
Ann Oper Res (2016) 238:651–657
DOI 10.1007/s10479-015-2076-1

NOTE

f-Flip strategies for unconstrained binary quadratic
programming

Fred Glover1 · Jin-Kao Hao2,3

Published online: 11 December 2015
© Springer Science+Business Media New York 2015

Abstract Unconstrained binary quadratic programming (UBQP) provides a unifyingmodel-
ing and solution framework for solving a remarkable range of binary optimization problems,
including many accompanied by constraints. Current methods for solving UBQP problems
customarily rely on neighborhoods consisting of flip moves that select one or more binary
variables and “flip” their values to the complementary value (from 1 to 0 or from 0 to 1).
We introduce a class of approaches called f-flip strategies that include a fractional value f as
one of those available to the binary variables during intermediate stages of solution. A vari-
ety of different f-flip strategies, particularly within the context of multi-start algorithms, are
proposed for pursuing intensification and diversification goals in metaheuristic algorithms,
accompanied by special rules for evaluating and executing f-flips efficiently.

Keywords 0–1Optimization ·Binary quadratic programming ·Metaheuristics ·Multi-start
algorithms · Computational efficiency

1 Introduction

The unconstrained binary quadratic programming (UBQP) problem may be written as:

Minimize xo = xQx, x binary

where Q is an n by n matrix of constants and x is an n-vector of binary (0–1) variables
(Hammer and Rudeanu 1968).

B Fred Glover
fredwglover@yahoo.com

Jin-Kao Hao
Jin-kao.Hao@univ-angers.fr

1 University of Colorado Leeds School of Business, Boulder, CO, USA

2 LERIA, Université d’Angers, 49045 Angers, France

3 Institut Universitaire de France, Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-015-2076-1&domain=pdf


652 Ann Oper Res (2016) 238:651–657

The UBQP formulation is notable for its ability to represent a wide range of important
applications. Some applications appear naturally in the form of UBQP while others can
be “re-cast” into the UBQP form by employing various transformations. The former case
includes financial analysis (Laughunn 1970), computer aided design (Krarup and Pruzan
1978), traffic management (Gallo et al. 1980), machine scheduling (Alidaee et al. 1994),
cellular radio channel allocation (Chardaire and Sutter 1994), and statistical physics and
circuit layout design (Barahona et al. (1988)). Moreover, the UBQP model can conve-
niently formulate a number of well-known combinatorial optimization problems pertaining
to graphs such as determining maximum cliques (Bomze et al. 1999), maximum-cuts (Boros
and Hammer 1991; Kochenberger et al. 2013; Wang et al. 2013), set packing (Alidaee
et al. 2008), set-partitioning (Lewis et al. 2008), maximum independent sets (Kochen-
berger et al. (2004)). A review of additional UBQP applications and formulations can
be found in (Pardalos and Rodgers 1990; Pardalos and Xue 1994) and a recent survey
(Kochenberger et al. 2014).

In this note we propose a class of approaches called f-flip strategies for transitioning from
one solution to another in metaheuristic algorithms for the UBQP problem. In contrast to
the customary 1-flip and 2-flip moves (Glover and Hao 2010a, b) that provide transitions by
complementing one or two binary variables (from 1 or 0 to 0 or 1), an f-flip move includes
the option of assigning a binary variable a fractional value f which may depend on the
variable. Hence an f-flip move for a single variable can consist of changing from 0 or 1
to f, or from f to 0 or 1, as well as the complementation operation. We primarily focus
here such flips for single variables (just as 1-flips provide the main moves for most UBQP
methods) and give particular attention to multi-start strategies employing f-flips, where a
selected subset of variables is assigned fractional values, and the transitions are from f to
0 or 1.

2 Efficient evaluations for f-flips

Before describing alternative strategies for exploiting f-flip moves, we examine the issue of
how to evaluate such moves efficiently. As in the case of the customary single variable 1-flip
move, a fast evaluation method can have a critical effect on algorithmic speed. The key to an
efficient evaluation scheme, which identifies the change in the objective value xo caused by
an f-flip move, lies in determining an effective updating process. We show how to do this by
a rule that generalizes the rule of Glover and Hao (2010a) to the present context.

Let N = {1, . . ., n} denote the index set for components of the x vector and the rows
and columns of Q. [The matrix Q = (qij : i, j ∈ N) is often preprocessed to put it in lower
triangular form by setting qij := qij+qji for i < j, followed by qji = 0, which leaves the value
xo = xQx unchanged and allows memory to be saved by storing only the non-zero lower
diagonal elements. Our development additionally makes it possible to reduce computational
effort using Q in this triangular form.]

Let x′ and x′′ represent two binary solutions where x′′ is obtained from x′ by an f-flip
move applied to a single variable xk. Define x′

o = x′Qx′ and x′′
o = x′′Qx′′.

Then, the value �k(v) = x′′
o − x′

o, which depends on the choice of the variable xk and
the new value x′′

k = v that produces x′′ (where x′′
i = x′

i for all i �= k) discloses whether the
move that replaces x′ by x′′ will cause xo to improve or deteriorate (respectively, decrease
or increase) relative to the minimization objective. The goal of making such an evalua-
tion rapidly in search methods that incorporate f-flip moves is achieved by the following
result.

123



Ann Oper Res (2016) 238:651–657 653

Proposition 1 Let N(k) = N − {k} and define
Q′(k) =

∑((
qik + qki

)
x′
i : i ∈ N(k)

)
, k ∈ N (1)

and assume Q′(k) is pre-computed by this definition for each k ∈ N relative to an initial
solution x′. Then the associated value �′

k(v) for v ∈ {0, f, 1} is given by
�′

k(v) = (
v − x′

k

) (
Q′(k) + qkk

(
v + x′

k

))
(2)

Proof First, we identify a computation for determining the value�′
k(v) relative to an arbitrary

initial solution x′ where each x′
k ∈ {0, f, 1}. Let xok(v) denote the new value of xo derived

from xo = x′
o as a result of changing the value of x′

k to v, while xi = x′
i for i ∈ N − k.

Consequently, �′
k(v) = xok(v)− x′

o. Then, we decompose the representation of xo to write:

x′
o =

∑ (
qijx

′
ix

′
j : i ∈ N(k), j ∈ N(k)

)
+

∑ (
qikx

′
ix

′
k : i ∈ N(k)

)

+
∑ (

qkjx
′
kx

′
j : j ∈ N(k)

)
+ qkkx

′
kx

′
k

or, reorganizing

x′
o =

∑(
qijx

′
ix

′
j : i ∈ N(k), j ∈ N(k)

)
+ x′

k

(∑(
qikx

′
i : i ∈ N(k)

)

+
∑ (

qkjx
′
j : j ∈ N(k)

))
+ qkkx

′
kx

′
k

From Q′(k) = ∑
((qik + qki)x

′
i : i ∈ N(k)), k ∈ N in (1) we obtain

x′
o =

∑ (
qijx

′
ix

′
j : i ∈ N(k), j ∈ N(k)

)
+ x′

kQ
′(k) + qkkx

′
kx

′
k

By a corresponding reorganization, we also obtain

xok(v) =
∑(

qijx
′
ix

′
j : i ∈ N(k), j ∈ N(k)

)
+ vQ′(k) + qkkvv

Hence, from �′
k(v) = xok(v) − x′

o:

�′
k(v) = (

v − x′
k

)
Q′(k) + qkk

(
v − x′

k

) (
v + x′

k

)

or

�′
k(v) = (

v − x′
k

) (
Q′(k) + qkk

(
v + x′

k

))

which corresponds to (2), completing the proof.

Comments 1 For a matrix Q in lower triangular form, we can re-write (1) to give the simpler
expression Q′(k) = ∑

(qikx
′
i : i ∈ I(k)), k ∈ N, where I(k) = {i ∈ N, i < k}, and by

convention Q′(1) = 0 (since I(1) = ∅).
Comments 2 Q′(k) can be computed in O(n) time by (1) and hence in O(n2) time for all
k ∈ N.

Given Q′(k), �′
k(v) can be computed in O(1) time by (2), and hence in O(n) time for all

k ∈ N.

As a basis for our next result which refers to a solution x′′ obtained from x′, we assume the
values Q′(k) and �′

k(v) are initialized as indicated in Proposition 1 and the result is applied
recursively (redefining x′ = x′′) to create evaluations for a current x′.

123



654 Ann Oper Res (2016) 238:651–657

Proposition 2 Let x′ denote a current solution and consider a new solution x′′ produced
from x′ by an f-flip that changes the value of a selected variable xh = x′

h to xh = v′′. Then
the associated new values Q′′(k) and �′′

k(v) for x
′′ can be obtained as follows:

For k ∈ N(h): Q′′(k) = Q′(k) + (qhk + qkh)
(
v′′ − x′

h

)
(3)

For k = h: Q′′(h) = Q′(h) (4)

and

For k ∈ N(h): �′′
k(v) = (

v − x′
k

) (
Q′′(k) + qkk

(
x′
k + v

))
(5)

For k = h: �′′
h(v) = (v − v′′)(Q′′(h) + qhh(v

′′ + v) (6)

Proof To update Q′(k) to Q′′(k) for k ∈ N(h), we rewrite Q′(k) in the form

Q′(k) =
(∑

(qik + qki)x
′
i : i ∈ N(h) − {k}

)
+ (

qhk + qkh
)
x′
h

and, from x′′
i = x′

i for i �= h, correspondingly write

Q′′(k) =
(∑

(qik + qki)x
′
i : i ∈ N(h) − {k}

)
+ (

qhk + qkh
)
v′′.

This gives

Q′′(k) = Q′(k) + (
qhk + qkh

) (
v′′ − x′

h

)

as stipulated in (3). Applying the Definition (1) to x′′, again with x′′
i = x′

i for i �= h, we
obtain

Q′′(h) =
(∑

(qih + qhi)x
′
i : i ∈ N(h)

)
= Q′(h)

thereby establishing (4). Next, applying (2) of Proposition 1, we have:

�′′
k(v) = (

v − x′′
k

) (
Q′′(k) + qkk

(
x′′
k + v

))
(7)

For k ∈ N(h), (7) is the same as

�′′
k(v) = (

v − x′
k

) (
Q′′(k) + qkk

(
x′
k + v

))

which establishes (5), and for k = h, using x′′
h = v′′, (7) is the same as

�′′
h(v) = (v − v′′)

(
Q′′(h) + qhh(v

′′ + v)
)

which establishes (6). This completes the proof.

Comments 3 Each of the operations (3), (4), (5) and (6) has O(1) computational complexity,
hence O(n) complexity over all k ∈ N (for a matrix Q in lower triangular form, (3) can be
slightly simplified in the same manner as noted in Comment 1).

Comments 4 Propositions 1 and 2 can also be applied to the more general case that includes
transitions to multiple fractional values f between 0 and 1.

Comments 5 To reduce round-off error when updating f-flip evaluations (and to eliminate
round-off error for a matrix Q with integer data), in the situation where each xk has the
same set of rational-valued options, these options can be scaled to integer values to allow all
operations on Q to be integer (for example, the options {0, 1/2, 1} and {0, 1/3, 2/3, 1} can
be scaled to {0, 1, 2} and {0, 1, 2, 3}).

123



Ann Oper Res (2016) 238:651–657 655

Comments 6 There is a scale-factor distortion in choosing f-values between 0 and 1, which
is retained when the f-values are scaled to integers as in Comment 5. For example, the effect
of setting f = 1/2, gives each cross product term xixj only 1/4 the impact when both xi and
xj = 1/2. That is, xixj = 1/4 in this case compared to xixj = 1 when xi = xj = 1 (on the
other hand, the xixj = 1/2 case arises when xi = 1/2 and xj = 1). Thus, to more closely
mirror the “1/2 impact option”, a value such as f = 2/3 may be chosen, so that the values
of xixj range over 0, 4/9, 6/9, 1 (or 0, 4, 6, 9 when {0, 2/3, 1} is scaled to {0, 2, 3}). Note
this implies that the true xo value for a binary solution must be divided by the square of the
largest xi value produced by integer scaling.

3 UBQP strategies using f-flips

There are several ways to use the foregoing results to produce strategies for UBQP exhibiting
varying degrees of tradeoffs between intensification and diversification. We comment first
on simple strategies that use f-flips in a multi-start setting, where each new start is launched
from an x′ solution containing a specified subset No of variables at fractional values (i.e.,
more precisely, x′

k = f for k ∈ No). In these approaches each iteration selects a fractional
variable xh, h ∈ No and executes an f-flip to produce a solution x′′ in which x′′

h = 0 or
1, followed by redefining x′ = x′′ and removing h from No. Once No becomes empty, the
method proceeds by employing a UBQP algorithm that retains binary values for all variables.
After a chosen cutoff point is reached, the method launches a new re-start from a new
selected x′.

To initiate a simple strategy of this type, the fractional x′ solution itself may come from a
precursor binary x′ solution, which may be generated randomly or produced by prior solution
effort (e.g., selecting one of the best solutions found to date). Then No can be populated by
choosing a set of components x′

k of x′ to receive fractional values, as by making use of the
�′

k(v) evaluations. For example, No may then be generated by selecting

(i) a subset of variables whose �′
k(v) evaluations are worst.

(ii) a subset of variables whose �′
k(v) evaluations are best.

(iii) a subset composing a mix of (i) and (ii).
(iv) a subset picked at random.

The evaluation �′
k(v) for a binary valued x′

k can be based on either v = f or v = 1 − x′
k

(although v = f might seem more natural since this is the value potentially to be assigned to
x′
k). The process can select all elements of No at once, or can select elements one at a time,

updating x′ after each choice. Once No is thus populated with a target number of variables
for which x′

k = f, the method proceeds as indicated above by progressively driving these
variables to integer values.

In contrast to these simple strategies, more intricate procedures can be employed that mod-
ify a customary neighborhood search process (without necessarily re-starting), by allowing
variables to become fractional and then driven back to integer values. To prevent fractional-
valued variables from recovering integer values too soon after becoming fractional, and to
prevent integer-valued variables from being re-assigned a fractional value too soon after
becoming integer, tabu lists can be employed in natural ways. Additional control can be
exercised by periodically penalizing fractional assignments to drive all variables to receive
integer values. These illustrative options represent only a portion of the ways that f-flips can
be used to create UBQP strategies.

123



656 Ann Oper Res (2016) 238:651–657

4 Conclusions

As noted, the introduction of f-flips, together with rules for evaluating them efficiently,
provide opportunities for a wide range of strategies for UBQP problems, ranging frommulti-
start approaches to modified neighborhood search approaches. An interesting possibility that
lies outside these types of strategies concerns the use of f-flips in conjunction with path
relinking methods (Glover et al. 2000, 2004), which have emerged as components of some
of the currently most effective UBQP algorithms (Wang et al. 2012). These methods generate
trajectories from selected initiating solutions by moves that follow directions determined by
associated guiding solutions. Bymodifying these methods to incorporate f-flips, the resulting
fractional-step trajectories can delay the execution of full integer steps until the evaluations
identify strong winners, thus modifying the sequence in which integer steps are made in the
path. The use of f-flips can also change the path destination ultimately selected when more
than one guiding solution is used with a given initiating solution. Once again, the foundation
provided by the results of Sect. 2 enables such approaches to be carried out efficiently.

Acknowledgments We are indebted to an insightful referee who discovered the omission of a variable in
our formulation of Proposition 1.

References

Alidaee, B., Kochenberger, G., & Ahmadian, A. (1994). 0–1 Quadratic programming approach for the optimal
solution of two scheduling problems. International Journal of Systems Science, 25, 401–408.

Barahona, F., Grotschel, M., Junger, M., & Reinelt, G. (1988). An application of combinatorial optimization
to statistical physics and circuit layout design. Operations Research, 36(3), 493–513.

Bomze, I.M., Budinich, M., Pardalos, P.M., & Pelillo M. (1999). The maximum clique problem. In Handbook
of Combinatorial Optimization (pp. 1–74). Springer.

Boros, E., & Hammer, P. L. (1991). The max-cut problem and quadratic 0–1 optimization polyhedral aspects,
relaxations and bounds. Annals of Operations Research, 33(1–4), 151–180.

Chardaire, P., &Sutter, A. (1994). A decompositionmethod for quadratic zero-one programming.Management
Science, 4(1), 704–712.

Gallo, G., Hammer, P., & Simeone, B. (1980). Quadratic knapsack problems. Mathematical Programming,
12, 132–149.

Glover, F., & Hao, J. K. (2010a). Efficient evaluations for solving large 0–1 unconstrained quadratic optimiza-
tion problems. International Journal of Metaheuristics, 1(1), 1–10.

Glover, F., & Hao, J. K. (2010a). Fast 2-flip move evaluations for binary unconstrained quadratic optimization
problems. International Journal of Metaheuristics, 1(2), 100–107.

Glover, F., Laguna, M., & Marti, R. (2000). Fundamentals of scatter search and path relinking. Control and
Cybernetics, 39, 654–684.

Glover, F., Laguna, M., & Marti, R. (2004). Scatter search and path relinking: Foundations and advanced
designs, new optimization technologies in engineering. In G. C. Onwubolu & B. V. Babu (Eds.), Studies
in Fuzziness and Soft Computing (Vol. 141, pp. 87–100). Berlin: Springer.

Hammer, P. L.,&Rudeanu, S. (1968).Booleanmethods in operations research and related areas. Econometrics
and operations research (Vol. 5). Berlin: Springer.

Kochenberger, G., Glover, F., Alidaee, B., & Rego, C. (2004). A unified modeling and solution framework for
combinatorial optimization problems. OR Spectrum, 26, 237–250.

Kochenberger, G. A., Hao, J.-K., Lü, Z., Wang, H., & Glover, F. (2013). Solving large scale max cut problems
via tabu search. Journal of Heuristics, 19(4), 565–571.

Kochenberger, G., Hao, J. K., Glover, F., Lewis, M., Lü, Z., Wang, H., et al. (2014). The unconstrained binary
quadratic programming problem: A survey. Journal of Combinatorial Optimization, 28, 58–81.

Krarup, J., & Pruzan, A. (1978). Computer aided layout design.Mathematical Programming Study, 9, 75–94.
Laughunn, D. J. (1970). Quadratic binary programming. Operations Research, 14, 454–461.
Lewis, M., Kochenberger, G., & Alidaee, B. (2008). A new modeling and solution approach for the set-

partitioning problem. Computers and Operations Research, 35(3), 807–813.

123



Ann Oper Res (2016) 238:651–657 657

Wang, Y., Lü, Z., Glover, F., & Hao, J. K. (2012). Path relinking for unconstrained binary quadratic program-
ming. European Journal of Operational Research, 223(3), 595–604.

Wang, Y., Lü, Z., Glover, F., & Hao, J. K. (2013). Probabilistic GRASP-tabu search algorithms for the UBQP
problem. Computers and Operations Research, 40(12), 3100–3107.

123


	f-Flip strategies for unconstrained binary quadratic programming
	Abstract
	1 Introduction
	2 Efficient evaluations for f-flips
	3 UBQP strategies using f-flips
	4 Conclusions
	Acknowledgments
	References




