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Abstract

The prize-collecting Steiner tree problem in graphs (PCSPG), as well as its rooted
variant (RPCST), are target problems of the 11th DIMACS (the Center for Dis-
crete Mathematics and Theoretical Computer Science) Implementation Challenge
held in collaboration with ICERM (the Institute for Computational and Experimen-
tal Research in Mathematics). To solve these two problems, this paper proposes
a knowledge-guided local search algorithm (K-ILS) 1 , which integrates dedicated
search strategies and explores structure information of problem instances. K-ILS
uses an effective swap-vertex operator for tree transformation associated with a
discriminating auxiliary evaluation function as well as several knowledge-guided
perturbation strategies. K-ILS additionally employs two new path-based move op-
erators to generate neighboring solutions. The computational results achieved on
the benchmark instances of the 11th DIMACS Implementation Challenge using the
same computing platform and competition rules demonstrate that K-ILS performs
very well compared to the leading algorithms of the challenge. We report additional
experiments to analyze the impact of the key components to the performance of the
proposed algorithm.
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1 This paper extends [15], which was presented at the workshop of the 11th DI-
MACS Implementation Challenge, but has not been formally published.
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1 Introduction

Given an undirected graph G(V,E) with a set V (|V | = n) of vertices and a set
E (|E| = m) of edges, each vertex i ∈ V is associated with a real-valued prize
pi ≥ 0 (vertex i is a customer vertex if pi > 0, and a non-customer or Steiner
vertex otherwise), and each edge e ∈ E is associated with a real-valued cost
ce ≥ 0, then the Prize-collecting Steiner Tree Problem in graphs (PCSPG)
involves finding a subtree T (with vertex set VT and edge set ET respectively)
of G, so as to minimize the sum of the costs of its edges plus the prizes of the
vertices not spanned by T , i.e., [28]:

Minimize f(T ) =
∑

e∈ET

ce +
∑

i/∈VT

pi. (1)

In addition to this basic problem, the PCSPG has some other closely related
variants, such as the rooted version of the PCSPG (named RPCST for short),
which considers an additional source vertex as the root which must be part of
any feasible solution. Moreover, the classical Steiner tree problem in graphs
(SPG) [25] is a particular case of the PCSPG, if each terminal of the graph
is associated with a high enough prize, and each Steiner vertex is associated
with a prize equals to zero.

The PCSPG, as well as its related variants, are known to be relevant models to
formulate many important network design problems. Meanwhile, given that
the classical SPG is NP-hard [30], the PCSPG is at least as difficult and
computationally challenging as the SPG in the general case. Recognizing their
theoretical importance and wide practical applications, the 11th DIMACS
Implementation Challenge in collaboration with ICERM (from June 2013 to
December 2014) was dedicated to the class of broadly defined Steiner tree
problems including both the PCSPG and the RPCST [29].

The PCSPG (along with the RPCST) has been extensively investigated since it
was proposed [11,37] (where it firstly appeared as the so-called node weighted
Steiner tree problem). Many approaches have been proposed for this problem,
which could be mainly classified into three categories: approximation algo-
rithms which aim to find solutions with provable quality, exact algorithms
which warrant optimality of the obtained solutions, and heuristics which seek
high-quality solutions within a reasonable time frame. Moreover, effective re-
duction tests like those introduced in [38] were usually used as a pre-processing
technique to transform the original graph to an equivalent reduced graph.

Among the approximation approaches, Bienstock et al. proposed a first 3-
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approximation algorithm [6]. Later, Goemans and Williamson [20] used a
primal-dual scheme to derive a (2 − 1

n−1
)-approximation for the RPCST in

O(n2 log n). By trying all possible choices for the root, they obtained a (2 −
1

n−1
)-approximation for the PCSPG with a complexity of O(n3 log n) [21]. Fur-

thermore, Johnson et al. showed a (2− 1
n−1

)-approximation algorithm for the
PCSPG with O(n2 log n) running time [28], which was subsequently extended
to the RPCST in [35]. The new algorithm by Feofiloff et al. [12] achieved an
approximation ratio of (2− 2

n
) within O(n2 log n) time. Finally, Archer et al. [3]

reported the best approximation ratio with an upper bound of 1.9672.

Several exact approaches (mainly based on different integer programming for-
mulations) have been proposed for the PCSPG. Lucena and Resende [34]
presented a polyhedral cutting plane based algorithm, which solves optimally
96 of the 114 classical test instances (with up to 1000 vertices and 25000
edges). Ljubić et al. [33] re-formulated the PCSPG in a directed formulation
and implemented a branch-and-cut algorithm which yields outstanding results
(with all the 189 test instances solved to optimality, including 35 real-world
instances with up to 1825 vertices and 214095 edges). Salles Da Cunha et
al. [36] used a Lagrangian non delayed relax and cut (NDRC) algorithm to
generate primal and dual bounds to the problem. Experimental results on
a new group of difficult instances showed its competitiveness for solving the
PCSPG. Meanwhile, no exact algorithm in the literature is able to optimally
solve all the existing PCSPG benchmark instances. This is especially the case
for a number of particularly difficult instances newly introduced for the 11th
DIMACS Challenge.

Given the NP-hard nature of the PCSPG, heuristics naturally constitute an-
other important solution approach. For instance, Canuto et al. [7] described
a multi-start local search algorithm for the PCSPG, which uses a primal-
dual algorithm to generate initial solutions, two basic move operators (add
or remove a vertex) to obtain neighboring solutions, a path-relinking proce-
dure to create intermediate solutions between two elite solutions, followed by
a post-optimization procedure using variable neighborhood search. Klau et
al. [31] developed a complex algorithmic framework, which first applies an
extensive pre-processing procedure to reduce the given graph without chang-
ing the optimal solution. The reduced problem is then solved by a memetic
search algorithm which combines a steady-state evolutionary algorithm and
an exact subroutine for the problem on trees. The solution is finally improved
by an integer linear programming (ILP) based post-optimization subroutine.
Goldbarg et al. [23] presented another hybrid algorithm, which uses a transge-
netic algorithm (based on several coding, evolution and updating strategies) to
search good solutions, and then applies a path-relinking procedure for further
improvement. Biazzo et al. [5] introduced an approach derived from the cavity
method, based on the zero temperature limit of the cavity equations, to form a
simple (a fixed point equation solved iteratively) and parallelizable algorithm.
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Very recently, Akhmedov et al. [1] presented a divide-and-conquer matheuris-
tic method, which is composed of a pre-processing procedure, a heuristic clus-
tering algorithm and an exact solver. This algorithm was tested on a number
of huge PCSPG instances transformed from biological graphs with special
structures, and showed good performances for these specific instances.

The 11th DIMACS Implementation Challenge has attracted a number of new
algorithms, including approximation algorithms [26], exact algorithms [2, 10,
18], heuristics [5,15] and hybrid algorithms [13]. These algorithms definitively
advanced the state of the art on the RPCST and PCSPG. For each existing
problem instance, the previous best-known result (upper bound) was matched
or improved by the best competing algorithms.

In this work, we are interested in knowledge-based methods which have been
successfully applied to solve many problems, including several tree-related
problems [8,24]. Specifically, we introduce the knowledge-guided iterated local
search algorithm (K-ILS) for solving the PCSPG (and the RPCST). K-ILS
extends our previous KTS algorithm [15] which took part in the 11th DIMACS
Implementation Challenge and won several competing subcategories during
the challenge. The main goal of this work aims to bring further improvements.

From an algorithmic perspective, our K-ILS algorithm belongs to the class of
stochastic local search methods [27]. To be effective, K-ILS integrates dedi-
cated and innovative ingredients for both its local optimization and perturba-
tion phases. We identify the main contributions of the work as follows.

• First, for local optimization, K-ILS relies on an effective swap-vertex oper-
ator for tree transformations associated with an informative auxiliary eval-
uation function, which is shown to be extremely useful to solve a num-
ber of difficult instances with uniform or nearly uniform edge costs. For
the purpose of an effective search diversification, K-ILS calls for several
knowledge-guided perturbation strategies which take advantage of struc-
ture information of the given instance to direct the search towards promis-
ing areas. K-ILS additionally introduces two path-based tree transforma-
tion operators (Connect Customer and Disconnect Customer) to generate
neighboring solutions. As such, K-ILS distinguishes itself from the existing
heuristics designed for the PCSPG and RPCST problems like those pre-
sented in [1, 5, 7, 23, 31].
• Second, in terms of computational performance, K-ILS outperforms our
previous KTS algorithm, which achieved an excellent performance on the
RPCST and the PCSPG during the 11th DIMACS Implementation Chal-
lenge. Referring to the challenge, there are four main challenge subcategories
for each problem, i.e., two Quality Challenge (primal bounds) subcategories
regarding only the solution quality, and two Pareto Challenge (primal inte-
grals) subcategories regarding both the solution quality and running time.
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Experimental results (based on the same computing platform and competi-
tion rules) show that, if we have used K-ILS instead of KTS to participate
in the challenge, K-ILS would have won three subcategories, while being
ranked tied the first place on two subcategories, and the third place on the
remaining three subcategories, with respect to other competing algorithms.
Although K-ILS does not change the ranks achieved by KTS during the
challenge, K-ILS does obtain better solutions than KTS on a number of
difficult instances, and statistically outperforms KTS.

The reminder of the paper is organized as follows. Section 2 provides a detailed
description of the proposed K-ILS algorithm. Section 3 shows computational
results obtained by our algorithm. Section 4 is dedicated to an analysis of some
key ingredients of the K-ILS algorithm, followed by concluding comments in
the last section. A study on parameter tunings is provided in the Appendix.

2 Proposed approach

2.1 General framework

Hundreds of PCSPG and RPCST instances were collected by the 11th DI-
MACS Implementation Challenge, which belong to different types with very
different structures. According to the No Free Lunch Theorem [40], there is
no algorithm which performs globally the best on all instances. Therefore,
the proposed K-ILS approach (Algorithm 1) adopts different search strate-
gies to tackle different types of problem instances, in order to fully exploit
their structures. K-ILS starts by first classifying the given instance into one
of three types (’large’, ’general’, or ’particular’) and then applying a suit-
able pre-processing procedure accordingly (lines 3-4). Then K-ILS enters into
its main search procedure (lines 5-19), which, starting from a randomly con-
structed initial solution, iteratively alternates between a local optimization
phase and a knowledge-guided perturbation phase. This process continues un-
til the incumbent solution could not be further improved after W (parameter)
consecutive rounds of perturbations followed by local optimization. Relative
to the instance types (’large’, ’general’, and ’particular’), we develop dedicated
local search procedures and perturbation strategies which try to explore struc-
ture information (knowledge) of the given instance to guide the search. In the
following subsections, we first describe the basic and common techniques and
then illustrate the dedicated search strategies respectively developed for the
three instance types.

Note that even though the algorithm presented in this paper is developed for
solving the PCSPG, it can be applied to solve the RPCST as well. For this,
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it suffices to assign a high-enough prize to the chosen root to ensure that the
root would always be included in any feasible solution of reasonable quality.

Algorithm 1: Framework of the Proposed K-ILS Approach

1: REQUIRE: Graph G(V,E), Vertex prizes V → R, Edge costs E → R

2: RETURN: The best solution found T best

3: Type← Identify Type(G) /* Identify instance type, Section 2.3 */
4: G′ ← Pre Process(G, Type) /* Pre-process the instance, Section 2.4 */
5: T ← Init Solution(G′) /* Construct an initial solution, Section 2.5 */
6: T ← Local Optimize(T, Type) /* Local search according to its type */
7: T best ← T /* T best records the best found solution */
8: w ← 0 /* w records the number of non-improving rounds */
9: while w < W do

10: /* Perturb T according to its type */
11: T ← Knowlege Guided Perturb(T, Type)
12: /* Improve T by local optimization according to its type */
13: T ← Local Optimize(T, Type)
14: if f(T ) < f(T best) then
15: /* Update T best and set w to zero if an improved solution is found */
16: T best ← T

17: w ← 0
18: else

19: w ← w + 1 /* Otherwise, increase w by 1 */
20: end if

21: end while

2.2 Solution representation

According to the definition of the PCSPG, once the vertices of the given graph
to span are known, the optimal solution must be a minimum spanning tree
(MST) over the spanned vertices, indicating that a given solution could be
uniquely represented by its spanned vertices. For the sake of efficient local
optimization, we adopt the solution representation used in [14, 16]. Given a
specified root vertex (for the PCSPG, among all the spanned vertices, we
always choose the vertex with the highest prize as the root vertex), we uniquely
represent each feasible solution by a one-dimensional vector T = {ti, i ∈ V },
where ti denotes the parent vertex of vertex i if i ∈ VT (excluding the root
vertex, VT denotes the vertices set of T ), or ti = Null otherwise.

2.3 Identification of the instance type

The 11th DIMACS Implementation Challenge has collected hundreds of PC-
SPG and RPCST instances of different types with highly diverse structures,
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making it impossible for a single search strategy to perform uniformly well on
all the instances. For this reason, we first classify the given graph G(V,E) into
one of three types: ’large’, ’general’, and ’particular’.

First, G(V,E) is qualified as ’large’ if |V | > 6000. This criterion is introduced
to disable the pre-processing step (which computes and stores all the shortest
paths between any pair of vertices, see Section 2.4), whose time and space
costs become unaffordable for large graphs. The threshold value of 6000 is
settled mainly depending on the allowed memory of the computing platform.

Second, for a graph G(V,E) with |V | ≤ 6000, G is qualified as ’general’ or
’particular’ according to the normalized edge cost deviation σ ≥ 0 computed
as:

σ =
1

|E|

∑

e∈E

|ce − ce|

ce
. (2)

where ce =
∑

e∈E
ce

|E|
is the average cost of all the edges e ∈ E. Intuitively, a

small (large) value of σ indicates a small (large) variation between the edge
costs of the graph. Specifically, σ = 0 implies a uniform cost for all the edges
(each edge has a same cost).

Thus, a graph with |V | ≤ 6000 is called ’particular’ if σ ≤ 0.05 (settled
according to our experience), and ’general’ otherwise. As such, ’particular’
graphs have uniform or nearly uniform edge costs while ’general’ graphs may
have very disparate edge costs.

Once the given graph is classified, it is possible to apply a suitable search
strategy according to the characteristics of the graph. At first, for the ’gen-
eral’ instances, we usually observe that some vertices frequently appear in
high-quality local optimal solutions while this rarely happens for other ver-
tices. Such search information may be useful to guide the search towards more
promising areas. Second, for the ’particular’ instances with uniform or nearly
uniform edge costs, we observe that feasibly deleting a low-prize vertex (with
prize pi < ce) would generally lead to an improving solution (only with very
few exceptions when σ > 0). Inspired by this observation, we develop a swap-
vertex move operator associated with an auxiliary evaluation function, as well
as a swap-vertex based perturbation strategy, in order to enforce the opportu-
nity of feasibly deleting low-prize vertices. Finally, for the ’large’ instances, we
try to avoid operations with unaffordable complexity. More details are given
in the following subsections.
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2.4 Pre-processing

For the instances of ’general’ and ’particular’ types, we first apply a pre-
processing to calculate and store the cost of the shortest path between any
pair of vertices. Using Dijkstra’s algorithm with the aid of binary heap, these
calculations can be achieved in O(m+n · log n) [9]. These values are stored in
a n×n table and can be fetched directly during the search process, instead of
recalculating them repeatedly. For the ’large’ instances, no pre-processing step
is applied. Instead, whenever a shortest path is needed, it is calculated from
scratch using Dijkstra’s algorithm. For the sake of simplicity, other complex
pre-processing techniques like the reduction test introduced in [38] are not
applied.

2.5 Solution initialization

The K-ILS algorithm uses the following method to generate initial solutions
independent of the instance type. Starting from a randomly chosen customer
vertex i, we iteratively connect a good-enough customer (while guaranteeing
that the objective value after insertion would not increase), using the shortest
path between the selected customer vertex and the already connected solution.
If there are more than one such customers available at an iteration, one of them
is randomly chosen for connection. This process is repeated until no customer
could be further connected. Then, in order to further improve the obtained
solution, we use Kruskal’s algorithm to re-construct a minimum spanning tree
(MST) over the spanned vertices, to obtain a feasible solution that serves as
the starting point of our K-ILS algorithm.

2.6 Basic move operators

Move operators for solution transformations are key elements of local opti-
mization approaches. Herein, we introduce four basic move operators for gen-
erating neighboring trees, including two conventional vertex-based operators
(Insert Vertex and Remove Vertex) developed in [7], and two path-based move
operators (Connect Customer and Disconnect Customer) newly developed in
this paper. In Section 2.8.1, we will introduce another new move operator
(swap-vertex) specifically designed for the ’particular’ instances.

As mentioned in Section 2.2, any solution of the PCSPG can be uniquely
characterized by its spanned vertices set VT . Consequently, given a solution
T = (VT , ET ), if we insert a vertex i /∈ VT to (respectively, remove a ver-
tex i ∈ VT from) VT , the resulting minimum spanning tree is a neighboring
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Fig. 1. An example of applying the Insert Vertex and Remove Vertex operators: a)
input graph, b) initial solution, c) solution after inserting vertex 4, d) solution after
deleting vertex 2.

solution of T (discarded if unfeasible), denoted by MST(VT ∪ {i}) (respec-
tively, MST(VT\{i}). Corresponding to these two basic move operators [7],
two sub-neighborhoods N1(T ) and N2(T ), could be defined as follows:

N1(T ) = {MST(VT ∪ {i}), ∀ i /∈ VT},

N2(T ) = {MST(VT\{i}), ∀ i ∈ VT}.
(3)

Using novel dynamic data structures slightly adapted from [39] for efficiently
evaluating these two sub-neighborhoods, at each iteration of local search, all
the neighboring solutions belonging to N1(T ) (respectively, N2(T )) could be
evaluated in O(m · log n).

Fig. 1 shows an example of applying these Insert Vertex and Remove Vertex
operators, where (a) is the original graph with three customer vertices (assume
p1 = p3 = p4 = 10, drawn in boxes) and one Steiner vertex (assume p2 = 0,
drawn in circle), the edge costs are drawn alongside the edges. Sub-figure (b) is
an initial solution with f(b) = 18, while (c) and (d) are improved neighboring
solutions obtained by inserting vertex 4 and removing vertex 2 subsequently,
respectively corresponding to an objective value f(c) = 12 and f(d) = 10.

In addition to these two conventional move operators, we introduce two path-
based move operators specifically designed (to our knowledge for the first time)
for the PCSPG, which mainly focus on the customer vertices.

(1) Connect Customer: Add a path to connect a customer vertex i /∈ VT , us-
ing the shortest path between vertex i and the incumbent solution T . The
resulting neighboring solution is denoted by T⊕ Connect Customer(T, i),
whose objective value is increased by the total cost on the inserted path
minus the total prize of the inserted vertices.

(2) Disconnect Customer: Disconnect a customer vertex i ∈ VT (for conve-
nience, we only consider leaf customer vertex here), by deleting vertex
i associated with the edges which become useless (see [14] for more de-
tails about how to disconnect a leaf customer vertex). The corresponding
neighboring solution is denoted by T ⊕ Disconnect Customer(T, i). The
objective value is decreased by the total cost of the deleted edges minus
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the total prize of the deleted vertices.
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Fig. 2. An example of applying the Connect Customer and Disconnect Customer
operators: a) input graph, b) initial solution, c) solution after connecting vertex 3,
d) solution after disconnecting vertex 9.

Similarly, corresponding to these two move operators, two sub-neighborhoods
N3(T ) and N4(T ) of the incumbent solution T are defined as follows:

N3(T ) = {T ⊕ Connect Customer(T, i), ∀ i /∈ VT , pi > 0},

N4(T ) = {T ⊕Disconnect Customer(T, i), ∀ leaf vertex i ∈ VT , pi > 0}.
(4)

For example, as shown in Fig. 2, given the input graph (a) with four customer
vertices (assume p1 = p3 = p7 = p9 = 10, drawn in boxes) and five Steiner
vertices (assume p2 = p4 = p5 = p6 = p8 = 0, drawn in circles), starting from
a solution (b) with f(b) = 34, one can obtain an improved solution (c) with
f(c) = 32 by connecting customer 3, and a further improved solution (d) with
f(d) = 30 by disconnecting customer 9.

2.7 Search strategies for ’general’ instances

To solve the instances of the ’general’ type (with |V | ≤ 6000 and σ >
0.05), we develop a tabu search (TS) procedure [22] which relies on the four
move operators (Insert Vertex, Remove Vertex, Connect Customer, Discon-
nect Customer) defined in the last section, combined with a knowledge-guided
perturbation operator relying on frequency information of each vertex to es-
cape local optima.

2.7.1 Tabu search for local optimization

Typically, starting from a given initial solution T , our TS procedure evalu-
ates in random order the neighboring solutions of the composed neighborhood
N(T ) = N1(T )∪N2(T )∪N3(T )∪N4(T ) and iteratively accepts the first met
improving solution (if no improving solution exists in N(T ), it accepts the
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best neighboring solution in N(T )). To prevent local cycling, we adopt a sim-
ple tabu mechanism [22]: once a vertex is inserted into (respectively, removed
from) the incumbent solution, the vertex is forbidden to be removed (respec-
tively, inserted) again, unless the move meets the aspiration criterion, i.e., it
leads to a solution better than the overall best-found solution. The search
continues until the incumbent solution could not be improved after a given
number M (parameter) of consecutive iterations. At this point, the best met
solution T is returned as a local optimum found by tabu search. To continue
the search, we turn to a perturbation phase which will modify T based on
some frequency information collected during the search.

2.7.2 Frequency guided perturbations

For the ’general’ instances of the PCSPG, we observe that some vertices fre-
quently (or rarely) appear in locally optimal solutions. In order to utilize the
information (knowledge) to guide the search, we employ a n-dimensional vec-
tor Z (with all values initialized to zeros) to record the frequency information
of each vertex appearing in visited local optima, and use a variable Cnt (ini-
tialized to 0) to count the number of visited local optima. In order to maintain
the knowledge learned during the search, after each run of tabu search, we use
the obtained solution T = (VT , ET ) to update the frequency vector Z as fol-
lows: for each vertex i, if i ∈ VT , we increase Zi by 1; otherwise we keep Zi

unchanged. The local optima counter Cnt is also increased by 1.

With these information, we use the following strategy to perturb the incum-
bent solution. At first, in order to reinforce diversity, during the first ten
rounds (pre-learning phase), we randomly generate initial solutions using the
method described in Section 2.5, instead of perturbing the incumbent solu-
tion. After the pre-learning phase, once tabu search reaches a local optimum
T , we perturb it to a new solution by flipping the status (insert an un-spanned
vertex or remove a spanned vertex) of a number of vertices. Precisely, after
randomly choosing a vertex i, if i ∈ VT , we flip its status (i.e., remove i from
T ) with probability Cnt−Zi

Cnt
, otherwise, we flip its status (i.e., insert i into T )

with probability Zi

Cnt
(unfeasible flips are discarded directly). This action is

repeated for Lflip (parameter) times, and then a MST is reconstructed subse-
quently, leading to a new solution different from T . This new solution serves
as the new starting point of the next round of tabu search.

2.8 Search strategies for ’particular’ instances

The above search strategies are quite effective for the instances belonging to
the ’general’ type, but do not perform well enough for the ’particular’ instances
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(with |V | ≤ 6000 and σ ≤ 0.05). Without loss of generality, in this subsection,
we first introduce the techniques developed for the instances with strictly
uniform edge costs (σ = 0), and then extend in Section 2.8.5 these techniques
to the instances with nearly uniform edge costs (0 < σ ≤ 0.05).

For convenience, we classify the vertices into two subsets, i.e., high-prize ver-

tices with pi ≥ ce (ce =
∑

e∈E
ce

|E|
is the average edge cost) and low-prize vertices

with pi < ce. Clearly, for the instances with strictly uniform edge costs, feasi-
bly adding a low-prize vertex would definitively increase the objective value,
leading to a worse solution. On the contrary, although feasibly deleting a low-
prize vertex would always lead to an improved solution, the search process is
very easy to get stuck into a local optimum where no feasible deleting move
is possible. At this point, it seems very difficult to escape from the incumbent
local optimum by applying the four basic move operators described in Sec-
tion 2.6, even with the aid of tabu search (these observations could also be
extended to the instances with nearly uniform edge costs). According to these
observations, we introduce a swap-vertex based move operator (Swap Vertex)
associated with an auxiliary evaluation function to increase the opportunity
of feasibly deleting low-prize vertices, to form an enhanced local optimization
method. Furthermore, we develop several knowledge-guided perturbation op-
erators which aim to escape from the incumbent local optimum and help the
search to move to new promising areas.

2.8.1 Swap Vertex move operator

Typically, the Swap Vertex move operator exchanges a vertex i /∈ VT with
another vertex j ∈ VT and reconstructs a MST subsequently, leading to a new
neighboring solution (discarded if the new solution is unfeasible). This idea is
natural, but to our knowledge, it has not been well investigated in the field
of Steiner tree problems, possibly due to its high computational complexity.
Indeed, at each iteration there are a total of O(|VT |) · O(|V | − |VT |) ≤ O(n2)
possible swap moves. If we choose to reconstruct a MST (using Kruskal’s algo-
rithm with the aid of Fibonacci heap [39]) after applying a Swap Vertex move,
the overall complexity would be O(n2) · O(m+ n · log n), being prohibitively
expensive for a local search based approach.

Fortunately, for the ’particular’ instances with uniform edge costs, the com-
putation can be much simplified. Obviously, in these cases, if swapping vertex
i /∈ VT and vertex j ∈ VT leads to a feasible solution, the objective value will
definitively decrease by ri − rj (denote the objective difference by ∆ here-
after), because the consumed cost remains unchanged and the collected prize
increases by ri − rj. Specifically, swapping two Steiner vertices would never
change the objective value. These operations can be realized in O(n2) for all
the O(n2) possible swap-vertex moves.
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Relative to the Swap Vertex move operator, a new neighborhood N5(T ) can
be defined as follows.

N5(T ) = {MST(VT ∪ {i}\{j}), ∀ i /∈ VT , j ∈ VT}. (5)

Nevertheless, before applying any Swap Vertex move, we should at first verify
its feasibility. As discussed in our previous work [17], using dedicated data
structures such as union-find set and leftist heap, the feasibility of all the O(n2)
possible Swap Vertex moves can be examined within an overall complexity of
O(m · log n) +O(n2 · d2max), where dmax is the maximum vertex degree of the
input graph G. This complexity seems high, but remains affordable for mid-
sized graphs (with |V | ≤ 6000), especially for sparse graphs with O(m) ≈ O(n)
(generally corresponding to a small value of dmax).

2.8.2 Auxiliary evaluation function

When one applies the Swap Vertex operator, there are usually a large number
of possible moves with the same ∆ value (e.g., swapping any two Steiner
vertices would lead to a ∆ = 0). In this case, using the objective value alone
as the evaluation function will not be able to guide the search since it cannot
distinguish neighboring solutions of the same objective value, even if they
can lead to different search trajectories and thus different local optima. To
address this problem, relative to each feasible solution T , we define as follows
an auxiliary evaluation function.

Definition. Given the incumbent solution T with vertex set VT , for each
vertex i ∈ VT , its special degree sdi is defined as the number of vertices
belonging to VT which are directly reachable from i (we say a vertex j 6= i is
directly reachable from vertex i if edge (i, j) ∈ E), i.e.,:

sdi =
∑

j∈VT ,j 6=i,(i,j)∈E

1. (6)

According to this definition, if sdi = 1, vertex i is directly reachable from only
one vertex j ∈ VT . Consequently, if vertex j is a low-prize vertex with pj < ce,
it implies that deleting vertex j definitively leads to an unfeasible solution.
In other words, it is impossible to improve the incumbent solution by feasibly
deleting low-prize vertex j. In this case, we call vertex i as a key vertex, and
let kv(T ) denote the total number of key vertices of T .

Intuitively, the lower the value of kv(T ), the larger the opportunity to feasi-
bly delete a low-prize vertex (and thus improving the solution). Inspired by
this idea, during the search process, we use the objective value f(T ) (Eq.
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(1)) as the main evaluation criterion, while adopting kv(T ) as an auxiliary
evaluation criterion. Precisely, we say T1 is an improving solution over T2 if
f(T1) < f(T2) or f(T1) = f(T2), kv(T1) < kv(T2), so as to distinguish the
neighboring solutions with the same objective value.

2.8.3 Local optimization method

For the ’particular’ instances, we combine the four basic move operators
(Insert Vertex, Remove Vertex, Connect Customer, Disconnect Customer, see
Section 2.6) with the Swap Vertex operator (Section 2.8.1) to form an en-
hanced local optimization procedure. At each iteration, the search process
first examines in random order (to adopt some randomness) the solutions in
the combined neighborhood N1(T )∪N2(T )∪N3(T )∪N4(T ) (generated by the
four basic move operators) and accepts the first met improving neighboring
solution with a lower objective value. The choice of the first met improvement
strategy rather than the best improvement aims to provide the search with a
higher capacity of diversification. Indeed, being less greedy, the local search
procedure with the first improvement strategy is less susceptible to get trapped
in local optima. If no improving solution is found in this neighborhood, it then
examines in random order the solutions of neighborhood N5(T ) (generated by
the Swap Vertex operator) and again accepts the first met improving solu-
tion (identified by the criterion described in Section 2.8.2). The optimization
process iterates between the combined neighborhood and Swap Vertex based
neighborhood N5(T ) until no improving solution can be found.

For example, Fig. 3 shows a local optimization process by combining the
Swap Vertex operator with the basic move operators, where sub-figure (a)
is the input graph with uniform edge costs (assume ce = 1, ∀e ∈ E, not drawn
in the figure), including three high-prize vertices (assume p1 = p3 = p5 = 10,
drawn in boxes) and three low-prize vertices (assume p2 = p4 = p6 = 0, drawn
in circles). Sub-figure (b) is an initial solution with f(b) = 4 and kv(b) = 2
(both vertices 1 and 3 are key vertices). Notice that solution (b) cannot be
further improved by applying the four basic move operators. However, if we
swap vertex 2 and vertex 6 to get a new solution (c), although the objective
value does not change, the number of key vertices decreases to 1 (only vertex
3 is a key vertex now). From this solution, we can feasibly delete low-prize
vertex 4, to get an improved solution (d) with f(d) = 3.

2.8.4 Solution perturbation

As explained above, for the ’particular’ instances, feasibly deleting a low-prize
vertex leads to an improving solution. Guided by this information, once a
local optimum T is reached by the local optimization procedure, we perturb
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Fig. 3. An example of combining the swap-vertex move with the basic moves: a)
input graph, b) initial solution, c) solution after swapping vertex 2 and vertex 6, d)
solution after deleting vertex 4.

T to generate a new solution, in order to increase the opportunity of feasibly
deleting a low-prize vertex (i.e., obtaining a better solution). For this purpose,
we first remove from T the key vertices with a prize no greater than ce, and
then insert into T the vertices with a prize no lower than ce which are directly
reachable from at least two vertices of T . This step aims to reduce the number
of key vertices without increasing the objective value, thus increasing the
opportunity of feasibly deleting a low-prize vertex. Furthermore, in order to
be able to jump out of the current search area, we randomly swap Lswap

(parameter) pair of low-prize vertices (discarded if unfeasible), to reach a
new solution without significantly changing the objective value (specifically,
swapping any two Steiner vertices would never change the objective value).
Using this method, we generate a new starting solution which is fed to the
local optimization method described in Section 2.8.3 for further improvement.

2.8.5 Techniques for instances with nearly uniform edge costs

Now we discuss how the above techniques can be extended to the case with
varied edge costs (σ > 0). The main difficulty here is that the ∆ value after
swapping vertices i and j no longer strictly equals ri− rj (the total consumed
cost may vary). If we choose to calculate ∆ exactly after swapping each pair of
vertices, the complexity would become unaffordable again. Fortunately, we do
not need to do so if σ is small enough (e.g., σ ≤ 0.05), because in this case it
is highly likely (only with few exceptions) that feasibly deleting (respectively,
inserting) a low-prize vertex would lead to an improved (respectively, worse)
solution, implying that we can still adopt the local optimization method de-
scribed in Section 2.8.3 for solution improvement (regardless of the difference
of edge cost while evaluating the neighboring solutions of N5(T )), with the aid
of the auxiliary evaluation function of Section 2.8.2 to increase the opportunity
of feasibly deleting a low-prize vertex.

On the other hand, for the instances with 0 < σ ≤ 0.05, relative to the
varied edge costs, we develop as follows a new perturbation operator. The
first step (remove and insert some vertices) is kept. For the second step, we no
longer randomly swap low-prize vertices. Instead, we examine all the feasible
Swap Vertex moves and iteratively accept the first met improving neighboring
solution with ∆ > 0 (herein the ∆ values of all the feasible Swap Vertex moves
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are now exactly calculated) until no improving solution exists in the whole
neighborhood. The solution after perturbation serves as the new starting point
of the next round of local optimization.

2.9 Search strategies for ’large’ instances

For the large instances (with more than 6000 vertices), it is unaffordable to
apply an operation with too high complexity. For these instances, in order to
be able to obtain a feasible solution within a reasonable time, we simplify the
algorithm outlined in Algorithm 1 as follows.

First, as mentioned in Section 2.4, we disable the pre-processing step, since
we can not afford its high processing cost.

Second, for solution initialization, we follow the method described in Section
2.5. The only difference is that the shortest paths are temporarily calculated
whenever needed, instead of pre-calculated by a pre-processing step.

Third, we adopt a simple procedure for local optimization. Given an initial
solution T , the local search procedure examines in random order the neighbor-
ing solutions of its neighborhood N(T ) (for instances with uniform edge costs,
N(T ) = N1(T )∪N2(T )∪N5(T ); for other instances, N(T ) = N1(T )∪N2(T )),
and iteratively accepts the first met improving solution (with a lower objec-
tive value), until no improving solution exists in the whole neighborhood. Note
that for the large instances, the Connect Customer and Disconnect Customer

move operators are disabled, since without the pre-calculated shortest paths
it is too expensive to apply these two move operators.

Finally, for the sake of simplicity, we no longer adopt any knowledge-guided
perturbation strategy. Instead, whenever a local optimum is reached, we re-
construct from scratch a new solution (using the solution initialization method
mentioned above) which serves as the starting point of the next round of local
optimization method.

2.10 Differences between K-ILS and KTS

As indicated above, K-ILS is based on our previous KTS algorithm [15], by
following the same iterated local search framework and sharing many impor-
tant basic ideas. On the other hand, K-ILS adopts some refined techniques for
local optimization and solution perturbation. The differences for handling the
’general’ instances and the ’particular’ instances are summarized as follows
(there is no big difference between K-ILS and KTS for the ’large’ instances).
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For the ’general’ instances, K-ILS is much simplified compared to KTS. During
the local search phase, K-ILS uses a simple rule to prevent local cycling,
instead of the complex tabu mechanism of KTS which relies on several tabu
tenures (parameters). During the perturbation phase, K-ILS only adopts a
simple knowledge-guided perturbation strategy, instead of the two (weak and
strong) strategies used by KTS.

For the ’particular’ instances, K-ILS adopts several different search mecha-
nisms compared to KTS. At first, based on the concept of ”special degree” of
each vertex defined in [14], K-ILS newly defines the concept of ”key vertex”,
and modifies accordingly the auxiliary evaluation criterion for identification of
improving solutions. Furthermore, K-ILS re-designs the perturbation strate-
gies, being very different from those used by KTS. Actually, experimental
results (detailed in the next section) show that, compared to KTS, K-ILS is
able to yield (within the same allowed time, tested on the same platform)
many better results on the ’particular’ instances, indicating the contribution
of these new techniques to the performance of the proposed algorithm.

3 Experimental results

To assess the proposed K-ILS algorithm for solving the PCSPG and RPCST,
we evaluate our algorithm on the benchmark instances used by the 11th DI-
MACS Implementation Challenge [29] and carry out our experiments under
the same computing platform and competition rules of the challenge, which
are summarized as follows.

First, for each competing algorithm, a result obtained on each benchmark in-
stance is measured under two tracks: Quality Challenge and Pareto Challenge.

(1) The Quality Challenge (primal bound) track considers only solution qual-
ity (the best solution found within the allowed time), regardless of the
actual time to attain the best solution.

(2) The Pareto Challenge (primal integral) track considers both solution
quality and computing time needed to attain the best solution, as pre-
cisely defined in [4]. Generally, a lower value of primal integral indicates
a better performance in terms of Pareto Challenge.

Furthermore, for each challenge track, the overall performance of a given com-
peting algorithm on a set of benchmark instances, with respect to other com-
peting algorithms, is measured under two subcategories, each being aggregated
into a single score.

(1) Formula 1 (points-based method): For each benchmark instance, all the
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competing algorithms are ranked according to their results (primal bounds
or primal integrals, respectively). Then the best algorithm gets 10 points, the
second gets 6 points, then 4, 3, 2, 1 points. The algorithms that do not produce
results or are not among the top 6 ones do not get any point. Finally, for each
competing algorithm, the points on all the benchmark instances are collected
together as the final score. The higher the obtained points, the better the
overall performance of a competing algorithm, with respect to other competing
algorithms.

(2) Average (geometric mean): For each competing algorithm, the results ob-
tained on different instances are aggregated to a score by simply computing
their geometric mean (in terms of primal bounds or primal integrals, respec-
tively). From this point of view, a lower geometric mean value indicates a
better overall performance of a competing algorithm.

Therefore, for each of the seven problem variants (including both the PCPSG
and the RPCST) of the 11th DIMACS Challenge, all the competing algorithms
were uniformly measured and ranked under four main challenge subcategories,
as detailed in the next subsections.

To evaluate the performance of our K-ILS algorithm, we include the detailed
results from all the competing algorithms (including our previous KTS algo-
rithm [15]), together with the results achieved by the K-ILS algorithm. To
make the assessment as meaningful as possible, the K-ILS algorithm was run
on the same computing platform used for the challenge under the competition
rules 2 . Precisely, K-ILS was executed on a cluster with 32 compute nodes
(one job per node), each node with an Intel Xeon X5672 3.20 GHz processor
(8 cores) and 48 GB RAM. To solve a given instance, K-ILS was executed
repeatedly and independently (each independent run using the stopping cri-
terion as shown in Algorithm 1) until a total time of two CPU hours was
reached (this is the time limit used by the challenge). It is worth noting that
according to the competition rules, the number of restarts of each algorithm
during the 2 hours run and the best objective value of each restart were not
recorded. However, one can get an idea about this information from Tables 6
– 8 (columns “Restats” and “SD”) of Section 4.

2 We are grateful to Dr. Gerald Gamrath, member of the 11th DIMACS Chal-
lenge organization team for his kind help to run the K-ILS code on the com-
puting platform of the challenge and collect the results. The executable code
of our K-ILS algorithm as well as the detailed results are available online at
http://www.info.univ-angers.fr/pub/hao/pcspg.html
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3.1 Parameter Setting

As described in Section 2, K-ILS requires four independent parameters: Lflip

and Lswap used to control the perturbation strength respectively for the ’gen-
eral’ and ’particular’ instances, M and W used in the stopping conditions
of the tabu search procedure (for local optimization) and each independent
run of the K-ILS algorithm. Given that the test instances have very differ-
ent structures, it is extremely difficult to obtain a set of parameters which
perform uniformly the best on all the instances. Following our experiments
(see Appendix A for more details), we observe that the values listed in Table
1 perform reasonably well on the test instances, thus we adopt them as the
default parameter setting for our experiments.

Table 1
Default setting of each parameter.
Parameter Description Default Setting

Lflip Perturbation strength for the general instances, Section 2.7.2 n

Lswap Perturbation strength for the particular instances, Section 2.8.4 0.5n

M Stopping condition of tabu search, Section 2.7.1 30

W Stopping condition of each independent run of K-ILS, Section 2.1 50

3.2 Results on the RPCST

As explained in Section 2.1, although our K-ILS algorithm is designed for the
PCSPG, it can be used to solve the RPCST as well by simply assigning to
the chosen root a high enough prize. Herein, we first present the challenge
results on the 29 RPCST benchmark instances adopted by the 11th DIMACS
Challenge (according to the criterion described in Section 2.3, all these 29
instances are ’general’ instances). The results of the competing algorithms
(obtained within two CPU hours for each instance) on these instances are
given in Table 2 and Table 3, respectively in terms of Quality Challenge and
Pareto Challenge. In each table, the first column indicates the instance name,
while the following ten columns respectively indicate the results of each com-
peting algorithm. The last column shows the results of our K-ILS algorithm.
Additionally, the last three rows summarize the overall performance of each
algorithm. According to the challenge rules, corresponding to both Quality
Challenge and Pareto Challenge, the competing algorithms are ranked under
two different subcategories, in terms of Formula 1 (points based method) and
Average (geometric mean). Accordingly, row Formula 1 (Original) gives the
original point of each competing algorithm released during the 11th DIMACS
Challenge, row Formula 1 (New) gives the new point of each competing algo-
rithm if K-ILS instead of KTS is used to participate in the Challenge, and row
Average shows the geometric mean of the results obtained by each algorithm.
As explained before, a higher value of Formula 1 or a lower value of Average
indicates a better overall performance of a competing algorithm.
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Table 2. Challenge results in terms of ’Quality’ criterion (primal bounds) on 29 RPCST instances (within two CPU hours).
Instance AB heinz-mc heinz-no-dc heinz-no-pre mozartballs polito schimidt scipjack scipjackspx KTS K-ILS

i101M1 109271.5 109271.5 109271.5 109271.5 109271.5 109271.5 109271.5 109271.5 109271.5 109271.5 109271.5

i101M2 387041.0 332485.1 317573.6 320680.3 315925.3 317865.3 341795.5 315925.3 315925.3 315925.3 315925.3

i101M3 622113.3 448429.9 367412.7 368053.1 355625.4 359306.8 385703.6 355625.4 355625.4 355625.4 355625.4

i102M1 104065.8 104065.8 104065.8 104065.8 104065.8 104065.8 104065.8 104065.8 104065.8 104065.8 104065.8

i102M2 354337.2 363517.0 354053.8 355152.9 352538.8 354874.1 363303.1 352538.8 352538.8 352538.8 352538.8

i102M3 580556.3 533274.3 475309.1 467402.0 454365.9 459372.7 506798.4 454365.9 454365.9 454365.9 454365.9

i103M1 139749.4 139749.4 139749.4 139749.4 139749.4 139749.4 139749.4 139749.4 139749.4 139749.4 139749.4

i103M2 408876.2 425641.0 408561.2 409524.2 407834.2 411325.8 414413.9 407834.2 407834.2 407834.2 407834.2

i103M3 606110.0 567154.9 462642.5 462207.2 456125.5 460342.6 510162.8 456125.5 456125.5 456125.5 456125.5

i104M2 90900.2 89920.8 89920.8 89920.8 89920.8 89920.8 89920.8 89920.8 89920.8 89920.8 89920.8

i104M3 97149.8 99087.4 97148.8 97150.8 97148.8 97148.8 97148.8 97148.8 97148.8 97148.8 97148.8

i105M1 26717.2 26717.2 26717.2 26717.2 26717.2 26717.2 26717.2 26717.2 26717.2 26717.2 26717.2

i105M2 104496.5 100742.6 100269.6 100269.6 100269.6 101793.6 100269.6 100269.6 100269.6 100269.6 100269.6

i105M3 110414.2 114535.9 111592.2 111544.2 110351.2 110616.2 114983.2 110351.2 110351.2 110351.2 110351.2

i201M2 359774.2 359774.2 355844.0 355825.5 355467.7 356008.1 355467.7 355467.7 355467.7 355467.7 355467.7

i201M3 724259.7 747658.1 667373.4 664638.8 628833.6 656766.0 634950.9 628833.6 628833.6 628833.6 628833.6

i201M4 941281.8 1078178.2 795718.9 883643.1 773398.3 790722.4 819724.7 773398.3 773398.3 773398.3 773398.3

i202M2 291469.8 356354.2 291645.1 290768.4 288946.8 304695.9 288946.8 288946.8 288946.8 288946.8 288946.8

i202M3 1207417.6 589577.6 455150.5 451039.1 419184.2 436537.5 430188.0 419184.2 419184.2 419184.2 419184.2

i202M4 2033361.1 736072.6 489015.2 504721.2 430034.3 437662.3 489456.1 430034.3 430034.3 430034.3 430034.3

i203M2 1055699.2 565329.6 461078.7 468648.4 459894.8 515809.9 459894.8 459894.8 459894.8 459894.8 459894.8

i203M3 1817008.9 931922.4 660988.8 655975.2 643062.0 663513.4 666414.9 643062.0 643062.0 643062.0 643062.0

i203M4 1198975.1 1239234.0 707381.6 802540.0 677733.1 689472.2 707384.7 677733.1 677733.1 677733.1 677733.1

i204M2 161700.5 161700.5 161700.5 161700.5 161700.5 161700.5 161700.5 161700.5 161700.5 161700.5 161700.5

i204M3 377301.3 319133.5 258833.5 293949.0 245287.2 255076.8 344623.3 245287.2 245287.2 245287.2 245287.2

i204M4 754676.8 319413.6 412682.1 300827.5 245287.2 251987.6 344623.3 245287.2 245287.2 245287.2 245287.2

i205M2 610712.0 620194.2 586888.9 595942.8 571031.4 612473.0 571459.1 571031.4 571031.4 571031.4 571031.4

i205M3 976501.8 1030486.9 703489.3 1003969.0 672403.1 680037.4 778670.3 672403.1 672403.1 672403.1 672403.1

i205M4 1004104.9 1423986.6 984497.1 781172.5 713973.6 725387.4 844022.1 713973.6 713973.6 713973.6 713973.6

Formula 1 (Original) 18.4 2.9 39.8 29.0 143.3 45.0 45.8 143.3 143.3 143.3 -

Formula 1 (New) 18.4 2.9 39.8 29.0 143.3 45.0 45.8 143.3 143.3 - 143.3

Average 511417.0 430218.8 362312.7 365444.1 339422.7 347264.3 367760.1 339422.7 339422.7 339422.7 339422.7
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Table 3. Challenge results in terms of ’Pareto’ criterion (primal integrals) on 29 RPCST instances (within two CPU hours).
Instance AB heinz-mc heinz-no-dc heinz-no-pre mozartballs polito schimidt scipjack scipjackspx KTS K-ILS

i101M1 0.0 7200.0 0.4 0.4 1.0 0.0 0.0 0.4 0.4 0.0 0.0

i101M2 1323.0 435.4 43.9 113.1 0.1 44.2 545.0 0.4 0.4 0.0 0.0

i101M3 3084.4 1512.8 257.2 292.5 0.1 81.3 561.5 0.4 0.4 0.1 0.1

i102M1 0.0 7200.0 0.4 0.4 1.0 0.0 0.0 0.4 0.4 0.0 0.0

i102M2 36.6 223.4 39.4 71.7 0.1 47.5 213.4 0.4 0.2 0.0 0.1

i102M3 1565.2 1069.4 322.5 207.5 0.2 162.9 744.9 0.4 0.4 0.0 0.0

i103M1 0.0 7200.0 0.5 0.4 1.1 0.0 0.0 0.4 0.4 0.0 0.0

i103M2 18.4 326.5 16.8 32.8 0.1 61.5 114.3 0.4 0.4 0.0 0.1

i103M3 1782.6 1414.3 105.9 104.0 0.2 69.9 762.7 0.4 0.4 0.0 0.0

i104M2 77.6 0.1 0.4 0.4 0.1 0.0 0.0 0.4 0.4 0.0 0.0

i104M3 0.2 179.2 4.0 11.3 0.3 0.1 0.0 0.4 0.4 0.0 0.0

i105M1 0.0 7200.0 0.4 0.4 1.1 0.0 0.0 0.4 0.4 0.0 0.0

i105M2 291.2 43.4 4.6 4.5 0.1 107.9 0.0 0.4 0.4 0.0 0.0

i105M3 4.2 341.5 84.8 108.8 0.3 28.0 290.1 0.4 0.4 0.0 0.0

i201M2 86.2 7200.0 9.7 9.9 0.2 11.1 0.1 1.4 1.4 0.1 0.0

i201M3 949.0 1213.7 452.8 417.5 0.4 307.8 69.5 1.5 1.6 0.1 0.1

i201M4 1284.3 2042.4 269.5 1128.9 0.3 199.2 407.0 1.4 1.4 0.1 0.1

i202M2 62.3 1415.6 83.5 68.9 0.2 372.3 0.1 1.5 1.4 0.1 0.0

i202M3 4700.4 2084.5 602.6 583.5 0.2 286.7 184.3 1.4 1.5 0.1 0.1

i202M4 5677.3 3031.9 931.2 1200.5 0.2 173.1 874.2 1.5 1.4 0.1 0.1

i203M2 4063.5 1443.0 40.4 191.2 0.2 780.6 0.1 1.5 1.5 0.1 0.0

i203M3 4651.8 2356.2 223.6 173.2 0.4 227.1 252.4 1.5 1.7 0.1 0.1

i203M4 3130.1 3328.1 352.3 1154.4 0.3 155.3 301.9 1.4 1.6 0.1 0.1

i204M2 0.0 7200.0 0.9 0.9 0.2 0.4 0.1 2.0 2.2 0.1 0.1

i204M3 2519.2 1705.7 1002.5 1204.5 0.2 276.6 2075.4 2.2 2.1 0.1 0.1

i204M4 4859.8 1694.8 3043.2 1432.5 0.2 206.5 2075.4 2.1 2.0 0.1 0.0

i205M2 467.8 7200.0 197.7 303.9 0.2 487.3 5.5 1.4 1.4 0.1 0.1

i205M3 2242.2 2642.3 373.7 2387.9 0.3 81.9 982.7 1.6 1.4 0.1 0.1

i205M4 2080.4 3633.6 1996.6 716.6 1.0 116.8 1109.5 1.5 1.6 0.1 0.1

Formula 1 (Original) 59.0 2.0 14.3 13.0 132.0 51.3 67.3 77.8 75.8 261.3 -

Formula 1 (New) 59.0 2.0 14.3 13.0 132.0 51.3 67.3 77.8 75.8 - 261.3

Average 180.8 1288.8 55.7 72.3 0.3 40.4 38.6 0.9 0.9 0.0 0.0
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On the one hand, regarding the Quality Challenge criterion (primal bounds),
Table 2 shows that, among the ten competing algorithms, four algorithms
(mozartballs [13], scipjack and scipjackspx [18], as well as our KTS algorithm
[15]), perform tied the best on these 29 RPCST instances (with all instances
solved to optimality). Therefore, KTS was ranked tied the first place on both
subcategories Formula 1 (Original) and Average. Moreover, if K-ILS instead
of KTS is used for the Challenge, K-ILS could also reach the optimal results
on all these 29 instances (within two CPU hours for each instance), leading
to the same ranks on both subcategories Formula 1 (New) and Average.

Furthermore, we used the Wilcoxon test to check the statistical differences
between the results of K-ILS and each competing algorithm, which respectively
leads to a p-value of 9.63×10−7 (K-ILS vs. AB), 1.62×10−6 (K-ILS vs. heinz-
mc), 4.59×10−6 (K-ILS vs. heinz-no-dc), 2.72×10−6 (K-ILS vs. heinz-no-pre),
1.00 (K-ILS vs. morzatball), 2.73×10−6 (K-ILS vs. polito), 2.21×10−5 (K-ILS
vs. schimidt), 1.00 (K-ILS vs. scipjack), 1.00 (K-ILS vs. scipjackspx), and 1.00
(K-ILS vs. KTS). It indicates, in terms of Quality Challenge K-ILS performs
statistically better than six competing algorithms (AB, heinz-mc, heinz-no-
dc, heinz-no-pre, polito and schimidt), while obtaining the same results with
respect to the remaining four algorithms (morzatball, scipjack, scipjackspx
and KTS).

On the other hand, regarding the Pareto Challenge criterion (primal integrals)
which concerns both the solution quality and running time, we observe from
Table 3 that KTS clearly dominates other competing algorithms on both sub-
categories Formula 1 (Original) and Average. Furthermore, if we use K-ILS
instead of KTS to participate in the Challenge, K-ILS would also be ranked
the first place on both subcategories Formula 1 (New) and Average, implying
an excellence performance of K-ILS on these 29 benchmark instances.

Similarly, the Wilcoxon test in terms of Pareto Challenge respectively reveals
a p-value of 4.23 × 10−6 (K-ILS vs. AB), 7.24 × 10−8 (K-ILS vs. heinz-mc),
7.24 × 10−8 (K-ILS vs. heinz-no-dc), 7.24 × 10−8 (K-ILS vs. heinz-no-pre),
7.24 × 10−7 (K-ILS vs. morzatball), 9.63 × 10−7 (K-ILS vs. polito), 4.59 ×
10−6 (K-ILS vs. schimidt), 7.24 × 10−8 (K-ILS vs. scipjack), 7.24 × 10−8 (K-
ILS vs. scipjackspx), and 4.14 × 10−1 (K-ILS vs. KTS), indicating that in
terms of Pareto Challenge, K-ILS performs similarly with KTS, while clearly
outperforms all the remaining algorithms.

To conclude, the comparisons on the RPCST clearly indicate the effectiveness
and efficiency of the proposed K-ILS algorithm with respect to other com-
peting algorithms, although it does not performs very differently from our
previous KTS algorithm.
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3.3 Results on the PCSPG

For the PCSPG, hundreds of instances (classified into eight groups) were col-
lected by the 11th DIMACS Implementation Challenge, among which 32 most
challenging instances (four instances per group) were finally adopted as bench-
marks to evaluate the competing algorithms. Like in Section 3.2, we show in
Table 4 and Table 5 the results of these 32 instances obtained by the 12
competing algorithms as well as our new K-ILS algorithm, respectively in
terms of Quality Challenge and Pareto Challenge. Note that on all these 32
instances, the previous best known primal bounds existing in the literature
(published before the challenge, if applicable) were easily matched or improved
by the best competing algorithms, indicating that the 11th DIMACS Chal-
lenge definitively extended the research on the PCSPG.

Additionally, according to the criterion described in Section 2.3 for instance
types, these 32 PCSPG instances include 14 ’general’ instances, 12 ’particular’
instances and 6 ’large’ instances. In Table 4 and Table 5, the first 14 instances
are ’general’ instances, while the following 12 ones are ’particular’ instances,
and the final 6 ones are ’large’ instances.

On the one hand, as shown in Table 4, in terms of Quality Challenge, our KTS
algorithm was ranked the third place on both subcategories Formula 1 (Orig-
inal) and Average, performing slightly worse than algorithms ”mozartballs”
and ”staynerd” [13], and clearly better than other competing algorithms. Com-
pared to our previous KTS algorithm, K-ILS is able to find respectively 11
better, 18 equal and 3 worse results. Especially, on the 12 ’particular’ instances
which are known to be extremely difficult for all the competing algorithms,
K-ILS obtains 7 better results and only 1 worse result compared to KTS. Fur-
thermore, if we use K-ILS instead of KTS to participate in the challenge, the
score in terms of Formula 1 (New) would increase from 142.8 to 155.5, and
the score in terms of Average would decrease from 5129.0 to 5125.1. Although
K-ILS is still ranked the third place on both challenge subcategories, the gaps
between K-ILS and ”mozartballs” (as well as ”staynerd”) are much reduced,
indicating that K-ILS is an improved version over KTS in terms of Qual-
ity Challenge, especially on the ’particular’ instances with uniform or nearly
uniform edge costs.

As for the RPCST, we used the Wilcoxon test to check the statistical signif-
icances of the differences in terms of Quality Challenge, which respectively
reveals a p-value of 9.67× 10−4 (K-ILS vs. AB), 3.19× 10−7 (K-ILS vs. heinz-
dc), 4.32 × 10−8 (K-ILS vs. heinz-mc), 3.18 × 10−7 (K-ILS vs. heinz-no-dc),
2.58 × 10−8 (K-ILS vs. heinz-no-pre), 4.39 × 10−1 (K-ILS vs. morzatball),
2.78× 10−2 (K-ILS vs. polito), 5.34× 10−7 (K-ILS vs. schimidt), 1.62× 10−4

(K-ILS vs. scipjack), 5.70× 10−5 (K-ILS vs. scipjackspx), 8.08× 10−1 (K-ILS
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Table 4. Challenge results in terms of the ’Quality’ criterion (primal bounds) on 32 PCSPG instances (within two CPU hours).
Instance AB heinz-dc heinz-mc heinz-no-dc heinz-no-pre mozartballs polito schimidt scipjack scipjackspx staynerd KTS K-ILS

C13-A 236 265 398 267 439 236 237 245 236 236 236 236 236

C19-B 146 180 1015 180 6566 146 146 157 146 146 146 146 146

D03-B 1509 1611 2009 1597 8514 1509 1509 1579 1509 1509 1509 1509 1509

D20-A 536 592 2250 592 2490 536 536 542 536 536 536 536 536

P400-3 2951725 3114184 4449851 3087932 5125476 2951725 2951725 3010150 2951725 2951725 2951725 2951725 2951725

P400-4 2852956 3094213 4450178 3067298 4962336 2852956 2852956 2942801 2852956 2852956 2852956 2852956 2852956

K400-7 511666 477785 499183 481221 543106 474466 523885 476299 474466 474466 474466 474466 474466

K400-10 408913 395859 409149 397358 448964 394191 403804 406658 394191 394191 394191 394191 394191

i640-001 2932 2932 2932 2932 2932 2932 3066 3414 2932 2932 2932 2932 2932

i640-221 29356 11766 14573 11766 29356 8400 8603 11630 28108 28108 8427 8400 8400

i640-321 105188 41683 45616 41683 106360 28799 28797 41235 105092 105092 28809 28787 28787

i640-341 29893 42000 45429 41879 95656 29750 29692 41990 29734 29867 29732 29666 29671

a2000RandGraph-2 1483.8 1642.4 1927.5 1642.4 1937.7 1483.8 1484.2 1535.7 1483.8 1483.8 1483.8 1487.0 1485.8

a4000RandGraph-3 3406.6 3862.5 5762.0 3862.5 6105.4 3406.6 3407.5 3484.8 6102.4 6102.4 3406.6 3410.2 3412.0

hc10p 60150 71220 72801 71220 77425 60016 59738 73804 66741 68742 59981 59816 59787

hc11u 1439 1317 1407 1317 1555 1116 1117 1297 1152 1157 1116 1117 1115

hc12p 308227 280940 293216 280940 308227 236254 234977 293165 308027 308027 235958 236568 236380

hc12u 3083 2618 2825 2618 3083 2223 2224 2552 3081 3081 2223 2221 2217

bip52nu 222 280 288 283 302 222 223 289 225 223 223 223 222

bip62nu 214 257 277 257 302 214 214 254 217 217 214 214 214

cc3-12nu 100 104 111 104 114 95 96 108 98 99 95 95 95

cc12-2nu 575 616 693 616 699 577 567 658 570 575 571 567 565

drosophila001 8310.9 8286.4 8286.4 8286.4 8304.3 8274.0 8288.3 8286.4 8286.4 8286.4 8274.0 8278.5 8275.5

HCMV 7371.5 7376.2 7375.5 7375.4 7385.3 7371.5 7378.2 7376.2 7371.5 7371.5 7371.5 7371.5 7371.5

lymphoma 3341.9 3375.5 3393.4 3373.7 3419.3 3341.9 3349.1 3377.4 3341.9 3341.9 3341.9 3341.9 3341.9

metabol-expr-mice-1 11359.1 11409.5 11491.5 11438.5 11903.6 11346.9 11901.9 11407.3 11832.6 11832.6 11346.9 11347.1 11349.2

a8000RandGraph-1.2 4796.5 - 4790.3 - - 4720.0 4720.5 4789.8 4790.8 4790.8 4720.0 4756.6 4756.1

a14000RandGraph-1.5 10514.2 10412.5 10512.3 10351.6 10515.3 9475.6 9475.7 9867.3 10513.8 10513.8 9475.6 9577.0 9576.0

handsd04 779.1 585.1 782.1 585.1 792.9 494.4 587.7 496.5 791.2 791.2 493.8 741.0 734.7

handbd13 13.2 - - - - 13.2 13.2 13.2 13.2 - 13.2 13.2 13.2

handsi03 56.2 56.2 56.2 56.2 56.3 56.1 56.3 56.2 56.2 56.2 56.1 56.2 56.2

handbi07 151.0 - - - - 151.0 151.1 151.0 151.0 - 151.0 151.0 151.0

Formula 1 (Original) 67.3 14.6 4.6 13.6 2.6 166.5 92.6 35.0 65.7 57.7 169.0 142.8 -

Formula 1 (New) 66.0 14.6 4.6 13.6 2.6 162.2 89.6 34.0 65.7 57.2 166.5 - 155.5

Average 5831.9 5965.5 7062.5 5694.7 8935.5 5058.5 5130.6 5601.8 5903.5 5913.3 5057.4 5129.0 5125.1
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Table 5. Challenge results in terms of the ’Pareto’ criterion (primal integrals) on 32 PCSPG instances (within two CPU hours).
Instance AB heinz-dc heinz-mc heinz-no-dc heinz-no-pre mozartballs polito schimidt scipjack scipjackspx staynerd KTS K-ILS

C13-A 0.0 815.2 2937.3 851.5 7200.0 0.0 30.6 264.5 0.3 0.4 0.0 0.0 0.0

C19-B 0.0 1400.8 6169.6 1399.4 7200.0 0.2 0.8 504.5 1.0 1.0 0.2 0.0 0.0

D03-B 0.0 12446.3 1848.0 407.0 7200.0 0.0 0.1 319.2 1.0 1.0 0.0 0.0 0.1

D20-A 0.1 792.4 5492.5 786.0 7200.0 0.3 1.6 79.8 17.1 16.9 0.3 0.0 0.0

P400-3 0.0 188.0 2460.1 351.3 7200.0 0.0 0.1 139.8 0.4 0.3 0.0 0.0 0.0

P400-4 0.0 509.9 2587.0 521.7 7200.0 0.0 0.1 219.8 0.3 0.3 0.0 0.0 0.0

K400-7 523.5 364.1 366.3 107.0 7200.0 0.0 679.3 27.7 0.2 0.3 0.0 0.0 0.0

K400-10 259.2 251.8 264.1 66.1 7200.0 0.0 171.5 220.7 0.1 0.4 0.0 0.0 0.1

i640-001 0.0 943.1 0.5 3.8 69.5 0.0 314.8 1016.5 0.0 0.0 0.0 0.0 0.0

i640-221 5139.8 2433.2 3070.7 2074.0 7200.0 14.4 186.6 2000.3 5050.2 5050.2 25.8 0.4 0.4

i640-321 5229.6 2609.7 2701.1 2255.3 7200.0 7.1 18.2 2174.0 5229.5 5229.5 8.3 0.4 0.4

i640-341 54.7 2128.6 2501.2 2118.4 7200.0 22.0 9.4 2113.3 59.5 74.8 16.8 0.4 2.5

a2000RandGraph-2 0.0 729.0 1670.4 726.3 7200.0 0.2 2.8 243.3 1093.1 1094.5 0.2 15.8 11.8

a4000RandGraph-3 0.0 1942.4 3024.8 1918.7 7200.0 0.5 4.1 161.6 3199.2 3199.5 0.5 12.2 13.6

hc10p 49.4 1164.4 1300.8 1164.2 7200.0 35.8 0.6 1372.2 850.2 1010.9 31.7 9.9 7.7

hc11u 1616.3 1112.4 1503.1 1111.0 7200.0 1.0 11.1 1004.8 730.1 752.8 1.0 8.4 7.5

hc12p 1711.1 1254.9 1490.6 1248.0 7200.0 52.4 7.0 1429.2 1714.8 1714.7 48.2 61.5 57.4

hc12u 2013.1 1157.3 1601.6 1151.7 7200.0 7.5 13.0 934.0 2017.0 2017.0 7.5 8.5 18.5

bip52nu 0.0 1504.2 1662.8 1553.7 7200.0 1.6 33.1 1669.2 103.7 49.1 32.6 32.9 0.6

bip62nu 0.0 1207.1 1641.7 1206.3 7200.0 0.4 0.7 1133.9 108.0 104.9 0.3 0.2 0.2

cc3-12nu 360.0 631.7 1039.2 626.5 7200.0 0.4 77.5 866.8 221.5 291.9 0.4 0.3 0.3

cc12-2nu 100.2 594.7 1315.2 589.4 7200.0 129.2 2.3 995.8 68.5 123.2 56.4 3.9 26.8

drosophila001 32.0 7189.0 283.5 331.2 7200.0 1.1 19.3 11.3 38.7 39.9 1.0 4.1 2.1

HCMV 0.0 1776.5 50.2 52.9 7200.0 0.3 8.8 4.8 8.2 8.0 0.3 0.1 0.1

lymphoma 0.0 1677.7 117.8 78.7 7200.0 0.1 16.2 75.7 988.5 992.3 0.1 0.0 0.0

metabol-expr-mice-1 7.8 3907.9 101.7 402.1 7200.0 0.1 336.3 38.2 298.6 298.3 0.1 1.3 1.7

a8000RandGraph-1.2 114.9 7200.0 488.0 7200.0 7200.0 1.0 6.3 105.3 255.8 254.2 1.1 55.8 54.9

a14000RandGraph-1.5 711.2 771.5 1893.8 2117.1 7200.0 3.7 9.8 286.4 1181.5 1168.5 5.7 79.2 77.0

handsd04 2636.6 3346.0 2978.0 3281.7 7200.0 10.6 1159.6 40.2 2737.3 2737.2 1.4 2404.4 2376.3

handbd13 14.8 7200.0 7200.0 7200.0 7200.0 8.6 123.0 2.1 747.8 743.5 8.4 1.0 1.1

handsi03 7.9 48.2 3307.7 3709.3 7200.0 1.3 31.6 1.1 734.7 733.8 1.3 5.0 4.9

handbi07 0.9 7200.0 7200.0 7200.0 7200.0 6.9 111.7 2.2 735.5 741.1 6.7 1.1 0.8

Formula 1 (Original) 146.8 1.0 1.0 6.0 0.0 155.2 89.0 45.0 25.2 19.2 159.2 184.4 -

Formula 1 (New) 142.8 1.0 1.0 6.0 0.0 160.0 90.0 45.0 25.2 19.2 163.0 - 178.8

Average 22.0 1330.0 1107.3 771.9 6230.8 2.2 16.7 185.1 101.0 103.5 2.2 3.1 3.0
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vs. staynerd), and 3.25× 10−2 (K-ILS vs. KTS). These statistics demonstrate
that there is no significant difference between K-ILS and the top two leading
algorithms (morzatball and staynerd), while K-ILS clearly outperforms the re-
maining 10 algorithms (including our previous KTS algorithm, meaning that
K-ILS is an improved version over KTS).

On the other hand, as shown in Table 5, in terms of Pareto Challenge, our
previous KTS algorithm won on subcategory Formula 1 (Original) and was
ranked the third place on subcategory Average (also performing slightly worse
than ”mozartballs” and ”staynerd”). Indeed, if we replace KTS by K-ILS to
participate in the challenge, the final ranks will remain unchanged, without
significant difference (the scores on subcategory Formula 1 (New) and subcat-
egory Average both decrease slightly).

Similarly, the Wilcoxon test in terms of Pareto Challenge respectively reveals
a p-value of 6.04 × 10−3 (K-ILS vs. AB), 1.54 × 10−8 (K-ILS vs. heinz-dc),
1.54× 10−8 (K-ILS vs. heinz-mc), 1.54× 10−7 (K-ILS vs. heinz-no-dc), 1.54×
10−8 (K-ILS vs. heinz-no-pre), 8.48×10−1 (K-ILS vs. morzatball), 1.96×10−2

(K-ILS vs. polito), 7.43 × 10−7 (K-ILS vs. schimidt), 4.32 × 10−8 (K-ILS vs.
scipjack), 2.58×10−8 (K-ILS vs. scipjackspx), 8.48×10−1 (K-ILS vs. staynerd),
and 4.91×10−1 (K-ILS against KTS), indicating that K-ILS performs similarly
with the three leading algorithms (morzatball, staynerd and our previous KTS
algorithm), while obviously outperforming the remaining nine algorithms.

To conclude, we observe from the tables that, on the PCSPG our K-ILS al-
gorithm (as well as our previous KTS algorithm) is highly competitive on the
’general’ instances and ’particular’ instances, though it performs less well on
the ’large’ instances. Overall, K-ILS competes favorably with the leading com-
peting algorithms ”mozartballs” and ”staynerd” [13], which are also hybrid
algorithms that combine different integer programming formulations (includ-
ing (x, y)-model and y-model) and different search strategies (including exact
methods and heuristic search techniques) in order to effectively tackle different
types of instances with different structures.

Finally, we notice that very recently some new PCSPG results are released
in [19] and [32] (further improved versions of [18] and [13], respectively). How-
ever, among the 32 DIMACS challenge instances, on all the instances where
our K-ILS algorithm performs the best or tied the best (in terms of Quality
Challenge) with respect to the DIMACS competing algorithms, K-ILS still
performs the best or tied the best with respect to these two improved algo-
rithms, indicating that K-ILS is able to obtain high-quality results compared
to the newest PCSPG algorithms.
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4 Analysis of search components

In this section, we analyze the impact of several important search components
on the performance of the proposed K-ILS algorithm, including the swap-
vertex neighborhood associated with the auxiliary evaluation function, as well
as the knowledge-guided perturbation strategies developed for different types
of instances. All the experimental results reported in this section are executed
on a personal computer with an Intel(R) Core(TM) i5-4460 3.20GHz processor
(4 cores, each job occupies one core) and 4GB RAM.

4.1 Impact of the swap-vertex neighborhood and auxiliary evaluation function

As described in Section 2.8, for the ’particular’ instances with uniform or
nearly uniform edge costs, we combine the four basic neighborhoods in Section
2.6 with the swap-vertex neighborhood in Section 2.8.1 for local optimization,
guided by an auxiliary evaluation function. In order to analyze the influences
of these search mechanisms, based on the standard K-ILS algorithm described
in Section 2, we implement a variant (named K-ILS-V1) by disabling the swap-
vertex neighborhood and the auxiliary evaluation function while keeping the
remaining ingredients unchanged. We compare the performances of K-ILS-V1
and K-ILS based on 40 ’particular’ PCSPG instances collected by the 11th
DIMACS Challenge. Similarly, for each instance, we repeatedly independently
run K-ILS-V1 (respectively, the standard K-ILS algorithm) a number of times,
each independent run restarts from a randomly generated initial solution and
uses the termination criterion described in Section 2.1, and the whole search
process terminates until two CPU hours is elapsed. The obtained results are
summarized in Table 6, where the first column indicates the instance name, the
following four columns respectively indicate the overall best objective value
found by K-ILS-V1, the average objective value of each independent run, the
standard deviation of the objective values found by independent runs (column
’SD’), as well as the number of independent restarts. For comparisons, the
next four columns show the same information corresponding to the standard
K-ILS algorithm, where the objective values better than those of K-ILS-V1
are indicated in bold, and the same objective values are indicated in italic.
Finally, we give the improvement percentages obtained by the standard K-ILS
algorithm over those obtained by K-ILS-V1, in terms of best objective values.

As shown in Table 6, on the one hand, in terms of best objective values, the
standard K-ILS algorithm obtains within the same allowed time (two CPU
hours for each instance, generally corresponding to much fewer independent
runs than K-ILS-V1) 13 better results compared to K-ILS-V1, and yields the
same results on the remaining instances (most of which already reaching opti-
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Table 6
Impact of the swap-vertex move operator and the auxiliary evaluation function
(tested on 40 representative PCSPG instances with uniform or nearly uniform edge
costs, each within two CPU hours).

Instance K-ILS-V1 (Without Swap Move) Standard K-ILS Improve

fbest favg SD Restarts fbest favg SD Restarts

hc6u 36.00 36.14 0.30 38337 36.00 36.00 0.00 41877 0.00%

hc7u 72.00 72.87 0.35 13671 72.00 72.00 0.00 8534 0.00%

hc8u 143.00 144.63 0.50 3513 143.00 143.04 0.14 1586 0.00%

hc9u 285.00 286.25 0.66 630 283.00 283.41 0.47 317 0.70%

hc10u 560.00 562.71 0.97 111 559.00 559.47 0.50 49 0.18%

hc11u 1118.00 1120.50 0.83 16 1116.00 1116.43 0.47 7 0.18%

hc12u 2227.00 2227.00 0.00 3 2222.00 2222.50 0.50 2 0.22%

hc6u2 20.00 20.00 0.00 62363 20.00 20.00 0.00 58121 0.00%

hc7u2 47.00 47.00 0.00 19808 47.00 47.00 0.00 8706 0.00%

hc8u2 97.00 98.24 0.38 4957 97.00 97.46 0.49 2169 0.00%

hc9u2 190.00 191.56 0.55 1039 190.00 190.00 0.00 555 0.00%

hc10u2 381.00 383.20 0.68 180 379.00 380.00 0.17 79 0.52%

hc11u2 753.00 755.32 1.23 25 750.00 751.09 1.09 11 0.40%

hc12u2 1498.00 1499.00 0.50 4 1493.00 1493.00 0.00 2 0.33%

bip42nu 227.00 228.34 0.59 197 226.00 226.66 0.49 111 0.44%

bip52nu 224.00 225.42 0.76 74 222.00 222.90 0.24 40 0.89%

bip62nu 214.00 216.43 0.88 166 214.00 214.02 0.02 83 0.00%

bipa2nu 325.00 328.35 0.70 20 325.00 325.10 0.40 10 0.00%

bipe2nu 53.00 53.49 0.50 1860 53.00 53.00 0.00 938 0.00%

cc3-4nu 10.00 10.60 0.50 56587 10.00 10.58 0.49 43864 0.00%

cc3-5nu 17.00 17.00 0.00 25253 17.00 17.00 0.00 18991 0.00%

cc3-10nu 61.00 61.01 0.14 474 61.00 61.00 0.00 275 0.00%

cc3-11nu 79.00 80.91 1.86 211 79.00 80.91 2.95 127 0.00%

cc3-12nu 95.00 98.18 5.27 146 95.00 96.73 3.03 81 0.00%

cc5-3nu 36.00 36.66 0.44 10164 36.00 36.50 0.50 7093 0.00%

cc6-2nu 15.00 15.00 0.00 72233 15.00 15.00 0.00 68881 0.00%

cc6-3nu 95.00 96.71 0.68 881 95.00 95.19 0.38 399 0.00%

cc7-3nu 273.00 275.09 0.78 55 271.00 272.19 0.72 26 0.73%

cc9-2nu 83.00 84.73 0.40 2251 83.00 83.92 0.47 1101 0.00%

cc10-2nu 168.00 169.52 0.75 365 168.00 168.21 0.40 160 0.00%

cc11-2nu 306.00 308.97 1.12 69 304.00 306.12 0.88 33 0.65%

cc12-2nu 569.00 570.58 1.02 12 566.00 567.33 0.47 6 0.53%

HCMV 7371.54 7372.18 0.76 46 7371.54 7372.28 0.82 45 0.00%

lymphoma 3341.89 3342.16 0.39 155 3341.89 3342.10 0.16 144 0.00%

metabol expr mice 1 11349.16 11352.88 1.59 66 11349.16 11353.81 3.69 32 0.00%

metabol expr mice 2 16250.24 16258.11 29.31 105 16250.24 16256.70 8.80 59 0.00%

metabol expr mice 3 16919.62 16937.47 97.78 84 16919.62 16921.97 6.93 83 0.00%

drosophila001 8275.48 8277.78 0.93 8 8277.81 8278.09 0.50 6 -0.03%

drosophila005 8128.32 8129.90 0.24 6 8126.99 8128.20 0.94 5 0.02%

drosophila0075 8047.77 8049.55 3.20 5 8048.11 8049.37 0.34 5 -0.00%

mality [13]) only with 2 exceptions. This corresponds to a mean improvement
percentage of 0.14% (averaged on all these 40 instances) by the standard K-
ILS algorithm over K-ILS-V1. Furthermore, we use the Wilcoxon test to check
the statistical difference between the best objective values of the standard K-
ILS algorithm and those of K-ILS-V1, which reveals a p-value of 4.51× 10−3,
confirming that the difference is statistically significant.

On the other hand, in terms of average objective values, the standard K-
ILS algorithm respectively obtains 33 better, 4 same and 3 worse results with
respect to K-ILS-V1. Once again, the Wilcoxon test reveals a p-value of 9.49×
10−7, indicating an even more significant difference.

Note that the only difference between the standard K-ILS and K-ILS-V1 is the
use of the swap-vertex neighborhood associated with the auxiliary evaluation
function, this comparison clearly demonstrates the importance of these search
components to the effectiveness of the proposed K-ILS algorithm.
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4.2 Impact of the knowledge-guided perturbation operators

As mentioned in Section 2, K-ILS relies on several knowledge-guided perturba-
tion strategies to escape from local optima, respectively developed for tackling
the ’general’ and ’particular’ instances. To analyze the impacts of these per-
turbation strategies, in this subsection we implement another adapted variant
(named K-ILS-V2) of the standard K-ILS algorithm, which uses the random-
ized initialization method described in Section 2.5 to generate a new solution
whenever a perturbation is needed, while keeping all the remaining ingredients
and parameters in accordance with the standard K-ILS algorithm.

Table 7
Impact of the knowledge-guided perturbation strategy (tested on the 29 RPCST
instances used in the 11th DIMACS Challenge, each within two CPU hours).

Instance K-ILS-V2 (Random Restart) Standard K-ILS Improve

fbest favg SD Restarts fbest favg SD Restarts

i101M1 109271.50 109271.50 0.00 18348 109271.50 109271.50 0.00 18976 0.00%

i101M2 315925.31 316665.19 317.91 5084 315925.31 316489.91 278.13 4309 0.00%

i101M3 355942.41 358460.56 1818.57 1928 355625.41 356404.53 1539.34 2124 0.09%

i102M1 104065.80 104065.80 0.00 18180 104065.80 104065.80 0.00 18754 0.00%

i102M2 352538.81 354700.81 709.95 11023 352538.81 352876.31 675.31 3638 0.00%

i102M3 455055.94 455657.81 75.46 10166 454365.94 454999.28 266.65 2804 0.15%

i103M1 139749.41 139749.41 0.00 18149 139749.41 139749.41 0.00 18698 0.00%

i103M2 407834.22 408318.75 204.03 7406 407834.22 408164.22 236.74 5763 0.00%

i103M3 456678.50 457380.88 99.89 3402 456125.50 457115.69 388.77 3148 0.12%

i104M2 89920.84 89920.84 0.00 17645 89920.84 89920.84 0.00 18363 0.00%

i104M3 97148.79 97148.79 0.00 14784 97148.79 97148.79 0.00 15014 0.00%

i105M1 26717.20 26717.20 0.00 18233 26717.20 26717.20 0.00 18596 0.00%

i105M2 100269.62 100269.62 0.00 15112 100269.62 100269.62 0.00 15552 0.00%

i105M3 110351.16 112629.95 564.27 13267 110351.16 112024.70 1139.68 8601 0.00%

i201M2 355467.69 355467.69 0.00 3358 355467.69 355467.69 0.00 3608 0.00%

i201M3 629353.38 632896.75 516.81 2057 628833.63 630780.94 1623.50 1178 0.08%

i201M4 773848.31 777045.56 1418.24 2487 773398.31 775561.44 1315.04 1223 0.06%

i202M2 288946.84 288946.84 0.00 3108 288946.84 288946.84 0.00 3541 0.00%

i202M3 419287.88 419344.94 7.96 2344 419184.16 419206.81 33.08 1137 0.02%

i202M4 430113.31 455355.50 9507.86 2430 430034.25 432274.38 22.25 822 0.02%

i203M2 459894.78 459894.78 0.00 3367 459894.78 459894.78 0.00 3537 0.00%

i203M3 643062.00 643255.19 89.89 2147 643062.00 643225.88 92.68 1149 0.00%

i203M4 677733.06 679023.25 743.87 702 677733.06 677929.38 170.13 648 0.00%

i204M2 161700.55 161700.55 0.00 5470 161700.55 161700.55 0.00 5709 0.00%

i204M3 245287.20 245387.42 24.45 2299 245287.20 245330.84 10.01 1248 0.00%

i204M4 245287.20 245355.16 20.04 2150 245287.20 245358.84 63.88 2051 0.00%

i205M2 571186.00 571367.94 15.10 1030 571031.44 571386.81 136.12 1966 0.03%

i205M3 672646.69 672926.50 25.30 1084 672403.13 672521.44 62.89 855 0.04%

i205M4 714292.25 714498.63 71.86 972 713973.63 714020.75 76.56 758 0.04%

First, we compare the performances of the K-ILS-V2 variant and the standard
K-ILS algorithm on the 29 RPCST instances used in Section 3.2. Like in the
last subsection, for each instance, we repeatedly run K-ILS-V2 (respectively,
the standard K-ILS algorithm) until the cutoff of two CPU hours is elapsed.
The results of this experiment are shown in Table 7, with the same information
as in Table 6. Table 7 discloses that, in terms of best objective values, the
standard K-ILS algorithm obtains 10 better results compared to K-ILS-V2,
and yields the same results on all the remaining 19 instances (all reaching
optimality), corresponding to an average improvement percentage of 0.02%
over K-ILS-V2. The Wilcoxon test reveals a p-value of 1.57× 10−3, indicating
a statistically significant difference. In terms of average objective values, the
standard K-ILS respectively obtains 16 better, 11 same and 2 worse results
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compared to K-ILS-V2, corresponding to a p-value of 9.67× 10−4, indicating
again a significant difference.

Table 8
Impact of the knowledge-guided perturbation strategies on 26 ’general’ or ’par-
ticular’ PCSPG instances of the 11th DIMACS Challenge (each within two CPU
hours).

Instance K-ILS-V2 (Random Restart) Standard K-ILS Improve

fbest favg SD Restarts fbest favg SD Restarts

C13-A 236.00 237.49 0.66 2527 236.00 236.75 0.50 2502 0.00%

C19-B 146.00 146.74 0.54 434 146.00 146.02 0.28 493 0.00%

D03-B 1512.00 1520.98 2.82 1787 1509.00 1511.86 2.58 1355 0.20%

D20-A 536.00 536.00 0.00 87 536.00 536.00 0.00 91 0.00%

P400 3 2951725.00 2955812.25 1509.76 3146 2951725.00 2957188.75 3279.15 2705 0.00%

P400 4 2852956.00 2856611.50 2898.11 3376 2852956.00 2857842.75 4337.09 2545 0.00%

K400 7 474466.00 480920.06 277.20 11084 474466.00 480107.09 2220.79 8783 0.00%

K400 10 395310.00 401478.41 1507.44 8998 394191.00 399901.97 3251.63 7319 0.28%

i640-001 2932.00 2935.84 3.43 20941 2932.00 2951.49 112.74 19411 0.00%

i640-221 8400.00 8400.16 1.08 158 8400.00 8400.00 0.00 155 0.00%

i640-321 28787.00 28787.15 0.28 47 28787.00 28787.02 0.02 60 0.00%

i640-341 29689.00 29741.04 26.27 155 29671.00 29742.13 32.29 135 0.06%

a2000RandGraph 2 1490.49 1491.15 0.03 10 1489.75 1490.79 0.63 9 0.05%

a4000RandGraph 3 3412.51 3413.51 1.00 2 3413.41 3413.57 0.16 2 -0.03%

hc10p 60133.00 60307.04 62.96 27 59778.00 59948.81 77.47 47 0.59%

hc11u 1131.00 1132.33 3.00 3 1116.00 1116.71 0.50 7 1.33%

hc12p 238815.00 238815.00 0.00 1 236435.00 236435.00 0.00 1 1.00%

hc12u 2266.00 2266.00 0.00 1 2222.00 2223.00 1.00 2 1.94%

bip52nu 225.00 227.87 1.01 39 222.00 222.92 0.28 38 1.33%

bip62nu 214.00 215.69 0.73 58 214.00 214.00 0.00 83 0.00%

cc3-12nu 95.00 95.71 0.41 96 95.00 96.63 3.16 86 0.00%

cc12-2nu 574.00 575.50 1.50 2 566.00 567.33 0.50 6 1.39%

metabol expr mice 1 11349.70 11352.18 0.75 44 11349.16 11353.77 4.34 33 0.00%

HCMV 7371.54 7371.54 0.00 158 7371.54 7372.34 0.90 39 0.00%

lymphoma 3341.89 3341.96 0.16 202 3341.89 3342.11 0.41 133 0.00%

drosophila001 8276.50 8278.24 0.66 50 8277.81 8278.09 0.27 6 -0.02%

Furthermore, we compare the performances of K-ILS-V2 and the standard
K-ILS algorithm on the 26 ’general’ or ’particular’ PCSPG instances adopted
by the 11th DIMACS challenge. As shown in Table 8, in terms of best ob-
jective values, the standard K-ILS algorithm obtains 11 better and 2 worse
results compared to K-ILS-V2, and yields the same results on the remaining
13 instances. The average improvement percentage of the standard K-ILS al-
gorithm over K-ILS-V2 is 0.31%, and the Wilcoxon test reveals a p-value of
1.26×10−2, indicating a statistically better performance of the standard K-ILS
algorithm over K-ILS-V2. In terms of average objective values, the standard
K-ILS algorithm respectively obtains 16 better, 1 same and 9 worse results,
corresponding to a p-value of 1.62× 10−1, indicating the statistical difference
is not so significant.

To conclude, above comparisons confirm clearly the interest of the knowledge-
guided perturbation strategies for solving both the RPCST and the PCSPG.

5 Conclusions

The prize-collecting Steiner tree problem in graphs (PCSPG) and its rooted
version (RPCST) are both target problems of the recent 11th DIMACS Im-
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plementation Challenge (2014) [29]. In this paper, we proposed a knowledge-
guided iterated local search approach named K-ILS for solving both the PC-
SPG and the RPCST. K-ILS combines several key search strategies, including
a swap-vertex move operator associated with an auxiliary evaluation function
which are shown to be very useful for some extremely challenging instances
with uniform or nearly uniform edge costs, as well as several knowledge-
guided perturbation strategies, which are highly effective on various types
of instances. We also designed two original path-based move operators. Ex-
perimental results showed that K-ILS is able to improve our previous KTS
algorithm [15], which was ranked the first place or tied the first place on five
of the eight main subcategories where it was involved during the 11th DIMACS
Implementation Challenge. Finally, we performed additional experiments to
investigate the impact of several key components over the performance of the
proposed algorithm.

One notices that the idea of the swap-vertex operator could be adapted to sev-
eral other Steiner tree problems, such as the classical Steiner tree problem and
the maximum-weight connected subgraph problem. Finally, this work confirms
that it is a good practice to consider characteristics of problem instances when
designing search strategies. Such a design could be applied to other settings
where relevant instance features can be identified and effectively explored by
search procedures.
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A Appendix: Parameters tuning

We discuss how we tuned the parameters of the K-ILS algorithm. Given that
the benchmark instances have very different structures, it is extremely diffi-
cult to obtain a set of parameter values which yield uniformly the best result
on all instances. Thus we try to determine a parameter setting which leads
to a globally good performance. As indicated in Section 3.1, our experiments
show that the default setting of Table 1 with Lflip=n, Lswap=0.5n, M=30 and
W=50 performs reasonably well on each group of instances (parameter Lflip

is applicable only for the general instances and parameter Lswap is applica-
ble only for the particular instances). In order to determine these values, we
implemented eight scenarios for each parameter by varying the chosen param-
eter within a reasonable range (shown in Table A.1), while fixing the other
parameters in accordance with the default values of Table 1.

We used the 32 PCSPG challenging instances (Table 4, including 14 ’general’
instances, 12 ’particular’ instances and 6 ’large’ instances) as sample instances
to evaluate the performances of the compared scenarios. For each parameter,
we only used the instances on which the performance of K-ILS might be af-
fected by this parameter, i.e. the 14 ’general’ instances to tune Lflip, and the
12 ’particular’ instances to tune Lswap, and all 32 instances to tune M and W .

To solve each test instance, we repeatedly and independently ran the algo-
rithm with each scenario until a cutoff time of one CPU hour was reached,
on a laptop computer with an Intel(R) Core(TM) i5-4460 3.20GHz processor
and 4GB RAM. We recorded the best-found objective value of each scenario,
and then calculated the points collected by each scenario in terms of Quality
Challenge (defined as Formula 1 at the beginning of Section 3), with respect
to the remaining seven scenarios corresponding to the studied parameter. As
explained in Section 3, a scenario collecting more points indicates a better
overall performance (based on the 32 test instances) with respect to other
compared scenarios. The experimental results are given in Table A.1, being
classified into four groups, each corresponding to a particular parameter. For
each parameter, the column ”Value” indicates the different settings of the
studied parameter, while the column ”Points” gives the points collected by
the corresponding scenario. In addition, we used the Friedman test to check
the statistical differences between the competing scenarios.

Parameter Lflip: We varied Lflip within the range [0.1n, 5n] to get eight sce-
narios and recorded the results in Table A.1 (columns 1-2), which shows that
the scenario with Lflip=n collects the most points (56.75) with respect to the
other seven scenarios. The Friedman test reveals a p-value of 2.58 × 10−1,
indicating that K-ILS is not really sensitive to the parameter Lflip.
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Table A.1
Statistical results based on 32 challenging PCSPG instances corresponding to dif-
ferent parameter values

Parameter Lflip Parameter Lswap Parameter M Parameter W

Value Points Value Points Value Points Value Points

0.1n 47.75 0.1n 31.38 10 105.88 10 89.46

0.2n 48.75 0.2n 46.05 20 90.63 20 108.16

0.3n 49.75 0.3n 45.63 30 141.85 30 113.41

0.5n 43.25 0.5n 50.13 50 110.21 50 127.36

n 56.75 n 37.80 100 93.83 100 94.06

2n 38.08 2n 26.71 200 99.55 200 100.15

3n 42.08 3n 43.80 300 106.00 300 97.45

5n 37.58 5n 30.50 500 84.07 500 101.93

Parameter Lswap: Similarly, we tested Lswap within the range [0.1n, 5n] and
tested their performances. The results in Table A.1 (columns 3-4) indicate
that the scenario with Lswap=0.5n performs overall the best (collects 50.13
points) among the eight different scenarios. The Friedman test reveals a p-
value of 2.71× 10−1, indicating that Lswap is not a sensitive parameter.

Parameter M : Furthermore, we varied M within the range [10, 500] with vari-
able steps and compared their performances. As shown in Table A.1 (columns
5-6), the scenario with M=30 collects the most points (141.85). The Friedman
test reveals a p-value of 9.02× 10−4, confirming that the scenario with M=30
performs statistically clearly better than other scenarios.

Parameter W : Finally, we tested M within the range [10, 500] to get eight sce-
narios and listed their results in Table A.1 (columns 7-8). The results indicate
that the scenario with W=50 performs slightly better than other scenarios.
The Friedman test reveals a p-value of 8.08 × 10−2, indicating that the per-
formance of K-ILS is somewhat sensitive to the value of this parameter and
W=50 is the best setting.
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