
A Memetic Algorithm for Community Detection

in Complex Networks

Olivier Gach1,2 and Jin-Kao Hao2

1 LIUM & IUT, Université du Maine, Av. O. Messiaen, 72085 Le Mans, France
olivier.gach@univ-lemans.fr

2 LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex 01, France
hao@info.univ-angers.fr

Abstract. Community detection is an important issue in the field of
complex networks. Modularity is probably the most popular partition-
based measure for community detection of networks represented as graphs.
We present in this article a hybrid algorithm mixing a genetic approach
with a dedicated crossover operator and a multi-level local optimization
procedure. Experimental evaluations on a set of 11 well-known bench-
mark graphs show that the proposed algorithm attains easily all the cur-
rent best solutions and even improves 6 of them in terms of maximum
modularity.

Keywords: heuristic, community detection, complex networks, graph
partitioning, modularity, combinatorial optimization

1 Introduction

Complex networks are a graph-based model which is very useful to represent
connections and interactions of the underlying entities in a real networked sys-
tem [19]. A vertex of the complex network represents an object of the real system
while an edge symbolizes an interaction between two objects. A typical exam-
ple is social network where each vertex corresponds to a particular member of
the network while the edges incident to the vertex represent the relationships
between this member and other members. Other prominent complex networks
include biological networks, citation networks, and the World Wide Web.

Complex networks typically display non-trivial topological features and spe-
cial patterns which characterize its connectivity and impact the dynamics of
processes applied to the network [17]. Discovering these particular features and
patterns helps understand the dynamics of the networks and represents a real
challenge for research [6].

In particular, complex networks may contain specific groups of highly inter-
connected vertices which are loosely associated with other groups. Such a group
is commonly called community, cluster or still module [19] and all the communi-
ties of a network form a clustering. In terms of graph theory, a clustering can be
defined as a partition of the vertices of the underlying graph into disjoint subsets,
each subset representing a community. A community is typically characterized



2 Olivier Gach and Jin-Kao Hao

by two basic factors: intra-cluster density and inter-cluster density. Intuitively,
a community is a cohesive group of vertices that are connected more "densely"
to each other than to the vertices in other communities. To quantify the quality
of a given community and more generally a clustering, modularity is certainly
the most popular measure [18]. Under this quality measure, the problem of com-
munity detection becomes a pure combinatorial optimization problem. Formally,
the modularity measure can be stated as follows.

Given a weighted graph G = (V,E,w) where w is a weighting function, i.e.,
w : V × V 7−→ R such that for all {u, v} ∈ E,w({u, v}) 6= 0, and for all {u, v} /∈
E,w({u, v}) = 0. Let C ⊆ V and C ′ ⊆ V be two vertex subsets, W (C,C ′) the
weight sum of the edges linking C and C ′, i.e., W (C,C ′) =

∑

u∈C,v∈C′ w({u, v})
(in this formula, each edge is counted twice). The modularity of a clustering with
K communities I = {C1, C2, ..., CK} (∀i ∈ {1, 2, ...,K}, Ci ⊂ V and Ci 6= ∅;
∪K

i=1
Ci = V ; ∀i, j ∈ {1, 2, ...,K}, Ci ∩ Cj = ∅) is given by:

Q(I) =

K
∑

i=1

[

W (Ci, Ci)

W (V, V )
−

(

di

W (V, V )

)2
]

(1)

where di is the sum of the degrees of the vertices of community Ci, i.e.,
di =

∑

v∈Ci
deg(v) with deg(v) being the degree of vertex v.

It is easy to show that Q takes values in the interval [-0.5,1]. A clustering with
a small Q value close to the lower bound implies the absence of real communities.
A large Q value close to 1 indicates a good clustering containing highly cohesive
communities. In particular the modularity of a trivial clustering with a single
cluster has a value of 0.

Given the modularity measure Q, the community detection problem aims to
find, among the space of all possible clusterings (partitions) of a given graph, a
particular clustering with the maximal modularity Q. This is thus a highly com-
binatorial optimization problem and known to be NP-hard [3]. Consequently,
heuristic algorithms become a natural choice to handle this problem. The heuris-
tic algorithms proposed recently in the literature for community detection with
the modularity measure belong to three general solution approaches: fast greedy
agglomeration like [4], local search [22,14] and hybrid algorithms like [1,13] as
some examples.

In this paper, we introduce a memetic algorithm for community detection
(MA-COM). MA-COM combines a dedicated crossover operator and a multi-
level optimization procedure. To maintain population diversity, MA-COM ad-
ditionally uses a quality-and-distance based population updating strategy. To
assess the effectiveness of the proposed MA-COM algorithm, we present compu-
tational results on a set of 11 well-known complex networks and show solutions
with an improved Q value for 6 cases with respect to the best-known values
reported in the literature.



A Memetic Algorithm for Community Detection 3

2 Hybrid Evolutionary algorithm

2.1 Main scheme

Memetic algorithms are known to be an effective approach in solving a number
of hard combinatorial optimization problems [16]. A memetic algorithm based
on genetic local search hybrid repeatedly alternates between a recombination
(or crossover) operator and a local optimization operator. The recombination
operator generates new solutions which are hopefully located in new promising
regions in the search space while the local optimization operator searches around
the newly generated solutions in order to discover solutions of good quality.

The general scheme of our MA-COM algorithm for community detection is
summarized in Algorithm 1. Basically, MA-COM begins with an initial popu-
lation of solutions (line 1, Section 2.2) and then repeats an iterative process
for a number of times (generations) (lines 3–11). At each generation, two so-
lutions are randomly selected to serve as parents (line 4). The recombination
operator is applied to the parents to generate a new offspring solution which
is further improved by the local optimization procedure (lines 5–6, see Section
2.3). Finally, we apply a quality-and-distance based rule to decide whether the
improved offspring solution can be inserted into the population (line 10, Sec-
tion 2.4). The solution with the highest modularity discovered during the search
is always recorded (line 7-8). The whole algorithm stops if during g consecutive
generations, the modularity improvement is inferior to a given threshold ǫ. In the
following subsections, we give more details on the components of our algorithm.

Algorithm 1 Pseudo-code of memetic algorithm for community detection

Require: Graph G = (V, E).
Ensure: A clustering I∗ of G with a maximal modularity.
1: P = {I1, I2, ..., Ip} ← Initialize_Population() /* Sect. 2.2*/
2: I∗ = arg maxI∈P {Q(I)} /* Record the best clustering found so far */
3: repeat

4: (Ii, Ij)← Choose_Parents(P )
5: I ← Recombine_Parents(Ii, Ij) /* Sect. 2.3 */
6: I ← Improve(I) /* Sect. 2.2 and 2.3 */
7: if Q(I) > Q(I∗) then

8: I∗ ← I

9: end if

10: P ← Update_Population(I, P ) /* Sect. 2.4 */
11: until end_criterion

2.2 Initial Population

To generate the initial population P , we employ the multi-level algorithm due to
Blondel et al. (named BGLL) [1] which uses the vertex mover (VM) heuristic [22]



4 Olivier Gach and Jin-Kao Hao

as its refinement procedure. BGLL begins with a coarsening phase to create a
hierarchy of simplified graphs organized into multi-levels and for each step of the
coarsening phase, the vertex mover (VM) heuristic [22] is iteratively applied to
the clustering of the current graph to obtained a local optimal clustering. BGLL
stops when the clustering of the graph cannot be further improved by VM.

More precisely, from the initial graph G0 (the lowest level) where each vertex
forms a community, the VM heuristic is iteratively applied to all the vertices of
G0 until no vertex can be moved to improve the modularity of the clustering C of
graph G0. Based on this local optimal clustering C, graph G0 is transformed into
a new and higher-level graph G1 where each vertex represents a community of
C and two vertices of G1 are linked by an edge if they represent two neighboring
communities in C. Now the VM heuristic is applied to G1 to create another
clustering which is used to transform G1 to a new graph G2 of higher level. This
coarsening phase stops when the last graph cannot be further improved by the
VM heuristic.

At this point, a second phase (uncoarsening) unfolds the hierarchy of graphs
starting from the highest level. At each uncoarsening step, the communities
represented by the vertices of the current graph are recovered. The uncoarsening
phase stops when the lowest level is reached to recover the initial graph G0. The
corresponding clustering of G0 constitutes an individual of the initial population
of our memetic algorithm.

Experiments show that this initialization procedure is able to provide the
memetic algorithm with diversified initial solutions of good quality.

2.3 A priority-based crossover operator

Crossover is a key element for the effectiveness of the memetic approach. We de-
velop a crossover operator which is dedicated to the clustering problem, named
priority-based crossover operator. The key idea of this operator is to take com-
munities as genetic material of solution and try to preserve some communities
from the parents. The proposed crossover operator operates on parents that are
sufficiently distanced in terms of community structure.

Precisely, the crossover operator uses two parent clusterings (I1, I2) (which
are selected randomly from the population) and a priority vector p to generate
one offspring clustering. Let s and r be respectively the number of communities
of clusterings I1 and I2. The vector p, indexed from 1 to s + r, is defined by a
random permutation of {1, 2, ..., s+r}. The indices between 1 and s of p denotes
the communities of one parent and those between s+1 and s+r the communities
of the other parent. Thus each community of the parents is designated by a
unique number from 1 to s + r. For each community Ci, i ∈ {1, 2, ..., s + r}, the
corresponding value in p (i.e., p[i]) identifies the priority of Ci for crossover. By
convention, a smaller p value indicates a higher priority for the community and
vise versa.

The crossover procedure generates an new offspring clustering Io as follows.
We go through one by one all the communities by following the priority order
given by the vector p. We begin by selecting the community C with the highest



A Memetic Algorithm for Community Detection 5

priority according to p and transfer all the vertices of the community to form a
community of the offspring Io. We then pick the community C ′ with the second
highest priority according to p, remove the vertices already in Io and use the
remaining vertices of C ′ to form a new community of Io (empty community is
discarded). We repeat this process until the community with the lowest priority
is handled. Finally, the communities of Io are re-labeled from one to the number
of communities contained in the offspring.

Figure 1 illustrates the crossover procedure applied to a small graph. Among
the 7 communities of the two parents, the one with the highest priority 1 (labeled
5 in parent 2 with vertices {1,2,8,10,13,17}) is transfered to the offspring. The
second selected community is the one labeled 2 from parent 1 (i.e., {3,7,9,13,16}).
After removing the vertex 13 already present in the offspring, we use {3,7,9,16}
to form another community of the offspring. The next selected community is
the one labeled 1 from parent 1 ({1,2,8,10,17}), removing the shared vertices
leads to an empty community which is discarded. This process continues until
all the 7 communities are examined. The resulting offspring is composed of 5
communities originating from both parents.

1

8

2

13

10

3

16

9

7

6

11

15

5

14
12

417

1

8

2

13

10

3

16

9

7

6

11

15

5

14
12

417

1

8

2

13

10

3

16

9

7

6

11

15

5

14
12

417

1

2

3

4

5

6

7
4

7

1

6

5

2

3

7

6

5

4

3

2

1

5 → 1
3 → 5

4 → 3

7 → 4

2 → 2

priority
community

Parent I1 Parent I2

Offspring

Priority vector p

Fig. 1. Illustration of the crossover operator. Five new communities in the offspring
are created from seven communities of two parents.

This crossover operator leads generally to an offspring clustering with more
communities than in the parents, decreasing thus the modularity objective. To



6 Olivier Gach and Jin-Kao Hao

improve the quality of the offspring, we apply the BGLL algorithm described in
Section 2.2 by taking the offspring as its initial solution. The improved offspring
will then be considered for inclusion in the population according to a quality-
and-distance strategy explained in the next section.

The time complexity of the crossover operator is O(n). With an appropriate
data structure, it can be implemented in one pass of the vertices of the graph.

Finally, we notice the the priority associated to each community can be de-
fined by considering other factors like its modularity and size. Due to space limit,
we do not explore these possibilities in this paper. Yet, as shown in the section
of experimental evaluation, our memetic algorithm equipped with the crossover
operator using random priorities works well for the set of the test graphs.

2.4 Population updating strategy

Population diversity is another critical issue in a memetic algorithm to avoid
premature convergence. In our case, this is particular true due to the small size
of the population used (typically several tens of solutions). For this reason, we
employ a population updating strategy which considers not only the quality of
the offspring, but also its distance to the solutions of the population.

Distance function Let X = {X1,X2...XK} and Y = {Y1, Y2...YK′} be two
clusterings of graph G = (V,E). For an edge e = {u, v} ∈ E and a community
C of X or Y , we use e ∈ C to state the fact that the vertices u and v of e are in
the same community. Then we use the Rand Index [21] to define our distance d
between X and Y as follows:

d(X,Y ) =

∑

e∈E de(X,Y )

m
(2)

where de(X,Y ) of edge e = {u, v} is defined by:

de(X,Y ) =







0 if ∃Xi ∈ X, ∃Yj ∈ Y s.t. e ∈ Xi and e ∈ Yj OR
if ∀Xi ∈ X, ¬(e ∈ Xi) and ∀Yi ∈ Y,¬(e ∈ Yj)

1 otherwise.
(3)

We can show that d (called Edge Rand Index - ERI) satisfies the conditions
of a mathematical distance and takes values in [0,1]. Intuitively, this distance
measures the edge disagreements between two clusterings.

Updating procedure Let P and Io be the current population and the
offspring to be considered for inclusion in P respectively. Let I ∈ P be the closest
clustering to Io according to the above distance. Let δmin is a fixed distance
threshold. Then we apply the following replacement strategy: if d(Io, I) > δmin

and Q(Io) ≥ Q(I), then Io replaces I in P ; otherwise, Io replaces the worst
clustering (with the smallest modularity) in P .

By taking into account both quality and distance, this updating strategy
reinforces the population diversity when the search progresses.



A Memetic Algorithm for Community Detection 7

3 Computational results

3.1 Experimental setup

This section is dedicated to a performance assessment of our MA-COM algo-
rithm which is coded in Pascal. We carry out extensive experiments on a set
of 11 networks (with 34 to 27519 vertices) commonly used for community de-
tection (Table 1). Directed graphs are transformed into undirected graphs and
loops are removed. Our algorithm also takes into account weighted graphs (Cond-

mat2003). We run the program 20 times on each graph and report the maximal
modularity, the average modularity and the average computing time, based on
a PC equipped with a Pentium Core i7 870 of 2.93 GHz and of 8 GB of RAM.
The algorithm stops after 500 consecutive generations without an improvement
of modularity greater than 10−4. The values for the other parameters are the
following: population size (30), distance threshold δmin used for population man-
agement (0.01). These same values are used to report all the results of this sec-
tion, though better results would be possible by fine-tuning some parameters.
In Section 3.2, we show our results in terms of the modularity criterion while in
Section 3.3 we analyze some structural features of the solutions found.

3.2 Results in terms of modularity

Table 1 shows the results of the proposed memetic algorithm (MA-COM) com-
pared to the current best-known results (BKR) ever reported in the literature
in terms of the modularity values. We also include the results of the BGLL algo-
rithm which is used to generate the initial population of our memetic algorithm.
From Table 1, we observe that the proposed MA-COM algorithm obtains clus-
terings of equal or greater modularity for all the tested graphs. In particular, for
the 6 largest graphs (from C. elegans to the last network), MA-COM improves
the current best-known results by finding solutions with a larger modularity. For
the first 5 graphs which are also the smallest ones (with no more 200 vertices and
3000 edges), BGLL alone suffices to attain the current best-known modularity
values during the population initialization phase.

We also observe that the average modularity of our MA-COM algorithm is
very closed to the maximum and, for all the graphs, is always equal to or better
than the best-known result. This shows that MA-COM is quite stable, despite
of its stochastic nature. The computing time is growing more than linearly with
respect to the number of edges m. Experimental statistics show that the time
complexity could be approximated by O(mα) with α ≈ 1.3.

3.3 Structural changes in clusterings

In the last section, we show that MA-COM improves the solutions of the BGLL
algorithm in terms of modularity. Now we turn our attention to structural trans-
formations of solutions achieved by MA-COM from solutions given by BGLL.
For this purpose, we consider, for each of the 11 graphs and each of the 20 runs



8 Olivier Gach and Jin-Kao Hao

Table 1. Results on 20 runs of the proposed MA-COM algorithm on 11 commonly used
real graphs (sources in brackets). The BKR column shows the best known result with
its sources in brackets. The other columns give the average and maximum modularity
of the best solutions in the initial population (BGLL) and the final population of MA-
COM. The number of communities of the best solution is indicated between parenthesis.
Improved results are highlighted in bold.

Graph BKR BGLL [1] MA-COM
Avg Q Max Q (K) Avg Q Max Q (K) Time(s)

Karate Club [23] 0.4198 [13,20,14] 0.4198 0.4198 (4) 0.4198 0.4198 (4) 0.3
Dolphins [15] 0.529 [13] 0.5281 0.5286 (5) 0.5286 0.5286 (5) 0.5
Political Books [12] 0.527[13] 0.5273 0.5273 (5) 0.5273 0.5273 (5) 1.0
College Football [7] 0.605 [13] 0.6046 0.6046 (10) 0.6046 0.6046 (10) 1.4
Jazz [8] 0.4452 [14] 0.4452 0.4452 (4) 0.4452 0.4452 (4) 5.2
C. elegans [5] 0.452 [13] 0.4457 0.4497 (11) 0.4531 0.4533 (10) 8.3
E-mail [10] 0.582 [13] 0.5748 0.5772 (10) 0.5828 0.5829 (10) 23.1
Erdos [9] 0.7162 [20] 0.6993 0.7021 (32) 0.7184 0.7188 (34) 88.4
Arxiv [11] 0.813 [1] 0.8166 0.8181 (60) 0.8246 0.8254 (56) 197.2
PGP [2] 0.8841 [13,20] 0.8841 0.8850 (95) 0.8865 0.8867 (94) 156.7
Condmat2003 0.8146 [20] 0.8112 0.8116 (77) 0.8165 0.8170 (73) 1369.7

of MA-COM, the best solution I∗init (i.e., the clustering with the largest modu-
larity) from the initial population (generated by BGLL) and the best solution
I∗final from the final population (generated by MA-COM). We compute then the
distance between I∗init and I∗final using two distance measures: the well-known
Normalized Mutual Information (NMI) and the Edge Rand Index (ERI) which
is defined in Section 2.4 for population management. While NMI measures the
information shared by I∗init and I∗final, ERI indicates the percentage of edges
which disagree in the clusterings I∗init and I∗final. Table 2 show the statistics of
these measures averaged over the 20 runs for each graph. Additionally, we indi-
cate the averaged number of communities (indicator K) in the initial and final
population. Finally, we present the averaged sizes of the smallest and the largest
communities in the initial and final best solutions.

Table 2 shows that for the small graphs except Dolphins, the memetic al-
gorithm has a limited effect on the best BGLL clustering. On the contrary,
structural changes for other graphs are more or less important because an edges
difference of 2.7% to 13.1% are observed in the initial best and the final best
solutions. Some graphs have probably a simple structure with few local optima,
for instance PGP (with a high NMI). Some smaller graphs like C. elegans seem
to have a more complexe modularity landscape (13.1% of edges of the initial
best solutions are changed in final best solutions).

The indicator K confirms the well-known propensity of modularity based
methods to reduce the number of communities. However, the reduction is mod-
erate, indicating that the changes revealed by the ERI distance would be mainly
due to moves of vertices rather than merges of community. The good surprise
comes with the smallest and largest communities. The memetic algorithm has
a clear trend to help discover small communities (which are known to be dif-
ficult to detect). More generally, we believe that the crossover operator of the



A Memetic Algorithm for Community Detection 9

Table 2. Several structural measures to compare the best solution in the initial popu-
lation and the best solution in the final population: NMI (Normalized Mutual Informa-
tion), ERI (Edge Rand Index), K (number of communities), average sizes of smallest
and largest community over 20 runs.

Graph NMI ERI K Smallest com. size Largest com. size
Initial Final Initial Final Initial Final

Karate Club 1.000 0.0% 4.0 4.0 5.0 5.0 12.0 12.0
Dolphins 0.976 1.9% 5.0 5.0 5.0 5.0 19.9 20.0
Political Books 0.982 0.4% 5.0 5.0 3.0 3.0 40.6 40.0
College Football 1.000 0.0% 10.0 10.0 9.0 9.0 16.0 16.0
Jazz 0.999 0.1% 4.0 4.0 21.9 22.0 62.1 62.0
C. elegans 0.733 13.1% 10.2 9.2 7.5 5.0 92.0 82.2
E-mail 0.780 9.1% 10.8 10.1 43.2 36.2 185.8 168.5
Erdos 0.771 12.0% 32.5 33.9 23.8 9.7 622.5 619.6
Arxiv 0.795 7.6% 59.6 55.5 4.5 4.5 920.5 812.2
PGP 0.915 2.7% 98.0 95.0 5.9 6.0 668.5 641.7
Condmat2003 0.758 8.9% 75.8 70.6 18.5 6.6 2478.7 2266.6
Total 0.883 5.1% 28.6 27.5 13.4 10.2 465.3 431.0

algorithm acts mainly on the ambiguous vertices which are attached to several
communities and help discover the right community for these vertices.

4 Conclusion and perspectives

This paper deals with the problem of community detection in complex networks
with the popular modularity criterion. To approximate this hard combinatorial
problem, we proposed a memetic algorithm mixing a dedicated crossover op-
erator and a multi-level local optimization procedure. The proposed crossover
operator blends the communities of two clusterings (parents) according to a pri-
ority rule. Offspring solutions are improved with the multi-level local optimizer.
To maintain a healthy population diversity, we introduce a Rand Index based
distance and consider both the quality of an offspring solution and its distance
to the solutions of the population. Experimental results on a set of 11 popular
networks showed that the proposed approach can easily match the best known
results in 5 cases and discover improved solutions for the 6 other largest net-
works. The analysis of initial solutions and final solutions showed the benefit
of memetic approach in discovering communities of small size that are difficult
to find. This work demonstrated that the memetic approach is a very effective
method for modularity maximization. The proposed algorithm could also be
used to devise more powerful methods. One possible way would be to embed the
memetic approach into the multi-level approach in order to handle very large
networks.

Acknowledgment

The work is partially supported by the Pays de la Loire Region (France) within
the RaDaPop (2009-2013) and LigeRO (2010-2013) projects.



10 Olivier Gach and Jin-Kao Hao

References

1. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre. Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp., 10:8–+, October 2008.

2. M. Boguñá, R. Pastor-Satorras, A. Díaz-Guilera, A. Arenas. Models of social
networks based on social distance attachment. Phys. Rev. E, 70(5):056122, 2004.

3. U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, D. Wagner.
On modularity clustering. IEEE Trans. Knowl. Data Eng., 20(2): 172–188, 2008.

4. A. Clauset, M. E. J. Newman, C. Moore. Finding community structure in very
large networks. Phys. Rev. E, 70(6):066111, 2004.

5. J. Duch and A. Arenas. Community detection in complex networks using extremal
optimization. Phys. Rev. E, 72(2):027104, 2005.

6. S. Fortunato. Community detection in graphs. Physics Reports 486: 75–174, 2010.
7. M. Girvan and M. E. J. Newman. Community structure in social and biological

networks. Proc. Natl. Acad. Sci. USA, 99(12):7821–7826, 2002.
8. P. Gleiser and L. Danon. Community structure in social and biological networks.

Advances in Complex Systems, 6:565–573, 2003.
9. J. Grossman. The Erdös number project. http://www.oakland.edu/enp/, 2007.

10. R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, A. Arenas. Self-similar com-
munity structure in a network of human interactions. Phys. Rev. E, 68(6):065103,
2003.

11. KDD. Cornell kdd cup. http://www.cs.cornell.edu/projects/kddcup/, 2003.
12. V. Krebs. A network of books about recent us politics sold by the online bookseller

amazon.com. http://www.orgnet.com, 2008.
13. X. Liu and T. Murata. Advanced modularity-specialized label propagation algo-

rithm for detecting communities in networks. Phys. A, 389(7):1493–150 2009.
14. Z. Lü and W. Huang. Iterated tabu search for identifying community structure in

complex networks. Phys. Rev. E, 80(2):026130, 2009.
15. D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, S. M. Dawson.

The bottlenose dolphin community of Doubtful Sound features a large proportion
of long-lasting associations. Behav. Ecol. Sociobiol., 54(4):396–405, 2003.

16. F. Neri, C. Cotta, P. Moscato (Eds.) Handbook of Memetic Algorithms. Studies
in Computational Intelligence 379, Springer, 2011.

17. M. E. J. Newman. The structure of scientific collaboration networks. Proc. Natl.

Acad. Sci. USA, 98(2):404–409, 2001.
18. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in

networks. Phys. Rev. E, 69(2):026113, 2004.
19. M. E. J. Newman. Networks: An Introduction. Oxford University Press, 2010.
20. A. Noack and R. Rotta. Multi-level algorithms for modularity clustering. LNCS,

5526:257–268, 2009.
21. W. M. Rand. Objective criteria for the evaluation of clustering methods. J. Amer.

Statistical Assoc., 66(336):846–850, 1971.
22. P. Schuetz and A. Caflisch. Efficient modularity optimization by multistep greedy

algorithm and vertex mover refinement. Phys. Rev. E, 77(4):046112, 2008.
23. W. W. Zachary. An information flow model for conflict and fission in small groups.

J. Anthropol. Res., 33:452–473, 1977.


