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ABSTRACT

Choosing a small subset of genes that enables a good classi-
fication of diseases on the basis of microarray data is a dif-
ficult optimization problem. This paper presents a memetic
algorithm, called MAGS, to deal with gene selection for su-
pervised classification of microarray data. MAGS is based
on an embedded approach for attribute selection where a
classifier tightly interacts with the selection process. The
strength of MAGS relies on the synergy created by combin-
ing a problem specific crossover operator and a dedicated
local search procedure, both being guided by relevant infor-
mation from a SVM classifier. Computational experiments
on 8 well-known microarray datasets show that our memetic
algorithm is very competitive compared with some recently
published studies.

Categories and Subject Descriptors

I.2.8 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Problem Solving, Control Methods, Search; I.5.2
[Pattern Recognition]: Design Methodology—Classifier

design and evaluation; Feature evaluation and selection

General Terms

Algorithms

Keywords

Classification, gene selection, local search, memetic algo-
rithm, specialized crossover

1. INTRODUCTION
Microarray technology enables to measure the expression

of thousands of genes to identify changes in expression be-
tween different biological states. Previous works [9, 3] have
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shown that this technology can provide new efficient diagno-
sis tools for the recognition of diseases like cancers or for the
discrimination between different kinds of tumors. This dis-
covery has stimulated an increasing interest in the bioinfor-
matics community in order to design more powerful decision-
making tools for the molecular diagnosis of cancers.

The basic research problem can be studied from the per-
spective of supervised classification where the available mi-
croarray data serve as training data to obtain new classi-
fiers. However, given the cost of the microarray technology,
the available data typically contain a very limited number
of samples. Consequently, classification of microarray data
is faced with the difficult problem known as ”the curse of
dimensionality” because the data are described by a great
number of attributes whereas only a few dozen of samples
are described. In order to limit the risk of overfitting, it is
necessary to reduce the dimensionality of the data by select-
ing a reduced number of attributes relevant for classification.

For supervised classification, attribute selection methods
(see [10] for an introduction to this subject) can be orga-
nized into three categories depending on how the selection
process is combined with the classification process. Filter

methods only consider the input data and use the data to
rank each attribute according to its correlation with the class
label of the given data. The top ranked attributes are then
considered as the most relevant ones. This selection occurs
before the classification process and is independent of the
learned classifier. In wrapper methods, selection of relevant
attributes is performed in interaction with the classifier. To
explore the space of attribute subsets, a search algorithm
is ”wrapped” around the classification model. For example,
backward selection begins with all the possible attributes
and iteratively removes the least relevant attribute. At each
step a classifier is trained and tested to evaluate the qual-
ity of a potential subset. Embedded methods are similar to
wrapper methods because they rely on a classifier to evalu-
ate candidate subsets but they are characterized by a deeper
interaction between the search of an optimal subset and the
classifier construction. Our memetic algorithm belongs to
this class of embedded methods.

As the search space of possible subsets grows exponen-
tially with the number of attributes, heuristic methods are
good candidates to tackle the difficult problem of finding
an optimal subset for classification. Genetic algorithms for
gene selection have been previously proposed in many stud-
ies [17, 24, 13, 27, 12, 1, 18]. They are often followed by



a post-processing step that further reinforces the selection
process. For example, in [18] different gene subsets are ob-
tained from different training sets and an analysis of gene
frequencies enables to propose a final gene subset. Notice
that except some very recent studies like [14], most existing
genetic algorithms are based on blind genetic operators such
as random crossover and mutation.

In this paper we propose a memetic algorithm that intro-
duces local search into a genetic algorithm. This method is
an embedded approach for gene selection where a Support
Vector Machine (SVM) tightly interacts with the search pro-
cess. The SVM is used not only to evaluate the quality of
candidate gene subsets but also to provide ranking infor-
mation about each gene. This enables to design a special-
ized crossover operator that combines the relevant attributes
from two parents to build interesting offspring. In the same
way, local search relies on an informed move operator accord-
ing to information provided by SVM. Experimental results
show that our memetic algorithm achieves very competitive
results on eight largely studied datasets.

The rest of this paper is organized as follows. In section
2, we recall the main characteristics of SVM and discuss the
difficult problem of estimating classification accuracy when
the number of samples is very low. We then describe the
different components of our memetic algorithm in section 3.
In section 4, we describe the experiments and show compu-
tational results to assess the effectiveness of our algorithm.

2. SVM CLASSIFICATION AND ACCURA-

CY ESTIMATION

2.1 SVM
SVMs are state-of-the-art classifiers that solve a binary

classification problem by searching a decision boundary that
has the maximum margin with the examples. SVMs handle
complex decision boundaries by using linear machines in a
high dimensional attribute space, implicitly represented by a
kernel function. In this work, we only consider linear SVMs
because they are known to be well suited to the datasets
that we consider [11, 25, 22] and they offer a clear biological
interpretation of the results.

For a given training set of labeled samples, a linear SVM
determines an optimal hyperplane that divides the positively
and the negatively labeled samples with the maximum mar-
gin of separation. A noteworthy property of SVM is that
the hyperplane only depends on a small number of train-
ing examples called the support vectors, they are the closest
training examples to the decision boundary and they deter-
mine the margin.

Formally, we consider a training set of n samples belonging
to two classes; each sample is noted {Xi, yi} where {Xi} is
the vector of dimension m of attribute values describing the
sample and yi the class label.

A soft-margin linear SVM classifier aims at solving the
following optimization problem:

min
w,b,ξi

1

2
‖w‖2 + C

n
X

i=1

ξi (1)

subject to yi (w ·Xi + b) ≥ 1− ξi and ξi ≥ 0, i = 1, ..., n.
In this formulation, w is the weight vector that determines

the separating hyperplane; C is a given penalty term that
controls the cost of misclassification errors. To solve this

optimization problem, it is convenient to consider the dual
formulation [5]:

min
αi

1

2

n
X

i=1

n
X

l=1

αiαlyiylXi ·Xl −
n

X

i=1

αi (2)

subject to
Pn

i=1
yiαi = 0 and 0 ≤ αi ≤ C.

The decision function of the linear SVM classifier for an
input vector X is given by f(X) = w · X + b with w =
Pn

i=1
αiyiXi and b = yi − w ·Xi. The weight vector w is a

linear combination of the training samples. Most weights αi

are zero and the training samples with non-zero weights are
the support vectors. Moreover, the maximum margin M is
given by

M =
2

‖w‖
(3)

2.2 Feature ranking by SVM
As discussed in [11], the weights of a linear discriminant

classifier can be used to rank the features for selection pur-
poses. More precisely, in a backward selection method, the
idea is to start with all the features and to iterate the re-
moval of the least informative feature. To determine which
feature can be removed, one can consider the feature that
has the least influence on the cost function of the classifica-
tion process. For a linear SVM, the cost function is defined
by 1

2
||w||2. So given a SVM with weight vector w, we can

define the ranking coefficient vector c given by:

cj = (wj)
2

j = 1, . . . , m (4)

Intuitively, in order to select informative genes, one can
use the orientation of the separating hyperplane found by a
linear SVM. If the plane is orthogonal to a particular fea-
ture dimension, then that feature is informative, and vice

versa. As we show in the next section, the coefficient vector
c provides useful ranking information that enables the de-
sign of dedicated operators in our hybrid algorithm for gene
selection and classification.

2.3 Cross-validation estimation of accuracy
In order to assess the predictive capability of a classifier, it

is necessary to estimate the accuracy of the classifier induced
by a learning algorithm. When variable selection is required,
the accuracies of classifiers built on different subsets of vari-
ables are compared to choose the most appropriate subset.
Previous works [16, 6] have shown that cross-validation, and
more specifically 10-fold cross-validation, provides an accu-
racy estimate with low variance.

To apply the k-fold cross-validation method, the initial
dataset D is split into k subsets of approximately the same
size D1, . . . , Dk. The learning algorithm is applied k times
to build k classifiers: in step i, the data subset Di is left
out as a test set, the classifier is induced from the training
dataset D − Di and its accuracy Acci is estimated on Di.
The accuracy estimate computed by k-fold cross-validation
is then the mean of the Acci, for 1 ≤ i ≤ k.

In this work, cross-validation is used in the fitness func-
tion that evaluates a given subset of genes. Moreover, in
the experimental section, we compare different strategies of
gene selection and the accuracy estimate obtained by cross-
validation is one of the elements that characterize the results.
In this case, it is important to notice that our objective is



to evaluate both the gene selection process and the classi-
fication process. Therefore, as shown in [4], it is necessary
to include gene selection into the cross-validation schema.
That means that the dataset must be split before gene se-
lection is achieved: each step of cross-validation performs
gene selection and classification. Without this careful de-
sign of the experimental protocol, the accuracy results may
be overestimated.

3. A MEMETIC ALGORITHM FOR GENE

SELECTION AND CLASSIFICATION
In this section, we present our memetic approach (called

MAGS) for gene selection and classification of microarray
data. We explain the basic ingredients and their underlying
rational. As the initial number of attributes can reach sev-
eral tens of thousands, our method begins by a pre-selection
step where we use a filter criterion to obtain a group Gp of p

top ranked genes. After experiments with different criteria
(t-statistics, wilcoxon test, . . . ), the BW ratio introduced
in [7] was chosen. Then our memetic algorithm is applied
in the search space 2p to select, from Gp a gene subset of
smaller size that provides a high classification accuracy. In
this work, the number p was fixed to 75. Notice that the
algorithm can be applied to explore larger search space with
more pre-selected genes (larger p). In this case, more com-
putational efforts will be needed.

3.1 Outline of the MAGS algorithm
Our Memetic Algorithm for Gene Selection (MAGS) first

builds an initial population P of gene subsets and then per-
forms a number of generations. There are several ways to
generate the individuals of the initial population. In our
case, each individual is randomly generated such that the
number of genes in each solution varies between p ∗ 0.9 and
p ∗ 0.6.

At each generation, a new population replaces the previ-
ous population P . The new population P ′ is obtained from
P in the following way. A certain number, NbElitism, of
the best individuals of P are copied to P ′. This elitism
mechanism ensures that the best individuals are conserved
along the generations. The rest of P ′ is completed with indi-
viduals obtained by crossover (Section 3.4) and local search
(Section 3.5). More precisely, our specialized crossover oper-
ator applies to two parents and gives one offspring; the local
search operator, based on the Iterated Local Search (ILS)
metaheuristic, is applied to improve each offspring and the
resulting individual is then added to P ′. This process is it-
erated until a maximum number of generations is reached.
The general MAGS procedure is described in Algorithm 1.

3.2 Search space and representation of indi-
viduals

An individual I = < Ig, Ic > is composed of two parts Ig

and Ic called respectively gene subset vector and ranking

coefficient vector [14]. The first part, Ig, is a binary vector
of fixed length p. Each bit I

g
i (i = 1...p) corresponds to

a particular gene and indicates whether or not the gene is
selected. The second part, Ic, is a positive real vector of
fixed length p and corresponds to the ranking coefficient
vector c (Equation 4) of a linear SVM classifier trained on
Ig. Ic indicates thus for each selected gene the importance
of this gene for the SVM classifier.

Algorithm 1: Memetic Algorithm for Gene Selection -
MAGS

Parameters: |P |, NbElitism, fMA, maxIter
begin

Build the initial population P
Evaluate each individual of P according to the
fitness function fMA

nbIter← 1
while nbIter < maxIter do

Generate the temporary population P ′

Copy the NbElitism best individuals of P into
P ′

Produce OffSpring: a set of |P | −NbElitism
individuals produced by CrossOver operator
Each individual I of OffSpring is improved by
local search: I=ILS(I)
Each individual improved I of OffSpring is
added to P ′

The population P is replaced by P ′

nbIter← nbIter + 1
end
return The best found gene subset and the
associated SVM classifier

end

Therefore, an individual represents a candidate gene sub-
set with additional information on each selected gene with
respect to the SVM classifier. The gene subset vector of an
individual will be evaluated by a linear SVM classifier while
the ranking coefficients obtained during this evaluation pro-
vide useful information for the evolutionary process. Notice
that most previous studies use only the classical representa-
tion by a gene subset vector.

3.3 Fitness function
The quality of a candidate gene subset is evaluated by its

ability to obtain a good classification. To calculate the fit-
ness of an individual, a SVM classifier is trained with this
representation and its classification accuracy is estimated
by 10-fold cross validation. Due to the mechanism of co-
regulation between genes, the microarray datasets contain
correlated information. We observe that many different sub-
sets of genes can achieve the same performance of classifica-
tion. Obviously, this phenomenon is reinforced by the very
low number of samples available in each dataset.

Therefore in order to further discriminate gene subsets
that give the same accuracy, we propose the following eval-
uation (fitness) function fMA (Equation 5) that also consid-
ers the SVM margin to evaluate the quality of a gene subset.
Let us recall that the margin of the SVM classifier evaluates
the distance between the decision hyperplane and the two
classes. So a greater margin indicates a better discrimina-
tion.

More formally, the fitness function fMA of our memetic
algorithm can be written as follows:

fMA(I) =< Acc(Ig), MSV M (Ig) > (5)

where

• Acc(Ig) is the classification accuracy of the SVM clas-
sifier using the set of genes of Ig,

• MSV M (Ig) is the maximum margin of the SVM clas-
sifier, given by Equation 3.



Now given two candidate solutions I and J , it is possible
to compare them: fMA(I) is better than fMA(J), denoted
by fMA(I) > fMA(J), if the following condition is satis-
fied: fMA(I) > fMA(J) ⇔ Acc(Ig) > Acc(Jg) or Acc(Ig) =
Acc(Jg) ∧MSV M (Ig) > MSV M (Jg).

3.4 Crossover operator
Crossover is one of the key evolution operators for any

effective GA and needs a particularly careful design. As our
goal is to obtain small subsets of selected genes with a high
classification accuracy, we have designed a highly specialized
crossover operator following two fundamental principles [14]:
1) to conserve the genes shared by both parents and 2) to
preserve “high quality” genes from each parent even if they
are not shared by both parents. The notion of “quality” of a
gene here is defined by the corresponding ranking coefficient
stored in Ic. Notice that applying the first principle will have
as main effect of getting smaller and smaller gene subsets
while applying the second principle allows us to keep up
good genes along the search process.

Let I =< Ig, Ic > and J =< Jg , Jc > be two selected
individuals (parents), we combine I and J to obtain a single
child K =< Kg , Kc > using the following steps:

1. Extract the subset of genes shared by both parents by
boolean logic AND operator (⊗) and arrange them in
an intermediary gene subset vector F .

F = I
g ⊗ J

g

2. For the subset of genes obtained from the first step,
extract the maximum coefficients maxI and maxJ ac-
cordingly from their original ranking vectors Ic and
Jc.

maxI = max {Ic
i | i such that Fi = 1}

and

maxJ = max {Jc
i | i such that Fi = 1}

3. This step aims to transmit high quality genes from
each parent I and J which are not retained by the logic
AND operator in the first step. These are genes with
a ranking coefficient greater than maxI and maxJ .
The genes selected from I and J are stored in two
intermediary vectors AI and AJ

AIi =



1 if I
g
i = 1 and Fi = 0 and Ic

i > maxI

0 otherwise

and

AJi =



1 if J
g
i = 1 and Fi = 0 and Jc

i > maxJ

0 otherwise

4. The gene subset vector Kg of the offspring K is then
obtained by grouping all the genes of F , AI and AJ

using the logical ”OR” operator (⊕).

K
g = F ⊕AI ⊕ AJ

The ranking coefficient vector Kc will be filled up when
the individual K is evaluated by the SVM based fitness func-
tion.

From the search perspective, this crossover operator es-
sentially plays a guided diversification role. The intensifica-
tion of the search will mainly be driven by an iterated local
search algorithm.

3.5 Iterated local search
An individual I produced by crossover will be improved

by local search before being inserted into the population.
Our local search operator is ensured by an Iterated Local
Search (ILS) procedure [21]. ILS alternates between a local
search (e.g. descent) procedure and a perturbation operator.
Starting from an initial solution, the local search procedure
is used to reach a local optimum. Then the perturbation
operator is employed to displace the solution to a new region,
whereupon a new round of local search starts.

We have seen that the crossover operator combines rele-
vant genes from two parents to form a new offspring. The
number of genes in the new individual can be quite different
from the number of genes of its parents. To complete this
process that ensures diversity of the population, our ILS op-
erator focuses its search on gene subsets of fixed size, ensur-
ing thus an intensified exploitation within a limited search
space [15].

So given an offspring I with g genes, created by crossover,
the neighbors explored by the ILS operator are gene sub-
sets that contain exactly g genes. The ILS process tries to
improve the accuracy of classification obtained from these
subsets. The move operator that defines the neighborhood
is therefore a ”drop/add” operator informed by semantic
knowledge about the relevance of genes for classification.

More precisely, for an individual I =< Ig, Ic > repre-
sented by Ig = (g1, g2...gp) and Ic = (c1, c2...cp), our move
operator drops the least informative gene gi (i.e. having
the smallest non-null coefficient ci). Consequently, gi=1 be-
comes gi=0. One then adds to the current solution another
gene gj (j 6= i) (gj=0 becomes gj=1). Such a move is de-
noted by mvi,j . Applying a move mvi,j to a solution I leads
to a new solution I ′. Such an application is denoted by:
I ′ = mvi,j ⊕ I .

From an individual, ILS iteratively applies this move oper-
ator until a local optimum is reached. Then a perturbation
operator is applied to explore alternative solutions to this
local optimum. Perturbation changes the previous best so-
lution by some random moves (random drop/add of genes).
The altered solution constitutes a new starting point for a
new round of local search. During all these steps a tabu list
is used to prevent the method from cycling. More precisely,
each time a gene gi is dropped from the current individual,
gi is added to the tabu list and cannot be re-added to the
solution during a certain number of moves (see Algorithm
2).

Algorithm 2: Iterated Local Search Algorithm with a
tabu list
Data: I : an individual obtained by crossover
Result: I ′: an improvement of I
Parameters: tl: size of the tabu list
while not Stop-Condition do

Choose the best authorized move mvi,j and apply
the move to I : I ′ = mvi,j ⊕ I
Add gene i in the tabu list for tl iterations
if a local optimum is reached then

Perturbation: I = perturbation(I ′)
end

end



3.6 Parameters of the memetic algorithm
Now that we have defined the different components of our

method described in Algorithm 1, we can specify the differ-
ent parameters used in our experiments.

The population size was fixed to 30. NbElitism, the num-
ber of the best individuals copied to the next population was
fixed to 5, and maxIter was fixed to 30. All these parame-
ters were determined experimentally while trying to limit the
computational cost and to obtain the best results for gene
selection and classification. Note these parameter values are
used for all the experimentations presented in Section 4.

4. EXPERIMENTATIONS AND RESULTS

4.1 Datasets
Since the first publications about molecular classification

of cancer [3, 9], several datasets have been studied and are
publicly available for example on the Kent Ridge Biomedical
repository (http://datam.i2r.a-star.edu.sg/datasets/krbd/).
Table 1 gives a brief description of the datasets used in our
experiments. It is important to test a method on several
datasets because special characteristics can be observed in
some data and the problems may be of different difficulty.
For example, it is now well recognized that the two kinds
of Leukemia in the dataset can be easily discriminated even
with a very small number of genes while the Colon cancer
dataset is more difficult, perhaps because it contains some
mis-classified samples [8].

To report the computational results (Tables 2 and 3), each
dataset is independently solved 10 times and statistics based
on the results of these runs are reported.

Table 1: Summary of datasets used for experimen-

tation
Dataset #Genes #Samples

Colon Cancer 2000 62
Leukemia 7129 72

Breast Cancer 24481 97
Lung Cancer 12533 181

Prostate Cancer 12600 109
Ovarian Cancer 15154 253

CNS Cancer 7129 60
Lymphoma 4026 47

4.2 Comparison of MAGS with a genetic al-
gorithm and a local search procedure

In order to evaluate the importance of the different com-
ponents of our memetic algorithm MAGS, we first compare
its results with the results obtained by a genetic algorithm
and a local search algorithm. Such a comparison allows us
to highlight the importance of combining genetic and local
search with a single process. The experiments are conducted
on the 8 datasets described in Table 1 and the results are
presented in Table 2.

The local search algorithm is the ILS algorithm used in
MAGS. The initial candidate solution can be randomly cre-
ated with a risk of being of bad quality. For this reason, we
devise a simple way to obtain a set of ”not-too-bad” initial
individuals as follows. To generate each individual (Section
3.2), we first generate randomly l = 10 solutions such that
the number of genes in each solution varies between p ∗ 0.9
and p ∗ 0.6 (p being the number of pre-selected genes with

a filter, see Section 3.1), from which the best solution ac-
cording to the evaluation function fMA given by Equation
5 (Section 3.3).

Recall that ILS considers neighbors that all contain the
same number of genes. To reduce the number of selected
genes, we combine this exploration with a reduction phase
that withdraws the least relevant gene from the current so-
lution, whereupon a new ILS is applied. This two-stage pro-
cess stops when removing the least interesting gene wors-
ens the classification accuracy on the training data. This
method, named ILS+Reduction, is summarized in algorithm
3.

Algorithm 3: ILS+Reduction Procedure

begin
Generate an initial solution Ig;
repeat

Evaluate Ig using the SVM classifier and fill Ic ;
I =< Ig, Ic > /* I is the current solution*/ ;
I = ILS(I) /* ILS phase: apply ILS to improve
solution I ;
Ig = Ig − {gi} /* Gene reduction phase: remove
the least informative gene from the best solution
found by ILS phase */;

until stop condition is verified ;

end

We also provide the results obtained when the sole Genetic
Algorithm (GA) is applied. Our GA is the MAGS algorithm
where its ILS operator is disabled. More precisely the GA
uses the specialized crossover operator presented in section
3.4, but replaces the ILS operator by a standard random
mutation operator. In order to select gene sets of small
sizes, the GA uses a fitness function fGA that combines the
two objectives: maximizing the accuracy and minimizing
the number of genes:

fGA (I) =
Acc(Ig) +

“

1− |Ig |
p

”

2
(6)

The first term Acc(Ig) is the same as in fMA (formula
5): it is the classification accuracy obtained with the SVM
classifier and evaluated via 10-fold cross-validation. The sec-
ond term ensures that for two gene subsets having an equal
classification accuracy, the smaller one is preferred. For a
given individual I , this fitness function leads to a positive
real fitness value fGA(I) (higher values are better).

Table 2 contrasts the results of MAGS with the results of
ILS+Reduction and GA on the 8 datasets. Each cell shows
two pieces of information: the average accuracy estimate
(over 10 runs) with the standard deviation (see Section 2.3)
and the average number of selected genes with the stan-
dard deviation. Due to the fact that the fitness function
used by GA (formula 6) is different from that employed by
MAGS and ILS (formula 5), it would be difficult to com-
pare the number of selected genes obtained by different al-
gorithms. So the most important information provided in
Table 2 concerns the accuracy estimates since they are cal-
culated exactly in the same way for the three cases (MAGS,
ILS+Reduction and GA).

From Table 2, we see that the results of MAGS dominate
clearly those of its two competitors. The results of MAGS



are better than those of GA on the eight datasets and a
Wilcoxon test for paired samples confirmed that this differ-
ence is significant with a confidence level of 95% (p-value
under 0.05). Since the test deals with only eight datasets,
the approximation of the statistics by normal distribution
is not valid and the result of the test (R− = 0) must be
compared with tabulated values. Concerning the compari-
son between MAGS and ILS, we observe that they give the
same perfect accuracy on two datasets, ILS slightly outper-
forms MAGS on the Prostate dataset but MAGS dominates
on the other datasets. A Wilcoxon test confirms the domi-
nance of MAGS with a p-value of 0.05.

These results tend to show that removing from MAGS
its specialized crossover or its ILS procedure weakens its
search power and consequently highlight the importance of
the synergy between genetic and local search.

Note that MAGS achieved a perfect classification for 4 out
of the 8 datasets and the classification accuracy of at least
95% for the remaining cases.

Table 2: Results of our three heuristic methods:

GA, ILS and MAGS. Each cell indicates the average

classification estimate with the standard deviation

and the number of selected genes with the standard

deviation. Globally, MAGS dominates the two other

methods.
Data GA ILS+Reduction MAGS

Colon Cancer 84.6±6.6% 87.00±7.36% 98.33±5.27%

7.05±1.07 8.20±2.09 7.70±1.95

Leukemia 91.50±5.90% 91.94±4.06% 100%

3.17±1.16 3.14±1.08 6.20±3.19

Breast 85.68±4.64% 89.58±2.49% 95.78±5.46%

10.70±8.34 7.90±6.27 16.10±4.93

Lung 99.79±0.32% 99.93±0.20% 100%

6.64±3.57 4.66±2.25 7.30±3.02

Prostate 97.00±2.49% 98.41±1.48% 97.03±3.83%

6.76±7.12 5.08±4.10 25.20±7.27

Ovarian Cancer 99.98±0.12% 100% 100%

3.10±0.91 2.52±0.54 3.00±0.00

CNS 79.33±4.71% 84.00±1.65% 95.00±8.05%

13.16±5.83 9.06±4.24 20.70±4.55

Lymphoma47 96.78±3.14% 100% 100%

7.72±6.18 7.34±4.16 5.70±2.16

4.3 Comparison with other works
In this section, we give a comparison of the results ob-

tained by MAGS and some recent works. The results can
only be compared if the experimental protocols are the same
or equivalent. As stated in section 2, the process of se-
lection combined with classification must be evaluated by
cross-validation and the selection of a subset of genes must
be realized at each fold of the cross-validation. The results
obtained by such a protocol are the mean and standard de-
viation of the classification accuracies and the mean and
standard deviation of the number of selected genes.

The results are presented in Table 3 for the 8 datasets.
Each cell here has the same meaning as that of Table 2.
We must notice that two different datasets concerning Lym-

phoma are studied in the literature. We give in the table
the results concerning the dataset that contains 47 samples
(24 GC B-like samples and 23 activated B-like samples) [2].
Studies dealing with the other Lymphoma dataset is not
compared here.

First, let us compare MAGS and the method of [28] which
shares 6 out of the 8 datasets. It is also one of the scarce
studies found in the literature using a hybrid genetic algo-
rithm for gene selection. Their GA is a classical wrapper
method where individuals are represented by binary strings.
Standard random crossover and mutation operators are used
to evolve the population and a SVM classifier is trained to
calculate the fitness of each individual. In each generation,
the best individual undergoes a local search improvement.
The local search operator ranks the unselected genes accord-
ing to a correlation measure and adds the most relevant one
to the subset. Similarly the correlation measure identifies
the most relevant gene already selected, computes an ap-
proximate Markov blanket for this gene and eliminates all
the genes which are in this Markov blanket. The local search
is therefore a kind of filter method and the GA a wrapper
method that uses the SVM as a black box, whereas in our
method the interaction with the classifier is a central ele-
ment.

From Table 3, one observes that MAGS achieves better
classification accuracies than the method of [28] for all the
6 datasets. This observation is confirmed by a wilcoxon test
with a p-value of 0.05 (R− = 0)1. This tends to demon-
strate that the interaction between the classifier and search
operators boosts the performance of the MAGS method.

Moreover, to achieve these results, MAGS selects smaller
gene subsets except for one dataset (breast). This is prob-
ably not very surprising because the fitness function of [28]
concerns the sole objective of classification accuracy. It
seems that removing genes by the Markov blanket process
does not suffice to obtain small gene subsets.

Now concerning the results of the three other methods pre-
sented in Table 3 (columns 4-6), one observes that MAGS
competes always very favorably in terms of classification ac-
curacy and the number of selected genes. The number of
common experiments with these three cases are not suffi-
cient to allow a statistical validation.

Finally let us mention that a perfect classification estimate
for the Colon data is reported in [1]. However, given that
their selection process is realized before cross-validation, the
results may suffer from the selection bias and consequently
can be optimistic with overestimated accuracies. As ex-
plained in Section 2.3, it is impossible to have a fair com-
parison of the results of [1] with those presented in Table
3.

5. CONCLUSION
In this paper, we have presented MAGS, a memetic algo-

rithm for gene selection and classification of microarray data.
This algorithm combines both specialized genetic search and
local search to establish a good balance between exploration
and exploitation of the search space. MAGS is based on

1We must point out that accuracy in [28] is evaluated by the
.632 bootstrap estimator whereas 10-fold cross-validation is
used in our case. It would be better to have results with the
same estimator to perform a rigorous comparison of the two
methods.



Table 3: Comparaison with other recent works

Data References

MAGS [28] [23] [26] [19]

Colon 98.33±05.27 85.66±5.46 83.81±10.26 83.87 88.70±01.60

7.70±1.95 24.5±7.0 23.40±5.03 - 16.83±1.15

Leuk. 100 95.89±2.46 - 100 95.08±1.27

6.2±3.19 12.8±4.9 - - 20.76±1.49

Breast 95.78±5.46 80.74±3.45 - 95.88 -

16.10±4.93 14.5±4.2 - - -

Lung 100 98.96±0.88 - 99.45 -

7.30±3.02 14.10±7.00 - - -

Prost. 97.03±3.83 - 97.06 - -

25.20±7.27 - - - -

Ovar. 100.00 99.71±0.53 98.80±1.10 - -

3.00±0.00 9.0±2.06 25.60±5.90 - -

CNS 95.00±8.05 72.21±5.91 65.00±16.02 95.00 -

20.70±4.54 20.50±6.9 46.20±5.50 - -

Lymp.47 100.00 - - - -

5.7±2.16 - - - -

the embedded approach where a SVM classifier is used not
only to evaluate gene subsets but also to provide valuable
information about gene relevancy. MAGS takes advantage
of this information to design specialized crossover and local
search operators.

The performance of MAGS is assessed on 8 well-known
datasets. We show that removing from MAGS its genetic
part (crossover) or its local search procedure inevitably weak-
ens its performance. This demonstrates the importance of
the memetic approach which combines tightly the genetic
search and local search with a single search process. More
importantly, computational comparisons with some most re-
cent methods for gene selection show clearly that MAGS is
able to produce higher classification accuracy with a small
number of genes.
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