
Spacing Memetic Algorithms

Daniel Cosmin Porumbel
Univ. Lille Nord de France,

F-59000 Lille, France
UArtois, LGI2A, F-62400,

Béthune, France
daniel.porumbel@univ-

artois.fr

Jin-Kao Hao
Univ. Angers, LERIA, 2 Bd
Lavoisier, 49045 Angers

hao@info.univ-angers.fr

Pascale Kuntz
Univ. Nantes, LINA, BP

50609, 44306 Nantes, France
pascale.kuntz@univ-

nantes.fr

ABSTRACT
We introduce the Spacing Memetic Algorithm (SMA), a for-
mal evolutionary model devoted to a systematic control of
spacing (distances) among individuals. SMA uses search
space distance information to decide what individuals are
acceptable in the population, what individuals need to be re-
placed and when to apply mutations. By ensuring a“healthy”
spacing (and thus diversity), SMA substantially reduces the
risk of premature convergence and helps the search pro-
cess to continuously discover new high-quality search areas.
Generally speaking, the number of distance calculations rep-
resents a limited computational overhead compared to the
number of local search iterations. Most existing memetic al-
gorithms can be“upgraded”to a spacing memetic algorithm,
provided that a suitable distance measure can be specified.
The impact of the main SMA components is assessed within
several case studies on different problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms, Optimization, Search Space

Keywords
distance measure, spacing, diversity, memetic algorithms

1. INTRODUCTION AND MOTIVATIONS
Memetic algorithms [16] represent a well-established ap-

proach to large and hard optimization problems. Typically,
a memetic algorithm (MA) is an evolutionary algorithm
(EA) that integrates local search. The objective of the lo-
cal operator is to search for higher-quality individuals in the
proximity of the offspring solutions generated by recombi-
nation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

Diversity control has always attracted interest in evolu-
tionary computing. Consequently, the design of an effective
EA typically employs, explicitly or implicitly, certain diver-
sification strategies. However, the concept of population di-
versity has also suffered changes over time, and has been
un-synonymously associated to different measures and in-
dicators, e.g., statistical dispersion, genetic entropy, fitness
variance, or multi-objective diversity—see more examples
in [1]. In our memetic framework, we capture the notion of
diversity with specific spacing indicators based on distances
between individuals.

SMA proposes modifications on a few points of the clas-
sical MA template. First, an advanced offspring rejection
procedure is introduced: based on distance information,
the offspring can be accepted, rejected or mutated (Section
2.2). Secondly, SMA integrates a survival selection approach
guided by both spacing and fitness (Section 2.3). We also
propose advanced extensions (e.g., reactive dispersion) that
strive to unlock the search from more challenging landscape
plateaux or “traps” (Section 2.4).

By coupling the above components, SMA aims at fulfilling
two clearly-defined spacing objectives (Section 2.1.1) without
“sacrificing quality for diversity”. Furthermore, these spac-
ing components can be“attached”to an existing MA without
any change on the internal MA operators (SMA re-uses the
MA crossover, local search, parent and survival selection,
etc.). Besides introducing new techniques in memetic com-
puting, SMA unifies several interesting ideas developed over
time in rather disparate contexts (Section 3)—e.g., offspring
addition tests in discrete optimization [20, 21], niching and
crowding in multimodal optimization [15, 4, 2, 19], distance-
guided recombination [8, 6], and others [23, 9, 5].

The next section is devoted to a formal description of
the Spacing Memetic Algorithm. Section 3 explores related
ideas from the literature and discusses their differences com-
pared to our approach. In section 4, we assess the impact
of the main SMA components on several case studies (on
artificial problems, maximum clique, and graph coloring),
followed by conclusions in the last section.

2. THE PROPOSED SPACING MEMETIC
ALGORITHM (SMA)

2.1 Main objectives and algorithmic template

2.1.1 Distance measure and spacing definitions
We consider a population of individuals Pop =
{I1, I2, . . . , I|Pop|} from a search space Ω; we assume our

objective is to minimize the fitness function f over Ω. We
also consider a search space distance d, i.e., a reflexive and
symmetric function d : Ω × Ω → IR+. A meaningful dis-
tance measure should respect certain correlation and prox-
imity properties with regard to the neighborhood and to the
landscape of the problem.

In our context, d(X1, X2) is equivalent to the shortest
path between X1 and X2 in terms of neighborhood transi-
tions (or local search steps or landscape edges). The larger
the value d(X1, X2), the more local search steps are needed
to be able to reach X2 from X1. This correlation property is
particularly important in a memetic context, e.g., without
this correlation, the local search operator could reach very
distant points in a few steps—this would minimize the rel-
evance of the distance measure. We propose the following
spacing indicators to express diversity:

• The minimum spacing S(Pop) = min{d(Ii, Ij) : Ii, Ij ∈
Pop, i 6= j};
• The average spacing S(Pop) =

P
1≤i<j≤|P op| d(Ii,Ij)

1
2 |Pop|·(|Pop|−1|) .

Given an element X ∈ Ω and a radius R ∈ IR+, the R-
sphere centered at X is denoted by SR(X) = {X ′ ∈ Ω :
d(X,X ′) < R}. The value of S(Pop) indicates the maximum
radius R such that ∀I ∈ Pop, SR(I) does not include any
element from Pop− {I}.

2.1.2 Rationale
Measuring and comparing diversity can be a delicate is-

sue. Using only one spacing indicator is not always entirely
satisfactory. For instance, S(Pop) might be reasonably high
even if the population distribution is rather inadequate for
a memetic algorithm, e.g., consider a few very distant clus-
ters of close individuals. Regarding the minimum spacing,
S(Pop) can be 0 only because an individual is duplicated,
even if the global population distribution is otherwise al-
most ideal. For these reasons, SMA pursues two spacing
objectives:

Objective 1: Keep the minimum spacing S(Pop) above a
specific threshold R;

Objective 2: Subject to Objective 1, maximize the average
spacing S(Pop) (as soon as S(Pop) ≥ R).

Objective 1 aims at ensuring that there is noR-sphere SR(I)
(with I ∈ Pop) covering other Pop individuals except I.
As soon as this property holds, SMA tries to create more
diversity by pursuing Objective 2. Notice that Objective 1
can be expressed in terms of a Maximum Minimum Diversity
Problem (MMDP) and Objective 2 as a Maximum Diversity
Problem (MDP). These two problems are long-acknowledged
in operations research and several specific MMDP and MDP
algorithms have been developed since the 1990s [13].

To reach these objectives, the Spacing Memetic Algorithm
(see Algorithm 1, or the complete source code1) introduces:

1. an offspring rejection procedure (Section 2.2);

2. a new replacement approach based on both spacing
and quality (Section 2.3);

3. extensions and advanced techniques—reactive disper-
sion, implicit tunning of the mutation rate, fitness-
spacing proportionate replacement, etc. (Section 2.4).

1Publicly available at www.lgi2a.univ-artois.fr/
~porumbel/sma/.

Algorithm 1 SMA template

1: Input: a search space Ω, a fitness function f to minimize,
a distance measure d, and a minimum spacing threshold R

2: Output: the best individual ever visited
3: Initialize parent population Pop ←{I1, I2, . . . , I|Pop|}
4: while a stopping condition is not met do
5: rejects ← 0 {offspring rejection counter}
6: repeat
7: parents ← SelectParents(Pop)
8: O ← Recombination(parents)
9: O ← LocalSearch(O)

{Offspring Rejection and Acceptance (§2.2)}
10: rejects ← rejects + 1
11: if rejects > maxRejects then
12: O ← Mutation(O) {§2.2, §2.4}
13: break
14: end if
15: until d(O, I) ≥ R ∀I ∈ Pop

{Standard SMA Replacement (§2.3)}
16: if d(Ii, Ij) ≥ R ∀Ii, Ij ∈ Pop, i 6= j then
17: C1 ← fitnessSelection(Pop) {problem-specific}
18: C2 ← closestTo(C1) {closest individual to C1}
19: else
20: {C1, C2} ← argmin{Ii,Ij} d(Ii, Ij)
21: end if
22: Pop ← Pop ∪ {O} - leastFit(C1, C2)
23: end while

2.2 Offspring acceptance and rejection
Since the first objective of our diversity strategy is to

maintain a minimum spacing threshold R, SMA strives to
insert a new individual in the population only if its distance
to each existing individual is greater than R. Consequently,
if an offspring solution O is situated at less than R from an
individual I, the standard behaviour is to “reject”O and to
try to re-generate a new suitable offspring solution (see the
repeat-until loop in Algorithm 1).

There are two exceptional cases that need to be addressed.
First, if d(I,O) < R but O is more fit than all individuals
found so far, it would be quite unreasonable to reject O. For
this case, we apply a direct replacement operation: insert O
and directly eliminate I. This exception is similar to an
“aspiration criterion” case in tabu search.

The second particular case that SMA needs to address is
the risk of falling in an infinite loop by rejecting all new in-
dividuals (via the repeat-until loop). To overcome this
risk, a maximum number of rejections per generation (de-
noted by maxRejects) is imposed. Only if this threshold is
reached, SMA abandons creating diversity via the natural
reproduction process (recombination and local search) and
applies a mutation on O (Lines 12–13). One of the prin-
ciples of our spacing policy is to ensure diversity without
sacrificing quality, and so, SMA introduces “artificial” mu-
tated individuals as rarely as possible, only as a last-resort
tool. The mutation could consist of perturbing a certain
number (mutation strength) of randomly chosen genes; see
more advanced discussions on mutation use in Section 2.4.2.

2.3 Replacement based on spacing and qual-
ity

Besides pursuing diversity objectives, the replacement op-
erator needs to follow at the same time the “survival of the

fittest”principle. The idea of the standard SMA replacement
(Lines 16–22, Algorithm 1) is to start out by first selecting
two close candidates for elimination; only the least fit of
them is eventually eliminated.

When SMA reaches the replacement stage (Line 16), the
first spacing objective is usually ensured by the rejection
procedure—except in certain special situations detailed be-
low. As such, if S(Pop) ≥ R, the replacement strategy only
pursues the second of the spacing objectives: maximize the
average spacing S(Pop). For this, it gets rid of small dis-
tances between existing individuals. The first elimination
candidate C1 can be chosen using any existing problem-
specific selection, like roulette wheel or tournament selection
(Line 17). The second candidate C2 is chosen based on the
following spacing criterion: C2 is the closest individual to
C1, according to the given distance. SMA finally removes
the least fit from C1 and C2—see Line 22.

An exceptional case might arise if the minimum spacing
threshold R is not assured when SMA reaches the replace-
ment stage. This situation can be due to mutations or direct
replacements performed in the past. Such “anomaly” needs
to be corrected by the replacement operator. As such, if
S(Pop) < R, one selects as elimination candidates the clos-
est two individuals (see the Else branch, Lines 19-20); the
least fit is finally removed.

The above Else branch is the only SMA step that might
require calculating O(|Pop|2) distances. Indeed, all other
steps of Algorithm 1 (e.g., in Line 15 or 18) only require
computing O(|Pop|) distances. The test at Line 16 is not
always necessary, e.g., the test is true unless previous muta-
tions or direct replacements have been involved in the past.
In such a case, the Else branch is no longer executed and
the O(|Pop|2) distances are no longer calculated; more dis-
tance computations can further be saved using streamlining
routines (by keeping a sorted table of distance values). In
memetic algorithms, the population size |Pop| is typically
much smaller than the number of local search iterations (e.g.,
10 compared to 100000 in Section 4.3). The conclusion is
that the O(|Pop|) distance computations induce a globally
limited slowdown to the memetic process.

The proposed survival selection is very general and mod-
ular: it can directly re-utilize any existing problem-specific
replacement, via the fitnessSelection routine—Line
17. In our experiments, this routine applies a fitness-
proportionate selection: the probability to select individ-

ual Ii is f(Ii)−fnormP
I∈P op(f(I)−fnorm)

, where fnorm is a normalization

term (we used fnorm = fbest−1, fbest being the best fitness).
If one does not insist on re-utilizing the existing problem-
specific survival, the fitness-spacing proportional replace-
ment from Section 2.4.3 might constitute a more effective
alternative.

2.4 Advanced spacing techniques and SMA op-
tions

The proposed template has certainly many possible varia-
tions and problem-specific knowledge can always enhance a
(meta-)heuristic approach. For instance, an interesting op-
tion consists of applying the mutation before the local search
so as to avoid introducing unfit individuals in the popula-
tion. We discuss below three extensions that seemed to be
among the most promising in our experimental context.

2.4.1 How to set the minimum spacing threshold R

A critical issue with SMA is to determine a suitable value
of R. Such a value should ensure that any two individuals
distanced by less than R share an important part of their
genes. If R is too small, SMA risks to accept too often
offspring bringing no new genetic material to the population.
Ideally, R can be set using problem-specific search space
motivations, e.g., by observing a clustering of high-quality
individuals, by studying the size of the basins of attraction,
plateaux, etc.

However, one can also setR dynamically during the search,
by “reacting” on the number of offspring rejections per gen-
eration. In this approach, SMA could start with a very low
R value (even 0) and gradually increase R as long as there is
a small number of rejections per generation. The value of R
can be considered “too large” from the moment when SMA
can no longer maintain the minimum spacing above R with-
out resorting to an extensive use of mutations. Recall that
SMA can start using mutations only after maxRejects rejec-
tions without any acceptance (see Section 2.2). An opposite
approach (start with a large value and iteratively decrease
it) proved successful in a different context, not depending
on mutations [21, §4.4].

2.4.2 Reactive dispersion
While mutations can easily ensure diversity, they do not

always compensate the associated quality loss. SMA fol-
lows the principle “diversity without quality sacrifices”. As
such, one should use a high maxRejects value, so as to trig-
ger a limited number of mutations throughout the search.
However, SMA can allow mutations more easily when it de-
tects certain stagnation situations, i.e., when the search pro-
cess is blocked looping on deceptive search space structures
(“traps”). In this case, the values of R and maxRejects can
be adapted via the “reactive dispersion”procedure described
below.

Consider the following situation: the population converges
toward a “stable” state with S(Pop) ≥ R but S(Pop) < 2R;
this can be due to certain particular search space “traps”,
e.g., numerous plateaus confined in a deep and large “well”
that attracts most local search processes. To deal with such
a situation, reactive dispersion is used. First, SMA increases
the value of R, and so, more subsequent offspring solutions
from this “well” will be rejected. By also reducing consid-
erably maxRejects, the reactive dispersion leads to more
frequent mutations, allowing the population to unlock itself
from the“trap”. The parameter changes are reversed as soon
as S(Pop) ≥ 2R.

The same reactive dispersion can also be triggered on the
following situation: if there are too many offspring rejections
since the beginning of the search—i.e., if the average number
of rejections per generation is always substantially higher
than normal. This behaviour can arise if the population
is distributed around several local optima with very strong
basins of attractions, leading the natural reproduction to
offspring in the same basins.

2.4.3 Fitness-spacing proportionate replacement
The standard SMA elimination scheme (Section 2.3) has

the advantage of re-utilizing the problem-specific replace-
ment operator (see Line 17). However, if one does not re-
quire this re-utilization, the following approach can be used
for the case S(Pop) ≥ R (replacing Lines 17-18). First, each
individual Ii is assigned a fitness proportionate probability

p(Ii). To select C1, one picks up an individual I uniformly
at random and performs one of the following: (i) with prob-
ability p(I), set C1 = I, or (ii) with probability 1 − p(I),
pick up another random individual I and repeat with (i).2

To choose C2, one first picks up the closest individual I ′ to
C1 and performs a similar selection method: (i) with prob-
ability p(I ′), set C2 = I ′, or (ii) with probability 1 − p(I ′),
try with the next closest one and repeat. Except in ex-
treme cases, this scheme requires computing only O(|Pop|)
distances.

3. RELATED WORK

3.1 Distance, spacing and SMA related ideas
Perhaps rather surprisingly at first glance, although dis-

tances are often used for various purposes in different con-
texts, few distance-based models of systematic diversity con-
trol are available in the literature. To our knowledge, there
are only two important research directions showing direct
similarities with SMA: (i) certain offspring addition crite-
ria in combinatorial optimization (Section 3.1.1), and (ii)
crowding techniques used for standard genetic algorithms
in multimodal optimization (Section 3.1.2). Furthermore,
many of these distance-related ideas have been developed in
rather disparate research threads—e.g., the crowding tech-
niques discussed in Section 3.1.2 are not regularly cited by
papers from Section 3.1.1 or Section 3.2.

3.1.1 Distance-guided offspring addition tests
Memetic Algorithms with Population Management

(MA|PM [20]) use an “input function” to decide if a new
individual should be added to the population. This decision
takes into account the solution quality and its distance to the
population; any rejected offspring is directly mutated. The
MA|PM “input function” shares certain goals with the off-
spring rejection from Section 2.2, but the novelty in SMA is
that mutations are avoided. Indeed, SMA invokes mutations
much more rarely, only as a last-resort diversification tool.
Following the principle of ”diversity without quality sacri-
fices”, SMA avoids adding unfit individuals (which could
be generated by using more mutations, less local search,
or other means). However, the studies on MA|PM showed
the effectiveness of the general idea of distance-based diver-
sity control in several operations research problems—e.g.,
multidimensional knapsack or job scheduling. Useful ideas
about policies to control R (i.e., the diversity parameter ∆
in MA|PM) are presented in [20, §2.2.4].

Another interesting method of evaluating solutions for ad-
dition is used by the (µ+λ) evolutionary strategy extension
from [21, §4.4]. All λ + µ (new and old) solutions are first
sorted according to their cost; then, they are iteratively con-
sidered for addition in the new population (µ solutions need
to be kept). At each iteration, the current solution (new or
old) can be disregarded if its distance to any accepted so-
lution is smaller than a threshold that is gradually lowered.
More generally, a widely-used method of preserving diversity
consists of removing duplicates from the population.

3.1.2 Crowding in multi-modal optimization

2If necessary, this operation might be repeated a few times
before finally choosing an individual. Unless all p values are
0, the probability of never accepting an individual is 0.

Standard genetic algorithms can often be used to (try to)
locate all global optima of a multi-modal function. In this
context, each optima can be exploited by a sub-population
that can be seen as a sub-species [15] specialized (crowded)
on a “niche”. One can even promote crossover only inside
the subpopulations [15, 2] (“intra-niche” crossover), so as to
“crowd”new individuals on the same niches. One of the best-
known niching methods is crowding [4, 2]. This technique,
very popular in continuous optimisation, is commonly used
to “induce niches by forcing new individuals to replace indi-
viduals that are similar genomically” [19]. For this purpose,
the eliminated individual is selected from among the closest
individuals to the offspring solution.

Such crowding elimination schemes share ideas with the
SMA spacing-oriented elimination, but certain objectives
are rather different. In crowding, the new individual replaces
one from its own sub-population so as to induce population
crowding on its niche; this way, it “preserves the diversity
of the existing mixture” [15]. In SMA, stable subpopula-
tions are generally discouraged : the rejection procedure ac-
tually tries to forbid individuals from crowding. Secondly,
our memetic approach is based on a small-but-dynamic pop-
ulation that tries to continually create new diversity, and so,
“inter-niche”crossover is preferred to“intra-niche”crossover.
Finally, unlike in crowding, the SMA replacement does not
take into account the current offspring in the elimination
decision—the removed individual is not necessarily close to
the new one.

3.2 Other connections to previous approaches

3.2.1 Distance-guided mating and recombination
In order to ensure that the offspring solution is always

“different enough” from its parents, one can refer to special
strategies of parent selection and recombination. This is par-
ticularly important in memetic algorithms, because mating
close parents can easily lead the local search to very simi-
lar individuals. To avoid such issues, the parent selection
commonly favors selecting distant parents (e.g., avoiding in-
cest [6]); the recombination operator can be designed so as to
construct the offspring solution at equal distances from each
parent. Such “distance preserving” recombination operators
are quite common for certain problems, e.g., the distance-
preserving crossover (DPX) for TSP [8].

However, SMA does not modify the problem-specific mat-
ing or recombination: Lines 7–8 in Algorithm 1 are the
same as in a standard MA. For modularity reasons, SMA
addresses all above issues implicitly, via the offspring rejec-
tion procedure.

3.2.2 Distantly related literature
Distances are often used for solution ranking in multi-

objective optimization [5]. However, such diversity measures
are typically calculated in the objective function space and
they rely on fitness differences—not particularly meaningful
in our mono-objective context. More generally, in scatter
search and path-relinking, combinations typically construct
offspring solutions by considering both the solution quality
and its distance to its parent solutions [9].

Distance measures can also be used to detect premature
convergence or genetic drift, and so, to trigger certain opera-
tors (e.g., restarts in the“CHC algorithm” [6], diversification
operators in “diversity-guided evolutionary algorithms” [23],

random immigrants, perturbations, partial restarts, etc.). In
these research threads, distances measures are not actually
required, but any global diversity indicator can be used.

4. EXPERIMENTAL RESULTS
This section is devoted to assessing the impact of the main

spacing ideas within several case studies on different prob-
lems. For each problem, we provide comparisons between
several algorithm versions, each with a specific component
disabled. For instance, the algorithm version Obj. 1 Off rep-
resents a SMA variant in which the first spacing objective
is not pursued (i.e., the minimum spacing threshold R is 0).
MA represents a standard memetic algorithm in which no
spacing techniques are used.

4.1 Artificial problems

4.1.1 One Min Plateau
SMA is first evaluated on the One Min Plateau problem,

a variant of One Max extended with an additional artificial
plateau. More precisely, this problem is defined in the search
space of bit strings of length n and requires minimizing the
objective function fplat : {0, 1}n → {0, 1, . . . , n} defined by:

fplat(X) =

8<: ones(X) if ones(X) < p1

p1 if p1 ≤ ones(X) ≤ p2

ones(X)− (p2 − p1) if ones(X) > p2

,

where ones(X) represents the number of genes (bits) with
value 1; p1 and p2 represent two “border” points of the artifi-
cial plateau of all individuals with a number of ones between
p1 and p2. The value d = p2 − p1 + 1 can be interpreted as
a plateau diameter; the total number of solutions inside the
plateau is

Pi=d−1
i=0

`
n

p1+i

´
=
Pi=d−1

i=0
n!

(p1+i)!·(n−p1−i)!
.

Figure 1 depicts a projection of the landscape in a search
space with 2 coordinates (x and y). The behaviour of a clas-
sical memetic algorithm consists of scattering the individu-
als in the plateau of solutions with fitness p1 (this plateau
attracts local search processes launched from lower qual-
ity solutions). The optimum can only be found when the
crossover of two individuals leads to an offspring solution
inside the valley of the global minimum. The results below
show that this fortunate outcome occurs much more often
when spacing techniques are used.

x

y

f p
la

t

Figure 1: Projection of the One Min Plateau land-
scape, considering fitness function fplat and the one-
flip neighborhood. Without spacing strategies, clas-
sical memetic algorithms can easily get stuck in the
plateau around the valley of the global minimum.

The well-known bit-flip neighborhood is used; the local
search operator is a classical steepest descent algorithm with-
out side-steps. The memetic scheme uses a classical Uni-
form Crossover [22], i.e., the offspring solution inherits all

genes that are equal in the two parents and half of the non-
matching genes from each of the two parents. The Ham-
ming distance has been used; as such, one should be aware
that the distance between two candidate solutions X1 and
X2 represents the shortest path between X1 and X2 in the
landscape associated with the bit-flip neighborhood.

All instances have n = 100 and we used several values of
the plateau diameter d = p2 − p1 + 1, from 5 to 10 (p2 is
fixed to 25 and p1 varies from 21 to 16). The parameters
of the algorithms are: R = 10% · n, maxRejects = 10 and
|Pop| = 10; the mutation strength is 10% · n. The main
performance indicator is the success rate: the proportion of
runs finding the global optima out of 100 tries.

Generally speaking, the local search is the most time con-
suming operator in memetic algorithms. After each local
search application, SMA typically performs at mostO(|Pop|)
distance calculations (maximum O(|Pop|2) only if S(Pop) <
R, see Section 2.3); furthermore, the (Hamming) distance
calculation has linear complexity for our problem. Since a
fixed number of local search iterations is systematically ap-
plied after each crossover, an acceptable machine-independent
stopping condition is to reach a cut-off number of crossovers
applications—i.e., we used 10000 for all SMA versions.

Plateau SMA MA Obj. 1 Obj. 2
Diameter OFF OFF
5 100/100 20/100 47/100 99/100
6 97/100 15/100 29/100 84/100
7 70/100 8/100 19/100 54/100
8 53/100 5/100 10/100 23/100
9 20/100 1/100 6/100 14/100
10 5/100 1/100 4/100 4/100

Table 1: Success rate comparison between SMA
(Column 3) three other SMA versions on One
Min Plateau. Several instances are considered; the
plateau diameter (d = p2−p1 +1) varies from 5 to 10.

Table 1 presents a comparison between SMA (Column 2),
the standard MA (Column 3), and two other SMA versions
each with a specific component disabled—i.e., the first (and,
respectively, the second) spacing objective is disabled in Col-
umn 4 (and, respectively, in Column 5). SMA attains clearly
improved results compared to MA: the global optimum is
reached between 5 and 20 times more often. The last two
columns show that the standard MA can also be substan-
tially improved only by pursuing separately one of the two
proposed spacing objectives (the success rate becomes at
least double).

4.1.2 NK Model
The second experiment on artificial problems concerns the

well-known NK landscape model [12]. We used the same
solution encoding, neighborhood, crossover, local search and
parameters as for One Min Plateau. The source code is
essentially the same, but we only defined a new objective
function fNK that requires maximization:

fNK(X) =

nX
i=1

g(Xi+1, Xi+2, . . . , Xi+K),

where all index additions are performed Modulo n. This

K SMA MA Obj. 1 OFF Obj. 2 OFF
bst(#bst) avg(std) min bst(#bst) avg(std) min bst(#bst) avg(std) min bst(#bst) avg(std) min

2 650 (2) 647.6 (1.2) 647 641 (3) 637.1 (3.0) 632 644 (1) 640.1 (1.9) 638 647 (8) 646.4 (1.2) 644
3 596 (1) 590.8 (2.6) 588 576 (1) 569.2 (4.0) 564 584 (1) 573.2 (6.5) 564 592 (8) 591.2 (1.6) 588
4 725 (7) 722.9 (3.2) 718 678 (1) 661.3 (14.1) 630 682 (1) 672.1 (8.3) 656 725 (4) 719.1 (5.7) 709
5 793 (5) 784.1 (8.9) 774 774 (1) 748.7 (16.5) 719 776 (2) 766.8 (9.3) 753 793 (4) 782.8 (8.3) 776
6 730 (3) 726.5 (2.3) 725 720 (1) 710.7 (6.4) 700 725 (2) 717.1 (7.2) 698 730 (6) 728.0 (2.4) 725
7 773 (1) 763.1 (7.8) 749 720 (1) 695.0 (12.1) 669 737 (1) 712.0 (17.4) 684 772 (2) 761.2 (8.3) 746
8 900 (1) 847.8 (25.3) 820 716 (1) 687.4 (17.0) 669 774 (1) 730.5 (27.2) 693 900 (1) 847.9 (21.7) 825
9 831 (1) 806.2 (15.0) 780 754 (1) 731.5 (15.0) 710 788 (1) 755.1 (17.6) 727 820 (1) 807.5 (8.9) 788
10 698 (1) 693.0 (3.0) 689 658 (1) 646.0 (8.4) 636 683 (1) 667.1 (9.3) 649 699 (1) 691.0 (4.7) 683
11 700 (2) 695.7 (4.3) 688 666 (1) 645.6 (12.8) 626 695 (1) 677.7 (6.0) 674 702 (2) 694.4 (5.1) 687

Table 2: Results of SMA (Column 2-4) and of three other SMA variants on ten NK Model problem instances
(with K from 2 to 11 and n = 100). For each algorithm version, we report the best value ever reached (bst) in
ten runs, the number of runs reaching this best value (#bst), the average result (avg), the standard deviation
(std) and the worst fitness ever reached at the end of a run (min).

objective function3 defines a NK Model problem with ad-
jacent (neighboring) lookup table index positions. We con-
sider n = 100 and we generated ten random instances with
K from 2 to 11 (the 2K possible values of function g were
randomly chosen from the set {0, 1, . . . , 10}).

Tables 2 reports results on these instances, considering
the same four SMA variants as for One Min Plateau. The
performance indicator is here based on statistical measures
over 10 runs—e.g., the best and the average solution quality
reached at the end of all runs, as described by the legend of
Table 2. Obviously, SMA can offer a significant improvement
over MA: the worst solution reported by SMA is better than
the best reported by MA (for all but one instance). The
results of Obj. 1 Off and Obj. 2 Off provide an estimate of
the individual impact of each of these two objectives.

4.2 The maximum clique problem
The SMA algorithms for the above artificial problems

could also be applied to more practical combinatorial or
numerical optimization problems. Indeed, our SMA imple-
mentation from the previous section (publicly available on-
line4) only required the following two modifications to solve
the well-known Max Clique problem: the objective func-
tion was redefined and new file input routines were writ-
ten (to read inputs graphs). More precisely, given a graph
G = ({v1, v2, . . . , vn}, E), a bit string X of length n de-
fines a Max Clique candidate solution in which a vertex vi

is selected if and only if Xi = 1. The objective function
(we present here the maximization version3) was defined as
follows:

fCLK(X) =


−abs edges(X) if abs edges(X) > 0
ones(X) if abs edges(X) = 0

,

where abs edges(X) represents the number of pairs of ver-

3Technically, our programs minimize the negation of this
function (for interoperability issues within the source code).
4The source code is available at www.lgi2a.univ-artois.
fr/~porumbel/sma/. We provide a C++ one-file solution:
clarity and generality have a much higher priority than spe-
cific technical features (e.g., data structures for calculation
streamlining are not used). The effort of switching to a
different problem is minimal; fitness functions for One Min
Plateau, NK Model and Max Clique are already provided.

tices not linked by an edge in X (absent edges). The first
case of this definition is only introduced to define a penalty
for improper candidate solutions (that are not cliques); all
elements from {0, 1}n are included in the search space.

Table 3 reports results on several (small) DIMACS in-
stances [11], considering the same presentation format, algo-
rithms and parameters as for NK Model—only the maximum
number of crossover applications is lowered to 1000. We also
use the same statistical indicators as for NK Model—i.e., for
each instance and algorithm, Table 3 reports the best (bst),
the average (avg) and the minimum clique size (min) reached
in ten runs; see also the legend of Table 2 for more details
(e.g., the #bst and std indicators).

SMA appears to be superior to MA, but one can no longer
state that the worst performance of SMA outperforms the
best performance of MA. However, the best solution reached
by SMA was never replicated by other algorithms (except
Obj. 2 Off for one graph). SMA reaches (with limited ef-
fort) the global optimum for two graphs: this is an interest-
ing performance considering that a very generic implemen-
tation was used, with no particular clique features except
the fitness function.

4.3 The graph k-coloring problem
Given a graph G(V,E) and an integer k > 0, the graph

k-coloring problem requires finding a conflict-free coloring
(i.e., adjacent vertices colored with different colors) with at
most k colors. While the above three problems use a bit-
string encoding, a k-coloring candidate solution encodes a
partition of V into k classes (colors). The fitness of a solution
is given by the number of edges with both ends in the same
class. A neighborhood transition consists of transferring a
conflicting vertex from one class to another, a vertex being
conflicting if it shares the same color class with one of its
adjacent vertices. The partition distance [10] is correlated
with this neighborhood: the distance between two solutions
X1 and X2 is equivalent to the smallest possible number of
neighborhood transitions needed to reach X1 from X2.

The aim of the k-coloring study is to assess the potential
of SMA to get closer to state-of-the-art results; as such, we
also make use of more advanced SMA techniques mentioned
in Section 2.4. For instance, the reactive dispersion routine
is applied in all SMA variants except React. Off. Further-

Graph opt SMA MA Obj. 1 OFF Obj. 2 OFF
bst(#b) avg(std) min bst(#b) avg(std) min bst(#b) avg(std) min bst(#b) avg(std) min

C125.9.clq 34 34 (3) 33.1 (0.8) 31 32 (2) 29.9 (1.4) 28 32 (2) 31.0 (0.6) 30 33 (4) 32.2 (0.9) 30
brock200 2.clq 12 11 (2) 9.9 (0.7) 9 10 (1) 9.0 (0.4) 8 10 (3) 9.2 (0.6) 8 11 (2) 10.1 (0.5) 9
brock200 4.clq 17 16 (1) 14.4 (0.8) 13 15 (1) 13.3 (0.9) 12 14 (3) 13.1 (0.7) 12 15 (3) 14.3 (0.5) 14
gen200 p0.9 44.clq 44 40 (1) 36.3 (1.3) 35 37 (1) 33.7 (1.3) 32 36 (1) 34.7 (0.8) 33 39 (1) 36.2 (1.2) 34
gen200 p0.9 55.clq 55 55 (1) 40.2 (5.8) 35 43 (1) 36.8 (2.6) 34 46 (1) 36.4 (3.6) 33 53 (1) 41.8 (5.7) 37

Table 3: Comparison of SMA (Columns 3–5) with three other SMA versions on Max Clique. Columns 1 and
2 indicate the graph and the optimum solution; Columns 3–14 have the same meaning as in Table 2.

more, we use the fitness-spacing proportionate replacement
(Section 2.4.3); the mutation is performed before the local
search.

Memetic evolutionary algorithms represent a well-
established coloring approach [7, 3, 14, 18]. Following ideas
from this research thread, we use a classical Tabu Search
local improvement operator and a crossover based on com-
bining color classes. The main parameters are: R = 10%|V |
(based on a clustering hypothesis [17]), maxRejects = 50
and |Pop| = 10; the mutation strength is 10% · |V |, the local
search chain has 100000 iterations and the stopping condi-
tion consists of finding a solution or of reaching a cut-off
time limit of 2.5 hours (on a 2.50Ghz Xeon processor). We
selected ten of the most challenging instances from the stan-
dard DIMACS graphs [11], using the lowest k for which a
legal k-coloring has ever been reported in the literature.

Table 4 compares the results of SMA (Columns 2-3) with
those of four other SMA variants. For each instance and for
each algorithm, we provide the success rate (columns #hits)
and the average time in minutes over the successful runs
(columns T [m]). This comparison enables us to evaluate
several SMA ideas in greater detail:

SMA The complete SMA reaches globally the best results
(Columns 2–3). It systematically finds solutions for most
of these difficult instances, a very good performance in
the coloring literature. We observed that SMA shows no
premature convergence (in terms of spacing) and that the
success rates can be improved by allowing more time;

MA With all spacing objectives disabled, the classical
memetic algorithm reaches poor results compared to any
other SMA variant. This shows the practical impact of
both spacing objectives (keep S ≥ R and maximize S);

Obj. 1 OFF Without considering the first spacing objec-
tive (i.e., R = 0), the algorithm reaches significantly lower
success rates than the complete SMA. In most cases, this is
due to obvious premature convergence: we observed that
the average spacing is usually close to zero at the end of
failed runs;

Obj. 2 OFF By not pursuing the second diversity objec-
tive (i.e., using only fitness proportional replacement and
ignoring spacing criteria if S(Pop) > R), SMA may fail to
ensure a wide covering of the search space, and so, it can-
not be very robust ; globally, it finds fewer solutions than
the complete SMA;

React OFF Without reactive dispersion (with fixed R and
maxRejects), the algorithm is not able to unlock itself
from special “traps” of the search space. In certain cases,
this can make the difference between a success rate of
46/50 and 1/50. By reactive dispersion, SMA is able to de-
tect and react on its own stagnation periods (see Section

2.4.2). We empirically noticed that the complete SMA
can trigger up to 100 times more frequent mutations dur-
ing these periods, and so, overcome stagnation situations
that could otherwise keep the search indefinitely blocked.

In addition to the previous three case studies, this color-
ing analysis confirms the potential of SMA to reach some
of the best-known bounds on a realistic problem. However,
state-of-the-art results are often achieved through joint ap-
plication and coordination of several other search operators
and of different technical features as well—e.g., routines for
streamlining the calculation have been used. Table 4 shows
that the spacing mechanisms can become a key ingredient
in making the algorithm reach difficult bounds—e.g., ad-
vanced spacing techniques (i.e., reactive dispersion) can help
the search process to deal with more deceptive search space
traps that could pose problems to other diversity techniques.

5. CONCLUSIONS AND OUTLOOK
The proposed Spacing Memetic Algorithm (SMA) is a

general framework which commits itself to a systematic con-
trol of population diversity. Based on a distance metric de-
fined on the search space, SMA models population diversity
via two spacing objectives: keep the minimum spacing above
a threshold R, and, subject to this, maximize the average
spacing among the population individuals.

SMA uses a small-but-dynamic population that tries to
avoid convergence and to continuously discover new promis-
ing search areas. With such goals in mind, we designed ad-
vanced strategies for offspring rejection and spacing-guided
survival selection. Furthermore, SMA follows the principle
“diversity without quality sacrifices”, and so, it reduces the
use of mutations to minimum: mutations are only used as a
last-resort diversification tool. Additionally, SMA can inte-
grate more advanced reactive dispersion strategies that ex-
ceptionally allow more frequent mutations when it is neces-
sary, i.e., when the search needs to overcome stagnation.

All SMA components can be“attached”to existing memetic
algorithms with no modification on the problem-specific op-
erators, i.e., SMA can re-use (without change) the existing
MA crossover, local search, parent and survival selection,
etc. Consequently, most MA can be “upgraded” to SMA,
provided that one can define a suitable distance measure—
correlated to the neighborhood and to the landscape. The
number of distance calculations can be kept in very reason-
able limits.

Acknowledgments
We thank the anonymous referees for their remarks that
helped us to improve the paper.

Instance: G, k SMA MA Obj. 1 OFF Obj. 2 OFF React OFF
#hits T[m] #hits T[m] #hits T[m] #hits T[m] #hits T[m]

dsjc500.1,12 50/50 2 15/50 31 21/50 25 49/50 6 50/50 2
dsjc500.9,126 44/50 60 26/50 36 30/50 41 42/50 46 42/50 54
dsjc1000.1,20 50/50 33 0/50 – 3/50 38 30/50 38 49/50 31
dsjc1000.5,83 37/50 95 10/50 65 26/50 82 15/50 117 37/50 99
dsjr500.1c,85 46/50 75 3/50 27 2/50 0 10/50 85 1/50 1
dsjr500.5,122 42/50 44 10/50 8 9/50 4 22/50 25 13/50 29
flat1000.76,82 42/50 100 9/50 80 33/50 86 12/50 109 42/50 95
le450.25c,25 47/50 56 3/50 6 2/50 80 23/50 53 29/50 54
r250.5,65 49/50 38 4/50 28 4/50 34 24/50 32 25/50 45
r1000.1c,98 43/50 33 31/50 19 33/50 29 37/50 37 45/50 32
Total #hits: 450 hits/500 111 hits/500 163 hits/500 264 hits/500 333 hits/500

Table 4: Graph k-coloring results of SMA (Columns 2–3) and of four other SMA versions. We provide the
success rate (columns “#hits”) and the average time in minutes over successful runs (columns “T[m]”). For
each graph, the chosen value of k represents the proven chromatic number or the best known upper bound.

6. REFERENCES
[1] E. Burke, S. Gustafson, and G. Kendall. Diversity in

genetic programming: An analysis of measures and
correlation with fitness. IEEE Transactions on
Evolutionary Computation, 8(1):47–62, 2004.

[2] W. Cedeño and V. Vemuri. Analysis of speciation and
niching in the multi-niche crowding GA. Theoretical
Computer Science, 229(1):177–197, 1999.

[3] D. Costa, A. Hertz, and C. Dubuis. Embedding a
sequential procedure within an evolutionary algorithm
for coloring problems in graphs. Journal of Heuristics,
1(1):105–128, 1995.

[4] K. De Jong. An analysis of the behavior of a class of
genetic adaptive systems. PhD thesis, University of
Michigan Ann Arbor, MI, USA, 1975.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm
NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[6] L. Eshelman. The CHC adaptive search algorithm:
How to have safe search when engaging in
nontraditional genetic recombination. In G. Rawlings
et al., editors, Foundations of Genetic Algorithms,
pages 265–283. Morgan Kaufmann, 1991.

[7] C. Fleurent and J. Ferland. Genetic and hybrid
algorithms for graph coloring. Annals of Operations
Research, 63(3):437–461, 1996.

[8] B. Freisleben and P. Merz. A genetic local search
algorithm for solving symmetric and asymmetric
traveling salesman problems. In Proceedings of IEEE
International Conference on Evolutionary
Computation, pages 616–621, 1996.

[9] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of
scatter search and path relinking. Control and
Cybernetics, 39(3):653–684, 2000.

[10] D. Gusfield. Partition-distance a problem and class of
perfect graphs arising in clustering. Information
Processing Letters, 82(3):159–164, 2002.

[11] D. Johnson and M. Trick. Cliques, Coloring, and
Satisfiability Second DIMACS Implementation
Challenge, volume 26 of DIMACS series in Discrete
Mathematics and Theoretical Computer Science.
American Mathematical Society, 1996.

[12] S. Kauffman and S. Levin. Towards a general theory

of adaptive walks on rugged landscapes. Journal of
theoretical Biology, 128(1):11–45, 1987.

[13] C. Kuo, F. Glover, and K. Dhir. Analyzing and
modeling the maximum diversity problem by zero-one
programming. Decision Sciences, 24(6):1171–1185,
1993.

[14] E. Malaguti, M. Monaci, and P. Toth. A metaheuristic
approach for the vertex coloring problem. INFORMS
Journal on Computing, 20(2):302, 2008.

[15] B. L. Miller and M. Shaw. Genetic algorithms with
dynamic niche sharing for multimodal function
optimization. In Proceedings of IEEE International
Conference on Evolutionary Computation, pages
786–791, 1996.

[16] P. Moscato. Memetic algorithms: a short introduction.
In D. Corne et al., editors, New Ideas in Optimization,
pages 219–234. McGraw-Hill, 1999.

[17] C. Porumbel, J. Hao, and P. Kuntz. A search space
“cartography” for guiding graph coloring heuristics.
Computers & Operations Research, 37:769–778, 2010.

[18] C. D. Porumbel, J.-K. Hao, and P. Kuntz. An
evolutionary approach with diversity guarantee and
well-informed grouping recombination for graph
coloring. Computers & Operations Research,
37:1822–1832, 2010.

[19] R. Smith, S. Forrest, and A. Perelson. Searching for
diverse, cooperative populations with genetic
algorithms. Evolutionary Computation, 1(2):127–149,
1993.

[20] K. Sörensen and M. Sevaux. MA|PM: Memetic
algorithms with population management. Computers
and Operations Research, 33(5):1214–1225, 2006.

[21] T. Stützle. Iterated local search for the quadratic
assignment problem. European Journal of Operational
Research, 174(3):1519–1539, 2006.

[22] G. Syswerda. Uniform crossover in genetic algorithms.
In Proceedings of the 6th International Conference on
Genetic Algorithms, pages 2–9, 1989.

[23] R. K. Ursem. Diversity-guided evolutionary
algorithms. In PPSN VII, volume 2439 of LNCS,
pages 462–471. Springer, 2002.

