1	Combining Monte Carlo Tree Search and
2	Heuristic Search for Weighted Vertex Coloring
3	Cyril Grelier ¹ , Olivier Goudet ¹ and Jin-Kao Hao^{1^*}
4 5	¹ LERIA, Université d'Angers, 2 Boulevard Lavoisier, Angers, 49045, France.
6	*Corresponding author(s). E-mail(s): jin-kao.hao@univ-angers.fr;
7 8	Contributing authors: cyril.grelier@univ-angers.fr; olivier.goudet@univ-angers.fr;
9	Abstract
10	This work investigates the Monte Carlo Tree Search (MCTS) method
11	combined with dedicated heuristics for solving the Weighted Vertex Col-
12	oring Problem. In addition to the basic MCTS algorithm, we study
13	several MCTS variants where the conventional random simulation is
14	replaced by other simulation strategies including greedy and local search
15	heuristics. We conduct experiments on well-known benchmark instances
16	to assess these combined MCTS variants. We provide empirical evi- dence to shed light on the advantages and limits of each simulation
17 18	strategy. This is an extension of the work [1] presented at EvoCOP2022.
19	Keywords: Monte Carlo Tree Search, local search, graph coloring, weighted

20 vertex coloring

²¹ 1 Introduction

The well-known Graph Coloring Problem (GCP) is to color the vertices of a graph using as few colors as possible such that no adjacent vertices share the same color (*legal* or *feasible* solution). The GCP can also be considered as partitioning the vertex set of the graph into a minimum number of color groups such that no vertices in each color group are adjacent. The GCP has numerous practical applications in various domains [2] and has been studied

intensively since the 19th century in mathematics and for over 50 years in
 computer science.

The Weighted Vertex Coloring Problem (WVCP), a variant of the GCP, 30 has recently attracted much interest in the literature [3-6]. In this problem, 31 each vertex of the graph has a weight and the objective is to find a *legal* coloring 32 such that the sum of the weights of the heaviest vertex of each color group 33 is minimized. Formally, given a weighted graph G = (V, E) with vertex set V 34 (n = |V|) and edge set E, and let W be the set of weights w(v) associated to 35 each vertex v in V, the WVCP consists in finding a partition of the vertices in V36 into k color groups $S = \{V_1, \ldots, V_k\}$ $(1 \le k \le n)$ such that no adjacent vertices 37 belong to the same color group and such that the score $\sum_{i=1}^{k} \max_{v \in V_i} w(v)$ is 38 minimized. Note that the value of k is not predetermined for a WVCP instance 39 and may vary during the search as a solution with more colors may have a 40 better score than a solution with less colors. One can notice that when all the 41 weights w(v) ($v \in V$) are equal to one, finding an optimal solution of this 42 problem with a minimum score corresponds to solving the GCP. The WVCP 43 can be seen as a more general problem than the GCP and is therefore NP-hard. 44 The WVCP is a relevant model for several applications such as matrix 45 decomposition [7], buffer size management, and scheduling of jobs into batches 46 in a multiprocessor environment [8]. Let us consider the last application as 47 illustrated in Figure 1. The objective of this scheduling problem is to execute 48 a set of jobs in a minimum total amount of time. There is no constraint on the 49 number of jobs that can be run in parallel in this environment. However, each 50 job requires a specific execution time and exclusive access to certain resources. 51 Therefore, the time required to complete a batch of jobs in parallel is the time 52 required to complete the longest job in that batch, and two jobs requiring the 53 same resource cannot be launched in the same batch. Solving this problem 54 within the WVCP modeling framework can be done in five steps as displayed 55 in Figure 1: (i) a bipartite graph is used to represent the jobs and the resources 56 required for each job; (ii) this bipartite graph is projected onto the resources 57 to obtain a weighted graph where each vertex is a job and two jobs requiring 58 the same resources are linked by an edge; (iii) a weight corresponding to the 59 time needed to complete a job is set on the corresponding vertex of this graph; 60 (iv) after solving the WVCP associated to this graph, a legal solution is found 61 with an optimal score of 25, corresponding to the sum of the weights of the 62 heaviest vertex of each color group; (v) this partition of vertices allows to set 63 up a job schedule in four batches, which respects the resource constraints, and 64

⁶⁵ whose minimum total execution time is 25 seconds.

Different methods have been proposed in the literature to solve the WVCP. First, this problem has been tackled with exact methods: a branch-and-price algorithm [9], two ILP models proposed in [10] and [11] with a transformation of the WVCP into a maximum weight independent set problem, and constraint programming in [12]. These exact methods can prove the optimality on small instances but tends to fail on graphs with more than 250 vertices.

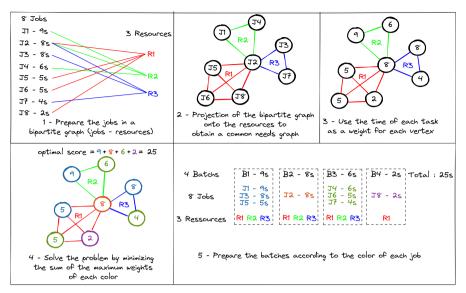


Fig. 1 This figure shows an application of the WVCP for scheduling jobs into batches in a multiprocessor environment with restricted access to certain resources.

To handle large graphs, several heuristics have been introduced to solve 72 the problem approximately [4–7]. The first category of heuristics is based on 73 the local search framework, which iteratively makes transitions from the cur-74 rent solution to a neighbor solution. Three different approaches have been 75 considered to explore the search space: legal, partial legal, or penalty strate-76 gies. The legal strategy starts from a *legal* solution and minimizes the score 77 by performing only legal moves so that no color conflict is created in the new 78 solution [7]. The partial legal strategy allows only legal coloring and keeps a 79 set of uncolored vertices to avoid conflicts [4]. The penalty strategy considers 80 both legal and illegal solutions in the search space [5, 6], and uses a weighted 81 evaluation function to minimize both the WVCP objective function and the 82 number of conflicts in the illegal solutions. To escape local optima traps, these 83 local search algorithms incorporate different mechanisms such as perturbation 84 strategies [5, 7], tabu list [4, 5] and constraint reweighting schemes [6]. 85

The second category of existing heuristics for the WVCP relies on the population-based memetic framework that combines local search with crossovers. The DLMCOL algorithm [3] of this category uses a deep neural network to learn an invariant by color permutation regression model, useful to select the most promising crossovers at each generation. The AHEAD algorithm [13] involves automatic selection of crossover and local search operators for the WVCP and GCP.

Research on combining such learning techniques and heuristics has received increasing attention in the past years for graph coloring problems [14, 15]. In these new frameworks, after each search trajectory, a matrix that specifies the

probability of a vertex belonging to each color group is updated. This matrix
is then used to guide the local search algorithm for subsequent iterations.

This study continues in that vein and investigates the potential benefits of 98 combining Monte Carlo Tree Search (MCTS) and sequential coloring or local 99 search algorithms for solving the WVCP. MCTS is a heuristic search algorithm 100 that generated considerable interest due to its spectacular success for the game 101 of Go [16], and in other domains (see the survey [17] on this topic). It has 102 been recently revisited in combination with modern deep learning techniques 103 for difficult two-player games (cf. AlphaGo [18]). MCTS has also been applied 104 to combinatorial optimization problems seen as a one-player game such as the 105 traveling salesman problem [19] or the knapsack problem [20]. An algorithm 106 based on MCTS has recently been implemented with some success for the GCP 107 in [21]. In this work, we investigate for the first time the MCTS approach for 108 solving the WVCP. 109

In MCTS, a tree is built incrementally and asymmetrically. For each iter-110 ation, a tree policy balancing exploration and exploitation is used to find the 111 most critical node to expand. A simulation is then run from the expanded node 112 and the search tree is updated with the result of this simulation. Its incre-113 mental and asymmetric properties make MCTS a promising candidate for the 114 WVCP because in this problem only the heaviest vertex of each color group 115 has an impact on the objective score. Therefore learning to color the heaviest 116 vertices of the graph before coloring the rest of the graph seems particularly 117 relevant for this problem. 118

Unlike backtracking algorithms, the main aim of MCTS is not to exhaus-119 tively test all solutions as fast as possible. Instead, MCTS prioritizes the most 120 promising branches of the search tree using a heuristic that balances exploita-121 tion and exploration. This approach can potentially find high-quality solutions 122 faster than backtracking algorithms. However, MCTS can revisit the same 123 solution multiple times during the search process. Nevertheless, as explained 124 later, MCTS, like backtracking algorithms, can provide a proof of optimality 125 for any given instance if it is given sufficient time. 126

¹²⁷ The contributions of this work are summarized as follows.

First, we present a MCTS algorithm dedicated to the WVCP, which consid-128 ers the problem from the perspective of sequential coloring with a predefined 129 vertex order. The exploration of the tree is accelerated with the use of spe-130 cific pruning rules, which offer the possibility to explore the whole tree in 131 a reasonable amount of time for small instances and to obtain optimality 132 proofs. Secondly, for large instances, when obtaining an exact result is impos-133 sible in a reasonable time, we study how this MCTS algorithm can be tightly 134 coupled with other heuristics. Specifically, we investigate the integration of dif-135 ferent greedy coloring strategies and local search procedures within the MCTS 136 algorithm. 137

The rest of the paper is organized as follows. Section 2 introduces the weighted vertex coloring problem and the constructive approach with a tree. Section 3 describes the MCTS algorithm devised to tackle the problem. Section ¹⁴¹ 4 presents the coupling of MCTS with local search. Section 5 reports com ¹⁴² putational results of different versions of MCTS. Section 6 discusses the
 ¹⁴³ contributions and presents research perspectives.

¹⁴⁴ 2 Constructive approach with a tree for the ¹⁴⁵ weighted graph coloring problem

This section presents a tree-based approach for the WVCP, which aims to explore the partial and legal search space of this problem.

¹⁴⁸ 2.1 Partial and legal search space

The search space Ω studied in our algorithm concerns legal, but potentially 149 partial, k-colorings. A partial legal k-coloring S is a partition of the set of 150 vertices V into k disjoint independent sets V_i $(1 \le i \le k)$, and a set of uncolored 151 vertices $U = V \setminus \bigcup_{i=1}^{k} V_i$. A independent set V_i is a set of mutually non adjacent 152 vertices of the graph: $\forall u, v \in V_i, (u, v) \notin E$. For the WVCP, the number of 153 colors k that can be used is not known in advance. Nevertheless, it is not lower 154 than the chromatic number of the graph $\chi(G)$ and not greater than the number 155 of vertices n of the graph. A solution of the WVCP is denoted as partial if $U \neq d$ 156 \emptyset and complete otherwise. The objective of the WVCP is to find a complete 157 solution S with a minimum score f(S) given by: $f(S) = \sum_{i=1}^{k} \max_{v \in V_i} w(v)$. 158

¹⁵⁹ 2.2 Tree search for weighted vertex coloring

Backtracking-based tree search is a popular approach for the graph coloring
problem [2, 22, 23]. In our case, a tree search algorithm can be used to explore
the partial and legal search space of the WVCP previously defined.

Starting from a solution where no vertex is colored (i.e., U = V) and that corresponds to the root node R of the tree, child nodes C are successively selected in the tree, consisting of coloring one new vertex at a time. This process is repeated until a terminal node T is reached (all the vertices are colored). A complete solution (i.e., a legal coloring) corresponds thus to a branch from the root node to a terminal node. The maximum depth of the tree is n, the number of vertices in the graph.

The selection of each child node corresponds to applying a move to the 170 current partial solution being constructed. A move consists of assigning a 171 particular color i to an uncolored vertex $u \in U$, denoted as $\langle u, U, V_i \rangle$. 172 Applying a move to the current partial solution S, results in a new solution 173 $S \oplus \langle u, U, V_i \rangle$. This tree search algorithm only considers legal moves to stay 174 in the partial legal space. For a partial solution $S = \{V_1, ..., V_k, U\}$, a move 175 $\langle u, U, V_i \rangle$ is said legal if no vertex of V_i is adjacent to the vertex u. At each 176 level of the tree, there is at least one possible legal move that applies to a ver-177 tex a new color that has never been used before (or putting this vertex in a 178 new empty set V_i , $k+1 \leq i \leq n$). 179

Applying a succession of n legal moves from the initial solution results in a legal coloring of the WVCP and reaches a terminal node of the tree. During this process, at the level t of the tree $(0 \le t < n)$, the current legal and partial solution $S = \{V_1, ..., V_k, U\}$ has already used k colors and t vertices have already received a color. Therefore |U| = n - t.

At this level, a first naive approach could be to consider all the possible legal moves, corresponding to choosing a vertex in the set U and assigning to the vertex a color i, with $1 \le i \le n$. This kind of choice can work with small graphs but with large graphs, the number of possible legal moves becomes huge. Indeed, at each level t, the number of possible legal moves can go up to $(n-t) \times n$.

To reduce the set of move possibilities, we consider the vertices of the graph 191 in a predefined order (u_1, \ldots, u_n) . When choosing a color for the next vertex, 192 we only consider the colors already used in the partial solution plus one new 193 color, as long as this number is less than the vertex degree plus one. This 194 approach bounds the number of colors needed for a vertex [24]. Thus, for the 195 current partial and legal solution $S = \{V_1, \ldots, V_k, U\}$, at most d(u) + 1 moves 196 are considered for the next vertex u to be colored. If k colors have already 197 been used, the set of legal moves to place u is, if k < d(u) + 1198

$$\mathcal{L}(S) = \{ \langle u, U, V_i \rangle, 1 \le i \le k, \forall v \in V_i, (u, v) \notin E \} \cup \{ \langle u, U, V_{k+1} \rangle \}, (1)$$

199 or, if $k \ge d(u) + 1$

$$\mathcal{L}(S) = \{ \langle u, U, V_i \rangle, 1 \le i \le d(u) + 1, \forall v \in V_i, (u, v) \notin E \}$$

$$(2)$$

This decision cuts symmetries in the tree while reducing the number of branching factors at each level of the tree. The potential number of leaf nodes in the tree is, in the worst case, equal to $\prod_{i=1,...,n} \min(i, d_{u_i} + 1)$.

203 2.3 Predefined vertex order

We propose to consider a predefined ordering of the vertices, sorted by weight 204 and then by degree. Vertices with higher weights are placed first. If two vertices 205 have the same weight, then the vertex with the higher degree is placed first. 206 This order is intuitively relevant for the WVCP because it is more important 207 to place first the vertices with heavy weights which have the most impact on 208 the score as well as the vertices with the highest degree because they are the 209 most constrained decision variables. Such ordering has already been shown 210 to be effective with greedy constructive approaches for the GCP [22] and the 211 WVCP [4]. 212

Moreover, this vertex ordering allows a simple score calculation while building the tree. Indeed, as the vertices are sorted by descending order of their weights, and the score of the WVCP only counts the maximum weight of each color group, with this vertex order, the score only increases by the value w(v)when a new color group is created for the vertex v.

²¹⁸ 3 Monte Carlo Tree Search for weighted vertex ²¹⁹ coloring

The search tree presented in the last subsection can be huge, in particular 220 for large instances. Therefore, in practice, it is often impossible to perform an 221 exhaustive search of this tree, due to expensive computing time and memory 222 requirements. We turn now to an adaptation of the MCTS algorithm for the 223 WVCP to explore this search tree. MCTS keeps in memory a tree (hereinafter 224 referred to as the MCTS tree) that only corresponds to the already explored 225 nodes of the search tree presented in the last subsection. In the MCTS tree, 226 a leaf is a node whose children have not yet all been explored while a ter-227 minal node corresponds to a complete solution. MCTS can guide the search 228 toward the most promising branches of the tree, by balancing exploitation and 229 exploration and continuously learning at each iteration. 230

231 3.1 General framework

The MCTS algorithm for the WVCP is shown in Algorithm 1. The algorithm 232 takes a weighted graph as input and tries to find a legal coloring S with the 233 minimum score f(S). The algorithm starts with an initial solution where the 234 first vertex is placed in the first color group. This is the root node of the 235 MCTS tree. Then, the algorithm repeats several iterations until a stopping 236 criterion is met. At every iteration, one legal solution is completely built, which 237 corresponds to walking along a path from the root node to a leaf node of the 238 MCTS tree and performing a simulation (or playout/rollout) until a terminal 239 node of the search tree is reached (when all vertices are colored). 240

Each iteration of the MCTS algorithm involves the execution of 5 steps to explore the search tree with legal moves (cf. Section 2):

- 1. Selection From the root node of the MCTS tree, successive child nodes 243 are selected until a leaf node is reached. The selection process balances the 244 exploration-exploitation trade-off. The exploitation score is linked to the 245 average score obtained after having selected this child node and is used to 246 guide the algorithm to a part of the tree where the scores are the lowest (the 247 WVCP is a minimization problem). The exploration score is linked to the 248 number of visits to the child node and will incite the algorithm to explore 249 new parts of the tree, which have not yet been explored. 250
- 251 2. Expansion The MCTS tree grows by adding a new child node to the leaf
 252 node reached during the selection phase.
- 3. Simulation From the newly added node, the current partial solution is
 completed with legal moves, randomly or by using heuristics.
- 4. Update After the simulation, the average score and the number of visits
 of each node on the explored branch are updated.
- ²⁵⁷ 5. Pruning If a new best score is found, some branches of the MCTS tree
 ²⁵⁸ may be pruned if it is not possible to improve the best current score with it.
- ²⁵⁹ The algorithm continues until one of the following conditions is reached:

1:Input: Weighted graph $G = (V, W, E)$ 2:Output: The best legal coloring S^* found3: $S^* = \emptyset$ and $f(S^*) = MaxInt$ 4:while stop condition is not met do5: $C \leftarrow R$ \Rightarrow Current node corresponding to the root node of the tree6: $S \leftarrow \{V_1, U\}$ with $V_1 = \{v_1\}$ and $U = V \setminus V_1$ \Rightarrow Current solutioninitialized with the first vertex in the first color group7:/* Selection */ \Rightarrow while C is not a leaf do9: $C \leftarrow$ select_best_child(C) with legal move $< u, U, V_i >$ 10: $S \leftarrow S \oplus < u, U, V_i >$ 11:end while12:/* Expansion */13:if C has a potential child, not yet open then14: $C \leftarrow$ open_first_child_not_open(C) with legal move $< u, U, V_i >$ 15: $S \leftarrow S \oplus < u, U, V_i >$ 16:end if17:/* Simulation */18:complete_partial_solution(S)19:/* Update */20:while $C \neq R$ do21:update(C,f(S))22: $C \leftarrow$ parent(C)23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */28:end if29:end while29:end while20:Section 3.621:update(C,f(S))22:end while23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */28:end if </th <th>Algorithm 1 MCTS algorithm for the WVCP</th> <th></th>	Algorithm 1 MCTS algorithm for the WVCP	
3: $S^* = \emptyset$ and $f(S^*) = MaxInt$ 4: while stop condition is not met do 5: $C \leftarrow R \implies$ Current node corresponding to the root node of the tree 6: $S \leftarrow \{V_1, U\}$ with $V_1 = \{v_1\}$ and $U = V \setminus V_1 \implies$ Current solution initialized with the first vertex in the first color group 7: /* Selection */ \implies Section 3.2 8: while C is not a leaf do 9: $C \leftarrow$ select_best_child(C) with legal move $\langle u, U, V_i \rangle$ 10: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 11: end while 12: /* Expansion */ \implies Section 3.3 13: if C has a potential child, not yet open then 14: $C \leftarrow$ open_first_child_not_open(C) with legal move $\langle u, U, V_i \rangle$ 15: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 16: end if 17: /* Simulation */ \implies Section 3.4 18: complete_partial_solution(S) 19: /* Update */ \implies Section 3.5 20: while $C \neq R$ do 21: update(C,f(S)) 22: $C \leftarrow$ parent(C) 23: end while 24: if $f(S) < f(S^*)$ then 25: $S^* \leftarrow S$ 26: /* Pruning */ \implies Section 3.6 27: apply pruning rules 28: end if 29: end while	1: Input: Weighted graph $G = (V, W, E)$	
4: while stop condition is not met do 5: $C \leftarrow R$ > Current node corresponding to the root node of the tree 6: $S \leftarrow \{V_1, U\}$ with $V_1 = \{v_1\}$ and $U = V \setminus V_1$ > Current solution initialized with the first vertex in the first color group 7: /* Selection */ >> Section 3.2 8: while C is not a leaf do 9: $C \leftarrow$ select_best_child(C) with legal move $\langle u, U, V_i \rangle$ 10: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 11: end while 12: /* Expansion */ >> Section 3.3 13: if C has a potential child, not yet open then 14: $C \leftarrow$ open_first_child_not_open(C) with legal move $\langle u, U, V_i \rangle$ 15: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 16: end if 17: /* Simulation */ >> Section 3.4 18: complete_partial_solution(S) 19: /* Update */ >> Section 3.5 20: while $C \neq R$ do 21: update(C,f(S)) 22: $C \leftarrow$ parent(C) 23: end while 24: if $f(S) \langle f(S^*)$ then 25: $S^* \leftarrow S$ 26: /* Pruning */ >> Section 3.6 27: apply pruning rules 28: end if 29: end while	2: Output: The best legal coloring S^* found	
5: $C \leftarrow R$ > Current node corresponding to the root node of the tree 6: $S \leftarrow \{V_1, U\}$ with $V_1 = \{v_1\}$ and $U = V \setminus V_1$ > Current solution initialized with the first vertex in the first color group 7: /* Selection */ >> Section 3.2 8: while C is not a leaf do 9: $C \leftarrow$ select_best_child(C) with legal move $\langle u, U, V_i \rangle$ 10: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 11: end while 12: /* Expansion */ >> Section 3.3 13: if C has a potential child, not yet open then 14: $C \leftarrow$ open_first_child_not_open(C) with legal move $\langle u, U, V_i \rangle$ 15: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 16: end if 17: /* Simulation */ >> Section 3.4 18: complete_partial_solution(S) 19: /* Update */ >> Section 3.5 20: while $C \neq R$ do 21: update(C,f(S)) 22: $C \leftarrow$ parent(C) 23: end while 24: if $f(S) \langle f(S^*)$ then 25: $S^* \leftarrow S$ 26: /* Pruning */ >> Section 3.6 27: apply pruning rules 28: end if 29: end while	3: $S^* = \emptyset$ and $f(S^*) = MaxInt$	
6: $S \leftarrow \{V_1, U\}$ with $V_1 = \{v_1\}$ and $U = V \setminus V_1$ \triangleright Current solution initialized with the first vertex in the first color group 7: /* Selection */ \triangleright Section 3.2 8: while C is not a leaf do 9: $C \leftarrow$ select_best_child(C) with legal move $\langle u, U, V_i \rangle$ 10: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 11: end while 12: /* Expansion */ \triangleright Section 3.3 13: if C has a potential child, not yet open then 14: $C \leftarrow$ open_first_child_not_open(C) with legal move $\langle u, U, V_i \rangle$ 15: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 16: end if 17: /* Simulation */ \triangleright Section 3.4 18: complete_partial_solution(S) 19: /* Update */ \triangleright Section 3.5 20: while $C \neq R$ do 21: update(C,f(S)) 22: $C \leftarrow$ parent(C) 23: end while 24: if $f(S) < f(S^*)$ then 25: $S^* \leftarrow S$ 26: /* Pruning */ \triangleright Section 3.6 27: apply pruning rules 28: end if 29: end while	4: while stop condition is not met do	
initialized with the first vertex in the first color group 7: /* Selection */ \triangleright Section 3.2 8: while C is not a leaf do 9: $C \leftarrow$ select_best_child(C) with legal move $\langle u, U, V_i \rangle$ 10: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 11: end while 12: /* Expansion */ \triangleright Section 3.3 13: if C has a potential child, not yet open then 14: $C \leftarrow$ open_first_child_not_open(C) with legal move $\langle u, U, V_i \rangle$ 15: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 16: end if 17: /* Simulation */ \triangleright Section 3.4 18: complete_partial_solution(S) 19: /* Update */ \triangleright Section 3.5 20: while $C \neq R$ do 21: update(C,f(S)) 22: $C \leftarrow$ parent(C) 23: end while 24: if $f(S) < f(S^*)$ then 25: $S^* \leftarrow S$ 26: /* Pruning */ \triangleright Section 3.6 27: apply pruning rules 28: end if 29: end while	5: $C \leftarrow R$ \triangleright Current node corresponding to the root	t node of the tree
7:/* Selection */> Section 3.28:while C is not a leaf do9: $C \leftarrow$ select_best_child(C) with legal move $< u, U, V_i >$ 10: $S \leftarrow S \oplus < u, U, V_i >$ 11:end while12:/* Expansion */> Section 3.313:if C has a potential child, not yet open then14: $C \leftarrow$ open_first_child_not_open(C) with legal move $< u, U, V_i >$ 15: $S \leftarrow S \oplus < u, U, V_i >$ 16:end if17:/* Simulation */> Section 3.418:complete_partial_solution(S)19:/* Update */> Section 3.520:while $C \neq R$ do21:update(C,f(S))22: $C \leftarrow$ parent(C)23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */> Section 3.627:apply pruning rules28:end if29:end while	6: $S \leftarrow \{V_1, U\}$ with $V_1 = \{v_1\}$ and $U = V \setminus V_1$	Current solution
8: while C is not a leaf do 9: $C \leftarrow$ select_best_child(C) with legal move $\langle u, U, V_i \rangle$ 10: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 11: end while 12: $/*$ Expansion $*/$ \triangleright Section 3.3 13: if C has a potential child, not yet open then 14: $C \leftarrow$ open_first_child_not_open(C) with legal move $\langle u, U, V_i \rangle$ 15: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 16: end if 17: $/*$ Simulation $*/$ \triangleright Section 3.4 18: complete_partial_solution(S) 19: $/*$ Update $*/$ \triangleright Section 3.5 20: while $C \neq R$ do 21: update(C,f(S)) 22: $C \leftarrow$ parent(C) 23: end while 24: if $f(S) < f(S^*)$ then 25: $S^* \leftarrow S$ 26: $/*$ Pruning $*/$ \triangleright Section 3.6 27: apply pruning rules 28: end if 29: end while	initialized with the first vertex in the first color group	
9: $C \leftarrow \text{select_best_child}(C)$ with legal move $< u, U, V_i >$ 10: $S \leftarrow S \oplus < u, U, V_i >$ 11:end while12:/* Expansion */ \triangleright Section 3.313:if C has a potential child, not yet open then14: $C \leftarrow \text{open_first_child_not_open}(C)$ with legal move $< u, U, V_i >$ 15: $S \leftarrow S \oplus < u, U, V_i >$ 16:end if17:/* Simulation */ \triangleright Section 3.418:complete_partial_solution(S)19:/* Update */ \triangleright Section 3.520:while $C \neq R$ do21:update(C,f(S))22: $C \leftarrow$ parent(C)23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */ \triangleright Section 3.627:apply pruning rules28:end if29:end while	7: /* Selection */	\triangleright Section 3.2
10: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 11:end while12:/* Expansion */> Section 3.313:if C has a potential child, not yet open then14: $C \leftarrow$ open_first_child_not_open(C) with legal move $\langle u, U, V_i \rangle$ 15: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 16:end if17:/* Simulation */> Section 3.418:complete_partial_solution(S)19:/* Update */> Section 3.520:while $C \neq R$ do21:update(C,f(S))22: $C \leftarrow$ parent(C)23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */26:/* Pruning rules28:end if29:end while	8: while C is not a leaf do	
11:end while12:/* Expansion */> Section 3.313:if C has a potential child, not yet open then14: $C \leftarrow$ open_first_child_not_open(C) with legal move $< u, U, V_i >$ 15: $S \leftarrow S \oplus < u, U, V_i >$ 16:end if17:/* Simulation */> Section 3.418:complete_partial_solution(S)19:/* Update */> Section 3.520:while $C \neq R$ do21:update(C,f(S))22: $C \leftarrow$ parent(C)23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */> Section 3.627:apply pruning rules28:end if29:end while	9: $C \leftarrow \text{select_best_child}(C)$ with legal move $< u, U,$	$V_i >$
12:/* Expansion */> Section 3.313:if C has a potential child, not yet open then14: $C \leftarrow \text{open_first_child_not_open(C)}$ with legal move $< u, U, V_i >$ 15: $S \leftarrow S \oplus < u, U, V_i >$ 16:end if17:/* Simulation */> Section 3.418:complete_partial_solution(S)19:/* Update */> Section 3.520:while $C \neq R$ do21:update(C,f(S))22: $C \leftarrow \text{parent}(C)$ 23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */> Section 3.627:apply pruning rules28:end if29:end while	10: $S \leftarrow S \oplus \langle u, U, V_i \rangle$	
13:if C has a potential child, not yet open then14: $C \leftarrow$ open_first_child_not_open(C) with legal move $< u, U, V_i >$ 15: $S \leftarrow S \oplus < u, U, V_i >$ 16:end if17:/* Simulation */18:complete_partial_solution(S)19:/* Update */20:while $C \neq R$ do21:update(C,f(S))22: $C \leftarrow$ parent(C)23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */26:/* Pruning rules28:end if29:end while	11: end while	
14: $C \leftarrow \text{open_first_child_not_open}(C)$ with legal move $\langle u, U, V_i \rangle$ 15: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 16:end if17:/* Simulation */ \triangleright Section 3.418:complete_partial_solution(S)19:/* Update */ \triangleright Section 3.520:while $C \neq R$ do21:update(C,f(S))22: $C \leftarrow$ parent(C)23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */ \triangleright Section 3.627:apply pruning rules28:end if29:end while	12: /* Expansion */	\triangleright Section 3.3
15: $S \leftarrow S \oplus \langle u, U, V_i \rangle$ 16: end if 17: /* Simulation */ \triangleright Section 3.4 18: complete_partial_solution(S) 19: /* Update */ \triangleright Section 3.5 20: while $C \neq R$ do 21: update(C,f(S)) 22: $C \leftarrow$ parent(C) 23: end while 24: if $f(S) \langle f(S^*)$ then 25: $S^* \leftarrow S$ 26: /* Pruning */ \triangleright Section 3.6 27: apply pruning rules 28: end if 29: end while	13: if C has a potential child, not yet open then	
16:end if17:/* Simulation */> Section 3.418:complete_partial_solution(S)>19:/* Update */> Section 3.520:while $C \neq R$ do>21:update(C,f(S))>22: $C \leftarrow$ parent(C)23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */> Section 3.627:apply pruning rules28:end if29:end while	14: $C \leftarrow \text{open_first_child_not_open(C)}$ with legal move	$e < u, U, V_i >$
17:/* Simulation */> Section 3.418:complete_partial_solution(S)>19:/* Update */> Section 3.520:while $C \neq R$ do>21:update(C,f(S))>22: $C \leftarrow$ parent(C)23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */> Section 3.627:apply pruning rules28:end if29:end while	15: $S \leftarrow S \oplus \langle u, U, V_i \rangle$	
18:complete_partial_solution(S)19:/* Update */ \triangleright Section 3.520:while $C \neq R$ do21:update(C,f(S))22: $C \leftarrow$ parent(C)23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */27:apply pruning rules28:end if29:end while		
19:/* Update */ \triangleright Section 3.520:while $C \neq R$ do21:update(C,f(S))22: $C \leftarrow$ parent(C)23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */27:apply pruning rules28:end if29:end while	17: /* Simulation */	\triangleright Section 3.4
20:while $C \neq R$ do21:update(C,f(S))22: $C \leftarrow parent(C)$ 23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */27:apply pruning rules28:end if29:end while		
21:update(C,f(S))22: $C \leftarrow parent(C)$ 23:end while24:if $f(S) < f(S^*)$ then25: $S^* \leftarrow S$ 26:/* Pruning */27:apply pruning rules28:end if29:end while	19: $/*$ Update $*/$	\triangleright Section 3.5
22: $C \leftarrow \text{parent}(\hat{C})$ 23: end while 24: if $f(S) < f(S^*)$ then 25: $S^* \leftarrow S$ 26: /* Pruning */ \triangleright Section 3.6 27: apply pruning rules 28: end if 29: end while	20: while $C \neq R$ do	
23: end while 24: if $f(S) < f(S^*)$ then 25: $S^* \leftarrow S$ 26: /* Pruning */ \triangleright Section 3.6 27: apply pruning rules 28: end if 29: end while	21: $update(C, f(S))$	
24: if $f(S) < f(S^*)$ then 25: $S^* \leftarrow S$ 26: /* Pruning */ \triangleright Section 3.6 27: apply pruning rules 28: end if 29: end while	22: $C \leftarrow \text{parent}(C)$	
25: $S^* \leftarrow S$ 26: /* Pruning */ \triangleright Section 3.6 27: apply pruning rules 28: end if 29: end while		
26: /* Pruning */ ▷ Section 3.6 27: apply pruning rules 28: end if 29: end while	24: if $f(S) < f(S^*)$ then	
 27: apply pruning rules 28: end if 29: end while 	25: $S^* \leftarrow S$	
28: end if 29: end while	26: /* Pruning */	\triangleright Section 3.6
29: end while	27: apply pruning rules	
	28: end if	
30: return S^*		
	30: return S^*	

• there are no more child nodes to expand, meaning the search tree has been fully explored. In this case, the best score found is proven to be optimal.

• a cutoff time is attained. The minimum score found so far is returned. It corresponds to an upper bound of the optimal score for the given instance.

²⁶⁴ 3.2 Selection

The selection starts from the root node of the MCTS tree and selects children nodes until a leaf node is reached. At every level t of the MCTS tree, if the current node C_t corresponds to a partial solution $S = \{V_1, ..., V_k, U\}$ with t vertices already colored and k colors used, there are l possible legal moves, with

²⁶⁹ $1 \leq l \leq k+1$. Therefore, from the node C_t , l potential children $C_{t+1}^1, \ldots, C_{t+1}^l$ ²⁷⁰ can be selected.

If l > 1, the selection of the most promising child node can be seen as a multi-armed bandit problem [25] with l levers. The problem of choosing the next node can be solved with the UCT algorithm for Monte Carlo tree search by selecting the child with the maximum value of the following expression [20]:

$$normalized_score(C_{t+1}^i) + c \times \sqrt{\frac{2 * ln(nb_visits(C_t))}{nb_visits(C_{t+1}^i)}}, \text{ for } 1 \le i \le l.$$
(3)

Here, $nb_visits(C)$ corresponds to the number of times the node C has been chosen to build a solution. c is a real positive coefficient allowing to balance the compromise between exploitation and exploration, which is set by default to one.¹ normalized_score(C_{t+1}^i) corresponds to a normalized score of the child node C_{t+1}^i ($1 \le i \le l$) given by:

$$normalized_score(C_{t+1}^i) = \frac{rank(C_{t+1}^i)}{\sum_{i=1}^{l} rank(C_{t+1}^i)}$$

where $rank(C_{t+1}^{i})$ is defined as the rank between 1 and l of the nodes C_{t+1}^{i} obtained by sorting from bad to good according to their average values $avg_score(C_{t+1}^{i})$ (nodes that seem more promising get a higher score). $avg_score(C_{t+1}^{i})$ is the mean score on the sub-branch with the node C_{t+1}^{i} selected obtained after all previous simulations.

Equation 3 can be compared with the probabilities of choice at each level of the tree by an Ant Colony Optimisation (ACO) algorithm, except that in our case, the choice of the child node is deterministic, and explicitly involves a trade-off between an intensification term, the normalized score of each child node, and an exploration term, depending on its number of visits.

281 3.3 Expansion

From the node C of the MCTS tree reached during the selection procedure, one new child of C is open and its corresponding legal move is applied to the current solution. Among the unopened children, the node associated with the lowest color number i is selected. Therefore the child node needing the creation of a new color (and increasing the score) will be selected last.

287 3.4 Simulation

The simulation takes the current partial and legal solution found after the expansion phase and colors the remaining vertices. In the original MCTS algorithm, the simulation consists in choosing random moves in the set of all legal

 $^{^1\}mathrm{A}$ sensitivity analysis of this important hyperparameter is shown in Section 5.3.

²⁹¹ moves $\mathcal{L}(S)$, defined by Equation 1 and Equation 2, until the solution is com-²⁹² pleted. We call this first version MCTS+Random (MCTS+R). As shown in ²⁹³ the experimental section, this version is not very efficient as the number of ²⁹⁴ colors grows rapidly. Therefore, we propose three other simulation procedures:

a constrained greedy algorithm that chooses a legal move prioritizing the moves which do not locally increase the score of the current partial solution.
 The move applied for each vertex is randomly selected among the legal moves

- in $\mathcal{L}(S)$. It only chooses the move $\langle u, U, V_{k+1} \rangle$, consisting in opening a new color group and increasing the current score by w(u), only if $\mathcal{L}^g(S) = \emptyset$. We call this version MCTS+Greedy-Random (MCTS+GR).
- a greedy deterministic procedure which always chooses a legal move in $\mathcal{L}(S)$ with the first available color *i*. We call this version MCTS+Greedy(MCTS+G).
- a greedy deterministic procedure based on DSatur [22], which colors in priority the heaviest and most saturated vertices. The saturation of a vertex is the number of colors used by its adjacent vertices. We call this version MCTS+DSatur (MCTS+DS).

308 **3.5** Update

Once the simulation is over, a complete solution S of the WVCP is obtained. If this solution is better than the best recorded solution found so far S^* (i.e., $f(S) < f(S^*)$), S becomes the new global best solution S^* .

Then, a backpropagation procedure updates each node C of the whole branch of the MCTS tree which has led to this solution:

• the running average score of each node C of the branch is updated with the score f(S):

$$avg_score(C) \leftarrow \frac{avg_score(C) \times nb_visits(C) + f(S)}{nb_visits(C) + 1}$$
 (4)

• the counter of visits $nb_visits(C)$ of each node of the branch is increased by one.

316 3.6 Pruning

317 During an iteration of MCTS, three pruning rules are applied:

- ³¹⁸ 1. During expansion, if the score f(S) of the partial solution associated with ³¹⁹ a node visited during this iteration of MCTS is equal to or higher than the ³²⁰ current best-found score $f(S^*)$, the node is deleted as the score of such a ³²¹ partial solution cannot decrease when more vertices are colored.
- 2. When the best score $f(S^*)$ is found, the tree is *cleaned*. A heuristic goes through the whole tree and deletes children and possible children associated with a partial score f(S) equal or superior to the best score $f(S^*)$.

3. If a node is *completely explored*, it is deleted and will not be explored in the MCTS tree anymore. A node is said *completely explored* if it is a leaf node
without children, or if all of its children have already been opened once
and have all been deleted. Note that this third pruning step is recursive as
a node deletion can result in the deletion of its parent if it has no more
children, and so on.

These three pruning rules and the fact that the symmetries are cut in the tree by restricting the set of legal moves considered at each step (see Section 2.2) offer the possibility to explore the whole tree in a reasonable amount of time for small instances. This peculiarity of the algorithm makes it possible to obtain an optimality proof for such instances.

336 3.7 Toy example

Figure 2 displays one iteration of MCTS for the WVCP on a small graph composed of seven vertices named A–G with different weights between 2 and 9. On each diagram is displayed the current state of the partial coloring solution being constructed (right) and the current state of the search tree (left). In the search tree, each square represents a node and the number on the bottom right of a square is the score of the corresponding partial solution. On top of each square are written the average score and the number of visits of each node. In

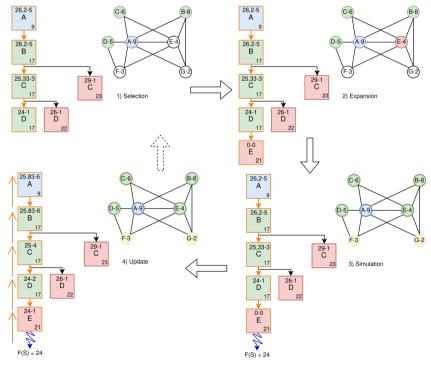


Fig. 2 Toy example of one MCTS iteration

addition to the root node (vertex A colored in blue), five nodes have already
been opened in the search tree (five iterations of MCTS). The sixth iteration
of MCTS proceeds as follows.

Selection: From the root node, the only possible child corresponding to vertex B in green is selected. From there, there are two options as vertex C can be colored in green or red. The most interesting option is chosen (vertex C in green) regarding the score and the number of visits of each child (cf. equation (3)). Then, the most promising leaf is selected (D in green).

- Expansion: From the node D in green, a new node is added to the tree. It corresponds to E in red (as it cannot take the color blue nor green).
- Simulation: From there, the solution is completed with a greedy algorithm to obtain a complete legal solution with a score of 24.
- **Update**: This score of 24 is back-propagated on the explored branch (update of the average score and the number of visits of each node in the branch).
- **Pruning**: Figure 3 presents the state of the tree after some iterations. As the best-found score is 24, every branch of the tree with a score greater than or equal to 24 is deleted (indicated with a red cross).



Fig. 3 Toy example of the search tree pruning

³⁶¹ 4 Combining MCTS with Local Search

We now explore the possibility of improving the MCTS algorithm with local search. Coupling MCTS with a local search algorithm is motivated by the fact that after the simulation phase, the complete solution obtained can be close to a still better solution in the search space that could be discovered by local search. In this work, we present the coupling of MCTS with a baseline tabu search (TW) created for this work, as well as three state of the art local search
algorithms, dedicated for the WVCP: AFISA [5], RedLS [6] and ILS-TS [4].

During the simulation phase, the solution is first completed with a greedy 369 algorithm and then improved by the local search procedure. Note that in the 370 first version of this work published in [1], to stay consistent with the search 371 tree learned by MCTS, we allowed the local search procedure to only move the 372 vertices of the complete solution S which are still uncolored after the selection 373 and expansion phases. However, we have realized in the meantime that blocking 374 vertices for the local search can lead to a lot of time spent checking for blocked 375 vertices in the complex neighborhood explored by the various local search 376 procedures. It also leads to missing good opportunities to move in the search 377 space. Therefore, in the new version of the algorithm presented in this paper, 378 a more efficient version of the algorithm is presented where the vertices are not 379 frozen during the local search. In this new version, when coupling MCTS with 380 a local search algorithm, the resulting heuristic can be seen as an algorithm 381 that attempts to learn a good starting point for the local search procedure. 382 by selecting different best promising backbones of partial solutions in every 383 iteration during the selection phase. 384

As one iteration does not have the same meaning for each local search, we use a time limit of $t = 0.02 \times n$ seconds to perform the search, depending on the number of vertices n in the given instance. Once the local search procedure has reached the time limit, the score corresponding to the best legal solution obtained by the local search procedure is used to update all the nodes of the branch which has led to the simulation initiation. In the following subsections, the four different local search procedures used in this work are presented.

³⁹² 4.1 Basic tabu search

The first local search algorithm tested is a simple tabu search, named 393 TabuWeight (TW), inspired by the classical TabuCol algorithm for the GCP 394 [26]. Starting from a legal solution, TW improves it iteratively by using the 395 one move operator, which consists in moving a vertex from its color group to 396 another color group, without creating conflicts. At each iteration, the best one 397 *move* which is not forbidden by the tabu list is selected. Each time a move is 398 performed, the reverse move is added to the tabu list and forbidden for the 399 next tt iterations where tt is a parameter called tabu tenure. A tabu move can 400 still be applied exceptionally if it leads to a solution, which is better than the 401 best solution found so far (aspiration criterion). 402

403 4.2 Adaptive feasible and infeasible tabu search

⁴⁰⁴ AFISA [5] is an advanced tabu search algorithm, which explores the candidate ⁴⁰⁵ solutions by oscillating between illegal and legal search spaces². To prevent ⁴⁰⁶ the search from going too far from legal boundaries, AFISA uses a controlling

 $^{^{2}}$ The illegal search space consists of solutions with conflicts (some adjacent vertices in the solution have the same color), while the legal search space consists of solutions without any conflicts.

coefficient to adaptively make the algorithm go back and forth between illegal
and legal spaces. The controlling coefficient encourages the algorithm to handle
in priority the vertices in conflicts before trying to reduce the WVCP score.
AFISA uses the popular *one move* operator to explore the search space.

411 4.3 Local search with multiple operators

Like AFISA, RedLS [6] explores the illegal and legal search spaces. This 412 algorithm uses the configuration checking strategy [27] that applies multiple 413 improvements and perturbation strategies to explore the search space. At each 414 iteration, RedLS perturbs the solution by moving all the heaviest vertices from 415 one color group to another group, before minimizing the number of conflicts 416 to recover a new legal solution. It uses different variants of the one move oper-417 ator to reduce the number of conflicts while keeping the WVCP score as low 418 as possible. Each conflicting edge has a weight that is increased each time it 419 is not resolved, to give priority to its resolution for the next iterations. 420

421 4.4 Iterated local search with tabu search

ILS-TS [4] explores the legal and partial search spaces. From a complete 422 solution, the ILS-TS algorithm iteratively performs 2 steps: (i) it deletes the 423 heaviest vertices from 1 to 3 color groups V_i and places them in the set of uncol-424 ored vertices U; (ii) it improves the solution (i.e., minimizes the score f(S)) by 425 applying different variants of the one move operator and the so-called grenade 426 operator until the set of uncolored vertices U becomes empty. The grenade 427 operator $grenade(u, V_i)$ moves a vertex u to V_i and relocates each adjacent 428 vertex of u in V_i to another color group or in U to keep a legal solution. 429

430 5 Experimentation

This section first describes the experimental settings used in this work. Secondly, we experimentally verify the impacts of the different greedy coloring
strategies used during the MCTS simulation phase. Thirdly, an analysis of
exploration versus exploration is performed. Lastly, the relevance of coupling
MCTS with a local search procedure is studied.

⁴³⁶ 5.1 Experimental settings and benchmark instances

A total of 188 instances are used for the experimental studies: 30 rxx graphs
and 35 pxx graphs from matrix decomposition [7] and 123 from the DIMACS
and COLOR competitions. The instances are used in a reduced version
presented in [12]. The original and reduced instances are available online.³

All presented algorithms are coded in C++, compiled, and optimized with the g++ 12.1 compiler. Differences in the results may occur compared to [1] as some optimisations have been done and more reduced instances have been

 $^{^{3}}$ https://github.com/Cyril-Grelier/gc_instances

used. The source code of our algorithm (and reproduced local searches) is avail-111 able online⁴ with complete spreadsheets of the results. To solve each instance, 445 20 independent runs were performed on a computer equipped with an Intel 446 Xeon ES 2630, 2,66 GHz CPU with a time limit of one hour, except for the 447 exploration vs. exploitation coefficient tests where 5 to 15 hours were used. 448 Running the DIMACS Machine Benchmark procedure dfmax⁵ on our com-110 puter took 8.94 seconds to solve the instance r500.5 using gcc 12.1 without 450 optimization flag. 451

In the following subsections, summary tables allowing general comparisons between the different versions of the algorithms are presented. Detailed results on each specific instance are reported with the source code.⁴

The 188 instances have been separated into four sets: (i) **pxx**, with the 35 pxx instances from [7], (ii) **rxx**, with the 30 rxx instances from [7], (iii) **DIMACS_easy**, corresponding to the *easy* 75 DIMACS and COLOL instances with 72 among them which were solved optimally by exact algorithms [11, 12], and (iv) **DIMACS_hard**, the 48 *hard* DIMACS instances which have never been solved optimally in the literature, except for 5 which are really difficult to solve.

For all the different versions of the MCTS algorithm, the coefficient c, allowing to balance the compromise between exploitation and exploration is set to the value of one (cf. equation (3)). A sensitivity analysis of this important hyperparameter is conducted in Section 5.3.

⁴⁶⁶ 5.2 Monte Carlo Tree Search with greedy strategies

Table 1 summaries the results of MCTS with greedy heuristics for its simulation (cf. Section 3.4).

Columns 2-5 present results for four instance sets: pxx, rxx, DIMACS_easy, and DIMACS_hard. Column 6 shows global results for all 188 benchmark instances. The table header lists the set name, number of instances, and number of instances with proven optimality (marked with a star). For each method in each column, two numbers are given: the number of instances where the method matches the Best Known Scores (BKS) from the literature⁶, and the number of instances solved to proven optimality (marked with a star).

First, we observe that all the MCTS variants dominate the baseline MCTS
with greedy simulation in terms of the number of BKS obtained, highlighting
the relevance of combining the MCTS framework and search heuristics.

With the MCTS variants, almost all the pxx instances are optimally
solved. The rxx instances are more difficult to solve except for the version MCTS+Greedy-Random. The instances from DIMACS_easy are partially
solved by each MCTS variant. The instances from DIMACS_hard show a real
challenge for all the MCTS variants.

⁴https://github.com/Cyril-Grelier/gc_wvcp_adaptive_mcts

⁵http://archive.dimacs.rutgers.edu/pub/dsj/clique/

 $^{^{6}}$ Note that some of these BKS have been found in the literature with extended search time from several hours to several days, while our methods are only run during one hour.

	pxx	rxx	DIMACS easy	DIMACS hard	Total
	35^{*}	30*	75 - 72*	48 - 5*	188 - 142*
R	2	0	3	0	5
MCTS+R	$34 - 26^*$	0	$41 - 22^*$	0	$75 - 48^*$
GR	14	0	15	0	29
MCTS+GR	$35 - 26^*$	22	${f 57-23^{*}}$	0	114 - 49*
G	14	3	10	0	27
MCTS+G	$35-26^{*}$	11	$46 - 22^*$	0	$92 - 48^*$
DS	14	2	11	0	27
MCTS+DS	35 -25*	11	$47 - 22^*$	0	$93 - 47^*$

 Table 1
 Summary of the number of times the Best Known Score (BKS) is reached by each algorithm. The values with a star indicate the number of times a score has been proved optimal. Values in bold highlight the best results for each line.

To better compare these different algorithms, and not only relying on the number of best-known scores achieved (that can sometimes be found by "chance"), we performed pairwise comparisons between the algorithms based on the average scores obtained on each instance as displayed in Table 2.

In Table 2, the numbers in each row correspond to the number of instances for which the method is significantly better than another (with a maximum of 188 instances). A method is said significantly better than another on a given instance if its average score measured over 20 runs is significantly better (t-test with a p-value below 0.001). The column *Total* corresponds to the number of times a method is better than another.

Table 2 shows the ranking of the different methods. Unsurprisingly, the pure random heuristic is completely dominated by all methods. The variant MCTS+DS is significantly better compared to the others. In particular, it stays significantly better 48 times out of 188, versus 32 times in favor of the MCTS+Greedy-Random. Indeed, it seems that for the WVCP, the DSatur procedure, which colors the heaviest vertices that have the most colored neighbors, leads to better organization of color groups.

Table 2 Comparison between all greedy and MCTS variants. As an example, the row for MCTS+Random means that the method is better for 186 instances compared to the random procedure (R), is better for 169 instances compared to the Greedy-Random procedure (GR), and is never better compared to MCTS+GR. Values in bold highlight the highest value between two methods. As an example, the variant MCTS+G is more often significantly better (44 times) than MCTS+GR (which is better than MCTS+G 23 times).

/188 instances	R	MCTS+R	GR	MCTS+GR	IJ	MCTS+G	DS	MCTS+DS
R	-	0	0	0	0	0	0	0
MCTS+R	186	-	169	0	92	1	90	1
GR	186	10	-	0	4	0	7	0
MCTS+GR	186	122	178	-	151	23	152	32
G	186	36	133	10	-	0	37	1
MCTS+G	186	121	178	44	158	-	160	30
DS	186	40	139	9	47	0	-	0
MCTS+DS	186	121	178	48	157	35	158	-

Table 3 Results of the MCTS with greedy simulation on a part of the 188 instances of the literature. At the foot of the table, for each method, we report the number of BKS achieved, the number of best scores, the number of average best scores compared to other methods, and the number of instances solved to optimality. The mean is not shown if it is equal to the best score. A star (*) indicates that the score has been proven to be optimal.

instance	BKS		MCTS+R			MCTS+GF			MCTS+G			TS+DSa	
instance	DV2	best	mean	time	best	mean	time	best	mean	$_{\rm time}$	best	mean	time
C2000.5	2144	3178	3198.3	2912	2505	2537.7	3422	2385		1685	2397	2398.8	3390
C2000.9	5477	7022	7166.3	3554	6233	6272.9	3575	6125	6147.8	3238	6275		163
DSJC125.1g	23*	27	29.4	2332	25	25.4	22	25		0	25		0
DSJC125.5g	71	78	80.8	755	74	75.3	52	77		0	74		67
DSJC125.9g	169*	173	176.8	17	170	172.7	25	171		1630	171		21
DSJC250.1	127	159	165.2	68	134	141.4	13	141		4	139		115
DSJC250.5 DSJC250.9	392 934*	444 1002	457.8 1026.2	2941 20	422 973	429.4 988.7	14 2793	427 986		92 16	421 984		705 559
DSJC500.1	184	237	245.9	498	203	208.3	148	203		638	203		2943
DSJC500.1 DSJC500.5	685	809	824.2	899	754	208.5	136	755		635	775	780.9	3542
DSJC500.9	1662	1831	1858.5	2645	1771	1787.4	113	1794		171	1795	1797.1	3453
DSJC1000.1	300	392	440.8	3480	334	337.4	1618	333		2823	340		2474
DSJC1000.5	1185	1385	1399.2	2699	1271	1293.6	1668	1318		1437	1338		203
DSJC1000.9	2836	3164	3200.8	1750	3040	3070.4	978	3078		2863	3172		333
DSJR500.1	169^{*}	178	184.4	154	169		46	177		0	176		21
flat1000_50_0	924	1337	1358.5	3022	1236	1255.8	1452	1251	1251.1	3037	1303		184
flat1000_60_0	1162 1165	1375 1349	1400	3400 2910	1275 1252	1295.8	$1478 \\ 1477$	$1260 \\ 1244$	$1260.7 \\ 1248.2$	3424	1343 1313		311 179
flat1000_76_0 GEOM120a	105*	107	1370.3 111.5	2910 14	1252	1269.7 106.6	330	1244	1248.2	$3557 \\ 1129$	109		179
GEOM120a GEOM120b	35*	37	38	14	37	100.0	0	37		498	37		
GEOM1205 GEOM120	72*	74	76.8	5	72	73	0	72		490	72		36
inithx.i.1	569*	569	569.5	63	569		Ő	569		ŏ	569		0
inithx.i.2	329*	330	334.6	69	329	329.9	1720	330		0	331		0
inithx.i.3	337^{*}	338	340.9	116	337	337.7	1449	339		0	339		0
latin_square_10	1480	1861	1888.6	2092	1721	1757.1	966	1726	1726.8	3418	1805		236
le450_25a	306	315	320.2	879	307	310	3364	312		5	310		1919
le450_25b	307*	309	313.4	948	309	309.1	993	309		0	309		224
le450_25c	342	390	397.6	1501	365	372.7	2844	369		950	376		157
le450_25d	330 109*	384 120	391.8 133.8	1830 18	354 117	358.8 118.3	2802 476	364 109		1657 42	369 109		141 38
myciel7gb myciel7g	29*	32	36.1	670	29	29.8	476 578	29		42	29		
queen10_10	162	174	178.2	692	165	169.1	986	171		0	169		8
queen11_11	172	185	189.8	384	178	180.4	941	180		80	179		50
queen12_12	185	198	208.2	547	189	196.8	2	193		1102	197		182
queen13_13	194	209	219.8	43	204	207.6	1125	205		5	199		71
queen14_14	215	237	241.4	247	224	226.1	38	224		13	225		235
queen15_15	223	252	261.6	415	237	241.3	216	239		49	238		315
queen16_16	234	268	274	1799	250	252.7	127	247		86	248		420
R75_1gb	70*	73	77.5	1171	70*	73.6	2679	76		184	75		9
R75_1g	18* 186*	18* 195	19.8	2579 91	18* 186	18.8	1164 237	18* 192		956	18* 192		134 223
R75_5gb R75_5g	51*	195 54	200.7 55.2	608	51	191.7 52.7	237 725	52		0 203	192 51		1956
R75_9gb	396*	398	400.9	1281	396	397.9	1902	396		203	396		195
R75_9g	110*	110	111.5	850	110	001.0	39	110		7	110		202
R100_1gb	81*	89	97.1	1326	84	87	0	84		0	84		1
R100_1g	21*	24	26.2	1	22	22.6	728	23		0	23		0
R100_5gb	220	232	238.9	28	224	230.7	4	230		0	225		20
R100_5g	59	63	64.7	1389	62	62.4	604	63		0	61		7
R100_9gb	518^{*}	530	538.5	43	518	521	273	526		2696	528		46
R100_9g	141*	144	146.7	0	143	143.9	29	143		5	143		301
wap01a	545	1039	1053.3	3450	657	659.8	2965	599		3272	595		290
wap02a	538	1021	1038	3533	645	648.7	1301	588		3265	590		262
wap03a	562 563	1416 1480	1445.4 1493.9	$2767 \\ 1750$	746 755	749 757.8	$803 \\ 3085$	653 649		1096 603	647 643		180 828
wap04a wap05a	563 541	713	1493.9 724.9	3536	755 583	757.8 591.1	3085 1867	649 566		172	643 565		288
wap05a wap06a	516	747	753.8	3359	591	595.4	2280	566		9	561		664
wap00a wap07a	555	1018	1030.2	2630	693	697.2	3186	635		165	639		986
wap08a	529	984	998.2	1245	664	672	3539	612		2401	604		258
p40	4984*	4984	4992.8	45	4984		0	4984		0	4984		0
p41	2688*	2688	2700.7	14	2688		0	2688		0	2688		0
p42	2466^{*}	2480	2515.1	16	2466	2466.8	33	2466		0	2466		4
r28	9407*	9435	9532	3599	9407	9409.9	1530	9407		0	9407		0
r29	8693*	8750	8999.5	155	8693	8695.5	1316	8694		0	8694		3
r30	9816*	9825	9876.5	384	9816	9819.6	11	9818		0	9818		0
#BKS			75			114			92			93	
#Best			79			166			111			117	
#Best Av			56			104			131			138	
#Optima	1	1	48		1	49			48		1	47	

This is particularly true for the largest instances, where choosing random moves in the set of all legal moves is not very efficient as the number of color groups grows rapidly. It explains also why the variant MCTS+Random performs badly on larger or denser instances such as the rxx instances or some difficult DIMACS instances.

However, with the deterministic simulation of the MCTS+Greedy or 506 MCTS+DSatur variants, there is no sampling of the legal moves like in the 507 MCTS+Greedy-Random variant allowing greater exploration of the search 508 space and a better estimation of the most promising branches of the search 509 tree. This particularity of the MCTS+Greedy-Random variant allows us to 510 find the BKS for more instances. Moreover, when exploring Table 3, which 511 presents the results for a part of the 188 instances of the literature, one can 512 see that the R75_1gb instance from the DIMACS_easy set is proven optimal 513 by MCTS+Greedy-Random but not by MCTS+Greedy or MCTS+DSatur. 514 With stochastic help, the MCTS+Greedy-Random version can reach the best 515 known score of 70, which leads to an early pruning of the tree and allows to 516 prove the optimality earlier. 517

518 5.3 Exploitation vs exploration coefficient analysis

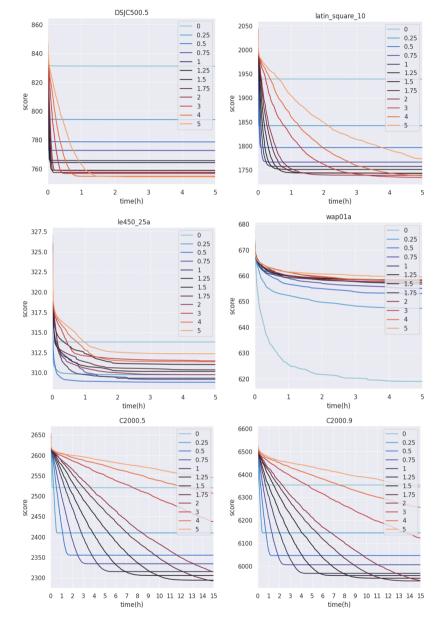
⁵¹⁹ One key element of the MCTS algorithm is the coefficient c balancing the ⁵²⁰ compromise between exploration and exploitation in Equation (3). In this sub-⁵²¹ section, we investigate the importance of this coefficient by varying it and ⁵²² presenting the evolution of the score over time. For this experimentation, the ⁵²³ coefficient c varied from 0 (no exploration) to 5 (encourage exploration). For ⁵²⁴ each coefficient value, 20 runs of the MCTS+GR variant per instance are ⁵²⁵ performed during 5h per run (15h for the very large C2000.x instances)⁷.

Figure 4 displays 6 plots showing the evolution of the mean of the best scores over time for the instances DSJC500.5, latin_square_10, le450_25a, wap01a, C2000.5 and C2000.9 for the different values of the coefficient *c*. These 6 instances come from the set of DIMACS_hard instances and can be considered as very difficult. Four typical patterns also seen for other instances are observed:

- P1: instances requiring a lot of exploration,
- P2: instances requiring more exploration than exploitation,
- P3: instances requiring more exploitation than exploration,
- P4: instances requiring a lot of exploitation.

The first pattern P1 is observed for the instance DSJC500.5 and also queen instances. For these instances, the lack of exploration leads to poor results, and better results are reached as the coefficient c increases. The pattern P2 is observed for the instance latin_square_10, but also for other instances such as flat1000 where the best score obtained in function of the coefficient c has a U-shape, with an optimal value of c between 1 and 2. This phenomenon can

 $^{^{7}}$ This longer execution time explains some differences with the sensitivity analysis of this parameter made in [1] with only 1h of computation time.



also be observed on instances such as C2000.5 and C2000.9 where it becomes
quickly more interesting to explore up to a certain point.

Fig. 4 Plots of the evolution of the means of the scores over time for different values of the coefficient c between 0 and 5, for the instances DSJC500.5, latin_square_10, le450_25a, wap01a, C2000.5, and C2000.9. For each configuration, 20 runs are launched with the MCTS+Greedy-Random variant for 5h and 15h for the C2000.x instances.

The pattern P3 found for the le450 instance shows the best results when 544 there is only weak exploration, but the results are worse when c is set to zero. 545 In general, for the patterns P1, P2 and P3, having no exploration at all 546 rapidly leads to a local minimum trap and it seems better to secure a minimum 547 of diversity to reach a better score, while, for the pattern P4, found for the 548 wap instances (very large instances), giving a chance to the exploration leads 549 the algorithm to be lost in the search space. For very large instances, as the 550 search tree is huge and cannot be sufficiently explored due to the time limit, it 551 seems more beneficial for the algorithm to favor more intensification to better 552 search for a good solution in a small part of the tree. To sum, the most suitable 553 exploration vs exploitation coefficient thus depends on the instance considered. 554 Finding the right general coefficient is a challenging task. In this work, We 555 adopted the coefficient c = 1 for all other experiments. 556

557 5.4 Monte Carlo Tree Search with local search

This section studies the effects of the combination of MCTS with a local search 558 heuristic. Table 4 summarizes the results of the local search procedures pre-559 sented in Section 4 followed by the combination of MCTS with each of these 560 local search procedures during the simulation phase. Each line presents the 561 number of times a BKS is reached with the method. Note that the objective 562 of these MCTS variants coupled with a local search procedure is not to prove 563 optimality. For instances where the optimal score is known, MCTS and local 564 search stop when this score is reached. 565

We observe from this table that the local search procedure allowing to 566 reach the highest number of BKS is ILS-TS, followed by RedLS. When coupled 567 with the MCTS framework, TW, AFISA, and RedLS improve their results. In 568 particular, the variant MCTS+RedLS finds the BKS for 17 difficult instances 569 of the DIMACS_hard set and 152 instances over 188 in total. It highlights that 570 the MCTS framework proposed in this paper can help a local search algorithm 571 such as RedLS to continuously find new promising starting points in the search 572 space. 573

	pxx 35*	rxx 30*	DIMACS easy $75(72^*)$	DIMACS hard $48 (5^*)$	Total 188 (142*)
AFISA	35	5	71	3	114
MCTS+AFISA	34	3	73	5	115
TW	29	2	61	7	99
MCTS+TW	35	16	72	9	132
RedLS	31	3	70	8	112
MCTS+RedLS	35	25	75	17	152
ILS-TS	35	30	75	19	159
MCTS+ILS-TS	35	30	75	15	155

Table 4Summary of the number of times the BKS is reached for the local searchprocedures and MCTS combined with the different local search procedures. Values in boldhighlight the best results for each column.

However, when coupled with the ILS-TS algorithm (variant MCTS+ILS-TS), it does not seem to improve the results. It may be explained by the fact that ILS-TS is an iterated local search algorithm already integrating various perturbation mechanisms allowing to escape local optima. Therefore, finding new good starting points in the search space guided by MCTS seems less interesting for ILS-TS than for other local search procedures such as TW, AFISA, and RedLS.

Table 5 shows pairwise comparisons between all the MCTS variants and all the local search procedures.

When comparing the performances of the local search algorithms between each other by looking at the number of times they are significantly better than the others RedLS is at the end of the ranking after TabuWeight and AFISA while ILS-TS is far more often better.

The MCTS+local_search variants always improve the number of BKS found and are more often significantly better than the corresponding local search only, except for ILS-TS, which is better on its own.

The variant MCTS+RedLS is more often significantly better than the other methods, even compared to ILS-TS. These results indicate that combining MCTS with a local search is of interest to improve the underlying local search procedures such as AFISA, TW, and RedLS.

Table 6 shows the results for each local search and MCTS+LS on a portion of the 188 instances in the literature, with the most difficult instances more represented than the easiest. The values in bold show the best results among the different methods for the best score or the mean score.

Table 5 Comparison between all the MCTS variants and all the local search procedures. Each row corresponds to the number of times the method of the row is significantly better than the method on the column on the 188 instances. For example, out of 188 instances, TW is better than MCTS+TW on 25 instances, 48 times against RedLS and 3 times against MCTS+RedLS. Values in bold means that method a is more often better than method b when we look at how many times b is significantly better than a. The Total column corresponds to the number of times a method is more often significantly better than the others.

/188 instances	MCTS+GR	MCTS+DSatur	AFISA	MCTS+AFISA	TabuWeight	MCTS+TW	${ m RedLS}$	MCTS+RedLS	ILSTS	MCTS+ILSTS	Total
MCTS+GR	-	32	77	63	77	33	85	9	0	1	4/9
MCTS+DSatur	48	-	93	72	89	42	107	22	0	2	5/9
AFISA	33	50	-	35	49	17	53	2	0	0	2/9
MCTS+AFISA	40	39	40	-	73	10	86	2	1	0	3/9
TabuWeight	56	54	40	40	-	25	48	3	0	3	1/9
MCTS+TW	52	64	74	73	78	-	101	8	1	0	6/9
RedLS	51	57	41	35	47	29	-	5	14	15	0/9
MCTS+RedLS	88	87	99	75	105	65	103	-	23	27	9/9
ILSTS	101	95	104	82	106	75	96	22	-	18	8/9
MCTS+ILSTS	101	93	102	82	103	73	92	18	2	-	7/9

Table 6 Results of the LS alone and MCTS + LS variants on a portion of the 188 instances of the literature. At the foot of the table, for each method, we report the number of BKS achieved, the number of best scores, the number of average best scores compared to other methods, and the number of instances solved to optimality. The mean is not shown if it is equal to the best score.

		1	AFISA		I MO	TS+AFI	SA	1 3	abuWeigl	nt	l N	ICTS+TV	N		RedLS		M	TS+Red	LS	1	ILSTS		M	CTS+ILS	TS
instance	BKS	best	mean	time	best	mean	time	best	mean	time	best	mean	time	best	mean	time	best	mean	time	best	mean	$_{\rm time}$	best	mean	time
C2000.5	2144	2384	2403.4	3601	2635	2648.9	2665	2318	2332.2	3477	2410	2423.6	1578	2167	2193.8	2403	2199	2215.2	2807	2237	2266.4	3498	2318	2340.2	697
C2000.9	5477	6582	6650.1	0	6547	6570.2	1107	6049	6073.4	2819	6242	6293.6	1845	5502	5528.1	3303	5724	5742.2	1604	5910	5969.9	3587	6103	6119.9	430
DSJC125.1g	23*	23	24.4	13	23	23.5	1203	24	24.6	68	23	23.1	1684	23	23.4	0	23		37	23		2	23		5
DSJC125.5g	71	71 170	72.2 174.1	1360	72	169.1	529 1047	71	71.5	1661	71	71.8 169.8	1686 959	72 169		257 0	71 169	71.2	1462	71 169		126 182	71 169		40 171
DSJC125.9g DSJC250.1	127	129	133.6	3294	133	133.8	1764	134	170.7 136.8	747 25	132	133.5	959 780	130	131.6	1	127	128.4	867	109	127.8	1608	109	128	642
DSJC250.1 DSJC250.5	392	411	424.2	3294	421	428.8	2586	397	406	25 2717	406	408.6	2349	398	401.2	103	394	398.4	1989	393	397.6	2567	397	399.8	1695
DSJC250.9	934*	949	976.1	232	962	978.8	1380	959	963.2	1766	950	956	2292	934	935.6	718	935	935.5	1279	936	942.1	3053	948	953.4	2604
DSJC500.1	184	198	201.5	1817	220	228.6	165	194	197	1526	201	202.1	1312	187	201.9	537	187	188.1	2087	188	188.8	1744	187	188.6	3168
DSJC500.5	685	762	778.1	1307	848	863.5	1474	733	741.3	3571	751	756	2233	706	716.1	2840	710	713.6	2626	724	735.5	1744	729	734.7	3410
DSJC500.9	1662	1744	1775.5	652	1909	1919.3	2002	1733	1755.1	228	1764	1775	1705	1670	1675.1	945	1674	1680.1	404	1720	1742	3039	1762	1775.7	77
DSJC1000.1	300	319	325	2182	396	401.9	357	313	316.2	2943	365	368.8	2604	305	307.2	1235	304	306.5	2814	305	307.4	1574	303	304.9	1176
DSJC1000.5	1185	1308	1330	3531	1463	1475	2226	1271	1282.3	3460	1304	1311.1	2562	1198	1213.7	2381	1214	1218.7	2278	1245	1269.2	231	1257	1274.2	1890
DSJC1000.9	2836	3066	3107	3601	3303	3325.1	2793	3034	3061.1	1381	3135	3152.9	546	2840	2858.5	2953	2884	2892.8	2211	3026	3066.8	3580	3098	3123.7	3003
DSJR500.1	169*	169		54	169		157	171	178.2	21	169	169.2	1273	171	184.5	0	169	169.2	1270	169		0	169		5
flat1000_50_0	924	1267	1293.3	2736	1421	1431.3	1512	1238	1247.5	3230	1271	1274.9	2194	1155	1173.8	3238	1173	1179.1	1005	1222	1235	1712	1221	1231.3	42
flat1000_60_0	1162	1309	1323.2	3584	1465	1476.8	1575	1275	1288	2275	1305	1313.5	21	1191	1205.7	1080	1208	1216	201	1250	1270	125	1259	1266.2	3360
flat1000.76.0	1165	1288	1304.4	3278	1442	1449.8	2341	1237	1263	2975	1285	1292.8	693	1176	1194	1107	1189	1196.6	201	1232	1247.5	1198	1237	1246.5	1008
GEOM120a	105^{*}	105	106.6	136	105	105.1	515	105	106.1	453	105		351	105	109.2	9	105		67	105		0	105		0
GEOM120b	35*	35	36.2	422	35	36	2557	35	35.3	1156	35	35.3	2051	35	35.5	0	35		5	35		0	35		0
GEOM120	72*	72	73	0	72		8	74	76.2	0	72	73	2097	72	75.2	0	72		77	72		0	72		0
inithx.i.1	569*	569	573.1	0	569		19	569	572.4	0	569		25	569		11	569		12	569		16	569		8
inithx.i.2	329*	334	337.6	448	331	333.9	150	338	342.5	0	332	334.1	2510	329	329.1	311	329		127	329		8	329		7
inithx.i.3	337*	340	346.4 1652.4	1184 2257	339	341 2055.9	985 2394	342	347.1 1855.2	3 45	338	340.4 1789.8	3380 247	337	341.6	75 2369	337	1527.1	643	337 1559	4804.0	29 1368	337 1572	4808.0	30 3458
latin_square_10 le450_25a	1480 306	1607 311	1652.4 316.3	2257 2699	2037 316	2055.9 318.9	2394 283	1816 321	1855.2 325.4	45 83	1774 313	1789.8 315.9	247 1456	1505 306	1523 307.4	2369 503	1518 306	1527.1	543 441	1559 306	1581.2	1368	1572 306	1585.8	3458 736
le450_25a le450_25b	306 307*	311 308	316.3 312.6	2699 1891	316 308	318.9 310.1	283 2114	321 308	325.4	83 219	313 307	315.9 308.5	1456 1491	306	307.4 313.4	503 56	306		441 203	306		174	306		
le450_25b le450.25c	307*	308	312.6	1891 3436	308	310.1 398.2	2114 3375	308	312.9 366	219 677	307	308.5 373.6	1491 1908	307 351	313.4 354.8	56 43	307	349.6	203 2165	307	351.8	10 3207	307	353.1	18 1689
le450_25d	342	355	357.8	3430 1630	380	398.2 391.8	3375	351	356.4	1955	363	366.3	3415	331	334.8	43	348	349.6	2165 2477	348	351.8	3207 1999	342	343.8	2283
myciel7gb	109*	109	111.8	1129	109	109.1	1343	114	115.8	738	112	113.5	2646	109	116.4	0	109	109.1	955	109	342.0	4	109	040.0	- 2200
myciel7g myciel7g	29*	29	30.7	2542	29	109.1	497	29	29.2	324	29	113.0	115	29	29.8	244	29	109.1	66	29		0	29		4
aueen10_10	162	165	166.9	524	162	164.1	2994	163	163.9	1629	162	162.3	1249	162	166.2	504	162		122	162		13	162		10
queen11_11	172	179	181.1	722	176	178.8	2859	103	172.9	1731	172	173.2	1071	174	177.1	761	172	173.8	2575	172	172.6	1820	172	172.8	1702
queen12_12	185	193	196.7	2062	191	193.9	3216	187	188.1	1881	187	188.4	2603	188	190.2	7	186	186.9	2494	185	186.1	1261	186	186.4	1572
queen13.13	194	203	206.7	288	202	205.2	1684	198	201.2	2205	199	200.5	2765	195	198.7	1528	194	194.7	2243	194	195.7	3475	195	196.6	2480
queen14_14	215	224	230.5	3113	226	229.2	184	217	218.4	1678	219	220.1	2014	217	222.4	18	216	217.3	3040	216	217.3	2018	217	218.4	1514
queen15.15	223	236	240.2	1572	241	242.9	1745	233	236.8	2417	233	235.5	1835	227	229.7	1109	225	226.6	1794	227	228.4	2167	227	229.2	1925
queen16_16	234	248	255.2	1055	255	258.2	3012	239	242.3	2745	243	244.8	1002	237	239.9	91	235	237.4	1300	238	240.2	2938	240	241.2	1204
R75_1gb	70*	70	73.7	0	70		17	76	80.3	0	70	70.5	1432	70	78.3	0	70		60	70		0	70		0
R75_1g	18*	18		94	18		15	19	19.6	0	18		164	18	19.1	0	18		24	18		0	18		0
R75.5gb	186*	186	188.6	28	186		45	186	186.3	135	186		9	186	192.1	0	186		72	186		1	186		1
R75_5g	51*	51	51.9	17	51		13	51		0	51		0	51	51.3	108	51		31	51		0	51		0
R75,9gb	396*	396	396.4	8	396		12	396	396.6	1911	396	396.1	1380	396		0	396		0	396		10	396		16
R75.9g	110^{*}	110	110.2	3	110		0	110		0	110		0	110		0	110		0	110		0	110		0
R100_1gb	81*	81	82.5	1627	81		246	86	90	0	81	82.8	2664	82	84.5	0	81		594	81		1	81		1
R100_1g	21*	21	22.1	812	21	21.2	1591	23	23.1	8	21	21.1	899	21	22.1	0	21		480	21		8	21		4
R100_5gb	220	220	223	1970	220	220.7	1924	220		72	220		92	220	220.7	87	220		189	220		5	220		7
R100_5g	59	59		358	59	F40.0	42	59	F40.4	0	59		3	59		17	59		26	59	F40.0	0	59		3
R100_9gb	518* 141*	519 141	524 144.6	10 0	518 141	518.2	1288 102	518 141	518.4 141.1	1275 1138	518 141		312 289	518 141		0	518 141		0	518 141	518.8	1853 608	518 141		879 183
R100_9g wap01a	141*	141 653	144.6 664.5	0 3413	141 676	680.9	102 792	636	141.1 645.9	1138 3392	671	678.6	289 2068	141 563	688.4	0 252	141	628.6	1728	141	552	608 3263	141	590.9	183
wap01a wap02a	545	658	666.2	3413	665	680.9	1440	633	642.9	3450	666	671.9	2068 2925	552	586.5	252 589	548	559.8	444	548	542.7	3263 2658	584	590.9	484 630
wap02a wap03a	538	658 767	788	3416	759	770.8	1104	033 767	642.9 787.8	3450	765	770.1	2925	552 569	573.1	2893	548	573.8	444 2738	576	578.6	2008	699	584 711.2	2714
wap03a wap04a	563	767	792.9	0	759	779.6	1782	707	787.8	0	765	778.2	3490	564	573.1	2893 3280	567	573.8 569.9	27.38 2949	569	574.6	3102	710	711.2 727.1	2714 297
wap04a wap05a	541	563	792.9 572.5	3378	614	626	2822	565	792.6 573.2	2213	595	599.9	390 1275	543	544.5	3280 970	543	543.8	2949 1870	541	543.4	3306	548	549.2	1499
wap06a	541 516	559	567.2	2859	614	626	2822	542	547.5	2550	595	599.9 595	1458	543 518	544.5	1005	543	543.8 522	1662	519	522.4	3306	548	549.2 531.1	2358
wap00a wap07a	555	670	683.2	3584	719	725.2	2555	641	650.1	3513	711	720	3500	729	745.7	0	560	725.8	1384	564	569.5	2680	607	610.1	2381
wap07a wap08a	529	654	665.3	3402	692	697.6	1620	627	634	3456	680	692.2	1584	536	613.9	3035	538	541	716	543	549.5	3585	572	581.1	2305
p40	4984*	4984	4986.9	64	4984	4984.4	907	4985	5029.2	0	4984		73	4987	5055.7	0	4984	4985	1590	4984		0	4984		- 0
p40 p41	2688*	2688	2707.1	1225	2688	2694.2	2634	2713	2764.6	0	2688	2689.8	2040	2718	2787.3	ő	2688	2689.2	1824	2688		0	2688		0
p42	2466*	2466	2474.8	1180	2471	2484.4	2391	2475	2532.6	ő	2466	2475.9	786	2466	2522.5	ŏ	2466		969	2466		4	2466		4
128	9407*	9415	9511.4	1819	9462	9508.6	3120	9460	9583.2	ő	9411	9420.4	78	9410	9563	45	9407	9409.1	1363	9407		8	9407		5
r29	8693*	8715	8799	379	8816	8957.9	1554	8768	8894.9	ő	8707	8743.4	2454	8696	8817.6	0	8693	8694.4	1693	8693		1	8693		1
r30	9816*	9826	9960	2378	9820	9840	504	9819	9871.4	0	9816	9816.8	1517	9836	9988.2	1	9819	9832.8	2867	9816		5	9816		7
	0010																								
#BKS			114/188			115/188			99/188			132/188			112/188			150/188			159/188		1	155/188	
#BKS #Best #Best Ay			114/188 114/188 45/188			115/188 115/188 97/188			99/188 99/188 53/188			132/188 132/188 98/188			112/188 128/188 41/188			150/188 158/188 129/188			159/188 164/188 161/188			155/188 157/188 152/188	

According to Table 6, compared to the other local search procedures, 598 RedLS achieves more heterogeneous results, with the average score often far 599 from the best score. This is due to the fact that RedLS is a local search algo-600 rithm that strongly favors intensification at the expense of exploration, and 601 can therefore get stuck in a local minimal trap without being able to get out 602 of it. With the help of MCTS, the combination of fast RedLS local optima 603 searches and frequent restarts at each iteration from different good starting 604 points suggested by MCTS, results in a very robust and efficient algorithm. 605 This MCTS+RedLS variant is able to find the best score more often than 606 RedLS alone, and is more stable in terms of average results. 607

608 6 Conclusions

In this work, we investigated Monte Carlo Tree Search applied to the weighted
 vertex coloring problem. We studied different greedy strategies and local
 searches used for the simulation phase. Our experimental results lead to three
 conclusions.

When the instance is large and when a time limit is imposed, MCTS does 613 not have the time to learn promising areas in the search space and it seems 614 more beneficial to favor more intensification, which can be done in three dif-615 ferent ways: (i) by lowering the coefficient which balances the compromise 616 between exploitation and exploration during the selection phase, (ii) by using 617 a dedicated heuristic exploiting the specificity of the problem (grouping in pri-618 ority the heaviest vertices in the first groups of colors), (iii) and by using a 619 local search procedure to improve the complete solution. 620

Conversely, for small instances, it seems more beneficial to encourage more exploration, to avoid getting stuck in local optima. It can be done, by increasing the coefficient, which balances the compromise between exploitation and exploration, and by using a simulation strategy with more randomness, which favors more exploration of the search tree and also allows a better evaluation of the most promising branches of the MCTS tree. For these small instances, the MCTS algorithm can provide some optimality proofs.

For medium instances, it seems important to find a good compromise between exploration and exploitation. For such instances, coupling the MCTS algorithm with a local search procedure allows finding better solutions, which cannot be reached by the MCTS algorithm or the local search alone.

Other future works could be envisaged. For example, an interesting study would be to automatically choose the balance coefficient between exploitation and exploration on the fly when solving each specific instance. It could also be interesting to use a more adaptive approach to trigger the local search, or to use a machine-learning algorithm to guide the search toward more promising branches of the search tree.

Acknowledgements

We would like to thank Dr. Wen Sun [5], Dr. Yiyuan Wang, [6] and Pr. Bruno 639 Nogueira [4] for sharing their codes. We also thank the organizers and editors 640 of Evostar 2022 to give us the opportunity to present this extended version 641 of our conference paper [1] for this Topical Issue of the SN Computer Science 642 journal. We thank the reviewer for the useful comments, which helped us to 643 improve the work. This work was granted access to the HPC resources of 644 IDRIS (Grant No. 2020-A0090611887) from GENCI and the Centre Régional 645 de Calcul Intensif des Pays de la Loire (CCIPL). 646

647 Authors' contributions

C. Grelier developed the code, prepared the reduced instances, and performed
the tests. O. Goudet and J.K. Hao planned and supervised the work. All the
authors contributed to the analysis and the writing of the manuscript.

651 Conflict of Interest

⁶⁵² The authors declare that they have no conflicts of interest.

⁶⁵³ Availability of data set, code, and results

The instances used in this work, in reduced version, are available at https:// github.com/Cyril-Grelier/gc_instances. The source code of the tested methods and their detailed results are available at https://github.com/Cyril-Grelier/ gc_wvcp_adaptive_mcts.

658 References

- [1] Grelier, C., Goudet, O., Hao, J.-K.: On monte carlo tree search for
 weighted vertex coloring. In: Pérez Cáceres, L., Verel, S. (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in
 Computer Science, vol. 13222, pp. 1–16 (2022)
- [2] Lewis, R.: Guide to Graph Colouring: Algorithms and Applications.
 Springer, (2021)
- ⁶⁶⁵ [3] Goudet, O., Grelier, C., Hao, J.-K.: A deep learning guided memetic ⁶⁶⁶ framework for graph coloring problems. arXiv:2109.05948 [cs] (2021)
- [4] Nogueira, B., Tavares, E., Maciel, P.: Iterated local search with tabu
 search for the weighted vertex coloring problem. Computers & Operations
 Research 125, 105087 (2021)
- ⁶⁷⁰ [5] Sun, W., Hao, J.-K., Lai, X., Wu, Q.: Adaptive feasible and infeasible tabu
 ⁶⁷¹ search for weighted vertex coloring. Information Sciences 466, 203–219
 ⁶⁷² (2018)
- [6] Wang, S. Yiyuanand Cai, Pan, S., Li, X., Yin, M.: Reduction and local search for weighted graph coloring problem. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 2433–2441 (2020)
- [7] Prais, M., Ribeiro, C.C.: Reactive grasp: An application to a matrix decomposition problem in tdma traffic assignment. INFORMS Journal on Computing 12(3), 164–176 (2000)
- [8] Pemmaraju, S.V., Raman, R.: Approximation algorithms for the maxcoloring problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
 C., Yung, M. (eds.) Automata, Languages and Programming. Lecture Notes in Computer Science, pp. 1064–1075 (2005)
- [9] Furini, F., Malaguti, E.: Exact weighted vertex coloring via branch-and price. Discrete Optimization 9(2), 130–136 (2012)
- [10] Malaguti, E., Monaci, M., Toth, P.: Models and heuristic algorithms for
 a weighted vertex coloring problem. Journal of Heuristics 15(5), 503–526

- 688 (2009)
- [11] Cornaz, D., Furini, F., Malaguti, E.: Solving vertex coloring problems as
 maximum weight stable set problems. Discrete Applied Mathematics 217,
 151–162 (2017)
- [12] Goudet, O., Grelier, C., Lesaint, D.: New bounds and constraint program ming models for the weighted vertex coloring problem. Proceedings of the
 Thirty-Second International Joint Conference on Artificial Intelligence,
 IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, 1927–1934
 (2023)
- [13] Grelier, C., Goudet, O., Hao, J.-K.: A memetic algorithm with adaptive operator selection for graph coloring. In: Stützle, T., Wagner, M. (eds.)
 Evolutionary Computation in Combinatorial Optimization, pp. 65–80.
 Springer, Cham (2024)
- [14] Zhou, Y., Hao, J.-K., Duval, B.: Reinforcement learning based local search
 for grouping problems: A case study on graph coloring. Expert Systems
 with Applications 64, 412–422 (2016)
- [15] Zhou, Y., Duval, B., Hao, J.-K.: Improving probability learning based
 local search for graph coloring. Applied Soft Computing 65, 542–553
 (2018)
- [16] Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of uct with
 patterns in monte-carlo go. Technical report, RR-6062, INRIA (2006)
- [17] Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I.,
 Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.:
 A survey of monte carlo tree search methods. IEEE Transactions on
 Computational Intelligence and AI in Games 4(1), 1–43 (2012)
- [18] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,
 M., et al.: Mastering the game of go with deep neural networks and tree
 search. Nature 529(7587), 484–489 (2016)
- [19] Edelkamp, S., Greulich, C.: Solving physical traveling salesman problems with policy adaptation. In: 2014 IEEE Conference on Computational
 Intelligence and Games, pp. 1–8 (2014). IEEE
- [20] Jooken, J., Leyman, P., Wauters, T., De Causmaecker, P.: Exploring
 search space trees using an adapted version of Monte Carlo tree search for
 combinatorial optimization problems. Computers & Operations Research
 150, 106070 (2023)

26	MCTS for	WVCP
----	----------	------

- [21] Cazenave, T., Negrevergne, B., Sikora, F.: Monte carlo graph coloring. In:
 Monte Carlo Search 2020, IJCAI Workshop (2020)
- [22] Brélaz, D.: New methods to color the vertices of a graph. Communications of the ACM 22(4), 251–256 (1979)
- [23] Kubale, M., Jackowski, B.: A generalized implicit enumeration algorithm
 for graph coloring. Communications of the ACM 28(4), 412–418 (1985)
- [24] Demange, M., Werra, D.d., Monnot, J., Paschos, V.T.: Time slot schedul ing of compatible jobs. Journal of Scheduling 10(2), 111–127 (2007)
- [25] Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules.
 Advances in Applied Mathematics 6(1), 4–22 (1985)
- [26] Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring.
 Computing **39**, 345–351 (1987)

[27] Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configu ration checking heuristics for minimum vertex cover. Artificial Intelligence
 175(9), 1672–1696 (2011)