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Abstract

Given an undirected graph G = (V, E) with a set of vertices V and a set of edges E, a graph coloring problem involves finding a partition
of the vertices into different independent sets. In this paper we present a new framework that combines a deep neural network with the best
tools of classical heuristics for graph coloring. The proposed method is evaluated on two popular graph coloring problems (vertex coloring
and weighted coloring). Computational experiments on well-known benchmark graphs show that the proposed approach is able to obtain
highly competitive results for both problems. A study of the contribution of deep learning in the method highlights that it is possible to
learn relevant patterns useful to obtain better solutions to graph coloring problems.
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1. Introduction

Graph coloring involves assigning colors to the vertices of a
graph subject to certain constraints and optimization objective. The
popular vertex coloring problem (COL) is the most representative
example and can be stated as follows. Given an undirected graph
G = (V, E) with a set of vertices V and a set of edges E, the COL
is to color the vertices of V so that two adjacent vertices receive
different colors and the number of colors used is minimized (this
number is called the chromatic number of G, denoted by χ(G)).
This problem can also be seen as finding a partition of the vertex
set V into a minimum number of color groups (also called indepen-
dent sets or color classes) so that two vertices linked by an edge
belong to different color groups. In some variants of this conven-
tional coloring problem, one aims to find a legal coloring of the
graph while considering an alternative optimization objective.

The typical search space of a graph coloring problem is com-
posed of the partitions of vertices V into k color groups:

S = {{V1,V2, . . . ,Vk} : ∪k
i=1Vi = V,Vi ∩ V j = ∅}, (1)

where i , j, 1 ≤ i, j ≤ k, 1 ≤ k ≤ |V |. This search space S is huge
in general and finding an optimal solution S ∗ is usually intractable
unless P=NP, as most graph coloring problems are NP-hard.

Graph coloring problems have been studied very intensively in
the past decades and many coloring methods have been proposed in
the literature. A first category of methods are based on local search
(also called neighborhood search). Starting from an initial solu-
tion typically constructed using a greedy heuristic, a local search
algorithm improves the current solution by considering the best
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moves in a given neighborhood. To escape local optima traps, local
search algorithms usually incorporate dedicated mechanisms such
as tabu lists [2, 17] or perturbation strategies [22, 33]. However for
very difficult instances of graph coloring, the single trajectory local
search approach is not powerful enough to locate very high qual-
ity solutions mainly due to its limited diversification capacity. To
overcome this difficulty, hybrid algorithms have been proposed, in
particular relying on the population-based memetic framework that
combines local searches and crossovers [32]. The memetic frame-
work has been very successful in solving several graph coloring
problems [11, 23, 27, 31, 35]. These hybrid algorithms combine
the benefits of local search for intensification with a population of
high-quality solutions offering diversification possibilities.

The memetic algorithms proposed in the literature for graph
coloring typically use a small population with no more than 100
individuals. At each generation, one offspring solution is usually
created by a crossover (or recombination) operator applied to two
or more randomly selected individuals from the population. One
of the most popular crossovers used for graph coloring problems
is the Greedy Partition Crossover (GPX) introduced in the hybrid
evolutionary algorithm (HEA) [11]. The GPX operator produces
offspring by inheriting alternatively the largest color classes in the
parent solutions. The resulting offspring is then improved by a local
search procedure such as TabuCol [17].

The crossover operator within a memetic algorithm enables the
creation of new restarting points for the local search procedure,
which are expected to be more promising and better than a pure ran-
dom initialization. However, when using such mechanisms, there
is usually no way of knowing in advance whether the new restarting
point really indicates a promising area that is worth being further
examined by the local search procedure. Indeed, sometimes, the
use of a crossover can bring the search process back to an already
visited region of the search space without any chance of further im-
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provement, or to a new region far from the global optimum. More-
over, hybrid algorithms do not have a specific memory to store in-
formation about past searches and thus can hardly discover useful
patterns that may exist among the solutions encountered during the
search trajectories (though inheriting color classes with crossovers
can be seen as some sort of ”learning” of good patterns).

On the other hand, numerous algorithms have been proposed
since decades from the machine learning community to leverage
statistical learning methods for solving difficult combinatorial search
problems (see the recent survey of [1] on this topic). These at-
tempts have been given a new lease of life, with the emergence
of deep learning techniques for combinatorial optimization prob-
lems [7, 46], inspired from the great success of the AlphaZero al-
gorithm for combinatorial games [40]. In particular, some recent
works have applied reinforcement learning and deep learning to
solve graph coloring problems [20, 26]. Nevertheless, these stud-
ies rarely exploit specific knowledge of the problem, which makes
these learning approaches more general but may limit their perfor-
mance. Indeed, the results obtained by this type of approach are
for the moment far from the results obtained by state of the art
algorithms on graph coloring problems such as hybrid algorithms
[27, 29, 31] and simulated annealing algorithms [44]. We can men-
tion however recent studies which try to take advantage of efficient
local search algorithms and machine learning techniques [14, 49]
with promising results for graph coloring problems.

In this work, we aim to push further the integration of ma-
chine learning and combinatorial optimization, by proposing a new
framework which combines deep neural networks with the best
tools of ”classical” metaheuristics for graph coloring, so as to solve
very difficult graph coloring problems which still resist the best
current methods. In order to achieve this integration, we revisit an
idea proposed in [4] twenty years ago. In [4], Boyan and Moore
remarked that the performance of a local search procedure depends
on the state from which the search starts and therefore proposed to
use a regression algorithm to predict the results of a local search al-
gorithm. Once learned, this predictive model can help to select new
good starting points for the local search and to accelerate the search
process. We exploit this idea with the use of modern deep learning
techniques to better select promising crossovers among those pos-
sible ones in each generation of a memetic algorithm. We design
a specific neural network architecture for graph coloring problems
inspired by deep set networks [48, 28], in order to make it invari-
ant by permutation of the color classes. Furthermore, as training
a deep neural network requires a large amount of data, we follow
the recent work [15] to adopt a large population P (|P| >≈ 104)
for the underlying memetic algorithm, whose individuals evolve in
parallel in the search space. In order to learn the neural network
and to compute all the local searches in parallel for all the indi-
viduals of the population, we leverage GPU (Graphic Processing
Units) computation.

As a proof of concept, we apply this approach to solve the
weighted vertex coloring problem (WVCP) and the vertex coloring
problem (COL). The classical COL is well known and has been
studied for a long time. The WVCP has recently attracted a lot of
interest in the literature [16, 33, 38, 42, 47]. In the WVCP, a strictly
positive weight wv is associated to each vertex v. The goal of the

problem is to find a legal coloring minimizing the global score

f (S ) =

k∑
i=1

max
j∈Vi

w j, (2)

where Vi (1 ≤ i ≤ k) is a color class including all the vertices
receiving color i and max

j∈Vi
w j is the largest weight of color class Vi.

One observes that the COL is a special case of the WVCP when
the vertex weight wv is equal to one for all the vertices. In this case,
minimizing the function f (Eq. (2)) is equivalent to the minimiza-
tion of the number of colors. In the presentation that follows, we
focus on the WVCP. However, for computational assessments, we
present experimental results for both the WVCP and the COL.

The WVCP has a number of practical applications in different
fields such as matrix decomposition problems [38], batch schedul-
ing [13] and manufacturing [19]. In addition to heuristic algo-
rithms [16, 33, 38, 42, 47], it has been addressed by exact methods
[6, 9, 30].

2. General framework - revisiting the STAGE algorithm with
deep learning and memetic algorithm

Given a problem whose goal is to find an optimal solution with
respect to a minimization objective f , the expected search outcome
of a stochastic local search algorithm A can be defined as

E[ fA(S )] =
∑
S ′∈S

P(S
A
−→ S ′) f (S ′), (3)

where P(S
A
−→ S ′) is the probability that the search starting from S

will terminate in state S ′. E[ fA(S )] evaluates the potential interest
of S as a starting state for the algorithm A.

The main idea of the STAGE algorithm [4] was to approximate
the expectation E[ fA(S )] by a regression approximation model f̂A :
Rd → R, taking as input the encoded real-valued feature vector
F(S ) (with d features) of a state S . This function f̂A can be a linear
regression model or a more complex non linear model such as a
neural network.

Starting from a first random initial solution S , and the function
approximator f̂A, the STAGE algorithm evolves in three steps:

1. Optimize f using A. From S , it runs the local search algo-
rithm A, producing a search trajectory that ends at a local
optimum S ′.

2. Train f̂A. For each point S i on the search trajectory, use
{(F(S i), f (S ′)} as a new training pair for the function approx-
imator.

3. Optimize f̂A using hillclimbing. Continuing from S ′, per-
form a hillclimbing search on the learned objective function
f̂A. This results in a new state S which should be a new good
starting point for A.

We revisit this idea with an adaptation for each of the three
steps of the STAGE algorithm.

1. First, regarding the first step, we run in parallel p local searches
with algorithm A starting from different states to generate p
different search trajectories (instead of a single one). This
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makes it possible to build a training dataset with a high di-
versity of examples.

2. Secondly, regarding step 2, we do not use any prior mapping
F from states to features. Following the current trend in deep
learning, the embedding of the state can be directly learned in
an end-to-end pipeline with a deep neural network, denoted
as fθ : S → R. We make this neural network invariant by
permutation of the group of colors V j in the coloring S ∈ S,
which is a very important feature of all graph coloring prob-
lems, by adapting the deep set network architecture proposed
in [48] (see Section 2.3).

3. Thirdly, in step 3 of the original STAGE algorithm, a hill-
climbing algorithm is used to optimize the current solution
guided by the objective function f̂A. However, as we address
a very complex problem and we use a complex non-convex
and non-linear function (deep neural network), it is difficult
to optimize it using a hillclimbing algorithm. We tried to use
more complex algorithms such as tabu search to optimize it,
but there is a deeper problem, which is the question of gener-
alization. Indeed, if a state S is too different from the states
already seen before in the training dataset, and in particu-
lar if the color groups V j that composed it are too different
from the color groups already seen before by the neural net-
work, we expect that fθ(S ) can be very inaccurate for the es-
timation of E[ fA(S )]. Therefore, we propose to replace this
hillclimbing procedure by a crossover operation between dif-
ferent members of a population of candidate solutions. By
recombining the different color groups already seen before
by the learning algorithm we expect the approximation of
E[ fA(S )], given by fθ(S ), to be more precise.

The pseudo-code of the proposed new deep learning guided
memetic framework for graph coloring (DLMCOL) is shown in
Algorithm 1.

The algorithm takes a graph G as input and tries to find a legal
coloring S with the minimum score f (S ). At the beginning, all
the individuals of the population are initialized in parallel using a
greedy random algorithm (cf. Section 2.1) and the neural network
fθ is initialized with random weights. Then, the algorithm repeats a
loop (generation) until a stopping criterion (e.g., a cutoff time limit
or a maximum number of generations) is met. Each generation t
involves the execution of five components:

1. The p offspring individuals of the current population are si-
multaneously improved by running in parallel p local searches
on the GPU to find new legal solutions with a minimum score
f (cf. Section 2.2). For each of the p improved individuals
from step 1, we record S ′i , the legal state with the lowest
score f (S ′i ) obtained during each local search trajectory.

2. From these p local search trajectories, a supervised learning
training dataset D = {(Xi, yi)}

p
i=1 is built with Xi = S O

i and
yi = f (S ′i ) for 1 ≤ i ≤ p and the neural network fθ is trained
on this dataset during N epochs (cf. Section 2.3).

3. The distances between all pairs of the existing individuals
{S 1, . . . , S p} and new individuals {S ′1, . . . , S

′
p} are computed

in parallel (cf. Section 2.4).
4. Then the population updating procedure (cf. Section 2.5)

merges the 2p existing and new individuals to create a new

Algorithm 1 Deep learning guided memetic framework

1: Input: Graph G = (V, E), population size p.
2: Output: The best legal coloring S ∗ found so far
3: P = {S 1, . . . , S p} ← population initialization /∗ Section 2.1
4: Initialize the neural network fθ with random weights.
5: S ∗ = ∅ and f (S ∗) = ∞

6: {S O
1 , . . . , S

O
p } ← {S 1, . . . , S p}

7: repeat
8: for i = {1, . . . , p}, in parallel do
9: S ′i ← local search(S O

i ) /∗ Section 2.2
10: end for
11: S ′∗ = argmin{ f (S ′i ), i = 1, . . . , p}
12: if f (S ′∗) < f (S ∗) then
13: S ∗ ← S ′∗

14: end if
15: Build supervised learning training dataset D =

{(S O
i , f (S ′i ))}

p
i=1} and train the neural network fθ on it.

/∗ Section 2.3.
16: D← distance computation(S 1, . . . , S p, S ′1, . . . , S

′
p) /∗

Section 2.4
17: {S 1, . . . , S p} ← pop update(S 1, . . . , S p, S ′1, . . . , S

′
p,D) /∗

Section 2.5
18: {S O

1 , . . . , S
O
p } ← build and select offsprings(S 1, . . . , S p, fθ,D)

/∗ Section 2.6
19: until stopping condition met
20: return S ∗

population of p individuals, by taking into account the fitness
f of each individual and the distances between individuals in
order to maintain some diversity in the population.

5. Finally each individual is matched with its K nearest neigh-
bors in the population. For each individual, K offspring solu-
tions are generated and the one with the best expected score
evaluated with the neural network fθ is selected (cf. Sec-
tion 2.6). After this selection procedure, p offspring indi-
viduals are selected and become the p new starting points
{S O

1 , . . . , S
O
p }which are improved in parallel by the local search

procedure during the next generation (t + 1).

The algorithm stops when a predefined condition is reached and
returns the best recorded solution S ∗. The subsequent subsections
present the five components of this deep learning guided memetic
framework applied to the WVCP. In order to show some generality
of the proposed framework, an application of this approach to the
vertex coloring problem is presented in Section 2.7.

2.1. Initialization with a greedy random algorithm for the WVCP
In order to initialize the individuals of the population, we use a

randomized greedy procedure which is known to be very effective
for the WVCP [33, 42].

First all the vertices are sorted in descending order of the weights
and then in descending order of the degrees. Then a color is as-
signed to each vertex without creating conflicts by randomly choos-
ing a color in the set of the already used color. If no color is avail-
able for the vertex i with weight wi, a new color is created (and the
score of the current solution is increased by wi).
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Notice that for the WVCP, the number of used colors to find a
legal coloring S minimizing the global score f (S ) is unknown in
advance. However, it is at least strictly greater than the chromatic
number of the graph G. In our case, we use a predefined maxi-
mum number of colors k in order to specify the size of the layers of
the neural network and to allocate memory for the local searches
on the GPU. Specifically, we set k to be the maximum number of
colors used in the initial solutions generated by the randomized
greedy procedure. The new search space S restricted with the k
available colors is composed of the partitions of vertices V into k
color groups:

Sk = {{V1,V2, . . . ,Vk} : ∪k
i=1Vi = V,Vi ∩ V j = ∅, i , j, 1 ≤ i, j ≤ k}.

Note that the best solution found for each benchmark graph of
the WVCP presented in Section 3 typically requires significantly
less colors than k.

2.2. Parallel iterated feasible and infeasible Tabu Search

For local optimization, we employ a parallel iterated tabu search
algorithm to simultaneously improve the individuals of the current
population. It relies on the adaptive feasible and infeasible tabu
search procedure (AFISA) proposed in [42], with some slight mod-
ifications. AFISA is a sequential procedure that improves a starting
legal or illegal coloring by optimizing the fitness function g given
by:

g(S ) = f (s) + φ × c(S ), (4)

where φ ∈ R is an adaptive coefficient for the penalty function
c(S ) =

∑
{u,v}∈E δuv with:

δuv =

1 if u ∈ Vi, v ∈ V j and i = j and i , 0,
0 otherwise.

(5)

AFISA improves the current coloring by successively changing
the color of a vertex in the search space Sk (with a maximum of k
colors). Such a change is called an one-move. To prevent the search
from revisiting already visited colorings, a vertex cannot change its
color for the next tt (called tabu tenure) iterations1. The tabu tenure
is set to be L + 0.2 × |V |, where L is a random integer from [0; 9]
and |V | is the number of vertices in the graph.

Like in the AFISA algorithm, we perform successive searches
by changing dynamically the value of the parameter φ in order
to navigate in the space of legal and illegal colorings. The max-
imum number of successive local searches is set to maxLS Iters =

10. At the beginning the parameter is set to the value k/(2|V |) ∗
maxi=1,...,|V | wi for each individual j of the population. At the end of
each successive tabu search, if the best current solution S j found by
the tabu search procedure is legal (c(S j) = 0), then φ is divided by
2 (in order to increase the chance of visiting infeasible solutions);

1In the original AFISA algorithm, the tabu tenure concerns past moves (as in
the original TabuCol algorithm [17]) instead of completely freezing a vertex. How-
ever we empirically observed that it is more effective to freeze a vertex that has
just changed its color in order to avoid too much color changes of the same vertex
without any improvement of the score (plateau).

otherwise φ is multiplied by 2 (in order to guide the search toward
feasible regions)2. For the last iteration of this iterative tabu search
algorithm, we set φ = 2×maxi=1,...,|V | wi to make sure that each tabu
search is forced at least one time toward a legal solution.

The pseudo code of the parallel iterative tabu search is shown
in Algorithm 2, which runs on the GPU to raise the quality of the
current population in parallel. All the data structures required dur-
ing the search are stored in each local thread memory running tabu
search except the information of the graph which is stored in the
global memory and shared by all tabu search runs.

Algorithm 2 Parallel iterated tabu search with feasible and infea-
sible solutions

1: Input: Population P = {S O
1 , . . . , S

O
p }, depth of tabu search

nbIterTS , maximum number of successive local searches
maxLS Iters, weights wi of each vertex i.

2: Output: Improved population P′ = {S ′1, . . . , S
′
p}.

3: for i = {1, . . . , p}, in parallel do
4: S ′i = ∅ and f (S ′i ) = ∞ /∗ Records the best solution found

so far on each local thread.
5: end for
6: iter = 0
7: while iter < maxLS Iters do
8: for i = {1, . . . , p}, in parallel do
9: S i ← feasible and infeasible tabu search(S i, nbIterTS , φi)

/∗ Improve the solutions by running the tabu search pro-
cedure to minimize the extended fitness function g with
search depth nbIterTS and penalization coefficient φi.

10: if f (S i) < f (S ′i ) and c(S i) = 0 then
11: S ′i ← S i

12: end if
13: if iter < maxLS Iters − 1 then
14: if c(S i) = 0 then
15: φi = φi/2
16: else
17: φi = φi × 2
18: end if
19: else
20: φi = 2 × max

i∈1,...|V |
wi

21: end if
22: end for
23: iter = iter + 1
24: end while
25: return P′ = {S ′1, . . . , S

′
p}

2.3. Deep neural network training
Once all the parallel tabu searches are done, we collect the start-

ing states S O
i and the best score f (S ′i ) found on each local thread.

These data are then used to build a supervised training dataset

2In the original AFISA algorithm, φ is initially set to 1 and cannot be lower
than 1. The adaptive mechanism only increases or decreases its value by 1. We
empirically observed that dividing or multiplying its value by 2 (instead of simply
changing its value by 1) appears to be more effective for faster adjustments, espe-
cially for graphs with heavy weights.
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D = {S O
i , f (S ′i )}

p
i=1 with p examples whose entries are the S O

i in
Sk and the corresponding targets are real values f (S ′i ).

A neural network fθ : Sk → R, parametrized by a vector θ
(initialized at random at the beginning), is successively trained on
each new dataset D produced at each generation (online training)
in order to be able to be more and more accurate at predicting the
expected score obtained after the local search procedure for any
new starting point S ∈ Sk.

This neural network fθ takes directly as input a coloring S as
a set of k vectors V j, S = {V1, . . . ,Vk}, where each V j is a binary
vector of size n indicating if the vertex i belongs to the color group
j. For such an entry S , the neural network outputs a real value
noted fθ(S ) ∈ R.

For the WVCP, one important characteristic of our neural net-
work fθ is that it is invariant by permutation of the group of colors
of any solution S given as input. It should be a function fθ from Sk

to R so that for any permutation σ of the input color groups

fθ(Vσ(1), . . . ,Vσ(k)) = fθ(V1, . . . ,Vk). (6)

As indicated in [28, 48], such permutation invariant functions
can be obtained by combining the treatments of each color group
vector V j with an additional ”color-averaging” operation that per-
forms an average of the features across the different color groups.
It has notably been shown in [28] that such operations are sufficient
to recover all invariant functions from Sk to R.

Using the notations proposed in [28], for a coloring S = {V1, . . . ,Vk},
the color group invariant network fθ is defined as

fθ(S ) =
1
k

k∑
i=1

(φθP ◦ φθP−1 ◦ · · · ◦ φθ0 (S ))i, (7)

where each φθ j is a permutation invariant function from Rk×l j−1 to
Rk×l j , where l j’s are the layer sizes. Note that for the first layer
l j−1 = |V |.

Each layer operation φθ with l input features and L output fea-
tures includes a weight matrix Λ ∈ Rl×L that treats each color group
independently, a color-mixing weight matrix Γ ∈ Rl×L and a bias
vector β ∈ Rl.

As in classical multi-layer feed-forward neural networks, Λ

processes each color group vector of the solution S independently.
Then, the weight matrix Γ processes the average vector ρ(S ) com-
puted across the different k color groups for each feature given by

ρ(S ) = ρ(V1, . . . ,Vk) (8)

=
1
k

k∑
i=1

Vi. (9)

The output of the layer φθ is a matrix in Rk×L, which is the
concatenation of k output vectors of size L:

φθ(S ) = (φθ(S )1, . . . , φθ(S )k), (10)

where for 1 ≤ i ≤ k,

φθ(S )i = LeakyReLU0.2(β + ViΛ + ρ(S )Γ). (11)

LeakyReLU0.2 is a non linear activation function defined as

LeakyReLU0.2(x) = max(0.2 × x, x).

After each local search procedure the neural network fθ is trained
during N epochs on the new dataset D using Adam optimizer [24]
with initial learning rate lr = 0.001 and batches of size b = 100 in
order to minimize the mean square error loss (MSE) between the
outputs and the targets. In order to speed up the training, prior to
the non linearity we apply a batch normalization layer [21], adapted
to keep the invariant property of the network. For the layer j of the
network, the output of the invariant batch normalization layer is

y =
x − E[x]
√

Var[x] + ε
∗ γ + µ, (12)

where x is the input of size (b, k, l j). The mean and standard-
deviation of x are vectors of size l j calculated over the mini-batches
and all the k colors (in order to keep the invariance property). γ and
µ are learnable parameter in R. ε = 10−5 is a value added to the de-
nominator for numerical stability. As in the original work of [21],
during training the batch normalization layer keeps running esti-
mates of its computed mean and variance, which are then used for
normalization during evaluation. The running estimates are kept
with a default momentum of 0.1.

Once learned, this neural network will be used to select new
crossovers for the next generation (see Section 2.6 below), but be-
fore performing crossovers, we must decide if the new legal col-
orings obtained after the parallel tabu search procedure can be in-
serted into the population. For this purpose, a distance-and-quality
based pool update strategy is used to create a new population satis-
fying a minimum spacing among the individuals to ensure popula-
tion diversity [37]. Maintaining this minimum spacing requires the
computation of pairwise distances between the solutions, which is
presented in the next subsection.

2.4. Distance computation

Following [14, 27, 35], for population updating, we use a p× p
matrix to record all the distances between any two solutions of the
population. This symmetric matrix is initialized with the p × (p −
1)/2 pairwise distances computed for each pair of individuals in
the initial population, and then updated each time a new individual
is inserted in the population.

To merge the p new solutions and the p existing solutions, we
need to evaluate (i) p × p distances between each individual in the
population P = {S 1, . . . , S p} and each improved individual in P′ =

{S ′1, . . . , S
′
p} and (ii) p× (p−1)/2 distances between all the pairs of

individuals in P′. All the p×p+ p×(p−1)/2 distance computations
are independent from one another, and are performed in parallel on
the GPU (one computation per thread).

Given two colorings S i and S j, we use the set-theoretic par-
tition distance D(S i, S j) to measure the dissimilarity between S i

and S j, which corresponds to the minimum number of vertices that
need to be displaced between color classes of S i to transform S i to
S j [36]. The exact partition distance between two solutions can be
calculated with the Hungarian algorithm [25] in O(|V | + n3) time.
However, given that we need to compute millions of distances at
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each generation with the large population, we instead adopt the ef-
ficient approximation algorithm presented in [36], which scales in
O(|V |).

2.5. Population update

According to [35, 37], the population update procedure aims to
keep the best individuals, but also to ensure a minimum spacing
distance between the p individuals. The update procedure is se-
quential, as we need to compare one by one existing individuals in
the population Pt = {S 1, . . . , S p} at generation t and the tabu search
improved offspring solutions in the population P′ = {S ′1, . . . , S

′
p}.

We use the population update procedure proposed in [14]. This
procedure greedily adds one by one the best individuals of Pall =

{S 1, . . . , S p} ∪ {S ′1, . . . , S
′
p} in the population of the next generation

Pt+1 until Pt+1 reaches p individuals, so that D(S i, S j) > |V |/10
(|V | is the number of vertices), for any S i, S j ∈ Pt+1, i , j. Each
D(S i, S j) corresponds to the approximation of the set-theoretic par-
tition distance which was precomputed in the last step of the algo-
rithm.

2.6. Parent matching and selection of crossovers with the neural
network

At each generation, each individual of the population is matched
with its K nearest neighbors in the population (in the sense of the
distance evaluated in subsection 2.4). We do not consider perform-
ing crossovers between individuals too far away in the search space
as this may result in poor quality offsprings (cf. [31]).

For each individual i, K offspring solutions S j
i (1 ≤ j ≤ K) are

generated using the well-known GPX crossover [11, 31], where the
individual i is taken as the first parent and its neighbor as the second
parent (the GPX crossover is not symmetric).

For each individual i, among these K crossovers, we select the
one with the best expected score evaluated with the neural network
of Section 2.3:

S 0
i = argmin

S j
i ,1≤ j≤K

fθ(S
j
i ). (13)

After this selection procedure, p offspring solutions are iden-
tified that serve as the p new starting points {S O

1 , . . . , S
O
p } of the

parallel tabu search procedure during the next generation (t + 1).

2.7. Adaptations of the algorithm for the vertex coloring problem

The vertex coloring problem COL aims at finding the smallest
k for a given graph G (its chromatic number χ(G)) so that G ad-
mits a legal coloring using k colors. Following the literature on
graph coloring [10], we tackle this problem by solving a series of
k-coloring problems (k-COL) with decreasing k values. Starting
from an initial number of k colors, as soon as a legal k-coloring
is found, k is decreased by one. This process is repeated until no
legal solution with k colors can be found and the last k admitting
a legal k-coloring defines an upper bound of the chromatic number
of the graph. Let k be the given colors and S = {V1,V2, . . . ,Vk} be
a candidate k-coloring, the k-COL problem can be seen as the op-
timization problem that aims to minimize the number of conflicts
given by f (S ) (until it reaches 0):

f (S ) =
∑
{u,v}∈E

δuv, (14)

where

δuv =

1 if u ∈ Vi, v ∈ V j and i = j
0 otherwise.

(15)

For this minimization problem, we use the same deep learning
guided memetic framework presented in the last subsections. The
only parts of the general framework that require specific adapta-
tions for the k-COL concern the initialization and the parallel local
search. For the k-COL, we use a pure random initialization pro-
cedure. At the beginning, for each individual of the population,
each node v ∈ V receives a random color in {1, . . . , k}. For the lo-
cal search, we run in parallel the popular TabuCOL algorithm [17]
(i.e., its efficient implementation presented in [11]) on the GPU to
raise the quality of the current population during 128 × |V | itera-
tions, where |V | is the order of the graph. TabuCOL is launched
with its default parameters setting like in [31].

3. Experimental results

This section is dedicated to a computational assessment of the
proposed deep learning memetic framework for solving the weighted
vertex coloring problem and the conventional vertex coloring prob-
lem, by making comparisons with state-of-the-art methods.

3.1. Benchmark instances
We carried out extensive experiments on the WVCP benchmark

graphs used in the recent studies [33, 41, 47]: the pxx, rxx, DI-
MACS/COLOR small, and DIMACS/COLOR large instances. The
pxx and rxx instances are based on matrix-decomposition problems
[38], while DIMACS/COLOR small [6, 9] and DIMACS/COLOR
large [41] are based on DIMACS and COLOR competitions.

As indicated in [33, 47], for the WVCP, a preprocessing pro-
cedure can be applied to reduce a graph G with the set of weight
W. For each clique Cl with l vertices, if we note w′ the small-
est weight of this set, all the vertices i in the graph with a degree
equal to l − 1 and a weight wi < w′ can be removed from the graph
without changing the optimal WVCP score of this instance. Enu-
merating all the cliques of the graph is a challenging problem. We
used the igraph python package3 with a timeout of ten seconds for
all instances. For small instances it is enough to enumerate all the
cliques of a graph. For our experimental evaluation, DLMCOL as
well as all the competitors take these reduced graph as input.

For the vertex coloring problem COL, we conducted experi-
ments on the classical DIMACS benchmark graphs used in most
of the best coloring methods for this problem [31, 44]. These in-
stances can be separated into two categories: easy instances and
difficult instances. For the easy instances, most recent heuristics
can reach the chromatic number (or its best known upper bound) in
a short amount of time, while for the difficult instances, no single
algorithm is able to reach the chromatic number or the best known

3https://igraph.org/python/
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result for all these graphs. In this section, we only report the results
for the most difficult instances. The results for the easy DIMACS
instances are summarized in Appendix A.

For the WVCP and the COL, due to local memory limit on each
thread of the GPU for the local searches, the DLMCOL algorithm
was not runned on the biggest instances of the DIMACS/COLOR
benchmarks (when n×k > 200000): C2000.5, C2000.9, DSJC1000.9,
r1000.5 and wap01-4a.

3.2. Implementation and parameter setting
The DLMCOL algorithm was coded in Python with the Numba

0.53.1 library for CUDA kernel implementation (local searches,
distance computations, crossovers). The neural network was im-
plemented in Pytorch 1.8.1. DLMCOL is specifically designed to
run on GPUs. In this work we used a V100 Nvidia graphic card
with 32 GB memory. The code of DLMCOL is publicly available
at https://github.com/GoudetOlivier/DLMCOL_WVCP.

The population size p of DLMCOL is set to p = 20480, which
is chosen as a multiple of the number of 64 threads per block. This
large population size offers a good performance ratio on the Nvidia
V100 graphics cards, while remaining reasonable for pairwise dis-
tance calculations in the population, as well as the memory occu-
pation on the GPU for medium instances (n ≤ 500). However for
large instances (n > 500 and k > 90), we set p = 8192 in order to
limit the global memory occupation on the device.

At each generation of DLMCOL, each of the p tabu searches
is executed on a single GPU thread independently. For each tabu
search, the neighboring solutions at the current iteration are evalu-
ated efficiently with the incremental evaluation method of [11]. For
fast memory access, a per-thread local memory is used to store spe-
cific local information such as the current solution being improved
and the tabu tenure. The threads are grouped by block of size 64
and launched on the GPU grid. No per-block shared memory is
used because the tabu searches are run independently on different
block. However, a global memory is employed to store general
information about the graph such as its adjacency matrix to avoid
information duplication. All these p tabu searches are launched
with a CUDA kernel function written in Numba and the best re-
sults obtained during each tabu search are transferred to the CPU
after synchronization. Note that these tabu searches performed on
the GPU could be replaced by CPU implementations (e.g. run on
a multi-core environment). However, it was practical in our case to
run the tabu searches on the same GPU device that is already used
for training the neural network.

The number of tabu iterations nbIterTS depends on the size
|V | of the graph. The maximum number of iterated tabu searches
launched at each generation, LS Iters, is set to 10. The minimum
spacing distance MS used for pool update is set to |V |10 .

For the neural network we implemented an architecture with 4
hidden layers of size 5|V |, 2|V |, |V | and |V |//2 for the WVCP and
9 hidden layers of size 10|V |, 5|V |, 2|V |, 2|V |, 2|V |, 2|V |, 2|V |, |V |
and |V |//2 for the k-COL problem. The neural network is trained
at each generation with Adam optimizer [24] and initial learning
rate lr = 0.001.

Tables 1 and 2 summarize the parameter settings for the WVCP
and the k-COL problems, which can be considered as the default
and were used for all our experiments.

Table 1: Parameter setting in DLMCOL for the WVCP and the COL

Parameter Description Value
p Population size 20480 (8192)
maxLS Iters Maximum number of successive local searches 10
nbIterTS Depth of tabu search 10 × |V |
α Tabu tenure parameter 0.2
MS Minimum spacing between two individuals |V |

10
lr Learning rate of the neural network 0.001
N Number of epochs of the training 20
K Number of considered neighbors for crossover selection 32

Table 2: Parameter setting in DLMCOL for the k-COL problem

Parameter Description Value
p Population size 20480 (8192)
nbIterTS Depth of tabu search 128 × |V |
α Tabu tenure parameter 0.6
MS Minimum spacing between two individuals |V |

10
lr Learning rate of the neural network 0.001
N Number of epochs of the training 5
K Number of considered neighbors for crossover selection 16

3.3. Comparative results on weighted vertex coloring benchmarks

This section shows a comparative analysis on the pxx, rxx, DI-
MACS/COLOR small, and DIMACS/COLOR large instances with
respect to the state-of-the-art methods [33, 41, 47]. The refer-
ence methods include the three best recent heuristics: AFISA [41],
RedLS [47] and ILS-TS [33]. When they are available, we also in-
clude the optimal scores obtained with the exact algorithm MWSS
[6] and extracted from [33].

Given the stochastic nature of the DLMCOL algorithm, each
instance was independently solved 10 times. For small instances
presented in Tables 3–4, a time limit of 1 hour was used. How-
ever for medium and large instances in Tables 5 and 6, as training
the neural network and performing all the tabu searches with the
large population is time consuming, a cutoff limit of 48 hours was
retained.

For a fair comparison, we also launched the reference methods
RedLS [47] and ILS-TS [33] during 48 hours on a computer with an
Intel Xeon E5-2670 processor (2.5 GHz and 2 GB RAM), until no
improvement was observed. As the available AFISA binary code
does not allow setting a cutoff time, we only report its results men-
tioned in the original article [41]. However, we acknowledge that
the comparison remains difficult in terms of computational time
between DLMCOL and the competitors, as DLMCOL was run on
GPUs while the other algorithms, AFISA, RedLS and ILS-TS used
CPUs. Therefore the timing information is provided for indicative
purposes only.

Columns 1, 2, and 3 of Tables 3–6 show the characteristics of
each instance (i.e., name of the instance, number of vertices |V |,
and optimal score reported in the literature if available). Columns
4-9 present the best and average scores obtained by the reference
algorithms, as well as the average time in second required to obtain
their best results. The results of the proposed DLMCOL algorithm
are reported in columns 10 and 11. Boldfaced numbers show the
dominating values while a star indicates a new upper bound4.

4The certificates of the new best solutions from DLMCOL for the WVCP are
available at https://github.com/GoudetOlivier/DLMCOL_WVCP.
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The optima for the instances of Tables 3-5 are known except
for four instances DSJC125 and two instances R100. As a result,
no algorithm can further improve these bounds. For these graphs,
the proposed algorithm and the latest ILS-TS algorithm report the
same results and both algorithms perform better than AFISA and
RedLS. However, the computation time required by DLMCOL to
achieve its results is in general higher than the reference algorithms
in particular when compared with ILT-TS. This is not really sur-
prising given that the neural network training requires additional
computation time in addition to the time needed by the optimiza-
tion components.

For the larger instances reported in Table 6, DLMCOL obtains
excellent results by reaching the best-known score for 31 over 49
instances. For 11 of them, DLMCOL even finds new upper bounds
that had never been reported before. In particular, improvements
are quite important for 3 instances with a high reduction of the best-
known scores: DSJC500.5 from 707 to 685, flat1000 50 0 from
1184 to 924 and latin square 10 from 1542 to 1480.

However, DLMCOL does not work well for large sparse graphs
with low edge density such as DSJC1000.1, inithhx.i.2, inithhx.i.3
and wapXXa. For these graphs, it seems that it is very hard for the
neural network to learn a common backbone of good solutions. An
analysis of these negative results is proposed in Section 4.2.

For the largest graphs, we notice that the DLMCOL algorithm
converges slowly, but continually. Even after 48 hours, DLMCOL
still improves its solutions. This indicates that the algorithm is not
trapped in local optima, which is a common problem for most exist-
ing WVCP algorithms. For the graphs DJSC1000.5, flat1000 60 0
and flat1000 76 0, DLMCOL was able to obtain still better new
upper bounds of 1185, 1162, 1165, after 138, 98 and 95 hours, re-
spectively, raising the total number of improved upper bounds to
14 for the WVCP.

For the large instances in Table 6, DLMCOL and the best com-
petitors RedLS and ILS-TS have their own advantage respectively,
while the proposed algorithm has the best overall success rate of
63% against AFISA (10%), RedLS (53%) and ILS-TS (49%).

3.4. Comparative results on vertex coloring benchmark
We show in this section the generality of the proposed approach

by applying the approach to the vertex coloring problem. We present
computational results on the 18 difficult DIMACS instances for
the COL with respect to 12 state-of-the-art graph coloring meth-
ods. These instances are challenging because only a few algorithms
can reach the best known results shown in Table 7 and only very
few algorithms can attain the best known results for five graphs
DSJC500.5, DSJC1000.5, flat 300 28 0, flat 1000 76 0, latin sqr 10.
Given that the COL is a special case of the WVCP when the vertex
weight is equal to one, we also tested, for the first time, the two best
WVCP algorithms, RedLS [47] and ILS-TS [33], on these difficult
DIMACS instances5. Each algorithm was run 10 times to solve
each instance under the relaxed condition of 48 hours per instance
and per run. We observe that these local search based WVCP al-
gorithms perform similarly compared to other popular local search
coloring algorithms (see Table 8 below).

5AFISA [41] was not launched as the available binary code does not allow set-
ting a cutoff time

Table 7 summarizes the computational results of our DLM-
COL algorithm. Columns 2 and 3 give the features of the tested
instance: the number of vertices |V | and the density of the graph
(dens.). Columns 4-6 present the chromatic number of the graph
(χ(G), when known) and the best upper bound (k∗) reported so far
in the literature with the references, including the two WVCP al-
gorithms (RedLS [47] and ILS-TS [33]). In columns 7-9, the com-
putational statistics of our DLMCOL algorithm are given, with the
best (smallest) number of colors obtained to reach a legal solution
(kbest), the associated success rate (SR) and the average time in sec-
onds to reach the solution with the given k.

Following the common practice to report comparative results in
the coloring literature, we also display in Table 8 the best solution
found by each algorithm corresponding to the smallest number k
of colors needed to reach a legal coloring for a graph. Column 2
corresponds to the best k found in the literature. Columns 3 dis-
plays the best k found by DLMCOL. Columns 4-9 and columns
10-17 respectively report the best k found by state-of-the art local
search algorithms, including the two WVCP algorithms (RedLS
[47] and ILS-TS [33]), and population based algorithms. Results
corresponding to the best k found so far are displayed in boldface.

In Table 8, we regroup the three references [43], [44] and [45]
in the same column (Column 16) as they correspond to the same
QA-COL algorithm launched with different parameters and using
different computing tools. We report the best k jointly reported in
these three references.

It should be mentioned that these DIMACS instances have been
studied for a long time (over thirty years) and some of the best
known results have only been obtained by very few algorithms and
sometimes with a very low success rate. Different computing tools
have been used (such as multiple core servers with parallel com-
puting) under specific and relaxed conditions (e.g., large run time
from several days to one month, specific fine tuning of the hyper-
parameters for each given instance, etc.).

As displayed in Tables 7 and 8, DLMCOL can reach all the best
results in the literature for these instances except for latin sqr 10,
for which a solution with k = 97 was only found once in [44]. In
general, DLMCOL is very competitive for solving very difficult in-
stances of medium size such as DSJC500.5 and flat300 28 0. No-
tably it finds a legal 47-coloring for DSJC500.5 with a success rate
of 5/10 (only two reference algorithms QA-COL [45] and HEAD
[31] can reach this result occasionally with specifically fine-tuned
hyperparameters). DLMCOL also finds a solution with k = 28 col-
ors for flat300 28 0, which is difficult for the two best competitors
QA-COL [43, 44, 45] and HEAD [31]. For this instance, perform-
ing a strong exploration of the search space with a large population
is very beneficial, as it seems that there exists only one legal solu-
tion with k = 28 colors. Indeed, dozens of solutions found by our
algorithm are always the same up to color permutation. Finally,
one notices that the DLMCOL algorithm is quite time consuming
to solve large instances, given that it uses a very large population.

4. Analysis of important factors in the algorithm

In this section, we analyze the impacts of two important factors
of the DLMCOL algorithm: (i) the very large population and (ii)
the contributions of deep learning.
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Table 3: Comparative results of DLMCOL with the state-of-the-art methods (AFISA, RedLS, ILS-TS) for DIMACS/COLOR small instances of the WVCP. Dominating
results are indicated in boldface.

Instance AFISA RedLS ILS-TS DLMCOL
Graph name |V | Opti. Best (Avg.) t (s) Best (Avg.) t (s) Best (Avg.) t (s) Best (Avg.) t (s)
DSJC125.1g 124 - 23 (24) 3016 23 0.01 23 3 23 27
DSJC125.1gb 124 - 90 (92.5) 402 91 (91.7) 696 90 15 90 28
DSJC125.5g 125 - 71 (72.3) 216 72 32895 71 77 71 183
DSJC125.5gb 125 - 243 (250.2) 369 241 (241.3) 13528 240 219 240 40
DSJC125.9g 125 169 169 (169.9) 16 169 3493 169 1.27 169 51
DSJC125.9gb 125 604 604 (605.5) 444 604 17.62 604 59.8 604 51
GEOM100 100 65 65 (65.0) 0.81 65 (67.5) 0.01 65 0.03 65 27
GEOM100a 100 89 89 (89.5) 110 90 (93.3) 0.01 89 0.65 89 30
GEOM100b 100 32 32 (33.1) 59 32 0.6 32 0.02 32 18
GEOM110 110 68 68 (68.0) 34 68 (69.9) 0.03 68 0.05 68 19
GEOM110a 110 97 97 (97.8) 177 97 (99.4) 0.04 97 0.58 97 20
GEOM110b 110 37 37 (37.9) 131 37 (37.71) 22.1 37 0.25 37 27
GEOM120 120 72 72 33 72 (73.1) 9.0 72 0.03 72 25
GEOM120a 120 105 105 (106.3) 156 105 (105.9) 1.96 105 0.77 105 30
GEOM120b 120 35 35 (37.3) 67.7 35 (35.25) 14.38 35 0.81 35 33
GEOM30b 30 12 12 0.02 12 0.01 12 0.01 12 20
GEOM40b 40 16 16 0.03 16 (16.6) 0.01 16 0.01 16 20
GEOM50b 50 18 18 0.02 18 (18.2) 62.02 18 0.01 18 15
GEOM60b 60 23 23 0.22 23 0.01 23 0.01 23 20
GEOM70 70 47 47 5 47 (48.6) 0.01 47 0.02 47 19
GEOM70a 70 73 73 4 73 (73.6) 0.25 73 0.03 73 20
GEOM70b 70 24 24 12 24 15.1 24 0.01 24 24
GEOM80 80 66 66 2 67 (67.4) 0.01 66 0.01 66 20
GEOM80a 80 76 76 (76.1) 137 76 (78.2) 1.3 76 0.04 76 23
GEOM80b 80 27 27 (27.8) 67 27 24 27 0.06 27 12
GEOM90 90 61 61 (61.2) 89 61 (63.5) 1.74 61 0.15 61 21
GEOM90a 90 73 73 (74) 512 73 (74.1) 3.65 73 0.55 73 23
GEOM90b 90 30 30 (30.1) 67 30 (30.1) 0.17 30 0.02 30 25
R100 1g 100 21 21 (22) 114 21 (21.8) 508.0 21 7.14 21 300
R100 1gb 100 81 81 (83.8) 3 81 (81.4) 1279.7 81 1.98 81 27
R100 5g 100 - 59 (60.1) 7 59 193 59 0.2 59 28
R100 5gb 100 - 221 (224.1) 187 220 (222) 687 220 4 220 26
R100 9g 100 141 141 (141.3) 21 141 0.62 141 40.8 141 36
R100 9gb 100 518 518 (5449.3) 1152 518 8.17 518 (518.3) 1066.1 518 35
R50 1g 50 14 14 0.14 14 (14.1) 0.01 14 0.01 14 19
R50 1gb 50 53 53 (53.0) 0.24 53 (53.1) 0.07 53 0.01 53 19
R50 5g 50 37 37 (37.0) 0.95 37 0.01 37 0.02 37 24
R50 5gb 50 135 135 (135.3) 4 135 0.09 135 0.21 135 20
R50 9g 50 74 74 1 74 0.02 74 0.01 74 21
R50 9gb 50 262 262 13 262 0.01 262 1.4 262 22
R75 1g 75 18 18 (18.4) 11 18 2.62 18 0.28 18 20
R75 1gb 75 70 70 (70.1) 2 70 (72.4) 0..35 70 0.23 70 20
R75 5g 75 51 51 (51.4) 01 51 (51.2) 598.6 51 0.39 51 22
R75 5gb 75 186 186 (189) 19 186 51.1 186 2 186 23
R75 9g 75 110 110 3 110 0.08 110 0.1 110 27
R75 9gb 75 396 396 (396.4) 146 396 0.42 396 3.9 396 26

Best rate 95% 89% 100% 100%

Table 4: Comparative results of DLMCOL with the state-of-the-art methods (AFISA, RedLS, ILS-TS) for pxx instances of the WVCP. Dominating results are indicated in
boldface.

Instance AFISA RedLS ILS-TS DLMCOL
Graph name |V | Opti. Best (Avg.) t (s) Best (Avg.) t (s) Best (Avg.) t (s) Best (Avg.) t (s)
P06 16 565 565 0.0 565 0.01 565 0.01 565 21
P07 24 3771 3771 0.0 3771 (3773.5) 0.01 3771 0.01 3771 18
P08 24 4049 4049 0.2 4049 0.03 4049 0.21 4049 18
P09 25 3388 3388 (3388.2) 1 3388 0.01 3388 0.01 3388 20
P10 16 3983 3983 0.7 3983 0.01 3983 0.01 3983 18
P11 18 3380 3380 0.0 3380 0.01 3380 0.01 3380 18
P12 26 657 657 0.0 657 0.01 657 0.01 657 19
P13 26 3220 3220 (3221.1) 0.7 3220 (3229) 0.01 3220 0.09 3220 20
P14 31 3157 3157 0.0 3157 0.01 3157 0.01 3157 19
P15 34 341 341 1.8 341 (343.1) 0.01 341 0.01 341 24
P16 34 2343 2343 0.7 2343 (2383.3) 0.01 2343 0.01 2343 21
P17 37 3281 3281 (3322.2) 2.7 3281 (3282.6) 0.05 3281 0.01 3281 21
P18 35 3228 3228 0.1 3228 0.01 3228 0.01 3228 22
P19 36 3710 3710 0.4 3710 0.01 3710 0.01 3710 22
P20 37 1830 1830 (1841) 4.9 1830 (1844) 0.05 1830 0.38 1830 22
P21 38 3660 3660 (3660.5) 0.8 3660 (3707.0) 0.01 3660 0.01 3660 23
P22 38 1912 1912 (1912.2) 0.3 1912 (1946) 0.21 1912 0.01 1912 19
P23 44 3770 3770 (3793.0) 0.3 3770 (3804) 0.04 3770 0.01 3770 19
P24 34 661 661 0.0 661 (667.1) 0.19 661 0.01 661 18
P25 36 504 504 0.3 504 0.01 504 0.01 504 19
P26 37 520 520 0.1 520 0.01 520 0.01 520 19
P27 44 216 216 0.1 216 (219) 0.01 216 0.07 216 20
P28 44 1729 1729 (1735.1) 2.6 1729 0.01 1729 0.01 1729 19
P29 53 3470 3470 0.1 3470 0.01 3470 0.01 3470 19
P30 60 4891 4891 54 4891 (4901) 0.01 4891 0.01 4891 20
P31 47 620 620 3.7 620 0.01 620 0.01 620 18
P32 51 2480 2480 0.4 2480 0.01 2480 0.01 2480 20
P33 56 3018 3018 (3029.7) 0.4 3018 (3096) 0.02 3018 0.01 3018 22
P34 74 1980 1980 (1980.5) 3.0 1980 (1994) 0.01 1980 0.03 1980 26
P35 86 2140 2140 (2145.0) 4.5 2140 (2161) 0.01 2140 0.02 2140 23
P36 101 7210 7210 (7385) 0.1 7210 0.01 7210 0.01 7210 27
P38 87 2130 2130 (2139.5) 9.5 2140 (2161) 0.01 2130 0.29 2130 25
P40 86 4984 4984 (5016.6) 5.1 5005 (5082.7) 0.01 4984 0.33 4984 25
P41 116 2688 2688 ( 2688.1) 0.1 2688 (2785.8) 0.04 2688 0.32 2688 453
P42 138 2466 2466 (2671.2) 931.0 2482 (2539.9) 0.02 2466 9.02 2466 35

Best rate 100% 91% 100 % 100%

4.1. Sensitivity to the population size

We perform a sensitivity analysis of the algorithm with respect
to the population size p. For this, we launched the DLMCOL algo-
rithm with p taking nine different values in the range [100, 50000]

to solve the instance DSJC500.5 of the WVCP with the same total
number of tabu search iterations. Figure 1 displays the sensitivity
of the average results over 10 runs to the population size p.

We observe that for the same total number of tabu search itera-
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Table 5: Comparative results of DLMCOL with the state-of-the-art methods (AFISA, RedLS, ILS-TS) for rxx instances of the WVCP. Dominating results are indicated in
boldface.

Instance AFISA RedLS ILS-TS DLMCOL
Graph name |V | Opti. Best (Avg.) t (s) Best (Avg.) t (s) Best (Avg.) t (s) Best (Avg.) t (s)
r01 144 6724 6724 (6727.8) 49.5 6732 (6769.2) 0.01 6724 0.96 6724 36
r02 142 6771 6771 (6780.6) 85.3 6774 (6818.6) 0.01 6771 0.25 6771 35
r03 139 6473 6473 (6490.8) 190.2 6505 (6597.7) 233.5 6473 4.53 6473 33
r04 151 6342 6342 (6403.2) 467.3 6349 (6427.7) 0.42 6342 0.83 6342 38
r05 142 6408 6408 (6466.3) 71.7 6411 (65010.3) 0.42 6408 2.57 6408 38
r06 148 7550 7550 (7555.9) 29.2 7550 (7558.9) 0.01 7550 0.01 7550 38
r07 141 6889 6889 (7555.9) 34.8 6910 (6974.2) 954 6889 7.29 6889 37
r08 138 6057 6057 (6080.3) 311.7 6071 (6147.4) 0.04 6057 1.6 6057 234
r09 129 6358 6358 (6393.8) 395.2 6390 (6451.9) 66.13 6358 1.84 6358 35
r10 150 6508 6508 (6519.3) 461.1 6518 (65078.6) 0.05 6508 2.46 6508 39
r11 208 7654 7654 (7710.6) 9542.2 7691 (7739.5) 489.45 7654 5.27 7654 432
r12 199 7690 7691 (7710.4) 9542.2 7694 (7730.2) 2.61 7690 4.33 7690 58
r13 217 7500 7521 (7558.3) 619.5 7524 (7566.7) 0.04 7500 5.8 7500 66
r14 214 8254 8254 (8283.9) 8044.1 8288 (8371.4) 0.87 8254 4.78 8254 60
r15 198 8021 8021 (8126.8) 2559.1 8021 (8024.0) 0.01 8021 0.01 8021 54
r16 188 7755 7755 (7789.2) 195.5 7764 (7809.4) 0.01 7755 11.22 7755 51
r17 213 7979 7979 (8030.3) 855.4 8011 (8064.3) 0.86 7979 4.39 7979 242
r18 200 7232 7232 (7278.9) 868.2 7240 (7295.3) 11.53 7232 26.4 7232 4374
r19 185 6826 6840 (6868.1) 395.5 6826 (6850.5) 39.15 6826 2.09 6826 189
r20 217 8023 8023 (8102.0) 1028.5 8031 (8138.3) 1.68 8023 13.08 8023 3027
r21 281 9284 9284 (9384.5) 4588.7 9294 (9320.1) 0.01 9284 9.15 9284 6103
r22 285 8887 8887 (8959.3) 12911 8924 (9030.6) 0.01 8887 63.42 8887 1521
r23 288 9136 9136 (9267.9) 3252.0 9145 (9222.0) 0.05 9136 42.77 9136 (9137.7) 25716
r24 269 8464 8464 (8572.9) 13142.6 8468 (8534.5) 0.01 8464 0.51 8464 797
r25 266 8426 8468 (8560.8) 874.8 8579 (8649.6) 0.01 8426 36.03 8426 7088
r26 284 8819 8819 (8927.9) 14225.1 8937 (9035.3) 0.01 8819 82.2 8819 22861
r27 259 7975 7975 (8019.7) 14074.9 7975 (7997.3) 1.71 7975 9.86 7975 102
r28 288 9407 9407 (9599.4) 8691.0 9409 (9475.4) 0.01 9407 0.44 9407 1891
r29 281 8693 8693 (8743.7) 7613.1 8701 (8743.7) 0.03 8693 4.54 8693 3429
r30 301 9816 9816 (10003.2) 8838.6 9820 (9877.1) 0.01 9816 1.36 9816 147

Best rate 87% 13.3% 100 % 100%

Table 6: Comparative results of DLMCOL with the state-of-the-art methods (MWSS, AFISA, RedLS, ILS-TS) for DIMACS/COLOR large instances of the WVCP. Domi-
nating results are indicated in boldface. New upper bounds are displayed with a star.

Instance AFISA RedLS ILS-TS DLMCOL
Graph name |V | Opti. Best (Avg.) t (s) Best (Avg.) t (s) Best (Avg.) t (s) Best (Avg.) t (s)
C2000.5 2000 - 2400 (2425.1) 3134.0 2151 (2162.4) 11827 2250 (2266.2) 11030 - -
C2000.9 2000 - 6228 (6284.0) 2798.3 5486 (5507.9) 166246 5808 (5849.3) 161980 - -
DSJC1000.1 1000 - 359 (362.9) 430.5 300 (302.6) 98115 305 (305.9) 97025 342.0 (344.5) 1105
DSJC1000.5 1000 - 1357 (1430.9) 371.7 1220 (1228.4) 234 1242 (1270.4) 1929 1230.0 (1260.0) 167639
DSJC1000.9 1000 - 3166 (3231.0) 490.2 2864 (2875.7) 48298 2975 (2997.8) 101238 - -
DSJC250.1 250 - 140 (141.9) 48.9 130 (132) 1 127 (127) 2576 127 (127) 1353
DSJC250.5 250 - 415 (428.1) 269.2 404 (407.7) 43579 393 (393.3) 58615 392 9226
DSJC250.9 250 934 939 (943.2) 926 940 (943.11) 801.22 934 (936.4) 7670.05 934 4722
DSJC500.1 500 - 210 (215.6) 426 188 (189.8) 50 184 (185.4) 72845 184 (184.9) 23049
DSJC500.5 500 - 778 (845.1) 159.3 726 (729.0) 2466 707 (716.9) 51407 685* (688.4) 47064
DSJC500.9 500 - 1790 (1854.5) 831.1 1681 (1685.3) 148914 1692 (1702.5) 136637 1662* (1664) 121518
DSJR500.1 500 - 169 (175.4) 458.9 171 (173.4) 1 169 (169) 0.56 169 (171.7) 35389
flat1000 50 0 1000 - 1289 (1315.7) 981.8 1184 (1186.7) 93711 1218 (1226.4) 141135 924* 82068
flat1000 60 0 1000 - 1338 (1354) 201.9 1220 (1230.6) 264 1242 (1258.0) 60631 1224 (1231.6) 168937
flat1000 76 0 1000 - 1314 (1337.6 ) 2396.6 1200 (1210.5) 316 1240 (1246.7) 141292 1210.0 (1220.6) 164934
inithx.i.1 864 - 587 (587.9 ) 527.5 569 (571.4) 2 569 ¡ 0.01 569 214
inithx.i.2 645 - 341 (341.6) 0.01 329 (331.5) 1328 329 184 336 (337.0) 127
inithx.i.3 621 - 352 (355.6 ) 0.01 337 (337.4) 5 337 1 350 (352.2) 142
latin square 10 900 - 1690 (1900.0) 780.3 1548 (1561.8) 36451 1542 (1557.0) 142925 1480* (1486.2) 149656
le450 15a 450 - 241 (247.1) 288.4 217 (218.7) 1 213 (213.8) 83054 213 (216.5) 43854
le450 15b 450 - 239(245.1) 368.3 219 (225.3) 1 217 (218.2) 2505 217 (219.6) 71563
le450 15c 450 - 313 (320.8) 432.9 288 (292.2) 2 277 (280.3) 17392 275* (277.4) 46789
le450 15d 450 - 306 (314.1) 113.7 285 (288.9) 979 274 (275.8) 155735 272* (272.4) 22917
le450 25a 450 - 317 (329.9) 362.3 308 (310.4) 45732 306 (306.0) 715 307 (308.6) 26228
le450 25b 450 - 318 (325.8) 285.9 308 (310.4) 45732 307 (307.0) 18 307 (308.8) 43456
le450 25c 450 - 378 (387.9 ) 359.4 360 (364.1) 2 349 (352.1) 82371 342* (343) 57924
le450 25d 450 - 375 (385.3) 254.8 342 (350.2) 4 339 (342.4) 16881 330* (330.1) 45128
miles1000 128 431 432 (444.7 ) 480.0 431 6.06 431 18.81 431 581
miles1500 128 797 797 1802 797 (797.3) 0.03 797 1.68 797 76
miles250 128 102 102 (102.7) 56.6 102 (103.6) 0.7 102 0.18 102 21
miles500 128 260 260 (261.3) 48.4 260 (260.4) 1.39 260 0.18 260 30
queen10 10 100 - 166 (169.2 ) 68.4 162 (165.3) 10400 162 (162.0) 24 162 (162) 19
queen11 11 121 - 178 (182.3) 55.2 179 (180.1) 909 172 (172.7) 68208 172 (172) 1753
queen12 12 144 - 194 (198.6) 92.7 188 (189.4) 133726 185 (185.2) 23709 185 (185) 1826
queen13 13 169 - 204 (207.5) 199.8 197 (200.9) 8100 194 (194.8) 20802 194 (194) 1150
queen14 14 196 - 224 (227.4) 360.1 217 (219.7) 2 216 (217.1) 469 215* (215.2) 16621
queen15 15 225 - 237 (241.2) 183.4 230 (233.5) 1 224 (226.7) 2685 223* (224.1) 9276
queen16 16 256 - 253 (256.3) 300.9 242 (246.0) 579 238 (239.0) 60187 234* (234.8) 14751
wap01a 2368 - 638 (653.1) 1133.5 545 (558.6) 89184 549 (550.5) 62497 - -
wap02a 2464 - 637 (638.1) 3270.46 538 (547.1) 40143 541 (543.1) 46848 - -
wap03a 4730 - 687 (707.5) 2901.5 562 (566.9) 134923 577 (579.7) 55554 - -
wap04a 5231 - 698 (709.0 ) 4.79 563 (583.0) 52833 570 (573.0) 538455 - -
wap05a 905 - 598 (610.9) 1574.5 542 (548.1) 1348 542 (542.8) 62323 587 (588.0) 1139
wap06a 947 - 599 (607.6) 65.3 519 (529.4) 134 519 (520.8) 46077 574 (587.0) 1244
wap07a 1809 - 680 (692.5) 384.82 561 (563.8) 3433 567 (571.0) 11943 685 (686.0) 8294
wap08a 1870 - 663 (673.4) 2627.2 529 (540.3) 37505 546 (549.7) 67847 663 (665) 7397
zeroin.i.1 211 511 518 0.01 511 0.08 511 1.7 511 38
zeroin.i.2 211 336 336 (337.6) 440.8 336 0.22 336 0.01 336 33
zeroin.i.3 206 298 299 (301.7) 139.6 298 (298.7) 2.25 298 10.67 298 31

Best rate 10.2% 53.1% 48.9 % 63.3%

tions, DLMCOL obtains better results with a large population size
of 20000 than with other sizes. This can be explained by two rea-
sons. First, a large population improves the population diversity,
which favors the finding of promising areas in the search space and
helps to better train the neural network at each generation. Second,

a large population increases the chance for each individual to find a
closer but different neighbor in the population for parent matching,
which helps to generate promising offspring solutions. However,
an excessively large population (such as p = 50000) is counterpro-
ductive, because the algorithm requires, in this case, much more
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Table 7: Computational results of DLMCOL on the difficult DIMACS coloring challenge benchmarks for the COL problem

.

DLMCOL
Instance |V | dens. χ(G) k∗ references kbest SR t(s)
DSJC250.5 250 0.5 ? 28 [3, 11, 12, 14, 18, 27, 29, 31, 34, 44, 33, 47] 28 10/10 219
DSJC500.1 500 0.1 ? 12 [3, 5, 8, 11, 12, 14, 18, 27, 29, 31, 34, 44] 12 10/10 2396
DSJC500.5 500 0.5 ? 47 [31, 45] 47 5/10 42513
DSJC500.9 500 0.9 ? 126 [5, 12, 14, 18, 27, 31, 34, 44, 47] 126 10/10 17172
DSJC1000.1 1000 0.1 ? 20 [3, 11, 12, 14, 18, 27, 29, 31, 34, 44] 20 10/10 32477
DSJC1000.5 1000 0.5 ? 82 [31, 45] 82 4/10 167038
DSJR500.1c 500 0.97 85 85 [3, 11, 14, 18, 29, 31, 33, 34, 44, 47] 85 10/10 4395
DSJR500.5 500 0.47 122 122 [14, 27, 29, 31, 33, 39, 44, 47] 122 10/10 4310
r250.5 250 0.48 65 65 [14, 27, 29, 31, 33, 44, 33, 47] 65 10/10 19239
r1000.1c 1000 0.97 ? 98 [3, 8, 14, 27, 29, 31, 33, 34, 44, 47] 98 10/10 2102
le450 25c 450 0.17 25 25 [3, 14, 18, 27, 29, 31, 34, 44] 25 10/10 48201
le450 25d 450 0.17 25 25 [3, 14, 18, 27, 29, 31, 34, 44] 25 10/10 45038
flat 300 26 0 300 0.48 26 26 [5, 8, 14, 27, 29, 33, 44, 47] 26 10/10 113
flat 300 28 0 450 0.17 28 28 [3, 18] 28 4/10 24651
flat 1000 50 0 1000 0.49 50 50 [3, 8, 12, 18, 27, 29, 31, 33, 34, 44, 47] 50 10/10 7160
flat 1000 60 0 1000 0.49 60 60 [8, 3, 12, 18, 27, 29, 31, 34, 44, 47] 60 10/10 12110
flat 1000 76 0 1000 0.49 76 81 [31, 45] 81 3/10 249165
latin sqr 10 900 0.76 ? 97 [43] 98 8/10 170518

Table 8: Comparison of DMLCOL with the state-of-the-art algorithms in terms of the best results on the difficult DIMACS coloring challenge benchmarks for the COL
problem

.

Local search algorithms Population based algorithms
Instance k∗ DLMCOL [8] [5] [18] [3] [47] [33] [11] [12] [29] [34] [27] [42-44] [31] [14]
DSJC250.5 28 28 - - 28 28 28 28 28 28 28 28 28 28 28 28
DSJC500.1 12 12 12 12 12 12 13 13 12 12 12 12 12 12 12 12
DSJC500.5 47 47 50 49 48 48 50 50 48 48 48 48 48 47 47 48
DSJC500.9 126 126 127 126 126 127 126 127 - 126 127 126 126 126 126 126
DSJC1000.1 20 20 21 - 20 20 21 21 20 20 20 20 20 20 20 20
DSJC1000.5 82 82 90 89 86 89 91 91 83 84 83 83 83 82 82 84
DSJR500.1c 85 85 - - 85 85 85 85 85 86 85 85 - 85 85 85
DSJR500.5 122 122 - 124 125 125 122 122 - 127 122 124 122 122 122 122
r250.5 65 65 - - 66 66 65 65 - - 65 - 65 65 65 65
r1000.1c 98 98 98 - - 98 98 98 - - 98 98 98 98 98 98
le450 25c 25 25 - 26 25 25 26 26 26 26 25 25 25 25 25 25
le450 25d 25 25 - 26 25 25 26 26 - 26 25 25 25 25 25 25
flat 300 26 0 26 26 26 26 - - 26 26 - 26 26 - 26 26 26 26
flat 300 28 0 28 28 31 31 28 28 31 32 31 31 31 31 29 31 31 31
flat 1000 50 0 50 50 50 - 50 50 50 50 - 50 50 50 50 50 50 50
flat 1000 60 0 60 60 60 - 60 60 60 90 - 60 60 60 60 60 60 60
flat 1000 76 0 81 81 89 - 85 87 89 91 83 84 82 82 82 81 81 83
latin sqr 10 97 98 - 99 - - 101 100 - 104 101 - 99 97 - 98

time to converge toward solutions of good quality.

4.2. Analysis of the contributions of deep learning
We now analyze the interest of the neural network within the

memetic framework. First, we study the general benefits of the
crossover selection strategy driven by deep learning by performing
an ablation study. Secondly, we compare the predicted results of
local searches with the actual results, so as to shed lights on why
this strategy is effective for some instances and less effective for
others.

Benefits of the neural network based crossover selection. To as-
sess the contributions of the neural network driven crossover se-
lection strategy (see Section 2.6), we launched 10 replications of
DLMCOL on 4 instances (DSJC500.1, DSJC500.5, le450 25c and
le450 25d) of the WVCP with a cutoff time of 20 hours, with and
without the neural network crossover selection. In the version with-
out neural network, the second parent of the crossover is randomly
chosen among the K nearest neighbors of each individual.

The average best score of the WVCP obtained at each genera-
tion is displayed in Figure 2. The green curve corresponds to the
standard DLMCOL algorithm while the red curve corresponds to
the version without deep learning. One first notices that the version
without deep learning can perform more generations in the same
amount of time because no time is spent on the neural network
training and offspring evaluations. On the other hand, we observe
that the green curve is always below the red curve and that better
results are achieved in the same amount of time. This highlights
that the neural network can really contribute to a better selection of
promising crossovers for the memetic algorithm.

Quality of the predictions given by the neural network. Once trained,
the neural network is used in DLMCOL to predict in advance the
results of local searches in order to select the best promising crossovers
for the next generation (see Section 2.6). Therefore, one can won-
der if the fitness values predicted by the neural network for the p
new starting points, { fθ(S O

1 ), . . . , fθ(S O
p )} at generation t are close
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Figure 1: The impact of the population size p on the performance of DLMCOL.
y-axis corresponds to the WVCP score (average best score over 10 runs at each
generation) and x-axis corresponds to the number of generations.

to the actual fitness values { f (S ′1), . . . , fθ(S ′p)} obtained after the p
local searches at the next generation t + 1.

We recorded these predicted and actual fitness values at every
generation of the search process for several instances of the WVCP
(DSJC500.5.col, wap05a.col, DSJC1000.1.col, le450 25c.col and
le450 25d.col). In Figures 3, and 4, we present two typical pat-
terns of the evolution of the quality of the neural network prediction
over the generations that we observed for these instances. For some
graphs such as DSJC500.5.col, the neural network makes more and
more precise predictions on average over generations, but for other
graphs such as wap05a.col, the neural network does not really im-
prove its predictions over time.

Figure 3 displays three scatter plots at generation 1, 16 and 31
where, the x-axis and y-axis respectively correspond to the pre-
dicted WVCP scores (generation 0, 15 and 30) and the actual WVCP
scores (generation 1, 16 and 31) obtained after the local search for
the instance DSJC500.5.col for all the p = 20480 individuals of
the whole population. In the bottom right corner is displayed a
boxplot of the prediction error in percent for the p = 20480 local
searches at generation 1, 16 and 31. One first observes that the neu-
ral network is quite inaccurate at generation 1 (in red), because the
relative prediction error is quite high, around 8.7% and the Pear-
son correlation coefficient between the predicted and actual results
is equal to 0.015. However, at generation 16 (in blue), the neural
network can provide more accurate predictions of the WVCP score
than can be obtained by the local searches. Indeed the relative er-
ror is below 1.4% and the Pearson correlation coefficient gets to the
value of 0.42. At generation 31, we observe that the neural network
makes huge mistakes in the prediction, but only for one part of the
samples, which can be explained by the fact that the prediction of
the correct fitness values becomes more and more difficult as the
search for very good solutions becomes more unpredictable. How-
ever at generation 31, the median of the relative error is lower for
the whole population.

Figure 4 displays the same comparison between expected and
actual results of the local searches for the large graph wap05a.col

with a low edge density for which we have shown in Section 3.3
that DLMCOL fails for this type of instance. An attempt to ex-
plain this failure can be seen in Figure 4, where we observe that
the relative prediction error is always high (around 2 and 3 %), but
more importantly, the Pearson correlation calculated between the
predicted and actual scores is respectively equal to 0.13, 0.05 and
0.01 at generation 1, 16 and 31, which means that the neural net-
work is not able to really distinguish promising new starting points
for local search among all the possible ones.

It can be explained by the fact that good solutions for this type
of instances are typically characterized by a low ratio of the num-
ber of color groups over the total number of vertices. As for the
WVCP, only the maximum weight of each color group has an im-
pact on the score, many different groupings of vertices are possible
without impacting the score for these instances. It results in a very
high average distance between the best solutions of the population.
Therefore, the neural network fails to learn relevant patterns in this
too diversified population.

Figure 5 confirms this intuition by showing that the average
distance between the individuals in the population (red solid line)
remains very high over the generations (around 680 for a max-
imum of 849) during the resolution of the instance wap05a.col.
Conversely for the instance DSJC500.5.col, the average distance
between individuals (green solid line) decreases over generations,
showing that the best individuals retained in the population share
backbones of good solutions.

The green and red areas in Figure 5 are delimited by the max-
imum and minimum values of the distances between all the indi-
viduals in the population for the instances wap05a.col (red) and
DSJC500.5.col (green). We remark that a minimum distance of 50
is reached after 25 generations for the instance DSJC500.5.col and
this distance does not drop below 50. It comes from the fact that
a minimum spacing between the individuals is imposed during the
insertion of new individuals in the population (cf. Section. 2.5).

5. Conclusion

A deep learning guided memetic framework for graph color-
ing problems was presented, as well as an implementation on GPU
devices to solve the classical vertex k-coloring problem and the
weighted vertex coloring problem. This approach uses the deep
set architecture to learn an invariant by color permutation regres-
sion model, useful to select the most promising crossovers at each
generation. Additionally, it can take advantage of GPU computa-
tions to perform massively parallel local optimization with a large
population to ensure a high degree of search intensification while
maintaining a suitable degree of population diversification.

The proposed approach was assessed on popular DIMACS and
COLOR challenge benchmarks of the two studied coloring prob-
lems. The computational results show that the algorithm competes
globally well with the best algorithms for both problems. For the
vertex coloring problem, it can reach most of the best known re-
sults of the literature for difficult instances. For the weighted col-
oring problem, it can find 14 new upper bounds for very difficult
instances and significantly improves the previous best results for
three graphs. An analysis of the predicted and actual fitness values
after local search shows that the neural network can help to some
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Figure 2: The impact of the deep learning driven crossover selection strategy on the algorithm. y-axis corresponds to the WVCP score (average best score over 10 runs at
each generation) and x-axis corresponds to the number of generations.

extent in finding promising new good starting points at each gen-
eration, which eases the discovery of high quality solutions in the
search space.

The achieved results reveal however three main limitations of
the proposed approach. First, due to the memory capacity on the
GPU devices we used, the DLMCOL algorithm has trouble to deal
with very large instances (|V | ≥ 1000). In particular, for the paral-
lel local searches, the memory available on each thread of the GPU
can be a huge limitation. Secondly, the algorithm has a slow con-
vergence in comparison with sequential local search algorithms,
due to its large population and the time spent to train the neural
network at each generation. Thirdly, the algorithm fails for large
instances with a low density (sparse graphs) for the WVCP, as for
these instances the neural network has trouble to learn good pat-
terns to effectively guide the selection of promising crossovers.

Other future works could be envisaged. In particular, it would
be interesting to test the DLMCOL framework with the same type
of neural network architecture to solve other graph coloring prob-
lems. Moreover, it could be worth applying deep learning tech-
niques to learn a specific crossover for the weighted graph color-
ing problem instead of the classical GPX crossover used in this

work. Finally, other neural network structures, such as graph con-
volutional neural networks, could be investigated to overcome the
difficulty encountered on sparse graphs.
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Figure 3: Comparison of the predicted and actual results of the local searches at generation 1, 16 and 31 for the instance DSJC500.5.col.

Figure 4: Comparison of the predicted and actual results of the local searches at generation 1, 16 and 31 for the instance wap05a.col.
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[5] Marco Chiarandini, Thomas Stützle, et al. An application of iterated local
search to graph coloring problem. In Proceedings of the Computational Sym-
posium on Graph Coloring and its Generalizations, pages 112–125, 2002.

[6] Denis Cornaz, Fabio Furini, and Enrico Malaguti. Solving vertex coloring
problems as maximum weight stable set problems. Discrete Applied Mathe-
matics, 217:151–162, 2017.

[7] Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learn-
ing combinatorial optimization algorithms over graphs. In Proceedings of
the 31st International Conference on Neural Information Processing Systems,
page 6351–6361, Red Hook, NY, USA, 2017. Curran Associates Inc.
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Appendix A. Results of DLMCOL on easy instances of vertex
coloring problem

This appendix (Table A.9) reports the computational results
reached by the DLMCOL algorithm on the easy set of the DIMACS
challenge benchmark graphs. As Table A.9 shows, DLMCOL can
consistently and easily reach the chromatic number χ(G) or the best
known result k∗ for each instance.

Table A.9: Computational results of DLMCOL on the easy DIMACS challenge
benchmarks for the COL problem

.
DLMCOL

Instance |V | dens. χ(G) k∗ kbest SR t(s)
DSJC125.1 125 0.1 5 5 5 10/10 19
DSJC125.5 125 0.5 17 17 17 10/10 27
DSJC125.9 125 0.5 44 44 44 10/10 33
DSJC250.1 250 0.1 ? 8 8 10/10 36
DSJC250.9 250 0.9 72 72 72 10/10 313
r125.1 125 0.03 5 5 5 10/10 15
r125.1c 125 0.97 46 46 46 10/10 32
r125.5 125 0.5 36 36 36 10/10 322
r250.1 250 0.03 8 8 8 10/10 23
r250.1c 250 0.97 64 64 64 10/10 73
DSJR500.1 500 0.03 12 12 12 10/10 64
r1000.1 1000 0.03 20 20 20 10/10 258
le450 5a 450 0.06 5 5 5 10/10 69
le450 5b 450 0.06 5 5 5 10/10 76
le450 5c 450 0.10 5 5 5 10/10 76
le450 5d 450 0.10 5 5 5 10/10 69
le450 15a 450 0.08 15 15 15 10/10 95
le450 15b 450 0.08 15 15 15 10/10 93
le450 15c 450 0.17 15 15 15 10/10 143
le450 15d 450 0.17 15 15 15 10/10 314
le450 25a 450 0.08 25 25 25 10/10 58
le450 25b 450 0.08 25 25 25 10/10 55
school1 385 0.26 14 14 14 10/10 73
school1 nsh 352 0.24 14 14 14 10/10 59
flat300 20 0 300 0.48 20 20 20 10/10 56
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