4985 1590 4984 0 4984 0
p41 2688* 2688 2707.1 1225 2688 2694.2 2634 2713 2764.6 0 2688 2689.8 2040 2718 2787.3 0 2688 2689.2 1824 2688 0 2688 0
p42 2466* 2466 2474.8 1180 2471 2484.4 2391 2475 2532.6 0 2466 2475.9 786 2466 2522.5 0 2466 969 2466 4 2466 4
r28 9407* 9415 9511.4 1819 9462 9508.6 3120 9460 9583.2 0 9411 9420.4 78 9410 9563 45 9407 9409.1 1363 9407 8 9407 5
r29 8693* 8715 8799 379 8816 8957.9 1554 8768 8894.9 0 8707 8743.4 2454 8696 8817.6 0 8693 8694.4 1693 8693 1 8693 1
r30 9816* 9826 9960 2378 9820 9840 504 9819 9871.4 0 9816 9816.8 1517 9836 9988.2 1 9819 9832.8 2867 9816 5 9816 7

#BKS 114/188 115/188 99/188 132/188 112/188 150/188 159/188 155/188
#Best 114/188 115/188 99/188 132/188 128/188 158/188 164/188 157/188

#Best Avg 45/188 97/188 53/188 98/188 41/188 129/188 161/188 152/188

According to Table 6, compared to the other local search procedures,598

RedLS achieves more heterogeneous results, with the average score often far599

from the best score. This is due to the fact that RedLS is a local search algo-600

rithm that strongly favors intensification at the expense of exploration, and601

can therefore get stuck in a local minimal trap without being able to get out602

of it. With the help of MCTS, the combination of fast RedLS local optima603

searches and frequent restarts at each iteration from different good starting604

points suggested by MCTS, results in a very robust and efficient algorithm.605

This MCTS+RedLS variant is able to find the best score more often than606

RedLS alone, and is more stable in terms of average results.607

6 Conclusions608

In this work, we investigated Monte Carlo Tree Search applied to the weighted609

vertex coloring problem. We studied different greedy strategies and local610

searches used for the simulation phase. Our experimental results lead to three611

conclusions.612
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When the instance is large and when a time limit is imposed, MCTS does613

not have the time to learn promising areas in the search space and it seems614

more beneficial to favor more intensification, which can be done in three dif-615

ferent ways: (i) by lowering the coefficient which balances the compromise616

between exploitation and exploration during the selection phase, (ii) by using617

a dedicated heuristic exploiting the specificity of the problem (grouping in pri-618

ority the heaviest vertices in the first groups of colors), (iii) and by using a619

local search procedure to improve the complete solution.620

Conversely, for small instances, it seems more beneficial to encourage more621

exploration, to avoid getting stuck in local optima. It can be done, by increas-622

ing the coefficient, which balances the compromise between exploitation and623

exploration, and by using a simulation strategy with more randomness, which624

favors more exploration of the search tree and also allows a better evaluation625

of the most promising branches of the MCTS tree. For these small instances,626

the MCTS algorithm can provide some optimality proofs.627

For medium instances, it seems important to find a good compromise628

between exploration and exploitation. For such instances, coupling the MCTS629

algorithm with a local search procedure allows finding better solutions, which630

cannot be reached by the MCTS algorithm or the local search alone.631

Other future works could be envisaged. For example, an interesting study632

would be to automatically choose the balance coefficient between exploitation633

and exploration on the fly when solving each specific instance. It could also be634

interesting to use a more adaptive approach to trigger the local search, or to635

use a machine-learning algorithm to guide the search toward more promising636

branches of the search tree.637
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