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Abstract

The unconstrained binary quadratic problem is an NP-hard problem and has ap-
plications in many fields. Recently, the problem has attracted much interest in the
field of quantum optimization, as it is directly related to the Ising problem in physics
and the development of quantum computers. However, effectively solving large in-
stances of this problem remains a major challenge for existing solution methods. To
advance the state of the art in solving the problem on a large scale, we propose an
evolutionary algorithm with a very large population organized in different islands
and integrating a new pairing and recombination method to produce promising off-
spring in each generation. Numerous experiments are conducted to evaluate the
effects of different pairing strategies, crossovers, and migration topologies. This re-
search has led to the discovery of new bounds for difficult instances of the maximum
cut problem, which has been transformed using the binary quadratic formulation.

Keywords: Combinatorial optimization, evolutionary search; Island model; Paral-
lel search; Heuristics; Unconstrained binary quadratic problem; Quadratic uncon-
strained binary optimization

1 Introduction

The Unconstrained Binary Quadratic Problem (UBQP) or Quadratic Unconstrained
Binary Optimization (QUBO) is to find a vector x = [x(1), . . . , x(n)] of size n
maximizing the function f : {0, 1}n → R given by:
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f(x) = xtQx, (1)

where Q is real symmetric matrix of size n×n and xt is the transposed vector of x.

Many problems that arise in real applications can be formulated with this UBQP
model such as job scheduling problems on parallel computing environments [1],
clustering of micro-array data in biology [19] or design of manufacturing systems
in industry [44]. We refer the reader to [9,20] for a comprehensive overview of the
various applications of the UBQP tool. The recent book [34], which deals specifically
with the UBQP, is further evidence of the interest in this problem.

Moreover, the UBQP is very general, since various NP-Hard and NP-complete com-
binatorial optimization problems can be conveniently mapped to UBQP [10,22].
Examples of popular NP-hard problems that can be addressed with the UBQP in-
clude the graph coloring problem [18], the maximum clique problem [32], and the
maximum cut problem [5]. The latter is further discussed in this article.

The UBQP has also recently attracted much interest in the field of quantum opti-
mization [29,36], due to its direct connection with the Ising spin glass problem [3] in
physics and the development of new quantum computers. Indeed, the formulation
with binary variables x(i) ∈ {0, 1} of the Ising problem makes it simple to model
it with qubits that can be in a superposition of the 0 state and the 1 state at the
same time. The problem becomes then to find the minimum global energy state of
the associated Hamiltonian.

Several exact approaches have been proposed in the literature to tackle the UBQP
with branch and bound algorithms [16,21,31] or semi-definite programming (SDP)
approaches [15,35]. According to [34], parallel versions of the best current exact
algorithms can solve UBQP instances up to n = 300. For larger instances, various
heuristics have been proposed in the literature. They partially explore the search
space to find a vector x with a good score in a limited amount of time. However,
this partial search does not guarantee that there is no better solution in the search
space. A heuristic only finds a lower bound of the optimal UBQP value.

Given the NP-hard nature of the UBQP, effectively solving large instances of this
problem remains a very challenging task for existing solution methods. To advance
the state of the art in solving the problem on a large scale, we propose to study
an evolutionary algorithm with a very large number of individuals that are placed
on different islands (each individual is a solution x ∈ {0, 1}n of the UBQP). In
the context of such a large and diverse population, our goal is also to study the
impact of different migration topologies between these islands [37] as well as the
importance of the matching strategy used to create new good quality offspring in
each generation.

To achieve these goals, we develop a Large Population Island (LPI) framework,
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based on parallel optimization using Graphics Processing Units (GPU). The imple-
mented LPI algorithm is characterized by its generality and simplicity. We show its
effectiveness in solving the UBQP.

This paper is organized as follows. Section 2 presents related studies on the UBQP
in the literature and focuses on the most relevant algorithms that contributed to
the design of the proposed LPI algorithm. Section 3 describes the LPI algorithm.
Section 4 outlines the experimental setting used to empirically validate LPI, then
reports the results obtained and compared them to the state of the art. Section 5
discusses the contribution and presents perspectives for future work.

2 Related work

In a very recent and comprehensive survey on heuristics and metaheuristics applied
to the UBQP [45], three types of methods are identified: (i) greedy constructive
methods [27], (ii) local search based methods with simulated annealing [2,17] or
tabu methods [12,49], and (iii) population based algorithms, with hybrid genetic
algorithms [26], path-relinking algorithms [23,47] or hyperheuristics [6]. This section
revisits the key mechanisms of both tabu search and path-relinking procedures, since
our algorithm depends on them.

2.1 Tabu search

The most popular local search used in a significant number of heuristics of the
literature for the UBQP [12,38,39,42,47] is the one-flip Tabu Search (TS1). To
improve a solution x, TS1 iteratively makes transitions from x to a neighboring
solution x′, by flipping the value of one of the binary variables x(i) of the vector
x to its complementary value 1 − x(i). Thus, x and x′ differ only by the value of
one of their variables. The size of the neighborhood explored by TS1 is equal to n.
At each iteration, TS1 selects among the eligible neighboring solutions the best
neighbor x′ according to the evaluation function f (cf. Equation 1), and replaces
x by x′. A neighboring solution is eligible if the flip is not forbidden by the tabu
list or if it is better than the best recorded solution found so far during the local
search. When the flip of a variable x(i) is performed, it is recorded in a tabu list,
indicating that this variable cannot be flipped for the next T iterations. In many
existing tabu search algorithms on the UBQP [38,39,47], T increases linearly with
the size n of the neighborhood and is equal to α ·n+R, where R is a random integer
in {1, . . . , 10} and α is a hyperparameter of the algorithm.

Other neighborhoods with various operators for the UBQP have been studied in
the literature (see for example [24]). In particular, a straightforward extension of
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the one-flip operator is the two-flip operator consisting in flipping at the same
time a pair of variables {x(i), x(j)} to their respective complementary values 1 −
x(i) and 1 − x(j). Computing the difference of scores of the neighboring solutions
when using a two-flip operator can be done efficiently from the Q matrix using
the formula provided by [8]. When considering all the pairs of variables, the two-

flip neighborhood associated with this operator is of size
(
n
2

)
. In practice, this

neighborhood becomes huge for large problem instances.

In general, such a basic tabu search algorithm can be very efficient at reaching
the optimal result for small instances. However, when the size of the instance in-
creases, the search can get stuck in a local optimum. To overcome this difficulty,
iterated tabu search algorithms such as the D2TS algorithm [12] allow to escape
local traps by coupling the tabu search with perturbation and restart procedures.
This D2TS algorithm has recently been improved using a parallel environment [39],
where different tabu searches start from different initial starting points and produce
different search trajectories. During the search, these tabu searches can communi-
cate with each other in order to exchange useful information and get out of local
traps. Another stream of work using tabu search concerns hybrid population-based
algorithms, which alternate between such a local search and a combination operator
to produce new offspring solutions. This framework has proven highly successful in
solving the UBQP in several algorithms introduced since 2010 [23,38,40,47]. The
combination operator used in these algorithms is the path-relinking procedure de-
tailed in the next subsection.

2.2 Path-relinking

The path-relinking (PR) method [11] provides an interesting means to generate new
solutions (offspring) by exploring a trajectory (or path) connecting two solutions of
the population (parents). The first parent xk, which is the starting solution on the
path, is called the initiating solution, and the second parent xl, which corresponds
to the last solution on the path, is called the guiding solution. From a general point
of view, A PR procedure aims to achieve three goals simultaneously: (i) generate
new offspring that share some similarity with both parents in order to pass on useful
information to the next generations; (ii) build offspring that are sufficiently different
from both parents in order to explore new areas of the search space; (iii) generate
offspring solutions of good quality that are further improved by local search.

Different versions of PR have been proposed for the UBQP in the literature. The
most popular PR proposed in [38,47] uses a greedy strategy. If NC denotes the set of
variable indices for which xk and xl have different values, the greedy PR procedure
starts from the initiating solution xk and performs greedy one-flip moves on the set
of variables indexed by NC to find a good quality trajectory connecting xk and xl.
Once the full trajectory is computed, the best solution on the path solutions with a
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Hamming distance of at least γ · |NC| from both the initiating and guiding solutions
is kept for further improvement with the tabu search in the next generation. γ is a
hyperparameter of the algorithm, typically set to be the value of 0.3.

In order to perform an efficient PR, the choice of the parent solutions used as
initiating solution and guiding solution is crucial. First, the offspring has a better
chance of being interesting if the two parents are of good quality, but these two
parents must also be sufficiently distanced in the search space, in order to build a
new offspring solution allowing to explore a new area in the search space. However,
if the parents are too distanced in the search space, even if they are of good quality,
no common good backbone of solution can be transmitted to the next generations,
resulting in offspring of poor quality.

To investigate the question of which matching strategy to adopt for this problem,
the recent hybrid algorithm proposed in [38] for the UBQP studied the importance
of carefully choosing parents for the PR procedure. It uses a population of up to 50
individuals that are separated into at most five different clusters using the K-means
clustering algorithm based on the Hamming distance calculated between each pair
of individuals. Then, two strategies for combining the parents with the PR are
proposed. The first one, called ”external linkage strategy”, consists in considering
only the paths connecting the two most distant solutions belonging to two different
clusters, while the second one, called ”internal linkage strategy” consists in con-
sidering only the paths connecting the two highest quality solutions belonging to
the same cluster. The external linking strategy increases diversification, while the
internal linking strategy increases search intensification, as it combines high quality
solutions that are close to each other.

Although this K-means clustering algorithm is interesting for separating individuals
into different groups that explore different areas of the search space, it can be
time consuming when the population size is very large. Our approach, based on an
evolutionary algorithm with a very large population, is to use instead the island
model [50], where the different groups are decided at the outset. The recombination
procedure should naturally reduce the distances within each island. 1

The contributions of our paper are the following:

• We introduce a large population island framework for the UBQP with different
matching strategies, migration topologies, and a new recombination procedure.
• We implement, based on this framework, a large population algorithm with GPU-

based parallel computing.
• We report new upper bounds for difficult maximum cut instances.

1 This hypothesis is confirmed by an experiment reported in Appendix D, where we show
that the average distance between individuals on each island measured over generations
decreases faster than the average distance between individuals in the general population
(not necessarily belonging to the same islands).
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3 Large Population Island Framework

3.1 Main scheme

The proposed LPI framework is a general population-based evolutionary approach
that alternates between a tabu search to find high-quality local optima and a recom-
bination procedure (inspired by path-relinking) to generate new offspring solutions.
Existing evolutionary algorithms for the UBQP typically have a population be-
tween 10 [47] and 50 individuals [38] to avoid high computation time, as they do
not use parallel computing. Our LPI algorithm takes advantage of massive parallel
computing with GPUs and uses a very large population, whose size is given by

|P | = max
(

2000,min
(

64000,
⌊

320000

n

⌋
× 1000

))
. (2)

As an example, |P | = 64000 for n ≤ 5000 and |P | = 32000 for n = 10000. This num-
ber of individuals is a multiple of 1000 and decreases when the size n of the instance
is greater than 5000, in order to limit the memory required for large instances.

Such a large population has three benefits: (i) it allows to take advantage of mas-
sive parallel computation on GPU hardware [13,14]; (ii) it allows to ensure a large
diversity of solutions in the population to avoid premature convergence of the algo-
rithm; (iii) it increases the chance for each individual to find a good match in the
population for the combination procedure (see Section 3.4).

To ensure its search and computational efficiency, LPI takes full advantage of GPU-
based parallel processing. At each generation, |P | different local searches are per-
formed in parallel on the GPU, starting from different starting points and producing
different search trajectories in the search space. Then, |P | combination procedures
are carried out in parallel to produce |P | new starting points for the next generation.

Managing diversity in such a large population requires that billions of pairwise
distance estimates to be made in each generation. In order to limit the number of
distance evaluations, and to add parallelism to the population update procedure
that merges the current population and the offspring population to create the next
population, we place the different individuals on I separate islands. That is, we split
the whole population P into I sub-populations Pi, P = P1 ∪ P2 ∪ · · · ∪ PI , such
that each sub-population has the same size for easier management with the GPU
hardware. Therefore, all sub-populations are of size p. A sensitivity analysis of this
parameter p will be conducted in Section 4.4.1.

In addition, migrations take place between islands in order to propagate copies of
the best individuals from each island to other islands (see Section 3.6). This gives
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them a better chance of finding a good neighborhood solution for the combination
procedure on another island.

The algorithm takes a matrix Q as input and tries to find a binary vector x such
that f(x) given by equation (1) is maximum. The pseudo-code of the proposed
Large Population Island framework is shown in Algorithm 1.

Algorithm 1 Large Population Island (LPI) algorithm for the unconstrained
quadratic binary optimization problem

1: Input: Symmetric matrix Q of size n× n describing UBQP function f , number I of
islands, size p of the sub-population on each island, number k of nearest neighbors
and number m of migrants.

2: Output: The best vector x∗ found so far.
3: for i = 1, . . . , I in parallel do
4: P i = {xi1, . . . , xip} ← random subpopulation initialization()
5: for j = 1, . . . , p in parallel do
6: xij ← local search(xij) // Section 3.2
7: end for
8: end for
9: x∗ = argmaxxi

j , i∈{1,...,I}, j∈{1,...,p} f(xij)

10: repeat
11: for i = 1, . . . , I in parallel do
12: for j = 1, . . . , p in parallel do
13: x̄ij ← nearest neighbor choice(xij , P

i, k) // Section 3.3

14: oij ← combination procedure(xij , x̄
i
j) // Section 3.4

15: oij ← local search(oij) // Section 3.2
16: end for
17: end for
18: o∗ = argmaxoij , i∈{1,...,I}, j∈{1,...,p} f(oij)

19: if f(o∗) > f(x∗) then
20: x∗ ← o∗

21: end if
22: for i = 1, . . . , I in parallel do
23: {xi1, . . . , xip} ← population update(xi1, . . . , x

i
p, o

i
1, . . . , o

i
p) // Section 3.5

24: end for
25: for i = 1, . . . , I, in parallel do
26: {ẋi1, . . . , ẋim} ← migration(xi1, . . . , x

i
p) // Section 3.6

27: {x(i%I)+1
1 , . . . , x

(i%I)+1
p } ← population update(ẋi1, . . . , ẋ

i
m, x

(i%I)+1
1 , . . . , x

(i%I)+1
p )

28: end for
29: until stopping condition met
30: return x∗

At the beginning, all the individuals of the population (binary vectors of size n)
are initialized at random in parallel and are simultaneously improved by running
in parallel a one-or-two-flip tabu search (Section 3.2) to maximize the fitness func-
tion f .
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The algorithm then repeats a loop (generation) until a cutoff time limit is reached.
Each generation t involves the execution of three components:

(1) Each individual is randomly matched with one of its nearest neighbors within
its island (Section 3.3) and |P | combination procedures are performed in par-
allel to generate |P | offspring solutions (Section 3.4), which are then improved
by the local search (Section 3.2).

(2) For every island, the local search algorithm computes in parallel the distances
between all the pairs of existing and new individuals (cf. Section 3.5). After-
ward, the population updating procedure (also described in Section 3.5) merges
the 2 · |P | existing and new individuals in each island, while considering the fit-
ness of each individual and the distances between them, to ensure that diversity
is maintained within each sub-population.

(3) Migrations occur between islands. Copies of the m best individuals of island
i are sent to island i + 1 (or island 1 for copies from island I) according to a
ring topology (cf. Section 3.6). These copies are retained in island i when sent
to island i+ 1 (and not removed from island i).

When the allocated time is consumed, the algorithm returns the best solution x∗

found so far and stops. The score f(x∗) is a lower bound of the given UBQP instance.

3.2 Local search

LPI employs a sparse one-or-two-flip tabu search (TS∗1|2) to simultaneously improve
in parallel the individuals of the whole population P . Given a vector solution x =
[x(1), x(2), . . . , x(n)], TS∗1|2 uses two move operators:

• the one-flip operator flips a bit x(i). It changes its value from x(i) to 1 − x(i),
leading to a neighboring solution denoted as x ⊕ 〈flip x(i)〉. When using this
operator, the one-move neighborhood N1(x,Q) of x is given by:

N1(x,Q) = {x ⊕ 〈flip x(i)〉 : 1 ≤ i ≤ n}; (3)

• the two-flip operator flips a pair of bits {x(i), x(j)} such as Q(i, j) 6= 0 chang-
ing simultaneously the values of the bits x(i) and x(j) to their complemen-
tary values 1 − x(i) and 1 − x(j), leading to a neighboring solution denoted as
x ⊕〈flip x(i), flip x(j)〉. Note that contrary to [24], our two-flip operator does not

consider all the
(
n
2

)
possible two-flip moves, but only the pairs {x(i), x(j)} such

that Q(i, j) 6= 0. Indeed, since considering every move is too time-consuming, it is
more interesting to restrict the search of the best {x(i), x(j)} among those char-
acterized by a non-zero interaction coefficient Q(i, j) between the variables x(i)
and x(j). Thus, the two-move neighborhood N∗2 (x,Q) of x using this operator is
given by:
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N∗2 (x,Q) = {x ⊕ 〈flip x(i), flip x(j)〉 : 1 ≤ i < j ≤ n,Q(i, j) 6= 0}. (4)

To summarize, TS∗1|2 explores the following union neighborhood of the one-flip and
two-flip neighborhoods:

N∗(x,Q) = N1(x,Q) ∪N∗2 (x,Q). (5)

Using the two-flip neighborhood in addition to the one-flip neighborhood greatly
increases the efficiency of the local search for some difficult instances with a rela-
tively sparse Q matrix (as it is shown in Section 4.5). In particular, it can trigger
in one iteration the combined effect related to an off-diagonal coefficient Q(i, j) 6= 0
(i 6= j), which requires that both variables x(i) and x(j) be equal to 1 at the same
time.

TS∗1|2 makes transitions between different n-vectors with the neighborhood N∗(x,Q)
and the fitness function f . It iteratively replaces the current solution x by a neigh-
boring solution x′ taken from N∗(x,Q) during a total number of NL iterations. At
each iteration, a best admissible neighboring solution x′ is selected to replace x.

After each iteration, the corresponding move (one-flip or two-flip) is recorded in a
tabu list. The tabu tenure classically depends on the size of the neighborhood and
is set to the value of α ·∆ + R, where R is a random integer from [0; 9], α is a hy-
perparameter of the algorithm, and ∆ is the cardinality of N∗(x,Q). A neighboring
solution x′ is considered to be admissible if it is not forbidden by the tabu list, unless
it is better (according to the fitness evaluation function f) than the best solution
found so far (aspiration criterion). The one-flip and two-flip neighborhood evalu-
ations are both performed incrementally using the streamline techniques detailed
in [7,8]. It exploits the interaction graph of the variables to efficiently compute the
score variation due to each move (delta) with respect to the current solution.

Note that even when considering non-zero inputs of the Q matrix, the size of the
neighborhood, ∆, can still become very large if it is dense. If the ratio ∆/n is higher
than a density threshold ρ, we replace TS∗1|2 with the standard one-flip tabu search
TS1 as presented in subsection 2.1. It corresponds to replacing the neighborhood
N∗(x,Q) by N1(x) = {x ⊕ 〈flip x(i)〉 : 1 ≤ i ≤ n}. Otherwise, the rest of the
algorithm remains unchanged.

At each generation of the algorithm, the |P | = I · p tabu search procedures are
launched in parallel on the GPU to raise the quality of the offspring population. The
time complexity of the TS1 and TS∗1|2 procedures are respectively in O(n ·NL · I · p)
and O(∆ · NL · I · p). Their space complexity is respectively in O(n · I · p) and
O(∆ · I · p).
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3.3 Matching strategy

At each generation, the LPI algorithm runs |P | = I · p combination procedures in
parallel to generate |P | new offspring solutions. To do this, LPI uses each existing
solution in the current population as the starting solution and combines it with
another solution of the population. This approach ensures that each individual in the
population contributes genetic information to the next generation while promoting
the creation of diverse offspring that will be improved by the local search procedure.

Due to the use of a large population, the individuals can be highly dissimilar and
share minimal information despite being on the same island. Consequently, combin-
ing parents that are too dissimilar can lead to the production of offspring solutions
that are of poor quality. Therefore, we propose to use a k-nearest neighbor algo-
rithm for this matching strategy, which allows to find pairs of parents sharing some
similarity.

For each island i and each individual xij, where j ∈ {1, . . . , p}, another individual,
x̄ij, is chosen randomly from the set of the k-nearest neighbors of xij in island i in
terms of the Hamming distance, 2 that have never been combined with xij in the
previous generations. 3

A sensitivity analysis of the hyperparameter k ranging from 1 (closest deterministic
match) to the maximum value p − 1 (totally random match) is shown in Section
4.4.3.

Finding the set of k-nearest neighbors for each of the |P | = I · p individuals is done
in parallel on the GPU. The time and space complexity of this matching algorithm
is O(I · p2).

3.4 Combination mechanism

The LPI algorithm uses a new combination mechanism, called Restricted Tabu
Search Combination (RTSC). RTSC is inspired by path-relinking (PR) algorithms
[11] and variable fixing strategies [46,48]. It searches for an offspring solution located
between two different high quality solutions of the population, by applying a local

2 Given two solution n-vectors xk and xl, the Hamming distance HD(xk, xl) measures
the dissimilarity between xk and xl, which corresponds to the number of binary variables
with different values in xk and xl.
3 Note that the selection of the couple of individuals (xi, xj) in a given island does not
prevent the algorithm from later selecting the couple (xj , xi), since the combination pro-
cedure we use in LPI is asymmetric. Indeed, this procedure gives different solutions when
it starts from individual xi instead of individual xj (cf. Section 3.4).
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search algorithm on the restricted subset of variables that are different in the two
parents.

Given a solution xij and its neighbor x̄ij, RTSC starts from xij and performs NC

iterations 4 of the same one-or-two-flip tabu search presented in subsection 3.2, but
restricted to the variables that take different values between xij and x̄ij. Moreover,
instead of maximizing f directly, RTSC maximizes an extended evaluation function
F : {0, 1}n → R given by:

F (x) = f(x) + κ ·min(d(x, xij), d(x, x̄ij)), (6)

where κ is a hyperparameter that adjusts the trade-off between the score and the
distance from both parents. Maximizing this function F encourages finding an off-
spring that is of good quality, but also sufficiently distant from both parents.

All these |P | = I ·p combination procedures, which solves |P | UBQP sub-problems,
are performed in parallel on the GPU grid.

3.5 Distances computation and population update

The |P | new offsprings generated with the procedure described in the last subsection
are improved by the local search presented in Section 3.2. These new solutions are
then used to update the population.

3.5.1 Distance computation

LPI maintains I matrices of size p2 on each island to store the distances between
any two solutions in each sub-population. These symmetric matrices are initialized
with the

(
p
2

)
pairwise distances computed for each pair of individuals in the initial

sub-population. They are then updated each time a new individual is added to each
sub-population. To merge the p existing solutions and the p new solutions on each
island i, LPI needs to compute (i) the p2 distances between each individual in the
sub-population P i = {xi1, . . . , xip} and each improved offspring individual in Oi =

{oi1, . . . , oip}, and (ii) the
(
p
2

)
distances between all pairs of offspring individuals inOi.

When operations are performed sequentially, the algorithmic complexity of distance
calculations for the whole population is O(n · I · p2). However, as all these distance
computations for the whole population are independent, they can be run in parallel
on the GPU, with one computation per thread. With this parallel implementation,
the algorithmic complexity can be reduced to O(n). The auxiliary space complexity
is O(I · p2) (to store the distance matrix).

4 NC is a hyperparameter of the algorithm whose value is given in Table 1.
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3.5.2 Population update procedure

The LPI population update procedure retains the best individuals while also ensur-
ing a minimum distance between them [33]. In parallel, on each island i, the popu-
lation update procedure greedily selects and adds the best individuals (maximizing
the fitness function f) from P i

all := {xi1, . . . , xip}∪{oi1, . . . , oip} to the sub-population
of the next generation P i

t+1, initialized with an empty set, until P i
t+1 contains p in-

dividuals, subject to the constraint that HD(xk, xl) ≥ γ for all xk, xl ∈ P i
t+1, where

k 6= l. 5 γ is the minimum spacing required for two different individuals of each
sub-population. γ is a hyperparameter of the algorithm whose value is indicated
in Table 1. This value is defined as a percentage of n, the size of the instance and
the maximum Hamming distance between two individuals in the search space. The
time complexity of the population update procedure is O(I · p2). This procedure
is sequential in each island, but the updates on the different islands are indepen-
dent and thus done in parallel. The auxiliary space complexity of this procedure is
O(n · I · p) (to build the populations P i

all and P i
t+1).

3.6 Migration between islands

In the standard version of the algorithm, the different islands are organized accord-
ing to a uni-directional ring migration topology [37], and at each generation copies
of the m best individuals of each island i (that have never already been sent before)
are sent to the island i + 1 (see Figure 1). As it is a ring, island I + 1 corresponds
to island 1. A binary vector is updated throughout the execution in each island to
know which individual has already been sent.

Fig. 1. Organization of the islands according to an uni-directional ring topology.

These migrations make it possible to spread the most promising individuals in

5 This distance criterion is not met if the required size of each sub-population is not
reached, which is very rare.
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other islands, offering them a better opportunity to find a good mate and produce
an interesting offspring in each generation (see Section 3.4). It then has a role
to play in terms of intensification. However, spreading too many individuals to
too many islands would quickly lead to too much similarity between the I sub-
populations. The implications of other migration topologies are discussed in Section
4.4.6. The number m of individuals migrating from an island is also an important
hyperparameter of the algorithm, which must be carefully chosen to ensure a good
trade-off between intensification and diversification (see Section 4.4.4).

The acceptance of these migrants into each of the I sub-populations are subject to
the same population update procedure as described in subsection 3.5, ensuring a
minimum distance between each individual on each island. The time complexity of
the distance computation and population update procedure for the migrations is
O(I ·m2 · n + I · p ·m · n) (computation of all distances between migrants, as well
as between migrants and existing individuals in the population), while its auxiliary
space complexity is O(I ·m2 + I ·m · p+ I · (m+ p) · n) (to store the corresponding
distance matrices and the sub-populations augmented with migrants).

4 Experiments

This section is dedicated to a study of important factors of the algorithms such as
the organization the individuals into islands, the choice of the matching strategy and
the combination procedure. A comparison with the best state-of-the-art methods is
then presented on classical benchmarks from the literature.

4.1 Benchmark Instances

Three main sets of UBQP benchmark instances are considered in the literature 6 .

• The first set consists of 21 well-known large instances named p3000.1, . . . , p7000.3
with sizes ranging from n = 3000 to 7000 and densities ranging from 0.5 to 1.0.
These instances were generated using the generator proposed by [30], and are
widely used in the literature [38,46,47].
• The second set contains 10 instances of size n = 2744 (named sg3dl141000,

sg3dl142000, . . . , sg3dl1410000). The instances are generated by simulating Ising
spin glasses on cubic lattices, where the weight values assigned to the spin in-
teractions are restricted to 1, 0, or -1. Computational results on these instances
have been reported in [25,41,51].

6 These instances will be available on the github repository site of the project after
publication.
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• The third set contains 71 instances derived from the maximum cut problem,
named G1, . . . , G72, G81 with sizes ranging from n = 800 to n = 20000.
A machine-independent graph generator was used to construct these instances,
which consist of toroidal, planar, and randomly weighted graphs. The weight
values assigned to the edges of these graphs are limited to 1, 0, or −1. These
instances are widely used in the literature to validate algorithms proposed for
the UBQP [6,47] as well as to evaluate the performance of specific algorithms
dedicated to the maximum cut problem [4,25,40,41,51].

We specifically focus on the instances from the third set which are the most challeng-
ing. These instances are regarded as particularly difficult ones, since no algorithm
in the literature, including the most recent ones [4,25,40,41,51], has been able to
achieve the best-known results for all instances of the maximum cut problem.

The results of LPI for the first two sets of instances are shown in Appendices B
and C. For these first two sets, LPI always obtains the best known scores for all
instances and all independent runs (perfect success rate). However, the computation
time required to obtain them is quite high on average for the largest instances of the
first set (almost 6 hours), as can be seen in Table B.1. For the second set of cubic
lattice instances (see Table C.1), the computation time required remains reasonable
for all instances (less than one hour).

4.2 Implementation and parameter setting

The LPI algorithm 7 was implemented in Python using the Numba 0.53 library
for CUDA kernel implementation of local searches, distance computations, and
crossovers. LPI is specifically designed to run on GPUs, and in this work, we used
an V100 Nvidia graphic card with 32 GB of memory. Note that most of the time
used by the algorithm is spent performing local searches and crossovers, which are
run in CUDA (via the Numba library) rather than sequentially in Python. The
Python language simply calls the various libraries with C++ and CUDA backends.

In each generation of LPI, each of the |P | = I · p tabu searches is executed on a
single GPU thread. To optimize memory access, each thread uses a local memory
to store specific information, such as the bit vector of the current solution and the
tabu list. The threads are arranged in blocks of 64 and launched on the GPU grid.
Since each tabu search runs independently on each thread, no shared memory per
block is required. However, a global memory is used to store general information,
such as the Q matrix of the problem, to avoid duplication of information. All |P |
tabu searches are executed using a single CUDA kernel function written in Numba,

7 The source code of the LPI algorithm is available at https://github.com/

GoudetOlivier/LPI_UBQP.
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and the best result of each tabu search is transmitted to the CPU memory after
synchronization.

4.3 Parameter calibration method

To limit memory usage on the GPU device, two of the ten hyperparameters of LPI
(see Table 1) are fixed. The population size |P | is determined according to Equation
2 to limit the global memory, while the density threshold ρ is set to 8 to limit the
local memory required in each thread for the local search.

The remaining eight parameters are determined using a grid search to maximize
the score achieved for four challenging maximum cut instances: G58, G61, G64, and
G70. These instances have sizes of n = 5000, 7000, 7000, and 10000, respectively,
and are run for 20 hours on the GPU. The values tested during the grid search are
summarized in Appendix A, and the best parameter settings obtained are shown in
Table 1. These parameter values can be used as the default parameter setting for
the subsequent experiments presented in this paper.

Parameter Description Value

Population

|P | Global population size [2000,64000] (see (2))

p sub-population size 1000

γ Minimum spacing between individuals 0.05 · n

m Number of migrants 10

Local search

NL Number of iterations 2 · n

α Tabu tenure parameter 0.04

ρ Density threshold 8

RTSC Combination procedure

k Number of neighbors 48

NC Number of iterations 0.5 · n

κ Score/distance trade-off parameter 1

Table 1
Parameter setting in LPI

15



4.4 Sensitivity analysis

To gain insight into the behavior of our algorithm, we conducted sensitivity analysis
on some key parameters. For these analysis, we adopted the same instances (G58,
G61, G64, and G70) that were used during the calibration phase.

To perform the sensitivity analysis, we systematically varied the value of one pa-
rameter at a time, while keeping the default values of the other parameters (see
Table 1). For each value of the parameter, we ran the LPI algorithm on each in-
stance for 20 hours and recorded the best score obtained. We repeated this process
for 10 independent runs and averaged the results to obtain a reliable estimate of
the algorithm’s performance.

4.4.1 Impact of the islands’ size

In our algorithm, the parameter p plays a crucial role as it determines the number
of individuals on each island and consequently, the number of islands I in the
algorithm, which is given by I = |P |/p. A higher value of p results in fewer islands
with larger population sizes, while a lower value results in more islands with smaller
population sizes.

However, it is important to find a balance when choosing the value of p to ensure
that the algorithm performs well. As shown in Figure 2, when p is set to a small value
such as 10 (red curve), the performance of the algorithm deteriorates significantly.
Indeed, the diversity of individuals within each island progressively decreases, which
reduces the chances of generating promising offspring in each generation.

On the other hand, if p is set too high, e.g., 10000 (black curve), the number of
generations that the algorithm can perform decreases because the time needed for
distance evaluations scales in O(I · p2) (as described in Section 3.5). Consequently,
the final results obtained are not as good as those obtained for p = 100 and p = 1000.

Empirically, the best results are obtained for p = 1000 (green curve). This value
strikes a good balance between the number of distance evaluations required in each
generation and the population size on each island. A larger population size leads to
more efficient matching procedures during the combination mechanism (as explained
in Section 3.4), thus increasing the overall efficiency of the algorithm.

4.4.2 Impact of different combination procedures

To study the impact of the RTSC combination procedure described in Section 3.4,
we compare it with three other mechanisms:
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Fig. 2. Impact of the size |p| of each island in LPI: 10 (red), 100 (blue), 1000 (green),
10000 (black).

• The path-relinking (PR) procedure used in [38,47] and described in Section 2.2.
• The uniform crossover (UX) used in [28]: given two parents xi and xj, an offspring

solution xo is built such as each value xo(l) for l = 1, . . . , n is equal to xi(l) with
probability 0.5 and to xj(l) otherwise.
• A random mean crossover (MX): given two parents xi and xj, a random offspring

solution xo is built such that |HD(xi, xo) −HD(xj, xo)| ≤ 1, and ∀l = 1, . . . , n,
[xi(l) = xj(l)]⇒ [xo(l) = xi(l)].
• The partition crossover (PC) [43]: the variables with the same value in both

parents are transmitted to the child, then the remaining set of variables is di-
vided into q subsets so that each subset interacts only with other variables in the
same subset, 8 and finally the child is completed by inheriting the best possible
assignment of variables in both parents for each subset.

As shown in Figure 3, when using RTSC (green line), fewer generations are per-
formed within the same time budget. This is due to the additional computation
time required to perform this combination procedure, which works as a local search
restricted to the set of different bits between the two parents. However, the RTSC
procedure allows to obtain the best results compared to the other crossovers dur-
ing the search, highlighting the importance of using a combination procedure that

8 We say that a variable xi interacts with another variable xj if the coefficient Q(i, j) is
non-zero.
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diversifies the search but also favors a good intensification for this problem.

Again according to Figure 3, our RTSC procedure (green line) consistently gives
much better results than the PC crossover (light blue line). We have analyzed the
reason why the PC crossover does not work well for the UBQP. This is because the
interaction graph of the pseudo-Boolean function variables for the UBQP cannot
be easily divided into sub-graphs of homogeneous size. The PC crossover produces
offspring solutions that are too close (in terms of the Hamming distance) to one of
the parents. Thus, when using the PC crossover for the UBQP, the search quickly
stagnates.

Fig. 3. Impact of different crossovers in LPI: RTSC (green), UX (red), MX (deep blue),
PR (yellow) and PC (light blue).

4.4.3 Impact of the interaction neighborhood size for matching

The parameter k corresponds to the number of neighbors considered for the match-
ing procedure described in Section 3.3.

When k = 1, the matching procedure is purely deterministic and consists of sys-
tematically matching each individual with its closest neighbor on its island. Note
that each individual is still different from its neighbor due to the minimum dis-
tance imposed by the population update procedure (see Section 3.5). On the other
hand, when k = 1000, the matching procedure consists of choosing another different
individual completely at random on the same island.

We first observe in Figure 4 that the nearest individual matching strategy, when
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k = 1 (red curve), obtains the worst result for these instances, which can be ex-
plained by the fact that it does not diversify the search enough. When k = 1000
(yellow curve), the results depend on the type of instance considered. For some in-
stances such as G58 or G70, it is almost as good as using a smaller value of k, while
for other values of k, it degrades the results. The best results appear when k = 24
(blue curve) or k = 48 (green curve), which are robust for all instances tested.

With these experiments, we emphasize that in such a large population algorithm,
the number of neighbors considered for the matching strategy is a critical parameter
and must be carefully chosen to avoid either a too close matching, which fails to
diversify the search sufficiently, or a too far away matching, which leads to very
different individuals with no shared relevant information.

Fig. 4. Impact of different number of neighbors considered in the matching strategy in
LPI: 1 (red), 24 (blue), 48 (green), 96 (black), 1000 (yellow)

4.4.4 Impact of the number of migrants

The parameter m determines the number of individuals (i.e., migrants) from each
island that are sent to the next island in the one-way ring topology (as shown in
Figure 5) at each generation.

First of all, we observe in Figure 5 that the version of the algorithm without migra-
tions, when m = 0 (black curve), obtained the worst results for all four instances
considered. This highlights the interest of the migrations, which spread the best in-
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Fig. 5. Impact of different number of migrants between islands at each generation in LPI:
0 (black), 1 (red), 10 (green), 100 (yellow) and 500 (blue).

dividuals to other islands, and increase the chances of producing promising offspring
in the following generations.

Conversely, if the number of migrants is too high, such as m = 100 or m = 500, the
average score improves quickly during the first few generations due to the increased
intensification of the algorithm. However, the algorithm stagnates more quickly due
to a decrease in population diversity, especially for instances G61 and G70.

The best results are obtained for m = 10 (green curve), which strikes a good
balance between intensification and diversification. This allows enough migration
to maintain diversity in the population, while also allowing enough intensification
to achieve the best results on average at the end of the search.

4.4.5 Impact of the migration topology

In the standard version of LPI, an unidirectional ring topology is chosen for mi-
gration, where m = 10 copies of the best individual from each island i are sent to
island i+ 1. To study the impact of this unidirectional ring topology, we compare it
with two other topologies, in which the total number of migrants sent and received
by each island in each generation remains equal to m:
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• a bidirectional ring topology, where m′ = 5 copies of the best individual from
island i are sent to both islands i− 1 and i+ 1;
• a 1+2+3+4+5 ring topology (see [37]) where copies of the best individual from

island i are sent to islands i− 5, . . . , i− 1, i+ 1, . . . , i+ 5.

We observe in Figure 6 that the unidirectional (green curve) and bidirectional (red
curve) ring topologies give almost the same results. The one-way ring topology is
slightly better in average for the instances G58 and G61. The 1+2+3+4+5 ring
topology (blue curve) gives inferior results because it spreads the best individuals
too quickly to all the other islands, resulting in less diversity in the overall population
and thus worse performance.

Fig. 6. Impact of the size |p| of each island in LPI: 10 (red), 100 (blue), 1000 (green),
10000 (black).

4.4.6 Analysis of the interaction between the number of migrants and the number
of islands

In this subsection, we present an analysis of the interaction between two important
parameters of the algorithm: the number of islands I and the number m of migrants.
For the experiments, we used a population with fixed size |P | = 40000 for the same
instances G58, G61, G64, and G70. We performed a grid search with the number
of islands I varying in {4, 40, 400, 4000} and the number of migrants m varying
in {0, 1, 10, 100}. The configuration with m = 100 and I = 4000 was excluded,
as it would result in p = 10 individuals per island, fewer than the number of
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migrants. The average results over 10 independent runs for each of the fifteen (I,m)
configurations are depicted in Figure 7.

First of all, this experiment reaffirms that disabling migrations (m = 0) yields
inferior results across all island sizes.

Using a large number of islands (I = 4000), corresponding to a small number of indi-
viduals on each island (p = 10), also produces poorer results for all these instances.
Nonetheless, the results improve when more migrants are sent between islands in
each generation. This is because using too small islands reduces the chances of
producing effective crossovers at each generation.

We also observe that for the instances G58, G64, and G70, when the number of
islands is too low (I = 4) or when the number of migrants is too high (m = 100),
this produces slightly worse results, since it reduces the diversity over generations
in the overall population.

The configuration with I = 40 (corresponding to p = 1000 individuals on each
island) and m = 10 is the most beneficial for G58, G64, and G70 instances launched
for 3 hours. This configuration corresponds to the values chosen in Table 1 and used
for the experiments reported in the next section.

Fig. 7. Analysis of the interaction between the number of migrants and the number of
islands
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4.5 Results on maximum cut instances

Table 2 reports the computational results of the LPI algorithm on the third set of
maximum cut instances presented in Section 4.1. Each instance was solved inde-
pendently 10 times with random seeds 0, 1, . . . , 9. A time limit of 2 hours was used
for the ”small” instances (G1, . . . , G54), while a limit of 20 hours was allowed for
the larger instances (G55, . . . , G81).

For small maximum cut instances, LPI can find all the best known results in the
literature in a short time, except for the instance G23, for which a best score of
13344 was found only by the MOH algorithm in [25]. 9

For these small instances, except for G36 and G37, the required computation time
is less than 15 minutes and is always of the same order of magnitude as the com-
putation times required by the BLS [4], PR [47] and MOH [25] algorithms. 10 LPI
always finds the best solutions for the different runs launched, unlike the other al-
gorithms which do not always get the best known scores for all runs or all instances.
In particular, LPI, like other competing algorithms, easily finds the best solutions
for the instances G43-G50 in a short time, because these instances are small and
because the density of their Q matrix is low. For G36 and G37, LPI takes longer
(up to two hours), but achieves better average scores than competing algorithms.
For the largest instances (G55, . . . , G81), the computation times required by LPI
(up to 20h) and reported in the Table 2 are higher than for the reference methods
PR, BLS, MOH and PF-SEL (from 2h to 5h), but LPI still achieves better average
results with a large spread, and LPI finds six new lower bounds. The best results
reported by the GESPR algorithm in Table 3 are of the same order of quality as
those of LPI, but these results were obtained with an unknown experimental frame-
work and computational time. A more precise comparison of computation time and
number of objective function calls with the PR algorithm [47], whose source code
are available to us, is given in Table 4.

For large maximum cut instances, LPI converges slowly but can find the best results
of the literature except for five instances: G63, G67, G72, G77, G81. Remarkably,
it obtains new lower bounds (marked with an asterisk) that have never been found
in the literature for 5 instances: G58, G59, G62, G64 and G70. Note that other new
bounds, not reported in Table 2, but in Table 3, were found during our calibration
procedure (e.g., for the instance G61 with a new score of 5799). 11

Table 3 presents the best results known for the 17 difficult maximum cut instances.

9 We could not find the certificate for this solution or the MOH source code to reproduce
this result.
10 Algorithms GESPR [40] and PF-SEL [51] do not report results for these small instances.
11 Certificates for these new solutions will be available on the github repository of the
paper.
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Instance LPI Instance LPI

Name n BKS Best Average t (s) Name n BKS Best Average t (s)

G1 800 11624 11624 11624.0 7 G37 2000 7691 7691 7690.2 4082

G2 800 11620 11620 11620.0 8 G38 2000 7688 7688 7688.0 614

G3 800 11622 11622 11622.0 10 G39 2000 2408 2408 2408.0 347

G4 800 11646 11646 11646.0 7 G40 2000 2400 2400 2400.0 314

G5 800 11631 11631 11631.0 7 G41 2000 2405 2405 2405.0 286

G6 800 2178 2178 2178.0 14 G42 2000 2481 2481 2481.0 328

G7 800 2006 2006 2006.0 7 G43 1000 6660 6660 6660.0 19

G8 800 2005 2005 2005.0 10 G44 1000 6650 6650 6650.0 20

G9 800 2054 2054 2054.0 13 G45 1000 6654 6654 6654.0 19

G10 800 2000 2000 2000.0 10 G46 1000 6649 6649 6649.0 21

G11 800 564 564 564.0 11 G47 1000 6657 6657 6657.0 25

G12 800 556 556 556.0 16 G48 3000 6000 6000 6000.0 94

G13 800 582 582 582.0 23 G49 3000 6000 6000 6000.0 93

G14 800 3064 3064 3064.0 119 G50 3000 5880 5880 5880.0 90

G15 800 3050 3050 3050.0 80 G51 1000 3848 3848 3848.0 145

G16 800 3052 3052 3052.0 69 G52 1000 3851 3851 3851.0 119

G17 800 3047 3047 3047.0 104 G53 1000 3850 3850 3850.0 182

G18 800 992 992 992.0 40 G54 1000 3852 3852 3852.0 140

G19 800 906 906 906.0 49 G55 5000 10299 10299 10299.0 6594

G20 800 941 941 941.0 31 G56 5000 4017 4017 4016.9 49445

G21 800 931 931 931.0 32 G57 5000 3494 3494 3494.0 3494

G22 2000 13359 13359 13359.0 413 G58 5000 19293 19294? 19292.0 65737

G23 2000 13344 13342 13342.0 150 G59 5000 6087 6088? 6085.4 66512

G24 2000 13337 13337 13337.0 234 G60 7000 14190 14190 14189.4 44802

G25 2000 13340 13340 13340.0 258 G61 7000 5798 5798 5797.1 74373

G26 2000 13328 13328 13328.0 291 G62 7000 4870 4872? 4870.0 26537

G27 2000 3341 3341 3341.0 152 G63 7000 27045 27033 27026.6 52726

G28 2000 3298 3298 3298.0 197 G64 7000 8751 8752? 8749.5 49158

G29 2000 3405 3405 3405.0 293 G65 8000 5562 5562 5560.6 21737

G30 2000 3413 3413 3413.0 410 G66 9000 6364 6364 6362.0 34062

G31 2000 3310 3310 3310.0 412 G67 10000 6950 6948 6944.0 61556

G32 2000 1410 1410 1410.0 330 G70 10000 9591 9594? 9593.6 28820

G33 2000 1382 1382 1382.0 349 G72 10000 7006 7004 6999.8 42542

G34 2000 1384 1384 1384.0 302 G77 14000 9938 9926 9924.6 66662

G35 2000 7686 7686 7686.0 1070 G81 20000 14048 14030 14026.4 66691

G36 2000 7680 7680 7680.0 5790

Table 2
Detailed results of LPI on Max-Cut instances. Bold numbers indicate results that match
the Best Known Score (BKS) of the literature. Results marked with an asterisk correspond
to new lower bounds.
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For each instance, the best score found by each algorithm is indicated (lower bound
of the score). Note that this table reports the very best scores obtained by UBQP
algorithms and dedicated maximum cut algorithms in the literature (to the best of
our knowledge): the path-relinking algorithm (PR) [47], the breakout Local search
(BLS) [4], the multiple search operator heuristic MOH [25], the GESPR algorithm
[40], which consists of teams of global equilibrium search algorithms run in parallel
in a multi-CPU environment, and the recent memetic algorithm PF-SEL [51].

A clear comparison in terms of computational time is difficult because some of
these best results, such as those of GESPR, were found under unknown experi-
mental conditions. In addition, we were unable to obtain the original source codes
corresponding to the best reported results for the BLS, MOH, GESPR and PF-SEL
algorithms.

2012 2013 2015 2017 2022

Instance n BKS LPI PR BLS GESPR MOH PF-SEL

[47] [4] [40] [25] [51]

G55 5000 10299 10299 10265 10294 10299 10299 -

G56 5000 4017 4017 3981 4012 4017 4016 -

G57 5000 3494 3494 3472 3492 3494 3494 -

G58 5000 19293 19294? 19205 19263 19293 19288 -

G59 5000 6087 6088? 6027 6078 6086 6087 -

G60 7000 14190 14190 14112 14176 14188 14190 14187

G61 7000 5798 5799? 5730 5789 5796 5798 5792

G62 7000 4870 4872? 4836 4868 4870 4868 4868

G63 7000 27045 27042 26916 26997 27045 27033 26980

G64 7000 8751 8752? 8641 8735 8751 8747 8726

G65 8000 5562 5562 5526 5558 5562 5560 5562

G66 9000 6364 6364 6314 6360 6364 6360 6360

G67 10000 6950 6948 6902 6940 6950 6942 6946

G70 10000 9591 9595? 9463 9541 9591 9544 9587

G72 10000 7006 7006 6946 6998 7006 6998 7000

G77 14000 9938 9928 - 9926 9938 9928 9930

G81 20000 14048 14042 - 14030 14048 14036 14038

Table 3
Best scores found by state-of-the-art algorithms on difficult Max-Cut instances. Bold
numbers indicate results equal to the Best Known Score (BKS) in the literature. An
asterisk indicates a record-breaking new lower bound.

4.6 Ablation study and comparison with a baseline path-relinking algorithm

This section is dedicated to a careful comparison with the popular path-relinking
(PR) algorithm of [47], for which we get the source code. The PR algorithm is a
sequential hybrid algorithm with a population of 10 individuals. It uses the one-
flip tabu search (TS1) combined with the the path-relinking procedure, which are
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described in subsection 2.1 and 2.2, respectively.

We compare this baseline PR algorithm [47] with three different LPI variants:

• LPI-TS1 + PR: a variant of LPI using exactly the same tabu search and combi-
nation procedure (with the same hyperparameters) as used in the PR algorithm
of [47]. The only difference with [47] is the size of the population and the island
organization.
• LPI-TS1 + RTSC: an LPI variant using the same tabu search, but the new RTSC

combination procedure is used instead of the path-relinking procedure of [47].
• LPI-TS∗1|2 + RTSC: the full LPI algorithm described in this paper.

In order to compare the PR algorithm of [47] with the LPI variants on the same
basis, and to remove the effect of using different computing platforms, we compare
these variants with the same maximum budget of 20 billion iterations spent in the
local tabu search.

To perform these 20 billion iterations, for example for the G55 instance of size
n = 5000, the PR algorithm of [47] takes 7 days on an Intel Xeon ES 2630, 2.66
GHz CPU, while it takes only about 1 hour with the LPI algorithm whose local
searches are parallelized on the Nvidia V100 GPU.

Table 4 shows the comparison of PR with the three LPI variants. Columns 1 and
2 are the name and the size n of the instance. Columns 3-6 show the results of the
PR algorithm [47], while columns 7-18 display the results of the LPI variants. The
best and average scores over 10 independent runs are shown, as well as the average
number of iterations and the time (in hours) required to find the best solutions.
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When comparing the baseline PR algorithm (columns 3-6) with the first LPI variant
(LPI-TS1 + PR, columns 7-10), which uses the same components for the local
search and the combination procedure (the only difference is the large population
of LPI), we observe that the LPI variant is better on average (+0.22%) for the
smaller instances (G55-G67), while the PR algorithm is better in average (+0.15%)
for the larger instances (G70-G81). For small instances, it seems more beneficial to
encourage more exploration with a large population, to avoid getting stuck in local
optima. Conversely, when the instance is large and when a global total number
of iterations is imposed, LPI does not have the time to learn promising areas in
the search space and it seems more beneficial to favor more intensification (with a
smaller population).

Replacing the path-linking procedure with the RTSC procedure (columns 11-14)
improves the results for all instances with the same budget of total number of
iterations devoted to local search. This improvement is in average of 0.17% for the
17 instances of this table. An improvement of 0.17% may seem small, but it is very
difficult to improve by just one point a UBQP score that is already close to the best
lower bound found in the literature.

This shows that explicitly optimizing a trade-off between the quality of the offspring
and its distance from both parents, as in the RTSC combination procedure (see
Section 3.4), is more advantageous than performing greedy moves that link both
parents as in the original path-relinking procedure of [47].

If the tabu search one-or-two-flip TS∗1|2 is used (columns 15-18) instead of the
classical search one-flip TS1, it significantly improves the results for some instances,
such as G55 (+0.06%), G56 (+0.07 %), G60 (+0.07 %), G61 (+0.19 %), and G70
(+0.29 %), which are characterized by a low-density Q-matrix. Note that no results
are reported for the instances G58, G59, G63 and G64 with this variant LPI-TS∗1|2 +
RTSC in columns 15-18 because their density ratio ∆/n is higher than the density
threshold ρ (cf. Section 3.2).

This improvement achieved with the one-or-two-flip tabu search, TS∗1|2, instead of
the classical one-flip search, TS1, is reported in Table 4, where both algorithms were
subjected to the same total number of 20 billion iterations. However, an iteration
with the one-or-two-flip tabu search takes more time to complete because the size
of the neighborhood evaluated at each iteration with TS∗1|2 is larger. Therefore, for a
clearer comparison of the TS1 and TS∗1|2 tabu search algorithms evaluated with the
same time budget, we launched 10 replications of the two variants, LPI-TS1+RTSC
and LPI-TS∗1|2+RTSC, on the instances G55, G56, G60, G61 and G70, with the
same total time budget of 3 hours. The results obtained are reported in Table 5.
We see that using the one-or-two-flip tabu search, TS∗1|2, significantly improves
the results for the instances G55 (+0.035%), G56 (+0.035 %), G60 (+0.036 %),
G61 (+0.12 %), and G70 (+0.18 %), when the same time budget is used for both
variants.

28



Instances LPI- TS1+ RTSC LPI- TS∗1|2 + RTSC

Name n BKS Best Average Best Average Avg. Spread

G55 5000 10299 10298 10295.4 10299 10299.0 +3.6

G56 5000 4017 4016 4014.6 4016 4016.0 +1.4

G60 7000 14190 14187 14180.8 14187 14185.9 +5.1

G61 7000 5798 5793 5788.5 5797 5795.6 +7.1

G70 10000 9591 9578 9575.1 9594 9592.7 +17.6

Table 5
All algorithms were executed with a time budget of 3 hours. Significantly better average
results (t-test with p-value 0.01) of the LPI with TS∗1|2 tabu search compared to the
LPI with TS1 tabu search are shown in boldface. The best average result of each row is
underlined.

5 Conclusion

In this work, we investigated a large population island algorithm applied to the
unconstrained binary quadratic problem. We studied the impact of several criti-
cal parameters of the algorithm, such as the matching strategy, the combination
procedure, and the migration topology.

Our experimental results lead to four conclusions. First, it is interesting for this
problem to use a k-nearest neighbor strategy to select parents for crossover, instead
of randomly selecting pairs of individuals from the population. This parameter k,
describing the number of neighbors, must be chosen carefully to achieve a good
exploration/exploitation trade-off. Second, we highlight the advantage of an island
organization with migrations, which has an impact on search intensification for this
problem. Third, for some instances with low-density Q-matrix, we shed light on
the advantage of using a sparse tabu search considering both one-flip and two-flip
associated to non-zero entries of the Q-matrix. Fourth, we highlight the value of
the newly proposed RTSC combination procedure compared to conventional path-
relinking or uniform crossovers. This RTSC procedure transmits similar genetic
information from both parents, but also explicitly optimizes a trade-off between the
quality of the offspring and its distance from both parents, which are two expected
properties of an efficient crossover.

This research has led to the discovery of 6 new lower bounds for hard instances of the
maximum cut problem, which have never been found before in the literature. The
proposed framework with a large population, executed on GPUs, is quite general
and could be applied to solve other NP-hard problems. By making the source code
of our algorithm available, we hope to facilitate such applications and encourage
further research.
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Future work could include using more sophisticated local search algorithms that
explore different neighborhoods, or include improved matching and combination
strategies.
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A Parameter range for grid search

Table A.1 displays the parameter choices for grid search used in the calibration
procedure of Section 4.3.

Parameter Description Choice

Population

p Sub-population size [100, 1000]

γ Minimum spacing [n/10, n/20]

m Number of migrants [1, 10]

Local search

NL Number of iterations [n, 2n]

α Tabu tenure parameter for Max-cut [0.02, 0.04, 0.1]

Combination procedure

k Number of neighbors [1.48, p]

NC Number of iterations [n/2, n]

κ Trade-off parameter [0.5, 1.2]

Table A.1
Parameter choices for grid search with LPI.

B Results on Palubeckis instances

Table B.1 displays the results of LPI on the set of 21 UBQP instances of [30]. For
this set of instances, we use the parameters described in Table 1 with the exception
of α which is set to 0.01 (which was successfully used by [47] for these instances).

Column 1 is the name of the instance, Column 2 is the size n ranging from 3000 to
7000. Column 3, BKS, reports the best known score found in the literature for each
instance [38,46,47]. Columns 4, 5 and 6 report the LPI results with the best and
average scores obtained over 10 independent runs and the average time required in
seconds to obtain the best scores.

We observe that LPI always finds the best known score on each independent run.
However the computational time required to obtain it is quite high in average for
the largest instances.
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Instance LPI

Name n BKS Best Average t (s)

p3000.1 3000 3931583 3931583 3931583.0 473

p3000.2 3000 5193073 5193073 5193073.0 635

p3000.3 3000 5111533 5111533 5111533.0 637

p3000.4 3000 5761822 5761822 5761822.0 495

p3000.5 3000 5675625 5675625 5675625.0 498

p4000.1 4000 6181830 6181830 6181830.0 860

p4000.2 4000 7801355 7801355 7801355.0 1185

p4000.3 4000 7741685 7741685 7741685.0 1192

p4000.4 4000 8711822 8711822 8711822.0 954

p4000.5 4000 8908979 8908979 8908979.0 976

p5000.1 5000 8559680 8559680 8559680.0 1591

p5000.2 5000 10836019 10836019 10836019.0 2195

p5000.3 5000 10489137 10489137 10489137.0 4901

p5000.4 5000 12252318 12252318 12252318.0 3967

p5000.5 5000 12731803 12731803 12731803.0 2296

p6000.1 6000 11384976 11384976 11384976.0 5704

p6000.2 6000 14333855 14333855 14333855.0 8807

p6000.3 6000 16132915 16132915 16132915.0 6751

p7000.1 7000 14478676 14478676 14478676.0 21481

p7000.2 7000 18249948 18249948 18249948.0 17164

p7000.3 7000 20446407 20446407 20446407.0 11956

Table B.1
Results of LPI on the UBQP instances of [30]

C Results on cubic lattices instances

Table C.1 displays the results of LPI on the set of 10 cubic lattices instances.
Column 1 is the name of the instance, Column 2 is the size n = 2744. Column 3
reports the best known score found in the literature for each instance [25,41,51].
LPI always obtains the best known score for all instances and all independent runs
with reasonable average computational times.
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Instance LPI

Name n BKS Best Average t (s)

sg3dl141000 2744 2446 2446 2446.0 614

sg3dl142000 2744 2458 2458 2458.0 601

sg3dl143000 2744 2444 2444 2444.0 3491

sg3dl144000 2744 2450 2450 2450.0 1012

sg3dl145000 2744 2446 2446 2446.0 536

sg3dl146000 2744 2452 2452 2452.0 823

sg3dl147000 2744 2444 2444 2444.0 587

sg3dl148000 2744 2448 2448 2448.0 940

sg3dl149000 2744 2428 2428 2428.0 1287

sg3dl1410000 2744 2460 2460 2460.0 1967

Table C.1
Results of LPI on cubic lattices instances.

D Average Hamming distance on each island and between islands

In this appendix, we report the results of an experiment in which we ran the LPI
algorithm 10 times for the G70 instance with 10000 variables for 3 hours. In Figure
D.1 is displayed in green the average Hamming distance between individuals on
each island measured over generations, and in blue the average Hamming distance
between individuals in the general population (not necessarily belonging to the same
islands). Note that both curves start at the value 5000, which corresponds to the
average Hamming distance between random individuals in the population for this
instance with 10000 binary variables. Each color range corresponds to an interval
of plus or minus one standard deviation around the mean.

With this experiment, we observe that the average distance between individuals on
each island measured over the generations decreases more rapidly than the average
distance between individuals in the general population, which can be explained
by the fact that recombinations between individuals take place within each island,
which favors a rapprochement of individuals within each island.
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Fig. D.1. Average Hamming distance computed over the generations on each island (green)
and between islands (blue) during the resolution of the instance G70.
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