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COMBINED NEIGHBORHOOD TABU SEARCH FOR

COMMUNITY DETECTION IN COMPLEX NETWORKS

Oliver Gach1 and Jin-Kao Hao1,2

Abstract. Community is one prominent feature of complex networks.
Community detection is one important research topic in the area of
complex networks analysis. In this paper, we introduce a new heuris-
tic algorithm for community detection using the popular modularity
measure. The proposed algorithm, called CNTS for combined neigh-
borhood tabu search (CNTS), relies on a joint use of vertex move and
merge operators to improve the quality of visited solutions. A dedicated
tabu mechanism provides the algorithm with additional capacities to
effectively explore the search space. Experiments using a collection of
21 well-known benchmark instances show that the proposed algorithm
competes favorably with state-of-the-art algorithms.

Keywords: Community detection, heuristics, tabu search, graph par-
titioning, clustering, combinatorial optimization.

1. Introduction

Complex networks are a graph-based model which is very useful to represent
connections and interactions of the underlying entities in a real networked sys-
tem such as social, biological, and technological networks [39]. A vertex of the
complex network represents an object of the real system while an edge symbolizes
an interaction between two objects. For example in a social network, each vertex
corresponds to a particular member of the network while the edges incident to the
vertex represent the relationships between this member and other members.

Complex networks may be huge and typically display non-trivial topological
features and special patterns which characterize its connectivity and impact the
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dynamics of processes applied to the network [6]. Analysis and synthesis of com-
plex networks help discover these specific features, understand the dynamics of
the networks and represent a real challenge for research [1, 2, 14,46].

A complex network may contain specific groups of highly interconnected vertices
which are loosely associated with other groups. Such a group is commonly called
community, cluster or still module [39] and all the communities of a network form
a clustering. In terms of graph theory, a clustering can be defined as a partition of
the vertices of the underlying graph into disjoint subsets, each subset representing a
community. A community C is typically characterized by two basic factors: intra-
cluster density and inter-cluster density. Intuitively, a community is a cohesive
group of vertices that are connected more ”densely” to each other than to the
vertices in other communities. To quantify the quality of a given community and
more generally a clustering, modularity, as defined in Section 2, is certainly the
most popular measure [40]. Under this quality measure, the problem of community
detection can be considered as an interesting combinatorial optimization problem.

Community detection with modularity is an important research topic and has
a number of concrete applications [14]. In addition to its practical interest, com-
munity detection is also notable for its difficulty from a computational point of
view. Indeed, the problem is known to be NP-hard [8] and constitutes thus a real
challenge for optimization methods.

A number of heuristic algorithms have been proposed recently in the litera-
ture for community detection with the modularity measure. These algorithms
follow three general solution approaches. First, greedy agglomeration algorithms
like [11, 38] iteratively merge two clusters that yield a clustering by following a
greedy criterion, e.g., permitting the largest increase or the smallest decrease in
modularity. Greedy algorithms are generally fast, but the expected quality can
hardly match that of other more sophisticated algorithms. Second, local search al-
gorithms like [33,44,45] progressively improve the solution quality by transitioning
from a clustering to another clustering (often of better quality) by applying a move
operator. For instance, the popular vertex move operator transfers a vertex from
its current community to another community [26]. The quality of such an algo-
rithm depends strongly (among other things) on the move operator(s) employed.
Third, hybrid algorithms like [5, 16, 17, 32, 41] combine several search strategies
(e.g., greedy and multi-level methods) in order to take advantage of the under-
lying methods. Among the existing community detection algorithms, the most
efficient methods often use either the vertex move or merge operator, sometimes
within the multi-level framework.

In this paper, we introduce a new heuristic algorithm for community detection
using the modularity measure. The proposed algorithm, called CNTS for combined
neighborhood tabu search (CNTS), relies on a joint use of vertex move and merge
operators to improve the quality of the visited solutions. To complement these two
intensification-oriented operators, the proposed algorithm integrates an additional
diversification strategy. A tabu list prevents the search from revisiting previously
visited solutions. We also use a new vertex move method to generate the initial
solution required by the tabu search procedure.
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To assess the performance of the proposed algorithm, we test our algorithm on
a set of 21 popular networks in the literature and compare our results with three
state-of-the-art methods. The experimental results demonstrate that the proposed
algorithm is competitive.

The rest of the paper is organized as follows. In Section 2, we define the
problem of community detection under the ”modularity” quality measure and
the two basic move operators. In Section 3, we explain in details the proposed
algorithm. Section 4 is dedicated to computational assessments and comparisons
with reference algorithms, followed by conclusions and perspectives in the last
section.

2. Definition and basic move operators

2.1. Clustering and modularity

Definition 2.1. Given an undirected graph G = (V,E) with vertex set V (|V | =
n) and edge set E (|E| = m), a clustering of G is a partition {C1, C2, ..., CK} of V ,
where each set Ci forms a community (also called cluster or module) if the vertices
of Ci are strongly connected to each other while they are loosely connected to the
vertices of other sets.

There are different measures to quantify the quality of a graph clustering [14].
Modularity [40] is certainly the most widely used quality measure which can be
described as the sum of the differences in density between the vertices of the graph
and vertices in a random graph of same size.

Definition 2.2. The modularity of a clustering with K communities is defined by
the following formula:

Q =
K
∑

i=1

[

li
m
−
(

di
2m

)2
]

(1)

In this formula, li is the number of internal edges of community Ci (i.e., both
endpoints of each edge are in Ci) and di is the sum of the degrees of the vertices
of community Ci. This definition can be extended to weighted graphs.

It is easy to show that Q takes real values in the interval [-0.5,1]. A clustering
with a small Q value close to the lower bound implies the absence of real com-
munities. A large Q value close to 1 indicates a good clustering containing highly
cohesive communities. In particular, the modularity of a trivial clustering with a
single cluster has a value of 0.

Given the modularity measure Q, the community detection problem aims to
find a particular clustering with the maximal modularity Q among all possible
candidates of a given graph. This is thus a highly combinatorial optimization
problem and known to be NP-hard [8]. Consequently, heuristic algorithms are
indispensable to find approximating solutions within reasonable computing time.
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2.2. Move operators for local search

Most of the recent communities detection algorithms using modularity are ag-
glomerative and based on two move operators called vertex mover and merger.

2.2.1. Vertex move operator

Definition 2.3. The vertex move operator (or simply vertex-mover) displaces a
vertex from its current community to a neighbor community. The migration of
vertex v to community C is written as Vm(v, C) or Vm(v, C ′, C) if the original
community C ′ of v needs to be indicated.

This move operator is the key operation of some highly popular community
detection algorithms like [44] and graph partition algorithms like [26].

Relative to a move operator, we define the move gain as the variation in mod-
ularity when the move operator is applied to the current clustering to obtain a
transformed clustering. Given the move operator Vm(v, C ′, C), we define now its
move gain. Let deg(v) be the degree of v in G, dC(v) the internal degree of vertex
v within community C, i.e., the number of edges between v and any vertex of C.
Let dC and dC′ designate the sum of the internal degrees of communities C and
C ′ respectively. Then Formula (2) gives the move gain of Vm(v, C ′, C).

∆Vm(v, C ′, C) =
dC(v)− dC′(v)

m
+ deg(v) .

[

dC′ − deg(v)− dC
2m2

]

(2)

This formula shows that the move gain for each vertex move can be calculated
efficiently in an incremental way. Firstly because the terms m and dev(v) are
constant and the terms dC and dC′ can be stored in memory for the whole graph
and updated incrementally after a move: dC ← dC+deg(v) and dC′ ← dC′−deg(v).
Secondly because the other terms, dC(v) and dC′(v), can be calculated during the
exploration of all adjacent vertices of v, with an appropriate data structure.

2.2.2. Merger operator

Definition 2.4. Themerge operator (or simply merger) [11,38] groups the vertices
of two communities C and C ′ to form a new and larger community. The merge
operator is denoted by Merge(C,C ′).

This move operator is directly employed in algorithms like [44,45] and in multi-
level algorithms like [5, 41].

Like the vertex move operator, the move gain of Merge(C,C ′) can also be
calculated incrementally as follows.

∆Merge(C,C ′) =
lC,C′

m
− dCdC′

2m2
(3)

where lC,C′ refers to the degree between communities C and C ′, i.e., the number
of edges between the two communities, dC and dC′ are respectively the internal
degree of communities C and C ′.
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Here, only the term lC,C′ is computationally expensive because we have to
explore all the neighbors of the vertices belonging to C. We propose a solution to
greatly reduce the computation time in Section 3.6.2.

3. Combined neighborhood tabu search

3.1. General procedure

The general procedure of our combined neighborhood tabu search (CNTS) algo-
rithm is described in Algorithm 1. CNTS begins with an initial clustering C (lines
2-3, see Section 3.2) and then repeats a number of tabu search iterations (lines
3-15, see Section 3.3) until no significant improvement can be reached. For each
improvement iteration, CNTS first identifies the possible vertex moves as well as
merge moves involving only a subset V k of vertices (lines 4-9, see Section 3.3.2).
Among those eligible moves (i.e., excluding the moves forbidden by the tabu list),
CNTS selects the best move (i.e., with the largest move gain), apply it to obtain a
new clustering and updates the tabu list (lines 10-14, see Section 3.3.3). When the
modularity improvement by tabu search becomes insignificant, CNTS triggers a
post-optimization phase (Section 3.4) where all the vertices (instead of the vertices
of the subset V k) are considered to further improve the solution.

3.2. Initial solution

Like any local search algorithm, our CNTS algorithm starts with an initial
clustering and then iteratively seeks better clusterings with its neighborhood-based
search strategies. One simple way is to start the search with a trivial clustering
where each vertex forms a community (this clustering has a very low modularity).
However, we observed that it is more interesting for CNTS to start its search
from an initial clustering of reasonable quality. For this purpose, we introduce the
following initialization method.

The proposed method is based on the reverse vertex-mover (RVM) heuristic.
RVM can be considered as a modified version of the Vm heuristic. Concretely, we
begin with a clustering where each vertex forms a singleton community and then
use the RVM heuristic to improve iteratively this clustering. Each iteration of
RVM examines all the vertices of the graph and for each considered vertex v, we
displace, among all the neighboring vertex of v, the vertex v′ into the community
of v that increases the most the modularity. At the end of an iteration, all the
vertices are examined. We proceed with a new iteration if at least one vertex has
migrated.

Unlike the classical Vm heuristic as it is used in the Louvain algorithm [5] where
a vertex is moved from its community to a neighbor community at each iteration,
a vertex here draws its neighbors into its own community. In CNTS, both RVM
and Vm are respectively used during the initialization phase and tabu search phase
as its basic heuristics. In Section 4.2.2, we study the effect of using RVM and Vm
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heuristics for initialization while in Section 4.4, we show how CNTS can improve
its initial solutions.

Algorithm 1 Combined Neighborhood Search for Community Detection

Require: Graph G = (V,E).
Ensure: A clustering C of G with a maximal modularity.

1: // Generate an initial solution, see Sect. 3.2 //
2: C ← InitialClustering(G)

3: repeat

4: // Build the possible moves, see Sect. 3.3.2 //
5: Nk ← Subset(k, V ) ⊲ Nk ⊂ V contains k vertices
6: M ← LocalMoves(Nk, C) ⊲ M contains the possible vertex moves

7: if no improvement of modularity during previous iteration (Sect. 3.5) then
8: M ←M ∪MergeMoves(Nk, C) ⊲ Add merge moves
9: end if

10: // Choose and apply a move, see Sect. 3.3.3 //
11: RemoveTabuMoves(M,T ) ⊲ Exclude tabu moves from M
12: m← SelectBestMove(M) ⊲ Pick the best move

13: UpdateTabuList(T,m) ⊲ Add chosen move m to tabu list T

14: C ← ApplyMove(C,m) ⊲ Generate a new clustering

15: until no modularity improvement after the process of all vertices of V (Sect. 3.3.4)

16: // Improvement with all the vertices of V , see Sect. 3.4 //
17: C ← PostImprovement(C, V ) ⊲

Although the reverse vertex-mover alone cannot lead to excellent clusterings,
it can generate clusterings of reasonable quality. In our experimental studies, we
observed the initial clustering obtained with RVM has a modularity value varying
between 70% and 80% of the best-known value ever reported in the literature.

3.3. Tabu search procedure

3.3.1. Tabu search principal

To improve the initial solution obtained from Section 3.2, we use the tabu search
method [20] which is known to be a highly effective metaheuristic for tackling
difficult combinatorial optimization problems.

Tabu search relies on a neighborhood to improve the quality of the visited solu-
tions. The notion of neighborhood can be explained in terms of a move operator
like the Vm operator defined in the last section. Typically applying a movemv to a
solution s changes slightly s and leads to a neighboring solution s′. This transition
from a solution to a neighbor solution is typically denoted by s′ = s⊕mv. Let Γ(s)
be the set of all possible moves which can be applied to s, then the neighborhood
N(s) of s can be defined by: N(s) = {s ⊕mv : mv ∈ Γ(s)}. At each iteration,
tabu search selects always the best eligible neighboring solution to replace the
current solution regardless of its quality. This transition rule allows the search to
go beyond the local optima encountered. To prevent the search from revisiting a
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previously examined solution, tabu search maintains in a memory called Tabu list

a portion of the last visited solutions (more precisely, the solution attributes or
moves). A neighboring solution is then called eligible if it is not forbidden by the
tabu list or if it is better than any previously encountered solution.

3.3.2. Move operators and combined neighborhood

To improve the modularity, we use jointly the vertex-mover Vm and the merger
operators. We employ them in a combined way to better exploit their comple-
mentary nature and additionally constraint their application to some dedicated
subsets of vertices.

Definition 3.1. Let Nk ⊂ V be a subset of k vertices of graph G = (V,E), then
the combined neighborhood is defined by the union [34] of the two following sets
(M1 and M2) of neighboring solutions:

• M1 = {s⊕Vm(v, C)} where v is any vertex of Nk (v ∈ Nk) and C is any
community containing at least one vertex adjacent to v (∃v′ ∈ C, {v, v′} ∈
E).
• M2 = {s ⊕Merge(C,C ′)} where v is any vertex of Nk (v ∈ Nk), C ′ is
the community containing v and C is any community with at least one
edge linked to v (∃v′ ∈ C, {v, v′} ∈ E).

Notice that contrary to the vertex-mover operator, a bad merge operation is
difficult to repair. For this reason, the Merge operator is allowed only if it
improves the modularity.

Our CNTS algorithm examines, at each of its iterations, all the neighboring
solutions from M1 and M2 and selects the best one for the transition. After each
iteration, the move that was just applied is recorded in the tabu list in order to
prevent the following iterations from undoing this move. We will explain in Section
3.3.3 the role and management of the tabu list.

3.3.3. Tabu list and move selection strategy

For each move operator Vm(v, C ′, C) or Merge(C,C ′) (Section 2.2), we use
the tabu list to forbid the recent moves during a fixed number tt of iterations (tt
is called the tabu tenure and is determined experimentally).

More specifically, each time the Vm(v, C ′, C) operator is applied to transfer a
vertex v from community C ′ to C, v is forbidden to join C ′ during the period fixed
by tt. At each iteration of the search algorithm, any tabu move (i.e., any move
present in the tabu list) is excluded from the neighborhood. The tabu status of a
move is nevertheless disabled if the move leads to a solution better than the best
found so far (This is called aspiration in tabu search).

3.3.4. Stop criterion

At each iteration of the algorithm, k vertices are examined in the neighborhood
set Nk. Thus, to explore all the n vertices of V , we have to process n/k itera-
tions. The algorithm ends when n/k iterations (rounded to the equal or superior



8 TITLE WILL BE SET BY THE PUBLISHER

integer) are reached without a significant improvement of the modularity. This
improvement significance is appreciated with respect of a threshold ǫ, which is a
non crucial parameter of the algorithm.

3.4. Post-improvement

To complete its search, CNTS applies a post-improvement procedure which
combines the vertex move heuristic [26,44] and the greedy merge procedure of [11,
38]. Each iteration of this post-improvement procedure examines all the vertices
of the graph and for each considered vertex v, the community of v is merged with
the neighbor community that leads to the largest modularity increase. Otherwise,
if no such merge is possible (i.e., all merges lead to modularity decreases), we
transfer vertex v from its current community C ′ to a neighboring community C
such that this vertex transfer improves the most the modularity. Like with the
vertex move heuristic, at the end of an iteration, all the vertices are examined
and the post-improvement procedure proceeds with a new iteration if at least one
vertex has migrated or two communities have been merged.

3.5. Additional strategies

Based on the main algorithm presented so far, we introduce three additional
strategies which prove to be useful in some cases. The first enhancement is related
to the application of the Merge operator. After a Merge move, this operator is
forbidden until the modularity decreases. With this strategy, the search algorithm
applies the merge operator one time and waits until the modularity begins to
degrade (due to tabu search). The rationale behind this strategy is to use Merge

as a diversification mechanism when the search can no longer find any improved
solution.

The second strategy concerns the order in which communities are merged, stud-
ied in particular in [41] using the notion of merge prioritizer.

Definition 3.2. A merge prioritizer assigns to each pair of community (C,C ′) a
real number called merge priority, and then determines the order in which the algo-
rithm merges community pairs. A prioritizer is a function MP : {P(V ),P(V )} 7−→
R, with P(V ) contains all the subsets of V .

The simplest function compares potential merges uniquely based on the mod-
ularity gain ∆Merge(C,C ′). We will use a more informative function to asso-
ciate a priority to a given Merge(C,C ′) move. Our tests show that the function
∆Merge(C,C ′)/min(dC , dC′) proposed in [12] performs well in a number of cases.
To enhance its performance, we propose an improved merge priority function that
takes into account the current modularity to reduce the effect of the division by
dC :

MP(C,C ′) =
∆Merge(C,C ′)

min(dC , dC′)1−Q
(4)
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This function proves to be the best merge prioritizer among those we experi-
mented and is thus integrated in our CNTS algorithm.

The third improving strategy used by CNTS relies on the multi-level optimiza-
tion framework [4, 24] to reduce the computation time of the algorithm for large
graphs. The multi-level version of our CNTS algorithm, denoted by CNTS-ML,
makes local refinement at each level by applying CNTS with a reduction factor
rf , i.e., until the number of communities is decreasing by rf percents. After the
refinement of the graph of the current level, a coarsen graph is generated in which
each vertex corresponds to a community in the original graph. Then we apply
CNTS again to this coarsen graph until CNTS has no effect on a coarsen graph.
During the uncoarsening phase, the clustering at each level is simply improved by
the Vm heuristic (See Section 3.2).

3.6. Implementation

3.6.1. Representation of graphs and clustering

A graph is represented by a data structure that contains the incidence ma-
trix. The vertices are represented by numbers from 1 to n. Our implementation
supports undirected graphs which can be weighted or unweighted. A clustering is
simply represented by a vector C that associates each vertex indexed by i ∈ {1...n}
to the community C[i] containing the vertex. This structure also records useful
information necessary for the incremental calculation of move gains (li and di in
the formulas 2 and 3).

3.6.2. Graph of communities

Our CNTS algorithm uses a graph of communities GC = (V C , EC) associated
with a clustering C, where each vertex represents a community, and each edge
represents the existence of at least one edge between the two related communities.
The edge is weighted with the number of edges of G between the two communities
(the sum of the weights if G is weighted). An edge weight in GC is equal to lC,C′

in formula 3. The clustering representation does not allow us to scan quickly
the vertices of a given community so the complexity of ∆Merge(C,C ′) is O(m),
which makes the evaluation of a Merge expensive. The graph community stores
lC,C′ in the weights of the edges and makes ∆Merge(C,C ′) independent of n and
m, as long as the value dC is also stored.

This technique has the advantage of greatly accelerating the search. The second
advantage is that the graph of communities can be used by multi-level approaches
like [41]. The disadvantage is that it should be updated after each move. For
graphs with a poor community structure, so with a large number of communities,
this technique increases the computational time. Yet, for all real graphs that we
tested, this technique helps reduce the overall computing time.
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Table 1. 21 benchmark graphs for community detection com-
monly used in the literature.

Graph Description n m Source

Karate Club Zachary karate club network 34 78 [48]

Dolphins dolphin association network 62 159 [35]

Political Books network of co-purchased political books 105 441 [29]

College Football network of games between college football teams 115 613 [18]

Codeminer Source code structure of a Java program 724 1015 [23]

C. elegans metabolic network for the nematode C.Elegans 453 2025 [13]

USAir97 direct flight connections between US airports in 1997 332 2126 [3]

Jazz jazz musician collaborations network 198 2742 [19]

E-mail university e-mail network 1133 5451 [22]

Power topology of the Western States Power Grid of the
United States

4941 6594 [47]

Yeast Protein-Protein interaction network in yeast 2284 6646 [9]

Epa pages linking www.epa.gov in a search engine 4271 8909 [27]

Erdos Erds collaboration network 6927 11850 [21]

California Pages matching the query ”California” in a search en-
gine

6175 15969 [28]

Arxiv network of scientific papers and their citations 9377 24107 [25]

PGP trust network of mutual signing of cryptography keys 10680 24316 [7]

Zemail Email network 6640 54173 [43]

Condmat2003 scientific coauthorship network in condensed-matter
physics

27519 116181 [37]

Astro-ph collaboration network of arXiv Astro Physics 16046 121251 [30]

Enron email network from Enron 36692 183831 [31]

Brightkite friendship network from a location-based social net-

working service

58228 214078 [10]

4. Computational results

4.1. Protocol for the experiments

This section is dedicated to the performance assessment of the proposed CNTS
algorithm which is coded in Free Pascal1. For this purpose, we carry out extensive
experiments on a set of 21 networks commonly used in the field of community
detection (Table 1). Directed graphs are transformed into undirected graphs and
loops are removed. Our algorithm also takes into account weighted graphs (US-
Air97, Astro-ph and Condmat2003 ). Notice that for most of these graphs, the
ground truth clutering is unknown. For this reason, our experimental studies
focus on modularity optimization.

1The source code of our CNTS algorithm is available at: http://www.info.univ-angers.fr/

pub/hao/cnts.html
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To report computational results, we follow the common practice of the litera-
ture. As our main quality indicators, we use the modularity values that can be
achieved and the computing time needed (based on a PC equipped with a Pentium
Core i7 870 of 2.93 GHz and of 8 GB of RAM.) The algorithm requires several pa-
rameters that are fixed experimentally (see Sect. 4.3). For each run, the program
stops when the modularity cannot be further improved.

The vertex move and reverse vertex move heuristics used in CNTS (see Section
3.2) are sensitive to the order of vertices of the given graph. This is also the
case for the reference algorithms that are used for computational comparison (see
below). To make a reliable assessment and fair comparisons, we generate for each
tested graph 100 random orders of its vertices (i.e. 100 different graph instances)
and run each algorithm (our algorithm as well as each reference algorithm) on
these 100 instances. We report then the average and maximum modularity from
the 100 results.

To assess the performance of the proposed CNTS algorithm, we compare CNTS
with three state-of-the-art algorithms:

• SS+ML: a multi-level algorithm based on a single-step greedy coarsening
and fast greedy refinement [41].

• MSG-VM: a multistep greedy algorithm with vertex mover [44].
• Louvain: a fast multi-level greedy algorithm [5].

To make a relevant comparison, we compile and execute all programs on the same
machine. For SS+ML and MSG-VM we use the published program written in
C++. For Louvain, we use our implementation in Free Pascal, according to the
published algorithm. Among the existing algorithms for community detection with
modularity optimization, these three algorithms are certainly the most popular and
representative, as a consequence, can be considered as highly relevant reference
methods for a reliable comparison.

Our first experiment aims to identify the key components of the algorithm as
well as appropriate parameter values while the second experiment compares our
results with the three reference community detection algorithms.

4.2. Preliminary study

4.2.1. Merge prioritizer

The first important choice concerns the merge priority function (See Section
3.5). At each iteration of the algorithm, the examined set of verticesNk determines
a set of potential Merge(C,C ′). The merge with maximal and positive priority
is selected and executed. We decide to assess five classical functions, previously
presented in the literature (see a summary in [41]):

• DeltaQ: ∆Merge(C,C ′)

• MinDeg: ∆Merge(C,C′)

min(dC ,dC′ )

• MinSize: ∆Merge(C,C′)

min(|C|,|C′|)
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Figure 1. Assessment of the merge priority function in CNTS
version. Graphics present, for each tested graph, the distribu-
tion on a normalized scale between 0 and 1, of the nine (one for
each function) average modularity values over the 100 instances
of graph.

• Sig: ∆Merge(C,C′)√
dCdC′

(significance)

• WT: min
(

|C|
|C′| ,

|C′|
|C|

)

∆Merge(C,C ′) (Wakita & Tsurumi)

In preliminary tests, we observe that MinDeg and MinSize are better than DeltaQ
mostly for graphs with high modularity, typically above 0.8. Thus, we propose
a formulation, with an exponentiation of 1 − Q, such that with high modularity
the prioritizer approximates DeltaQ and with low modularity the prioritizer tends
to become MinDeg or MinSize. In addition, this modification favors merges of
small communities at the early stage of the search (when Q is far from its optimal
value) and tends to favor merges of big communities in the end. We generalize
this principle for all other functions than DeltaQ:

• MinDegQ: ∆Merge(C,C′)

min(dC ,dC′ )1−Q

• MinSizeQ: ∆Merge(C,C′)

min(|C|,|C′|)1−Q

• SigQ: ∆Merge(C,C′)

(
√

dCdC′ )1−Q

• WTQ: min
(

|C|
|C′| ,

|C′|
|C|

)1−Q

∆Merge(C,C ′)

Figure 1 shows the results of the five merge priority functions from the literature
as well as the four generalized functions using the 21 benchmark graphs. From the
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Figure 2. Comparison between four versions of CNTS. The two
basic CNTS versions (CNTS(vm) and CNTS(rvm)) are executed
with parameters k = 200 and tt = 0, the multi-level CNTS ver-
sions (CNTS-ML) are run with a reduction factor rf = 0.1. The
graphic presents, for each graph, the distribution on a normalized
scale between 0 and 1, of the four (one for each version) average
modularity over the 100 instances of graph.

left part, one does not observe a clear predominant function among the five. The
performance of DeltaQ is good on the set of graphs, but MinSizeQ clearly has a
very good behavior from football and especially from email to the biggest graph.
The right graphic shows a good performance of SigQ from Power, but a very weak
results for the three smallest graphs. For almost all graphs, the performance of
exponent 1 − Q prioritizers is better than the original function. MinSizeQ and
MinDegQ both have very good overall results. Since MinDegQ is globally the
best, we choose the MinDegQ prioritizer for all the tests that follow.

4.2.2. Reverse vertex-mover and multi-level CNTS

The proposed CNTS algorithm could start with a clustering obtained by either
a classical vertex-mover or the reverse vertex-mover procedure (see Section 3.2).
The multi-level version of CNTS, i.e., CNTS-ML (see Section 3.5), could also use
vertex-mover or reverse vertex-mover to initially cluster the coarsened graph at
each level, before executing the tabu search refinement procedure. In this section,
we wish to assess four combinations of these techniques:
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Figure 3. Assessment of the sample size parameter k. The
CNTS algorithm is executed with the parameter tt = 0. The
represented data is the average of relative distance between the
maximum modularity found for all parameter values and the mod-
ularity found for the measured parameter value. For instance,
with k = 10, Q is almost 1.3% lower than the maximum. We test
seven values of k.

(1) CNTS(vm): CNTS presented in Section 3 using the vertex-mover heuristic
to produce an initial clustering before the tabu search optimization.

(2) CNTS(rvm): CNTS using the reverse vertex-mover heuristic to produce
an initial clustering before the tabu search optimization.

(3) CNTS-ML(vm): multi-level CNTS presented in Section 3.5 using the
vertex-mover heuristic to produce an initial clustering before the tabu
search optimization at each level.

(4) CNTS-ML(rvm): multi-level CNTS using the reverse vertex-mover heuris-
tic to produce an initial clustering before the tabu search optimization at
each level.

The comparitive results, presented in Figure 2, show a clear dominance of CNTS
over CNTS-ML, and the reverse vertex-mover (bold symbol) over the vertex-mover
heuristic (normal symbol). For all graphs, CNTS(rvm) is the best method.

4.3. Parameter settings

4.3.1. Sample size k used by the combined neighborhood

The main parameter for the performance of the CNTS algorithm is the size of
the set of vertices, explored by the VM and MERGE operators of the algorithm (see
Section 3.3.2). Intuitively, a large k value corresponds to a larger combined neigh-
borhood. A large neighborhood would leads to a better modularity optimization.
However, exploring large neighborhoods is clearly more time-consuming. Exper-
iments show a relatively low sample size compared to the number of vertices is
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Figure 4. Assessment of the tabu tenure parameter tt. The
CNTS algorithm is presented with other parameter k = 200. The
represented data is the same as in Figure 2 with the rate of in-
crease of modularity relative to the minimum. We test four values
tt = {0, 1, 2, 5}. tt = 2 seems the best setting.

sufficient to produce a very good modularity optimization in our algorithm be-
cause every merge is followed by a fine adjustment by vertex moves, as it is shown
in Figure 3, where we represent the average distance of the modularity found rel-
atively to the maximum modularity for each graph. The distance becomes very
small from k = 200. For the set of graphs, the distance rate has no extreme values,
ranging from 0% to a maximum of 0.08% for condmat. We choose thus k = 200.

4.3.2. Tabu tenure

In CNTS, the tabu tenure tt represents the number of tours during which a
move is classified tabu and will be excluded to being considered for the neighbor-
hood examination. A tour is a complete examination of the neighborhood. Since
a vertex is examined once each tour, it is logical to express the duration of a pro-
hibition move by a number of tours. The positive effect of tabu tenure is shown
in Figure 4. However, this effect is relatively limited (maximum 0.2% of increase
of Q) and depends on graphs. The worst results are for the extreme values tt = 0
and tt = 5 and the best one is observed when tt = 2.

4.4. Computational results

In this section, we show a comparison between our proposed approach and
the three state-of-the-art algorithms mentioned above: SS+ML (multi-level al-
gorithm), MSG-VM (multi step greedy algorithm) and Louvain (fast multi-level
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greedy algorithm). We run the CNTS algorithm and its multi-level version CNTS-
ML described in Section 3 with the parameters given in Table 2. Since the heuristic
used by CNTS for its initialization is a simplified version of Louvain, the compari-
son presented in this section implicitly shows how much CNTS improves its initial
solutions.

Table 2. Parameters used in CNTS and CNTS-ML algorithms

CNTS CNTS-ML Param. Description
× × k Number of vertices used to build the neighborhood, Section

3.3.2)
× rf Reduction factor, i.e., proportion of community reduction be-

fore passing to the next level
× × tt Tabu tenure, Section 3.3.3 expressed as a number of iterations
× × ǫ Stop condition for the vertex-mover heuristic, set to 10−5 in

our tests

Table 3 shows the average modularity of 100 results for each graph (recall that
100 random orders of vertices are generated for each graph). Clearly, the algorithm
SS+ML has the best average modularity for the largest number (13) of graphs, but
CNTS has the largest total of average modularity. MSG-VM and Louvain achieve
the worst results for the set of 21 graphs. An important difference concerns the
average number of communities found by the two best algorithms, SS+ML and
our CNTS method. For all the large graphs, from power, CNTS founds signifi-
cantly more communities than SS+ML. This reveals an attenuated trend, for the
maximization of modularity, to cluster a graph with few large communities. This
behavior is especially due to the reverse vertex-mover procedure.

Table 4 shows the maximum modularity reached by each competing algorithm.
From Table 4, we observe that our algorithms CNTS and CNTS-ML compete
very favorably with the reference algorithms that are based on several different
approaches. Indeed, CNTS and CNTS-ML reaches the highest modularity value
for 11 and 10 respectively, compared to MSG-VM, SS+ML, Louvain which reaches
the best value for 0, 11 and 3 respectively. Moreover, like for the average modu-
larity, CNTS has the best overall maximum score of 13.5322 while CNTS-ML has
the second best overall maximum score.

Finally, Figure 5 shows a comparison of computing times of the competing
algorithms. As we can observe, Louvain is the fastest algorithm for all the tested
graphs. Overall, it seems that the time of CNTS and CNTS-ML grow slightly
faster than SS+ML and Louvain, with almost 100 seconds for the larger graph
against less than 10 with these algorithms.

5. Conclusions

Community detection using a global criterion (i.e. modularity maximization)
is a hot research topic for complex network analysis. We have presented a new
heuristic approach to solving this hard combinatorial optimization problem. The
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Table 3. Average modularity for the 21 benchmark graphs. MSG-
VM is executed with a parameter level l =

√

W (V, V )/2 (recom-
mended in [44]), SS+ML with a reduction factor of 0.1 (recommended
in [41]). For our algorithms, CNTS(k = 200, tt = 2) and CNTS-
ML(k = 200, rf = 0.1, tt = 2). The best performance is indicated in
bold and the average size of communities in parenthesis only for the
two best algorithms SS+ML and CNTS (CNTS-ML has practically
the same values than CNTS).

Graph MSG-VM SS+ML Louvain CNTS CNTS-ML

karate 0.3981 0.4198 (4) 0.4164 0.4194 (4) 0.4196

dolphins 0.5246 0.5262 (5) 0.5198 0.5234 (6) 0.5236

politic 0.5254 0.5256 (6) 0.5205 0.5270 (5) 0.5270

football 0.5848 0.5999 (10) 0.6037 0.6044 (10) 0.6045

codeminer 0.8691 0.8724 (32) 0.8665 0.8721 (33) 0.8709

celegans 0.4369 0.4457 (11) 0.4369 0.4454 (11) 0.4443

USAir97 0.2047 (5) 0.1958 0.2119 (4) 0.2042

jazz 0.4447 0.4447 (4) 0.4428 0.4450 (4) 0.4446

email 0.5717 0.5788 (11) 0.5685 0.5789 (12) 0.5772

power 0.9361 0.9381 (41) 0.9357 0.9365 (42) 0.9381

yeast 0.5889 0.6026 (46) 0.5925 0.6015 (50) 0.6009

epa 0.6570 0.6675 (34) 0.6495 0.6687 (38) 0.6669

erdos 0.6986 0.7157 (37) 0.6964 0.7155 (42) 0.7141

california 0.6613 0.6776 (112) 0.6568 0.6726 (118) 0.6726

arxiv 0.8052 0.8211 (64) 0.8143 0.8204 (72) 0.8206

pgp 0.8737 0.8843 (102) 0.8823 0.8843 (112) 0.8849

zemail 0.6731 0.6833 (17) 0.6736 0.6813 (18) 0.6812

condmat 0.8161 (83) 0.8102 0.8159 (90) 0.8151

astro-ph 0.7362 (417) 0.7313 0.7413 (427) 0.7410

enron 0.6130 0.6289 (1212) 0.6105 0.6281 (1267) 0.6278

brightkite 0.6793 0.6969 (641) 0.6854 0.6957 (727) 0.6955

TOTAL 11.5408 13.4853 13.3083 13.4882 13.4735

#best 0 13 0 6 4

MSG-VM is unable to process weighted graphs (USAir97, condmat and astro-ph)

proposed algorithm is based on the tabu search metaheuristic and uses two comple-
mentary move operators. The vertex-move and merge operators are jointly applied
to ensure an efficient and intensified exploitation of the search space. Additional
strategies like merge conditions and multi-level optimization are also studied.

The proposed CNTS algorithm has been assessed on a set of 21 popular bench-
mark graphs and has shown competitive results with respect to three state of the
art methods in terms of modularity maximization and community size.

This paper focuses on the very popular modularity measure which, however,
is deemed to have a tendency to produce too large communities at the expense
of relatively small communities (well-known resolution limit [15]). Our algorithm
seems to reduce this effect because the number of communities found is larger
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Table 4. Maximum modularity for the 21 graphs. The algo-
rithms are run under the same conditions as indicated in Table
3.

Graph MSG-VM SS+ML Louvain CNTS CNTS-ML

karate 0.3981 0.4198 0.4198 0.4198 0.4198

dolphins 0.5246 0.5286 0.5278 0.5286 0.5286

politic 0.5254 0.5273 0.5205 0.5270 0.5273

football 0.6032 0.6045 0.6046 0.6046 0.6046

codeminer 0.8705 0.8728 0.8702 0.8728 0.8728

celegans 0.4457 0.4504 0.4472 0.4513 0.4499

USAir97 0.2059 0.1958 0.2119 0.2141

jazz 0.4447 0.4451 0.4452 0.4452 0.4452

email 0.5746 0.5813 0.5758 0.5820 0.5815

power 0.9381 0.9392 0.9371 0.9380 0.9392

yeast 0.5948 0.6068 0.5962 0.6053 0.6055

epa 0.6639 0.6707 0.6561 0.6726 0.6714

erdos 0.7037 0.7173 0.7000 0.7173 0.7162

california 0.6696 0.6799 0.6666 0.6779 0.6771

arxiv 0.8108 0.8226 0.8167 0.8226 0.8227

pgp 0.8802 0.8849 0.8842 0.8855 0.8858

zemail 0.6776 0.6843 0.6794 0.6832 0.6829

condmat 0.8167 0.8102 0.8159 0.8160

astro-ph 0.7381 0.7345 0.7432 0.7429

enron 0.6213 0.6300 0.6241 0.6315 0.6311

brightkite 0.6840 0.6989 0.6909 0.6970 0.6971

TOTAL 11.6301 13.5240 13.4019 13.5322 13.5307

#best 0 11 3 11 10

than other algorithms, with similar modularity values. Other quality measures
like generalized modularity Qλ [42] or merit factor [36] have been proposed to
mitigate this limit. It would be interesting to check how the approach proposed
in this paper can be adapted to these measures.
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