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Abstract1

The partial Latin square extension problem is to fill as many as possible empty cells2

of a partially filled Latin square. This problem is a useful model for a wide range3

of applications in diverse domains. This paper presents the first massively paral-4

lel evolutionary algorithm for this computationally challenging problem based on a5

transformation of the problem to partial graph coloring. The algorithm features the6

following original elements. Based on a very large population (with more than 104
7

individuals) and modern graphical processing units, the algorithm performs many8

local searches in parallel to ensure an intensive exploitation of the search space.9

The algorithm employs a dedicated crossover with a specific parent matching strat-10

egy to create a large number of diversified and information-preserving offspring at11

each generation. Extensive experiments on 1800 benchmark instances show a high12

competitiveness of the algorithm compared to the current best performing meth-13

ods. Competitive results are also reported on the related Latin square completion14

problem. Analyses are performed to shed lights on the roles of the main algorithmic15

components. The code of the algorithm is publicly available.16
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1 Introduction19

Given a n× n grid and n distinct symbols, a Latin square L of order n is the20

grid filled with these n symbols such that each symbol appears exactly once in21

each row and each column (Latin square condition). A partial Latin square of22

order n verifies that some cells of the grid are pre-filled such that each symbol23

appears at most once in each row and each column. Given a partial Latin24

square, the partial Latin Square Extension Problem (PLSE) is to fill as many25

empty cells as possible. The Latin Square Completion Problem (LSC) (also26

known as the Quasi-Group Completion Problem) is the decision version that27

determines whether it is possible to fill the remaining empty cells in a given28

partial Latin square. Figure 1 shows an instance of PLSE with n = 3 where29

the symbols are integer numbers and the red numbers correspond to the filled30

cells. Two different optimal solutions to this PLSE instance with a score of 731

are shown (it is impossible to complete the grid).32

Fig. 1. Example of a PLSE instance of order n = 3 with 3 pre-filled cells in red.
This instance has an optimal score of 7 corresponding to the maximal number of
cells that can be filled without violating the Latin square condition.

Latin square problems naturally appear in numerous applications, such as33

scheduling, error correcting codes, as well as experimental and combinatorial34

design [1,2]. For instance, a typical application of the PLSE is the design of35

optical router systems [3].36

The LSC is known to be NP-complete [4]. As the result, both the decision37

problem (LCS) and the optimization problem (PLSE) are computationally38

challenging in the general case. Due to their importance, Latin square prob-39

lems have been studied from a wide variety of perspectives in different fields.40

In algebra, the multiplication table of a finite quasigroup corresponds to a41

Latin square [5]. As such, Latin squares have been studied as a mathematical42

object and various properties were established [6–8].43

The LSC can be expressed as an integer program with n3 Boolean variables44

xi,j,k, where xi,j,k = 1 indicates that the cell in position (i, j) receives the45

symbol k ∈ {1, . . . , n}. With this formulation and using integer programming46

solvers, optimal results were reported for small instances in [9]. The authors47

also investigated two other exact methods based on constraint programming48
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(CP) and SAT technologies. A systematic comparison of SAT and CP models49

was presented in [10]. An approximation algorithm was proposed based on a50

packing integer programming formulation in [11].51

In terms of practical solving of the PLSE, a notable work was presented by52

Haraguchi [12]. In that work, a partial Latin square was represented using an53

orthogonal array, with a set of triples in [n]3, such that each element (v1, v2, v3)54

in this set indicates that the symbol v3 is assigned to (v1, v2). If the Ham-55

ming distance between each pair of triples in this set is at least two, this56

set corresponds to a partial Latin square. Based on this representation, the57

author proposed several iterated local search algorithms that aim to extend58

the current set of triples without adding conflicts. To evaluate the practical59

performance of these iterated local search algorithms, the author introduced60

a set of 1800 instances for PLSE and another set of 1800 instances for LSC61

with various features (see Section 4.1 and Appendix B). The computational re-62

sults showed that the iterated local search algorithms perform extremely well63

and outperform previous methods including integer programming, constraint64

programming as well as their hybrid approach.65

The problem of extending a partial Latin square can also be studied from the66

perspective of (partial) graph coloring [13]. Indeed, a Latin square of order67

n can be mapped to a graph such that each vertex corresponds to a cell of68

the grid (there are thus n2 vertices), and an edge exists between two vertices69

corresponding to two cells of the same row or column (there are thus n2(n−70

1) edges). The vertex of a cell pre-filled with a symbol k receives the color71

k ∈ {1, . . . , n}. Empty cells are not colored. The PLSE consists in coloring72

as many uncolored vertices as possible so that two adjacent vertices do not73

share the same color. Based on this observation, Jin and Hao [14] proposed74

in 2019 a powerful memetic algorithm (MMCOL) for the related Latin square75

completion problem (LCS) and solved the 1800 LSC instances introduced in76

[12] as well as the 19 traditional LSC instances in the literature [9]. With some77

slight adaptations to their algorithm, they also reported excellent results on78

the 1800 PLSE instances of [12]. Very recently (2022), Pan et al. [15] presented79

a fast local search algorithm for the related LSC, which improved the solution80

time for most LSC instances in the literature, but didn’t report results for the81

PLSE.82

To sum, the three most recent studies on the PLSE [12] and the related LSC83

[14,15] significantly contributed to the practical solving of these two challeng-84

ing problems. In particular, all the existing LSC benchmark instances have85

been solved by the MMCOL algorithm [14] and the recent FastLSC algorithm86

[15]. On the contrary, this is not the case for the PLSE and there is still room87

for improvement in terms of better solving the PLSE instances. In fact, for88

almost half of the 1800 benchmark instances, their optimal solutions are still89

unknown and only lower bounds were reported.90
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Motivated by this observation, this work aims to advance the state-of-the-91

art of solving the PLSE by establishing record-breaking lower bounds for the92

unsolved PLSE instances. For this purpose, we introduce the first massively93

parallel evolutionary algorithm for this problem that fully takes advantage of94

the GPU architecture to parallelize all critical search components. We sum-95

marize the contributions of the work presented in this paper as follows.96

From the perspective of algorithm design, the proposed algorithm relies on97

a very large population P (|P | > 104) that enables massively parallel local98

optimization and offspring generation on the GPU architecture. This is in99

sharp contrast to the typical use of a small population P (typically |P | < 102)100

and sequential computations of many memetic algorithms including the MM-101

COL algorithm (e.g., [16,17,14]). The algorithm features several complemen-102

tary and original search components including a parametrized asymmetric uni-103

form crossover and an effective local search. The crossover uses a probability104

to control the inherited information from the parents according to a distance105

metric and a specific parent matching strategy to create a large number of106

diversified and information-preserving offspring. The local search utilizes a107

two-phase approach to effectively explore an enlarged search space. The algo-108

rithm is further reinforced by a parallel distance calculation procedure that109

enables a fast population updating.110

From the perspective of computational performance, we demonstrate a high111

competitiveness of our algorithm on the 1800 PLSE benchmark instances from112

[12]. We report many improved best lower bounds for large and difficult in-113

stances, including 25 record optimal solutions. We also test the algorithm on114

the related LSC and show that the algorithm is able to solve all the existing115

benchmark instances as well (1800 from [12] and 19 from [9]).116

Finally, we contribute to the understanding of the population size, the crossover117

and the parent matching strategy for a large population. In particular, we118

show that the random parent matching strategy which is typically employed119

in many memetic algorithms (e.g., [18,14]) is no more suitable in the con-120

text of a large population and can be beneficially replaced by a neighborhood121

matching strategy for a better efficiency.122

In the rest of the paper, we present the solution approach and the proposed123

algorithm (Sections 2 and 3), experimental results and comparisons with the124

state-of-the-art methods (Section 4), followed by analyses of key algorithmic125

components and conclusions (Sections 5 and 6).126
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2 Partial Latin Square Extension as Graph Coloring127

This section illustrates how the partial Latin square extension problem can128

be considered as a graph coloring problem. This approach was first used in129

[14] with a great success to solve the related Latin square completion prob-130

lem. However, two specific and significant features of the partial Latin square131

extension problem were ignored until now. We discuss them at the end of this132

section, which also provide additional motivations for this work.133

2.1 Partial Latin Square Extension to Latin Square Graph134

Given a Latin square L of order n composed of n×n cells, it can be transformed135

into a graph G = (V,E), called a Latin square graph, with the set of vertices136

V = n, . . . , n cells of size |V | = n2 and the set of edges E of size |E| = n2(n−1)137

where {u, v} ∈ E if and only if u and v are two vertices representing two cells138

of the same row or the same column of L [13,14]. We can then solve the PLSE139

by finding a legal partial n-coloring (also called list coloring [13]) of the graph140

G using the colors in {1, ..., n} while maximizing the number of colored vertices141

(or equivalently minimizing the number of uncolored vertices).142

Let D(v) denote the color domain of vertex v (i.e., the set of colors that143

can be used to color v). If v corresponds to a cell pre-filled with symbol k144

(k ∈ {1, ..., n}), D(v) = {k}. If v corresponds to an empty cell, v can receive145

a color in {1, ..., n} or remain uncolored, indicated with the color 0. In other146

words, D(v) = {0, 1, ..., n} for any vertex v representing an empty cell. Then a147

(partial) legal n-coloring of the associated Latin square graph G is a function148

S : V → {D(v1), . . . , D(v|V |)} such that for any pair of vertices u and v, if149

S(u) 6= 0, S(v) 6= 0, and they are linked by an edge ({u, v} ∈ E), then their150

colors S(u) and S(v) must be different (S(u) 6= S(v)). Note that a vertex151

receiving color 0 indicates an uncolored vertex.152

A legal solution of the PLSE can also be seen as a partition of V into n153

independent sets V1, V2, ..., Vn and a set V0 = V \ ∪ni=1 Vi, such that Vi is the154

set of vertices receiving color i. A set Vi (i = 1, . . . , n) is an independent set155

if ∀(u, v) ∈ Vi, {u, v} /∈ E. An independent set is also called a color class.156

Let S = {V0, V1, V2, ..., Vn} be a partition of the vertex set V , the objective of157

the partial Latin square extension problem (PLSE) in terms of the list-coloring158

problem can be stated as follows:159

minimize f(S) = |V0|, (1)

subject to ∀u, v ∈ Vi, {u, v} /∈ E, i = 1, 2 . . . , n, (2)
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where the objective (1) is to minimize the cardinality of the set V0 (number of160

uncolored vertices) and the constraints (2) ensure that the partition {V0, V1,161

V2, . . . , Vn} is a legal but potentially partial n-coloring. Notice that this for-162

mulation of the partial Latin square extension problem can also be used to163

solve the Latin square completion problem (LSC), for which a legal solution164

S with f(S) = 0 is sought.165

The constraints (2) can be reformulated with a constraint function c which166

simply counts the number of conflicts in S:167

c(S) =
∑

{u,v}∈E
δuv, (3)

where

δuv =

1 if u ∈ Vi, v ∈ Vj, i = j and i 6= 0,

0 otherwise.
(4)

If δuv = 1, u and v are two conflicting vertices (i.e., they receive the same colors168

while they are adjacent in the graph). Clearly, a coloring S with c(S) = 0169

corresponds to a legal n-coloring.170

Figure 2 shows a PLSE instance (left), its Latin square graph (middle) and171

a legal partial coloring of the Latin square graph with two uncolored vertices172

(right).173

Fig. 2. Example of converting a partial Latin square extension instance (left) to a
Latin square graph (middle) and an optimal partial coloring with two uncolored
vertices (color 0) (right).

2.2 Preprocessing of the Latin Square Graph174

As mentioned in [14], a preprocessing procedure can be applied to reduce a175

Latin square graph by removing the colored vertices (i.e., the filled cells).176

Indeed, if a vertex v of the graph represents a cell pre-filled with the symbol k177

in 1, ..., n, the vertex definitely receives this single color k and can be removed178

from the graph. Moreover, since the color k cannot be assigned to any vertex179
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u adjacent to v (i.e. {u, v} ∈ E), this color can therefore be removed from the180

color domain D(u).181

Nevertheless, during the preprocessing, if the color domain of a vertex u be-182

comes the singleton D(u) = {0}, it means that the corresponding cell cannot183

be filled. This cell remains definitively unfilled and the vertex u is removed184

from the graph. If one denotes by l the number of cells impossible to fill after185

this preprocessing phase, n2 − l defines an upper bound of the optimal value186

(score) of the given PLSE instance. For the special case of l = 1, a better187

upper bound is in fact n2 − 2, as there is no optimal solution for a PLSE188

instance with a score of n2 − 1 (cf. Theorem 6 in [19]).189

The preprocessing procedure is described in ALgorithm 1. Its algorithmic com-190

plexity is in O(|V |2), where |V | is the number of vertices in the original Latin191

square graph.192

Algorithm 1 Preprocessing procedure for graph reduction of the PLSE prob-
lem
1:
2: Input: A Latin square graph G = (V,E) with some vertices already colored,

each vertex v’s color domain D(v).
3: Output: A reduced graph and the number l of cells impossible to fill.
4:
5: for each vertex v ∈ V with singleton color domain D(v) = {k} do
6: V ← V − {v} // Remove this colored vertex v from the graph
7: E ← E − {{u, v} ∈ E} // Remove the edges linked to v.
8: for each uncolored u ∈ V adjacent to v do
9: D(u)← D(u)− {k} // Remove color k from the color domain D(u)

10: end for
11: end for
12:
13: l = 0
14: for each v ∈ V do
15: if D(v) = {0} then
16: l = l + 1
17: V ← V − {v} // Remove this node impossible to color
18: E ← E − {{u, v} ∈ E} // Remove the edges linked to v.
19: end if
20: end for

Figure 3 (Right) displays the reduced graph of the Latin square graph shown193

in Figure 2. Numbers in accolades indicate the color domain D(vi) of each194

vertex vi. In addition to the three precolored vertices v1, v4, v9, vertex v7 is195

also removed because its color domain is D(v7) = {0}. Therefore, l = 1,196

leading to an upper bound 32 − 2 = 7. Since this upper bound is equal to the197

lower bound of the two solutions in Figure 1, these two solutions are proven198

to be optimal for the given PLSE instance (i.e., a maximum of 7 filled cells /199
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Fig. 3. Preprocessing of a Latin square graph with n = 3.

colored vertices or a minimum of 2 unfilled cells / uncolored vertices).200

2.3 Special Features of the Transformed Coloring Problem201

One observes two special features of the graph coloring problem transformed202

from the PLSE.203

First, the Latin square graph coloring problem is a list-coloring problem [13],204

where the permissible colors of a vertex are limited to a list of colors in205

{0, 1, . . . , n}, instead of the whole set {0, 1, ..., n}. Therefore, contrary to the206

standard graph coloring problem, candidate solutions are in general not invari-207

ant by permutation of colors. For example, in the legal partial coloring shown208

in Figure 2 on the right, it is impossible to swap colors 2 and 3 as the color 2209

is not in the domain of the vertex v6. Moreover, even a permissible color ex-210

change between two colorings is not generally neutral. For example, consider211

the two legal solutions S1 and S2 displayed in Figure 4, where the pre-filled212

colors are in red, assigned colors are in blue and possible color changes are in213

green. The solution S2 is the same as the solution S1 except that the colors 1214

and 3 are swapped. After this swap, it becomes impossible to change the color215

of the vertex v2 in S2 while it was possible in S1. S1 and S2 are thus two differ-216

ent candidate solutions for the PLSE, while they represent the same coloring217

for the conventional graph coloring problem. This observation implies that for218

this list-coloring problem, solutions are not invariant by permutation of the219

colors. As a result, the so-called set-theoretic partition distance [20], which is220

usually used to measure the distance between two solutions for graph coloring221

[21,22], is not meaningful for the list-coloring problem. Instead, the Hamming222

distance DH is more suitable to measure the distance between solutions for223

our coloring problem (cf. Section 3.4).224

Secondly, the partial list-coloring from the PLSE aims to find a legal coloring225

such that the objective function f(S) defined by equation (1) (number of226

uncolored vertices) is minimized. Therefore, it is critical that the algorithm is227

able to decide which vertices are to be left uncolored when it is impossible to228
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Fig. 4. Two legal solutions S1 and S2 of the PLSE instance. The two solutions are
the same except that the colors 1 and 3 are swapped.

color all the vertices of the graph.229

For these reasons, we introduce an algorithm specifically designed to solve230

the partial list-coloring problem of Latin square graphs of the PLSE. This231

algorithm, presented in the next section, can also be applied to solve the232

related Latin square completion problem (LSC).233

3 Massively Parallel Memetic Algorithm234

We describe in this section the massively parallel memetic algorithm (MPMA)235

for coloring Latin square graphs.236

3.1 Search Space and Evaluation Function237

The enlarged search space Ω explored by the MPMA algorithm is composed238

of the legal, illegal and potentially partial candidate solutions.239

LetG = (V,E) be the reduced Latin square graph with |V | vertices {v1, . . . , v|V |},240

and color domains D(vi) ⊆ {0, 1, ..., n} (i = 1, . . . , |V |) obtained after the pre-241

processing phase. Then the space Ω is given by242

Ω = {S : V → {D(v1), . . . , D(v|V |)}}. (5)

The MPMA algorithm aims to find a legal, possibly partial solution S (with243

c(S) = 0) of the Latin square graph with the minimum number of uncolored244

vertices f(S) (for functions f and c, see Section 2.1).245

We define the following extended evaluation function F (to be minimized) to246

assess the quality (fitness) of a candidate solution S ∈ Ω:247
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F (S) = f(S) + φ× c(S), (6)

where φ > 0 is a penalty parameter controlling the impact of the constraint248

function c on the overall score. Generally, decreasing the value of φ favors249

solutions with less uncolored vertices and more conflicts, while increasing its250

value promotes legal (conflict-free) and partial colorings. If φ is set to the value251

of 1, x uncolored vertices and x conflicts contribute equally to the quality of252

the solution.253

3.2 Main Scheme254

The proposed MPMA algorithm is based on the population-based memetic255

framework [23], which has been applied to graph coloring problems [18,22,24].256

It should be noted that these memetic algorithms typically use a small popu-257

lation of no more than 20 individuals and are elitist evolutionary algorithms.258

As such, each generation typically creates one or two offspring solutions via a259

crossover operator, which are then improved by a local search procedure.260

The massively parallel memetic algorithm proposed in this work uses a very261

large population P (|P | ≥ 104), whose individuals evolve in parallel in the262

search space. This approach ensures a high degree of diversity in the popula-263

tion, which favors a large exploration of candidate solutions. In order to take264

advantage of this large population, we use the computational power of mod-265

ern GPUs to perform parallel computations at each generation: local searches,266

distance evaluations and crossovers. The only part that remains sequential is267

the population update operation that merges the current population and the268

offspring population to create the next population.269

The algorithm takes as input a reduced Latin square graph G (see Section 2.2)270

and tries to find a legal, possibly partial, coloring with a minimum number of271

uncolored vertices. The pseudo-code of MPMA is presented in the algorithm 2,272

while its flowchart is displayed in Figure 6. At the beginning, all the individuals273

of the population are randomly initialized in parallel, which are improved by274

local search at the beginning of the first generation of the algorithm (see below275

and Figure 6). Then, the algorithm repeats a loop (generation) until a stopping276

criterion (for example, a time limit or a maximum number of generations) is277

satisfied. Each generation t involves the execution of four components:278

(1) The p individuals (illegal n-colorings) of the current population are si-279

multaneously enhanced by running a two-phase local search in parallel280

(see Section 3.3) to minimize the fitness function f (uncolored vertices)281

and the constraint function c (conflicting vertices).282
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Algorithm 2 Massively parallel memetic algorithm for Latin square graph
coloring

1: Input: Reduced Latin square graph G = (V,E), population size p, color domain
D(v) of each vertex v ∈ V .

2: Output: The best legal partial coloring S∗ found
3: P = {S1, . . . , Sp} ← population initialization
4: S∗ = ∅ and e(S∗) = |V |.
5: {SO1 , . . . , SOp } ← {S1, . . . , Sp}
6: repeat
7: for i = {1, . . . , p}, in parallel do
8: S′i ← two-phase local search(SOi ) /∗ Section 3.3
9: end for

10: S′∗ = argmin{f(S′i), i = 1, . . . , p}
11: if f(S′∗) < f(S∗) then
12: S∗ ← S′∗

13: end if
14: D ← distance computation(S1, . . . , Sp, S

′
1, . . . , S

′
p) /∗ Section 3.4

15: {S1, . . . , Sp} ← pop update(S1, . . . , Sp, S
′
1, . . . , S

′
p, D) /∗ Section 3.4

16: {SO1 , . . . , SOp } ← build offspring(S1, . . . , Sp, D) /∗ Section 3.5
17: until stopping condition met
18: return S∗

(2) The distances between all pairs of existing individuals and the individuals283

improved by local search are computed in parallel (see Section 3.4).284

(3) Then, the population update procedure (see Section 3.4) merges the 2p285

existing and new individuals to update the population, taking into ac-286

count the fitness f of each individual (number of uncolored vertices) and287

the distances between individuals in order to maintain a healthy diversity288

in the population.289

(4) Finally, each individual is matched with its nearest neighbor in the popu-290

lation and p crossovers are run in parallel to generate p offspring solutions291

(see Section 3.5), which are improved by parallel iterated local search dur-292

ing the next generation (t+ 1).293

The algorithm stops when a predefined time condition is reached or an optimal294

solution S∗ is found. S∗ is an optimal solution if 1) c(S∗) = 0, f(S∗) = 0, and295

l 6= 1 (i.e., all empty cells are filled), or 2) c(S∗) = 0, f(S∗) = 1, and l = 1296

(the tightest upper bound is reached, see Section 2.2). If the algorithm does297

not find an optimal solution when it stops, it returns the best legal solution298

S∗ (with c(S∗) = 0) found so far, with a number of unfilled cells f(S∗) > 0.299

Then the score n2 − l − f(S∗) is a lower bound of the given PLSE instance.300
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Fig. 5. General scheme of the MPMA algorithm.

3.3 Parallel Two-phase Local Search301

MPMA employs a two-phased partial legal and illegal tabu search (PLITS)302

to simultaneously improve in parallel the individuals of the current popula-303

tion. Specifically, PLITS relies on the tabu search metaheuristic to explore304

candidate solutions of the space Ω guided by the extended fitness function F305

given by equation (6). Indeed, tabu search is a popular method for graph col-306

oring [25–27] and often used as the local optimization components of memetic307

algorithms [14,22,28].308

Given a solution S = {V0, V1, V2, ..., Vn}, PLITS uses the one-move operator309

to displace a vertex v from its current color class Vi to a different color class310

Vj such that i 6= j and j ∈ D(v), leading to a neighboring solution denoted311
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as S⊕ < v, Vi, Vj >. Let C(S) be the set of conflicting vertices in S, i.e.,312

C(S) = {v ∈ Vi : 1 ≤ i ≤ n,∃u ∈ Vi, (u, v) ∈ E, u 6= v}. To make the313

examination of candidate solutions more focused, PLITS only considers the314

uncolored vertices in V0 and conflicting vertices in C(S) for color changes.315

The one-move neighborhood applied to the uncolored vertices of S is given by316

N0(S) = {S⊕ < v, V0, Vj >: v ∈ V0, 1 ≤ j ≤ n, j ∈ D(v)}.

The one-move neighborhood applied to the conflicting vertices of S is given317

by318

Nc(S) ={S⊕ < v, Vi, Vj >: v ∈ C(S), v ∈ Vi, 1 ≤ i ≤ n,

0 ≤ j ≤ n, j ∈ D(v), i 6= j}.

Notice that a conflicting (colored) vertex can be moved to the set V0 by the319

one-move operator, becoming thus uncolored.320

PLITS explores the global one-move neighborhood:321

N(S) = N0(S) ∪Nc(S). (7)

PLITS makes transitions between the various n-partial colors with the help of322

the neighborhood N(S) and the extended evaluation function F . At each iter-323

ation PLITS replaces the current solution S with the best eligible neighboring324

solution S ′ taken from N(S). After each iteration, the corresponding one-move325

is stored in the tabu list to prevent the search from returning to a previously326

visited solution for the next T iterations (tabu tenure). Following [28], the tabu327

tenure depends on the number of vertices eligible for the one-move operator328

(i.e., |V0|+ |C(S)| in our case) and is set to the value of L+ α(|V0|+ |C(S)|)),329

where L is a random integer from [0; 9] and α is a parameter fixed at 0.6. A330

neighboring solution S ′ is considered admissible if it is not prohibited by the331

tabu list or if it is better (according to the extended function F ) than the best332

solution found so far. Neighborhood evaluations are performed incrementally333

like in [28]. As the algorithm 3 shows, we run the PLITS procedure in parallel334

on the GPU to increase the quality of the current population. The time com-335

plexity of this PLITS procedure is in O(|V | × n × nbIterTS × p). The space336

complexity of the PLITS procedure is in O(|V |×n×p) (size of the tabu tenure337

matrices for all the individuals of the population).338

The PLITS procedure is performed in two phases with different search focuses.339
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Algorithm 3 Parallel partial legal and illegal tabu search

1: Input: Population P = {S1, . . . , Sp}, depth of tabu search nbIterTS , color
domain D(v) of each vertex v ∈ V .

2: Output: Improved population P ′ = {S′∗1 , . . . , S′∗p }.
3: for i = {1, . . . , p}, in parallel do
4: S′∗i ← Si /∗ Records the best solution found so far on each local thread.
5: end for
6: iter = 0
7: for i = {1, . . . , p}, in parallel do
8: for t = {1, . . . , nbIterTS} do
9: Choose a neighboring solution S′i ∈ N(Si) which is not forbidden by the

tabu list or better than Si (according to the extended evaluation function
F ).

10: Si ← S′i
11: if F (S′i) < F (S′∗i ) then
12: S′∗i ← S′i
13: end if
14: end for
15: end for
16: return P ′ = {S′∗1 , . . . , S′∗p }

The first phase favors a large exploration of candidate solutions by setting φ340

to the value of 0.5 and performs nbIterTS = 100 ∗ |V | iterations. The second341

phase focuses on resolving the conflicts in the solutions of the population to342

obtain P legal colorings (with c(S) = 0). For this purpose, φ is set to the large343

value of |V | during nbIterTS = 2 ∗ |V | iterations.344

After the local search, the best coloring S ′∗i among the p conflict-free colorings345

in terms of the objective function f is used to update the recorded best solution346

S∗ if S ′∗i < S∗.347

3.4 Population Update348

The p new legal colorings from the PLITS procedure are used to update the349

population. For this, MPMA maintains a p × p matrix to record all the dis-350

tances between any two solutions of the population. This symmetric matrix351

is initialized with the p× (p− 1)/2 pairwise distances computed for each pair352

of individuals in the initial population, and then updated each time a new353

individual is inserted in the population.354

To merge the p new solutions and the p existing solutions, MPMA needs to355

evaluate (i) p × p distances between each individual in the population P =356

{S1, . . . , Sp} and each improved offspring individual in P ′ = {S ′1, . . . , S ′p} and357

(ii) p× (p− 1)/2 distances between all the pairs of individuals in P ′. All the358
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Algorithm 4 Sequential population update procedure

1: Input: Population Pt = {S1, . . . , Sp} (generation t) and offspring population
P ′ = {S′1, . . . , S′p} (generation t)

2: Output: Updated population Pt+1 (generation t + 1)
3: Pt+1 = ∅ /∗ Initilize new population
4: P all = Pt ∪ P ′ /∗ Merge existing and improved new solutions
5: Sbest = argminS∈Pall e(S) /∗ Identify the best legal solution in P all

6: Pt+1 = Pt+1 ∪ {Sbest} /∗ Add Sbest in Pt+1

7: P all = P all \ {Sbest} /∗ Remove Sbest from P all

8: /∗ Add n-colorings in Pt+1 until it contains the p best solutions of P all with the
condition that DH(Si, Sj) > |V |/10, for all Si, Sj ∈ Pt+1, i 6= j

9: while |Pt+1| < p do
10: Sbest = argminS∈Pall e(S)
11: dist = minA∈Pt+1 D(Sbest, A)
12: if dist > |V |/10 then
13: Pt+1 = Pt+1 ∪ {Sbest}
14: P all = P all \ {Sbest}
15: end if
16: end while
17: return Pt+1

p×p+p× (p−1)/2 distance computations are independent from one another,359

and are performed in parallel on the GPU (one computation per thread).360

Given two colorings Si and Sj, MPMA uses the Hamming distance DH(Si, Sj)361

to measure the dissimilarity between Si and Sj, which corresponds to the362

number of vertices that are colored differently in Si and Sj:363

DH(Si, Sj) = |{v ∈ V, Si(v) 6= Sj(v)}|. (8)

The complexity of the distance computations for the whole population is in364

O(|V | × p2).365

Following [21], the population update procedure of MPMA aims to keep the366

best individuals, but also to ensure minimal spacing between individuals. The367

population update procedure (Algorithm 4) greedily adds one by one the best368

individuals of P all = {S1, . . . , Sp}∪{S ′1, . . . , S ′p} into the population of the next369

generation Pt+1 until Pt+1 reaches p individuals, so that DH(Si, Sj) > |V |/γ370

(γ > 1, 0 is a parameter), for any Si, Sj ∈ Pt+1, i 6= j. The time complexity371

of the population update procedure is in O(p2). In practice for an instance of372

medium size (reduced Latin square graph with about |V | = 750 vertices), this373

population update procedure is executed in a time corresponding to roughly374

3% of the time spent in the local search procedure at each generation. The375

space complexity of this procedure is in O(|V |p + p2) (due to the distance376

matrices storage).377
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3.5 Parent Matching and Crossover378

At each generation, the MPMA algorithm performs in parallel p crossovers to379

generate p offspring solutions. For this, MPMA uses each existing solution in380

the current population as the first parent and selects another existing solution381

as the second parent with a specific parent matching strategy. The idea is to382

ensure that each individual in the population has a chance to transmit some383

genetic information to the next generation while encouraging the creation of384

diversified offspring.385

3.5.1 Parent Matching Strategy386

The population update strategy presented in the last section ensures that387

the individuals in the next population are high quality, but also sufficiently388

distant. This property provides a first basis for ensuring that for each of the389

p crossovers, we can find a second parent that is sufficiently distant from the390

first parent. This helps to build diverse offspring solutions that are different391

from their parents, and thus helps the algorithm to continuously explore new392

areas in the search space.393

However, as we use a very large population, individuals can be highly different394

and share very little information. Indeed, we experimentally observed that the395

average pairwise distance in the population is usually very large, around 0.7×396

|V | even after many generations. Meanwhile, a study in [22] showed that for397

the standard graph coloring problem, crossing-over two highly different parents398

results in offspring of poor quality because no meaningful shared information399

can be transmitted from parents to offspring.400

Thus, for each individual Si (i.e., the first parent), we choose, among the401

other individuals in the population, the nearest neighbor Sj in the sense of the402

precomputed Hamming distance D, as the second parent. The time complexity403

of the matching procedure is in O(p2).404

3.5.2 Parameterized Asymmetric Uniform Crossover405

The popular greedy partition crossover (GPX) [28] and its variants have406

proven to be very successful for the graph coloring problem [18,22,29]. GPX407

was also adapted to the related LSC, leading to the maximum approximate408

group based crossover (MAGX) [14]. However, the GPX crossover has some409

limitations for the PLSE due to the fact that solutions are not invariant by410

permutations of color groups (cf. Section 2.3) and high-quality solutions do411

not share significant backbones (they are far away from each other, see Section412

5).413
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For the PLSE, we introduce a parameterized asymmetric uniform crossover414

(AUX), which is easy to compute for a very large population of individuals and415

allows the transmission of favorable parental features to the next generation.416

Given a first parent Si and a second parent Sj, an offspring solution SOi is built417

such that each vertex v receives the color of Si with probability pij and the418

color of Sj with probability 1−pij. The probability pij depends proportionally419

on the Hamming distance between the parents Si and Sj and is given by420

pij = 1− |V |
β ×DH(Si, Sj)

, (9)

where β > 1.0 is a real parameter controlling the degree of diversity of the421

resulting offspring. The complexity of computing AUX crossovers for the entire422

population is in O(|V | × p).423

As |V |/γ is the minimum spacing between two individuals in the popula-424

tion (cf. Section 3.4), we set β such that β > γ > 0, in order to have425

∀i, j ∈ J1, . . . , pK2, i 6= j, |V |/β < DH(Si, Sj). This ensures that ∀i, j ∈426

J1, . . . , pK2, 0 < pij < 1.427

Notice that when pij is fixed to the value of 0.5, we obtain the classical Uniform428

Crossover (UX) [30]. With the UX crossover, the resulting offspring is on aver-429

age equidistant from both parents. However, as we empirically show in Section430

4, the UX crossover does not work well for the PLSE (it is too much disrup-431

tive). The proposed AUX crossover uses the probability pij to make itself more432

conservative by considering the distance between two parents. Specifically, if433

two parents are similar (with a small distance), the offspring can equally in-434

herit information from the parents. On the contrary, if the parents are very435

different (with a large distance), it is preferable to conserve more information436

from one parent (the first parent) to avoid an offspring solution that is far437

away from both parents. AUX achieves this goal by adjusting the coefficient438

β which influences the probability.439

For two given parents Si and Sj, the expected distance between the off-440

spring SOi and its first parent Si is D̄H(Si, S
O
i ) = |V |/β. The expected dis-441

tance between the offspring SOi and its second parent Sj is D̄H(Sj, S
O
i ) =442

DH(Si, Sj) − |V |/β. If we choose β ≥ 2γ, D̄H(Si, S
O
i ) ≥ D̄H(Sj, S

O
i ) always443

holds. As such, in average the child preserves more genetic information from444

the first parent compared to the second parent. Given that MPMA uses ev-445

ery individual in the current population as the first parent, all individuals are446

offered the same chance to transmit a large part of their genetic information447

to their offspring, leading to a large coverage of the search space.448

Figure 6 illustrates the creation of six offspring solutions {SOi }6
i=1 (in red)449

generated from the population {Si}6
i=1 (in black). In this case, the offspring450

17



Algorithm 5 Parallel asymmetric uniform crossover AUX

1: Input: Population P = {S1, . . . , Sp}, with Si = (V i
0 , V

i
1 , . . . , V

i
n), for i =

1, . . . , p.
2: Output: Offspring population PO = {SO1 , . . . , SOp }
3: for i = 1, . . . , p, in parallel do
4: Sj ← Find and make a copy of the nearest neighbor of Si from P according

to the distance D such that i 6= j and such that this crossover (i, j) has not
been tested yet.

5: pij = 1− |V |
β×DH(Si,Sj)

6: for l = {1, . . . , |V |} do
7: With probability pij , S

O
i (vl) = Si(vl)

8: Otherwise SOi (vl) = Sj(vl)
9: end for

10: end for
11: return PO

SO1 to SO6 are respectively generated from the ordered pairs of parents (S1, S2),451

(S2, S3), (S3, S4), (S4, S5), (S5, S4), (S6, S1).452

As one notices, each offspring is situated in between its two parents in the453

search space and always closer to its first parent (in terms of the Hamming454

distance). The norm of each translation vector is equal to |V |/β in average.455

Fig. 6. Resulting offspring individuals {SOi }6i=1 (in red) generated from the popula-
tion {Si}6i=1 (in black).

The overall parent matching and the AUX crossover are summarized in Algo-456

rithm 5. All the p crossover operations are performed in parallel on individual457

GPU threads. The time and space complexities of the crossover procedure are458

in O(|V |p).459
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3.6 Implementation on Graphic Processing Units460

MPMA was programmed in Python with the Numba library for CUDA kernel461

implementation. It is specifically designed to run on GPUs. In this work we462

used a V100 Nvidia graphic card with 32 GB memory. The source code of the463

algorithm is available at https://github.com/GoudetOlivier/MPMA_code.464

Fig. 7. Parallel tabu searches launched on GPU grid.

Figure 7 shows the organization of threads on the GPU grid and the memory465

hierarchy on the GPUs used to execute the p tabu searches in parallel for the466

entire population each generation. Each of the p tabu searches (see Section467

3.3) is executed on a single thread. For fast memory access, a local memory per468

thread is used to store specific local information such as the current solution469

and tabu tenure. Threads are grouped in blocks of size 64 and launched on470

the GPU grid. A global memory is used to store general graph information471

such as the graph adjacency matrix and the color domain of each vertex to472

avoid duplication of information. All these p tabu searches are run with a473

CUDA kernel function and the best results obtained in each tabu search are474

transferred to the CPU after synchronization.475

The same type of kernel function on the GPUs is used to compute in parallel476

the p distance calculations (see Section 3.4) and the p crossovers (see Section477

3.5) at each generation. However, some operations such as the best solution478

saving procedure and the population update procedure (cf. Section 3.4) are479

performed on the CPU because they cannot be parallelized.480
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3.7 A variant of the Algorithm for Highly Constrained Instances481

As shown in Section 4, the MPMA algorithm excels on under-constrained482

to moderately over-constrained PLSE instances with a filled ratio r below483

80%. However, its performance slightly deteriorates on highly constrained in-484

stances when r ≥ 80%. For these cases, we observed that better results can485

be reached by directly minimizing the number of uncolored vertices (i.e., fit-486

ness f of Section 2.1) in the space of legal (i.e., conflict-free) partial colorings.487

For these highly constrained instances, we create a simplified MPMA vari-488

ant called Partial-MPMA that works with legal partial colorings (instead of489

conflicting colorings) and makes the following two changes in MPMA.490

• A greedy conflict removal procedure is applied to repair each offspring so-491

lution into a legal partial coloring. For this, the vertex which is conflicting492

with the largest number of vertices is uncolored first (i.e., reassigned the493

color 0), followed by the vertex with the second largest conflicts and so on.494

This process continues until a partial conflict-free coloring is reached.495

• The two-phase tabu search procedure of Section 3.3 is replaced by the Par-496

tialCol coloring algorithm of [31] adapted to the list-coloring problem. This497

PartialCol algorithm uses tabu search to explore the space of legal partial498

colorings by minimizing the number of uncolored vertices.499

4 Experimental Results500

This section is dedicated to a computational assessment of the MPMA algo-501

rithm for solving the partial Latin square extension problem, by making com-502

parisons with the state-of-the-art methods. Additional results are presented503

in Appendix B for the related Latin square completion problem.504

4.1 Benchmark Instances505

We carried out extensive experiments on the 1800 PLSE benchmark instances506

introduced in [12]. These instances are parametrized by the grid order n ∈507

{50, 60, 70} and the ratio r ∈ {0.3, 0.4, . . . , 0.8} of pre-filled cells in the n× n508

grid. Given (n, r) and starting from an empty n×n grid, a PLSE instance was509

constructed by repeatedly assigning a different symbol in an empty cell chosen510

randomly so that the Latin square condition is respected and until r×n2 cells511

are assigned symbols. For each (n, r) combination, 100 instances are available.512

Note that such a PLSE instance does not always admit a complete solution513

(i.e., some cells must be left unfilled). This is typically the case for relatively514
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strongly constrained instances when r > 60 (i.e., when at least 60% cells are515

pre-filled). Moreover, as shown in [9,12], under-constrained instances (r ≤ 0.5)516

and over-constrained instances (r > 0.7) are easier than medium-constrained517

instances with r between 0.6 and 0.7.518

It is clear that n2 is an upper bound for these instances (all cells are filled).519

When the grid cannot be fully filled, a safe upper bound is given in [19],520

corresponding to n2 − 2 (all but 2 cells are filled). This bound indicates that521

if a grid cannot be completed, at least two cells will be left unfilled.522

Like [14], we first convert these instances to Latin square graphs and apply523

the preprocessing algorithm of Section 2.2 to reduce them, leading to graphs524

with less than 500 vertices for (n, r) = (50, 0.8) and up to 3430 vertices for525

(n, r) = (70, 0.3). The preprocessing takes no more than several seconds.526

4.2 Parameter Setting527

The population size p of MPMA is set to p = 12288, which is chosen as a528

multiple of the number of 64 threads per block. This large population size offers529

a good performance ratio on the Nvidia V100 graphics card that we used in530

our experiments, while remaining reasonable for pairwise distance calculations531

in the population, as well as the memory occupation on the GPU, especially532

when solving very large instances. Indeed the overall space complexity of the533

proposed algorithm is in O(|V |×n×p+p2). It is in particular quadratic with534

respect to the size p of the population. A sensitivity experiment of the results535

with respect to the population size is presented in Section 5. In addition to the536

population size, the parameter α of the tabu search is set to its classical value537

of 0.6 and the number of tabu iterations nbIterTS depends on the size |V | of538

the graph. The parameter γ for the minimum spacing between two individuals539

is set to 10. The parameter β for adjusting the distance of the offspring from540

their parents is fixed at 20.541

Table 1 summarizes the parameter setting, which can be considered as the542

default and is used for all our experiments.543

Table 1
Parameter setting in MPMA

Parameter Description Value

p Population size 12288

nbIterTS Number of iterations tabu search 100× |V |

α Tabu tenure parameter 0.6

γ Parameter for the spacing between two individuals 10

β Parameter for the generation of offspring 20
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4.3 Comparative Results on the Set of 1800 PLSE Instances544

This section shows a comparative analysis on the 1800 PLSE instances with545

respect to the state-of-the-art methods. Given the stochastic nature of the546

MPMA algorithm, each instance is independently solved 5 times.547

Table 2 summarizes the computational results of MPMA compared to the548

best results in the literature reported in [12,14]. For each instance MPMA549

was launched with a maximum of 100 billions of tabu search iterations. The550

reference methods include the 7 PLSE approaches in [12]: CPX-IP, CPX-551

CP, LSSOL, 1-ILS*, 2-ILS, 3-ILS and Tr-ILS*, where CPX-IP and CPX-CP552

are exact Integer Programming and Constraint Programming solvers from553

IBM/ILOG CPLEX, LSSOL denotes the tool LocalSolver. 1-ILS*, 2-ILS, 3-554

ILS and Tr-ILS* are four iterated local search algorithms with three differ-555

ent neighborhoods. We cite the results of the recent MMCOL algorithm [14],556

which is designed for the related LSC problem and reported results on the557

1800 PLSE instances with an adapted version of MMCOL. We also ran the558

FastLSC algorithm [15] with the default parameters provided by the authors.559

As FastLSC is designed exclusively for the LSC problem, it does not provide560

any legal solution or even crashes for PLSE instances for which it is impossible561

to fill the grid completely. This happens for highly constrained instances, in562

general when r ≥ 0.7.563

Columns 1 and 2 of Table 2 show the characteristics of each instance (i.e., grid564

order n ∈ {50, 60, 70} and ratio r ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8} of pre-assigned565

symbols). Columns 3-10 present the average number of filled cells in the best566

solutions obtained by the reference algorithms for the 100 instances of each567

type (n, r). The number in brackets indicates the number of instances for which568

the grid is completely filled. The results of the proposed MPMA algorithm and569

Partial-MPMA variant are reported in columns 11 and 12 respectively 1 . Bold570

numbers show the dominating values while a star indicates an optimal value571

(corresponding to the n2 upper bound).572

We observe that MPMA (standard version) always obtains the best scores (in573

bold) except for the over-constrained instances with r = 0.8. For the instances574

with r = 0.8, our Partial-MPMA variant always obtains the best results. For575

the loosely constrained or under-constrained instances with r < 0.7, the three576

compared algorithms (MPMA, MMCOL and FastLSC) can completely fill the577

grid for exactly the same number of instances. For the strongly constrained578

or over-constrained instances with r ≥ 70, FastLSC fails to find a solution579

except for 4 instances with n = 70 and r = 0.7 for which it can fill the grid580

like MMCOL (against 5 instances for MPMA).581

1 The certificates of the best solutions of MPMA and Partial-MPMA for these 1800
instances are available at https://github.com/GoudetOlivier/MPMA_code
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The best competitors, Tr-ILS*, MMCOL and FastLSC, were launched with a582

limited amount of available times in [12,14,15]: up to 10 seconds for Tr-ILS*,583

up to two hours for MMCOL and up to 1000 seconds for FastLSC. In order to584

verify if these algorithms can improve their results by using more computation585

time, we ran the codes of these three algorithms with a much relaxed time586

limit of 48 hours per run and per instance on Intel Xeon ES 2630, 2,66 GHz587

CPU. The results are shown in Table 3. For each compared algorithm, we588

report the best and average results over 5 runs (fbest and favg) as well as the589

average computation time needed to reach its best result.590

With this much relaxed time limit, both Tr-ILS* and MMCOL indeed improve591

their-own results reported in [12] and [14] (also shown in Table 2). Meanwhile,592

they are still outperformed by MPMA/Partial-MPMA on the strongly con-593

strained instances with r ≥ 0.7. FastLSC also improves its performance and594

solves one more instance of set n = 70 and r = 0.7. Specifically, among the595

100 instances with n = 70 and r = 0.7, FastLSC, like MPMA, completely596

fills the same set of 5 instances (with id 6, 14, 42, 44 and 99, see Table A.1)597

For the PLSE instances that can be completely filled, FastLSC is the fastest598

algorithm compared to MMCOL and MPMA.599

For under-constrained (easy) instances, one notices that MPMA takes much600

more times to achieve its best results. This comes from the fact that every601

kernel operation launched on the GPU cannot be stopped until it is completed602

on each thread. Therefore, even if a solution of the instance is found in one603

thread, one still needs to wait for all the threads to finish their computation604

before retrieving the result. In fact, for these easy instances, a very large605

population with a high diversity is not really mandatory. MPMA can reach606

the optimal solutions faster with a much reduced population.607
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On the other hand, using a very large population with a high diversity becomes608

critical when dealing with the most difficult instances such as those with r ≥609

0.7. For these instances, MPMA obtains equal or better results compared to610

Tr-ILS∗ and MMCOL for all orders n = 50, 60, 70. Detailed results for the611

very difficult instances with r = 0.7 are displayed in Appendix A (Table A.1).612

Moreover, MPMA can optimally solve 25 of the 100 most challenging instances613

with n = 70 and r = 0.7 (cf. Table A.1).614

It is difficult to compare the computation time between MPMA and the com-615

petitors, as MPMA takes advantage of a GPU while the other algorithms use616

a CPU. Therefore we compare MPMA and MMCOL in terms of number of617

iterations in order to observe whether the best results of MPMA come from618

the algorithm itself or from the parallelization. For this experiment, we do not619

consider FastLSC because it cannot solve any over-constrained PLSE instance620

for which the grid cannot be completely filled (indeed FastLSC is designed for621

the related LSC). As both MPMA and MMCOL use a one-move tabu search,622

the number of local search iterations is a suitable comparison criterion. We623

run MPMA and MMCOL with a maximum of 100 billions iterations of tabu624

search on the first ten instances of each of the most difficult (n, r) combina-625

tions with n = 50, 60, 70 and r = 70, 80. Each instance is independently solved626

5 times. The detailed results are reported in Table 4, where we show for each627

instance and each algorithm (MMCOL, MPMA), the best result fbest over the628

5 trials, the average result favg over these 5 trials, the average computation629

time in hours t(h) required to reach the best result and the average number of630

local search iterations nb iter required to reach the best score. The best results631

are indicated in bold. According to the results, MPMA can achieve better or632

equal results for all instances with the same overall number of iterations. In633

addition, the use of a GPU reduces the time spent by the algorithm, because634

this important number of iterations can be performed in a shorter amount of635

time thanks to parallelization. This experiment confirms that the proposed636

MPMA algorithm dominates MMCOL.637

In summary, MPMA and its Partial-MPMA variant for highly constrained638

instances (when r > 0.7) compete very favorably with the best performing639

PLSE methods in the literature, by reporting equal or better results on the640

1800 benchmark instances. In Appendix B, we show that MPMA also performs641

extremely well on the special case of the Latin square completion problem, by642

attaining the optimal solutions for all the LSC benchmark instances.643

5 Analysis of Important Factors in the Algorithm644

We analyze the impacts of three important factors of the MPMA algorithm: (i)645

its very large population, (ii) the AUX crossover and (iii) the nearest neighbor646

26



matching strategy for parent selection. These experiments are based on the647

first ten hard instances with n = 60 and r = 0.7 of the PLSE.648

5.1 Sensitivity to the Population Size649

We first perform a sensitivity analysis of the algorithm with respect to the650

population size. For this, we perform the MPMA algorithm with p varying in651

the range [10, 12288] to solve each of the ten instance 5 times under a time652

limit to 20 hours per run. Figure 8 displays the sensitivity of the average653

results to the population size p.654

For the same time budget, the MPMA algorithm obtains better results with a655

larger size. When p = 12288, the algorithm always attains the best score over656

10 runs. This can be explained by two reasons. First, due to the parallelization657

of the calculations on the GPUs, a large population improves the diversity of658

the population and helps the algorithm to perform a higher average global659

number of iterations at each run with the same time budget, which in turn660

increases the chance for the algorithm to attain high-quality solutions. Second,661

a large population increases the chance for each individual to find a closer but662

different nearest neighbor in the population for parent matching of the AUX663

crossover, which helps to generate promising offspring solutions.664
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Fig. 8. Impact of the population size p on the performance of MPMA. Green curve
corresponds to the average score and red curve to the average number of iterations
in billions required to reach the best scores.

5.2 Impact of the Asymmetric Uniform Crossover665

To study the impact of the asymmetric uniform crossover AUX on the MPMA666

algorithm, we compare it with four different variants of MPMA where the AUX667

crossover described in Section 3.5.2 is changed or disabled.668

• The first variant is a baseline variant without crossover, so each offspring is669

an exact copy of its first parent.670

• The greedy partition crossover GPX [28] is adapted for the Latin square671

problem: each color class of the offspring inherits the largest color class of672

the selected parent.673

• The AUX crossover is replaced by the maximum approximate group based674

crossover MAGX of the MMCOL algorithm for the related Latin square675

completion problem [14].676

• The AUX crossover is replaced by the uniform crossover (UX) which corre-677

sponds to AUX with pij being fixed to the value of 0.5.678

Figure 9 shows the evolution of the best fitness values averaged over 5 runs679

for the same ten PLSE instances with (n, r) = (60, 0.7) through the number680

of generations of each algorithm. One notices that the crossovers GPX and681

UX, which are the most disruptive, perform badly and are even outperformed682

by the variant without crossovers (blue line). This can be explained by the683

fact that the individuals are very distant in the population and rarely share684

large common features. Indeed, we experimentally observed that the average685

pairwise distance in the population is usually very large, around 0.7× |V |.686
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The AUX and MAGX crossovers perform the best and dominate GPX and687

UX. Meanwhile, AUX dominates MAGX after 50 generations in average. The688

difference is statistically significant (confirmed by t-test with the p-value of689

0.001). One reason to explain the advantage of AUX over MAGX is that with690

the AUX crossover, the offspring inherits more features from one parent than691

from the other parent. On the contrary, since MAGX is a symmetric crossover,692

crossing-over (Si, Sj) and (Sj, Si) lead to the same offspring, which results in693

less diversified offspring in the next generation.694

Fig. 9. Comparison of five different MPMA variants: No crossover (blue), GPX
(yellow), MAGX (red), UX (light blue), AUX (green).

5.3 Impact of the Crossover Matching Strategy695

To study the impact of the nearest neighbor matching strategy for the AUX696

crossover, we run a MPMA variant where this matching strategy is replaced by697

a random matching strategy: each individual as the first parent is cross-overed698

with another individual chosen randomly in the population.699

Figure 10 shows the evolution of the best fitness values averaged over 5 runs700

for the same 10 first PLSE instances with (n, r) = (60, 0.7) with respect to701

the number of generations of the algorithm. One notices that the matching702

strategy has an important impact on the performance. The dominance of the703

nearest neighbor matching strategy over the random matching becomes more704

and more evident after 10 generations. The difference is statistically significant705

(t-test with the p-value of 0.001). This is because two parents chosen randomly706
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in the very large population share little information, leading to poor offspring707

whose quality can be hardly raised even after local optimization. The nearest708

neighbor strategy avoids this problem, as it does not destroy too much the709

color classes transmitted to the offspring, while preserving a certain level of710

diversity. This creates opportunities for the subsequent local search to explore711

new and interesting areas of the search space.712

Fig. 10. Comparison of two parent matching strategies in MPMA: random matching
(red) and nearest neighbor matching (green).

6 Conclusion713

We presented a massively parallel population-based algorithm with a very714

large population and a practical implementation on GPUs to solve the par-715

tial Latin square extension problem as well as the special case of the Latin716

square completion problem. This approach highlights the interest of a very717

large population that enables massively parallel local optimization, offspring718

generations and distance calculations. The algorithm features a parameterized719

asymmetric crossover equipped with a dedicated parent matching strategy to720

build promising offspring, an effective parallel two-phase tabu search to im-721

prove new solutions and an original pool updating mechanism.722

We performed extensive experiments to assess the proposed algorithm on the723

set of 1800 benchmark instances with various orders and ratios of pre-filled724

cells. The results showed that the algorithm obtains state-of-the-art results725

in average for all Latin square configurations (n, r). Furthermore, it definitely726

closed 25 challenging instances of order n = 70 and ratio r = 0.7. We inves-727

tigated the impacts of key algorithmic components including the large popu-728

lation size and the parent matching strategy. This work demonstrates for the729
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first time the high potential of GPU-based parallel computations for solving730

the challenging Latin square extension problem, by exploiting the formidable731

computing power offered by the GPUs and designing suitable search strategies.732

The proposed algorithm can be used to solve relevant problems related to733

the PLSE. The availability of the source code of our algorithm will facilitate734

such applications. The design ideas of the algorithm can help to develop effec-735

tive algorithms for other difficult combinatorial optimization problems. Future736

works could be carried out in particular to improve the parent matching strat-737

egy. For instance, it would be interesting to investigate strategies driven by a738

deep graph convolutional neural network in order to build the most promising739

offspring from appropriate parents.740
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A Detailed Results for the Challenging PLSE Instances with r =829

0.7830

According to [12], instances with r = 0.7 are among the most challenging831

instances. Table A.1 presents the detailed results obtained by the MPMA al-832

gorithm on the three sets of 300 PLSE instance with r = 0.7 and n = 50, 60, 70.833
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Column 1 identifies the instances of each type (n, r). For each instance, we834

report the best PLSE score fbest (i.e., the largest number of filled cells) ob-835

tained over 5 runs with a maximum of 100 billions of tabu iterations, average836

score favg and average computation time t(s) in seconds to reach the best re-837

sults. Bold values are the record-breaking results compared to the best-known838

results in the literature (including the best results obtained by running the839

codes of Tr-ILS∗ [12] and MMCOL [14] with the extended time limit of 48h).840

A star indicates an optimal value. The optimality is proved if (i) the number841

of filled cells reaches the upper bound n2 − l if l 6= 1 (cf. Section 2.2), or (ii)842

the number of filled cells is n2−2 if l = 1 (cf. Theorem 6 in [19]). One observes843

that MPMA improves the best-known results for a large majority of the 300844

instances and closes definitively 25 instances by reaching their optimal scores.845

Among these 25 optimal results, 14 were also achieved by MMCOL (starred846

non-bold values) with the extended time limit.847
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Table A.1
Detailed results of MPMA for the PLSE instance with r = 0.7

PLSE-50-70 PLSE-60-70 PLSE-70-70
Id fbest favg t(s) fbest favg t(s) fbest favg t(s)
1 2485 2484.0 14634 3594 3593.8 21133 4897 4897.0 64501
2 2482 2482.0 7979 3594 3593.2 32775 4896 4896.0 31215
3 2490 2489.6 16640 3583 3582.4 50463 4897 4897.0 38822
4 2487 2486.8 11040 3595 3595.0 42003 4894 4893.8 60959
5 2482 2481.6 38581 3594 3593.8 23419 4898* 4897.6 29179
6 2485 2484.6 17336 3598 3597.0 35415 4900* 4899.2 24546
7 2485 2485.0 21093 3591 3590.8 29223 4898* 4897.6 68794
8 2483 2482.6 22696 3593 3592.6 31549 4898 4898.0 34353
9 2486 2485.8 29292 3595 3594.4 45923 4898* 4896.8 56775
10 2480 2479.6 33675 3592 3591.4 27668 4897 4896.8 24600
11 2488 2488.0 10494 3591 3591.0 43547 4895 4895.0 41911
12 2485 2484.8 11099 3595 3595.0 29279 4895 4895.0 49769
13 2483 2482.0 35398 3591 3590.6 30085 4896 4896.0 38843
14 2483 2483.0 24327 3596 3594.8 12871 4900* 4900.0 49655
15 2483 2483.0 22104 3598 3597.6 42935 4897* 4897.0 44162
16 2484 2484.0 24908 3589 3588.4 46321 4895 4894.4 51131
17 2486 2486.0 30868 3589 3588.2 44392 4898* 4897.8 55798
18 2489 2488.6 43310 3594 3594.0 31095 4896 4895.2 45508
19 2485 2485.0 46223 3592 3591.6 34286 4896 4895.0 33190
20 2490 2490.0 66822 3595 3595.0 45880 4898* 4898.0 45274
21 2483 2482.8 10055 3594 3593.8 28887 4896 4895.8 43046
22 2484 2483.8 31473 3594 3593.6 36060 4892 4891.8 51100
23 2485 2485.0 59471 3595 3594.8 35139 4898* 4897.4 57851
24 2488 2487.2 39261 3595 3594.2 39917 4896 4895.6 62074
25 2484 2484.0 67246 3595 3595.0 24632 4896 4895.6 29744
26 2483 2482.4 11660 3591 3590.4 29959 4896 4896.0 49052
27 2481 2480.8 17530 3596 3595.6 21738 4896 4895.2 64276
28 2484 2484.0 57286 3593 3592.2 39360 4895 4895.0 30988
29 2486 2486.0 24712 3594 3593.8 36996 4894 4893.0 33507
30 2485 2484.4 32252 3594 3593.2 29165 4894 4893.8 67407
31 2481 2480.2 30863 3596 3595.8 28915 4895 4894.8 66784
32 2481 2480.8 26209 3598 3597.8 36874 4898* 4898.0 63561
33 2483 2482.0 15300 3594 3593.8 50209 4893 4892.8 53578
34 2484 2483.6 17261 3595 3594.8 25322 4896 4896.0 29581
35 2483 2482.2 9258 3594 3593.6 48250 4895 4893.8 37046
36 2484 2483.8 39607 3589 3588.8 52302 4896 4896.0 30549
37 2486 2486.0 30891 3592 3591.8 36935 4898 4897.4 33335
38 2479 2479.0 27487 3593 3593.0 42965 4896 4895.8 46231
39 2482 2482.0 17885 3592 3592.0 40127 4895 4895.0 45687
40 2486 2485.8 25149 3584 3584.0 28671 4897 4897.0 39611
41 2486 2484.8 20498 3593 3593.0 44563 4894 4894.0 68759
42 2485 2484.2 29963 3596 3594.8 20232 4900* 4900.0 37155
43 2486 2485.6 22424 3592 3591.8 33863 4897 4896.4 65871
44 2478 2478.0 21238 3596 3595.2 39637 4900* 4900.0 24920
45 2487 2486.2 4387 3594 3593.2 53331 4896 4895.6 36570
46 2486 2485.2 8202 3590 3590.0 31509 4895 4894.4 66643
47 2483 2483.0 15598 3596 3596.0 50515 4896 4895.2 28201
48 2485 2485.0 12008 3594 3594.0 52813 4898* 4898.0 45563
49 2488 2487.8 19546 3592 3592.0 30852 4896 4896.0 61217
50 2487 2486.2 36084 3591 3590.4 28170 4892 4891.2 63410
51 2482 2482.0 14454 3597 3596.8 27863 4894 4893.2 52307
52 2483 2482.8 3734 3594 3593.2 29788 4894 4893.6 47142
53 2479 2478.2 29808 3590 3590.0 34304 4895 4895.0 61063
54 2482 2482.0 31105 3595 3595.0 36915 4895 4894.8 49282
55 2490 2490.0 57119 3593 3592.8 43977 4898 4898.0 42535
56 2486 2485.2 16890 3594 3594.0 26958 4897 4896.6 40521
57 2485 2484.0 17693 3596 3595.6 22850 4897 4895.8 36423
58 2484 2483.6 22020 3592 3590.8 42025 4895 4895.0 50358
59 2479 2479.0 17566 3597 3597.0 35690 4897 4896.2 48762
60 2485 2483.8 12812 3594 3594.0 49378 4898* 4897.6 41952
61 2488 2487.6 32457 3593 3593.0 34521 4896 4895.6 40522
62 2483 2482.2 11236 3595 3595.0 36297 4897 4896.6 26971
63 2484 2483.8 49638 3593 3593.0 33612 4895 4894.0 36138
64 2487 2486.8 18411 3589 3589.0 45479 4896 4895.8 43970
65 2483 2483.0 14955 3594 3592.8 51097 4895 4894.2 64374
66 2487 2486.0 6173 3594 3593.8 32932 4897 4895.8 29134
67 2492 2491.4 13935 3596 3594.8 46629 4896 4895.2 39470
68 2485 2484.6 13185 3591 3591.0 46103 4894 4893.6 65397
69 2480 2478.8 61028 3597 3596.8 29333 4896 4895.4 33751
70 2480 2480.0 10097 3596 3595.0 21332 4897 4896.4 70332
71 2485 2484.8 14403 3597 3596.8 26326 4898* 4896.8 37049
72 2485 2485.0 23233 3593 3593.0 41770 4898* 4897.6 55525
73 2481 2481.0 13541 3592 3591.8 42388 4897 4896.2 41423
74 2487 2486.2 17062 3591 3590.4 41805 4895 4894.8 66514
75 2486 2485.8 6442 3591 3589.8 37734 4893 4892.6 27458
76 2482 2481.6 31480 3596 3595.6 32075 4895 4894.4 37566
77 2484 2484.0 30772 3594 3593.6 30518 4898* 4897.8 71196
78 2485 2484.2 25027 3594 3593.8 37885 4894 4892.8 61918
79 2486 2485.4 11737 3592 3592.0 13140 4895 4894.8 55482
80 2486 2485.0 11477 3591 3590.6 17375 4895 4893.8 43852
81 2484 2483.6 25867 3594 3594.0 49588 4898 4898.0 34218
82 2486 2486.0 12979 3596 3595.2 49521 4896 4895.0 54607
83 2484 2483.8 45426 3591 3591.0 36875 4897 4896.8 53219
84 2482 2480.8 13416 3597 3596.8 39570 4896 4895.6 55558
85 2486 2485.2 18071 3591 3591.0 54486 4895 4894.2 51972
86 2484 2483.6 21323 3591 3590.8 32150 4896 4895.2 64547
87 2482 2481.8 7322 3597 3596.2 21235 4898 4897.8 58645
88 2486 2484.8 54905 3595 3594.0 31176 4898* 4897.6 55316
89 2483 2483.0 22200 3596 3595.2 42334 4898* 4898.0 69525
90 2484 2483.4 41303 3591 3590.6 28078 4898* 4897.8 33387
91 2485 2485.0 27282 3595 3594.8 37660 4898* 4897.8 35507
92 2480 2478.8 64358 3595 3595.0 20591 4898 4898.0 44032
93 2485 2484.6 54895 3595 3594.4 34376 4898* 4897.4 30656
94 2488 2487.4 36221 3593 3592.6 27382 4898* 4898.0 42838
95 2485 2484.2 34930 3596 3596.0 47333 4895 4894.0 15877
96 2484 2484.0 20119 3588 3587.4 26007 4898* 4897.2 56506
97 2483 2482.2 12874 3596 3594.8 18748 4895 4894.6 52890
98 2484 2483.6 17232 3595 3593.8 39620 4896 4895.8 34437
99 2487 2487.0 11038 3596 3595.0 44668 4900* 4900.0 48432
100 2481 2481.0 6466 3592 3591.6 38165 4895 4895.0 41758
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B Results on the Latin Square Completion Problem848

Even if our MPMA algorithm is not designed for the Latin square completion849

(LSC) problem, the algorithm can be applied to the LSC because the latter can850

be considered as a special case of the partial Latin square extension problem.851

Two sets of LSC benchmark instances exist in the literature: 19 traditional852

instances from the COLOR03 competition 2 [9] and 1800 new instances [12].853

These instances were built from complete Latin squares with some symbols854

removed. Thus these instances have the optimal score of n2 (n is the order855

of the grid), i.e., their cells can be completely filled. Like the 1800 PLSE856

benchmark instances, these 1800 LCS instances have an order n ∈ {50, 60, 70}857

and ratio r ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, grouped to 18 subsets of 100 instances858

per (n, r) combination.859

We ran the MPMA algorithm with a time limit of 3h with the parame-860

ters of Table 1 to solve the 1800 LCS instances. For the most difficult in-861

stances of the 19 traditional instances a time limit of 10 hours is required.862

The results on the set of 19 traditional instances (Table B.1) indicate that863

MPMA can solve all these instances with a perfect success rate. The best864

LSC algorithms MMCOL [14] and FastLSC [15] achieve a similar perfor-865

mance, but with a low success rate (1/30, 1/30 for MMCOL and 1/30, 1/30866

for FastLSC) for two very difficult cases (qwhdec.order50.holes750.bal.1 and867

qwhdec.order60.holes1080.bal.1). However, MPMA requires a much higher868

computation time compared to MMCOL and FastLSC.869

Table B.2 displays the results of the MPMA algorithm on the set of 1800 LCS870

instances compared to the state-of-the-art algorithms [12,14,15]. The results871

indicate that MPMA is able to solve all of these 1800 instances in the allotted872

time, matching the best LSC algorithms of [14,15].873

2 http://mat.gsia.cmu.edu/COLOR03/
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Table B.1
Results of the MPMA algorithm on the set of 19 traditional LSC instances [9].

Instance MMCOL FastLSC MPMA

Name n r SR t(s) SR t(s) SR t(s)

qwhdec.order5.holes10.1 5 0.6 30/30 < 0.01 30/30 < 0.01 10/10 1.2

qwhdec.order18.holes120.1 18 0.63 30/30 < 0.01 30/30 < 0.01 10/10 1.9

qg.order30 30 0.0 30/30 0.04 30/30 0.02 10/10 22

qwhdec.order30.holes316.1 30 0.65 30/30 0.17 30/30 0.05 10/10 12

qwhdec.order30.holes320.1 30 0.64 30/30 1.37 30/30 0.13 10/10 4

qg.order40 40 0.0 30/30 0.17 30/30 0.09 10/10 55

qg.order60 60 0.0 30/30 1.22 30/30 0.65 10/10 526

qg.order100 100 0.0 30/30 17.5 30/30 10.66 10/10 3864

qwhdec.order33.holes381.bal.1 33 0.65 30/30 187.7 30/30 32.85 10/10 208

qwhdec.order35.holes405.1 35 0.67 30/30 16.5 30/30 5.30 10/10 56

qwhdec.order40.holes528.1 40 0.67 30/30 16.5 30/30 3.11 10/10 158

qwhdec.order60.holes1440.1 60 0.60 30/30 2.79 30/30 1.17 10/10 298

qwhdec.order60.holes1620.1 60 0.55 30/30 0.99 30/30 0.51 10/10 189

qwhdec.order70.holes2940.1 70 0.4 30/30 0.99 30/30 0.41 10/10 546

qwhdec.order70.holes2450.1 70 0.5 30/30 1.03 30/30 0.44 10/10 356

qwhdec.order50.holes825.bal.1 50 0.67 30/30 121 30/30 24.68 10/10 564

qwhdec.order50.holes750.bal.1 50 0.7 1/30 1444 1/30 448 10/10 10546

qwhdec.order60.holes1080.bal.1 60 0.7 1/30 2559 4/30 385 10/10 32484

qwhdec.order60.holes1152.bal.1 60 0.68 30/30 561 30/30 47.3 10/10 9556

Table B.2
Results of the MPMA algorithm on the 1800 new LSC instances [12] along with the
results reported in the literature [12,14,15].

Instance CPX-IP CPX-CP LSSOL Tr-ILS* MMCOL FastLSC MPMA

n r #Solved #Solved #Solved #Solved #Solved #Solved #Solved

50

30 9 94 10 100 100 100 100

40 3 71 8 100 100 100 100

50 0 12 6 100 100 100 100

60 0 0 0 36 100 100 100

70 0 0 0 0 100 100 100

80 100 100 100 100 100 100 100

60

0.3 0 71 1 100 100 100 100

0.4 0 22 0 100 100 100 100

0.5 0 1 0 95 100 100 100

0.6 0 0 0 23 100 100 100

0.7 0 0 0 0 100 100 100

0.8 100 100 99 99 100 100 100

70

0.3 0 34 0 99 100 100 100

0.4 0 8 0 98 100 100 100

0.5 0 0 0 84 100 100 100

0.6 0 0 0 10 100 100 100

0.7 0 0 0 0 100 100 100

0.8 100 100 46 98 100 100 100
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