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Abstract

Given an undirected graph with costs associated with each edge as well as each
pair of edges, the quadratic minimum spanning tree problem (QMSTP) consists of
determining a spanning tree of minimum cost. QMSTP is useful to model many real-
life network design applications. We propose a three-phase search approach named
TPS for solving QMSTP, which organizes the search process into three distinctive
phases which are iterated: 1) a descent neighborhood search phase using two move
operators to reach a local optimum from a given starting solution, 2) a local optima
exploring phase to discover nearby local optima within a given regional area, and
3) a perturbation-based diversification phase to jump out of the current regional
search area. TPS also introduces a pre-estimation criterion to significantly improve
the efficiency of neighborhood evaluation, and develops a new swap-vertex neighbor-
hood (as well as a swap-vertex based perturbation operator) which prove to be quite
powerful for solving a series of special instances with particular structures. Com-
putational experiments based on 7 sets of 659 popular benchmarks show that TPS
produces highly competitive results compared to the best performing approaches
in the literature. TPS discovers improved best known results (new upper bounds)
for 33 open instances and matches the best known results for all the remaining
instances. Critical elements and parameters of the TPS algorithm are analyzed to
understand its behavior.
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1 Introduction

Network design is an extremely challenging task in numerous resource distri-
bution systems (e.g., transportation, electricity, telecommunication, computer
networks, etc.). Many of these systems can conveniently be modeled as some
variants of the spanning or Steiner tree problem (STP). In this paper, we focus
on the quadratic minimum spanning tree problem (QMSTP) which has broad
practical applications. Let G = (V,E) be a connected undirected graph with
|V | = n vertices and |E| = m edges. Let c : E → R be a linear cost function
for the set of edges and q : E ×E → R be a quadratic cost function to weight
each pair of edges (without loss of generality, assume qee = 0 for all e ∈ E).
QMSTP requires to determine a spanning tree T = (V,X), so as to minimize
its total cost F (T ), i.e., the sum of the linear costs plus the quadratic costs.
Naturally, as in [11], this problem can be formulated as follows:

Minimize F (T ) =
∑
e∈E

cexe +
∑
e∈E

∑
f∈E

qefxexf , (1)

subject to
∑
e∈E

xe = n− 1, (2)

∑
e∈E(S)

xe ≤ |S| − 1,∀ S ⊂ V with |S| ≥ 3, (3)

xe ∈ {0, 1}, ∀ e ∈ E. (4)

where xe = 1 if edge e belongs to the solution, xe = 0 otherwise. S is any
possible subset of V (with |S| ≥ 3) and E(S) denotes the set of edges with both
end vertices in S. Eq. (2) requires that the final solution contains n− 1 edges,
and Eq. (3) ensures that no cycle exists in the solution. These two constraints
together guarantee that the obtained solution is necessarily a spanning tree.

As an extension of the classical minimum spanning tree problem (MST) in
graphs, QMSTP has various practical applications in network design prob-
lems, where the linear function models the cost to build or use edges, while
the quadratic function models interference costs between pairs of edges. For
example, in transportation, telecommunication or oil supply networks, the
linear function represents the costs for building each road, communication
link or pipe, and the quadratic function represents the extra costs needed for
transferring from one road (link, pipe) to another one. Normally, the inter-
ference costs are limited to pairs of adjacent edges (which share a common
vertex) [18, 19, 24, 25], but in some special cases, the interference costs also
exist between any pair of edges. As discussed in [1, 21, 22], QMSTP has sev-
eral equivalent formulations such as the stochastic minimum spanning tree
problem, the quadratic assignment problem, and the unconstrained binary
quadratic optimization problem.
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During the last two decades, QMSTP has been extensively investigated and
many exact and heuristic approaches have been proposed. Since QMSTP is
NP-hard and difficult to approximate [31], exact methods are often applied
only to solve very small instances. For larger instances, heuristics are preferred
to obtain feasible solutions within a reasonable time.

As for exact methods, Assad and Xu [1, 31] propose a Lagrangian branch-
and-bound (B&B) method. Öncan and Punnen [21] combine the Lagrangian
relaxation scheme with an extended formulation of valid inequalities to ob-
tain tighter bounds. Cordone and Passeri [11] improve the Lagrangian B&B
procedure in [1]. Pereira et al. [23] introduce a 0-1 programming formula-
tion based on the reformulation-linearization technique and derive an effective
Lagrangian relaxation. Using the resulting strong lower bounds and other for-
mulations, they develop two effective parallel B&B algorithms able to solve
optimally problem instances with up to 50 vertices. Recently, based on reduced
cost computation, Rostami and Malucelli [26] combine a reformulation scheme
with new mixed 0-1 linear formulations, and report lower bounds on hundreds
of instances with up to 50 vertices. Exact algorithms are also proposed for
solving other closely related QMSTP variants. Buchheim and Klein [5,6] pro-
pose a B&B approach for QMSTP with one quadratic term in the objective
function, of which the polyhedral descriptions are completed in [12]. Pereira
et al. [24] introduce several exact approaches (brand-and-cut, branch-and-cut-
and-price), to obtain strong lower bounds for QMSTP with adjacency costs,
for which the interference costs are limited to adjacent edges.

On the other hand, to handle large QMSTP instances, heuristics become the
main approaches to obtain good near-optimal solutions within a reasonable
time. For example, two greedy algorithms are proposed in [1, 30, 31]. Sev-
eral genetic algorithms are implemented by Zhou and Gen [32] and tested
on instances with up to 50 vertices. Another evolutionary algorithm is pro-
posed for a fuzzy variant of QMSTP [14], using the Prüfer number to encode
a spanning tree. Soak et al. [27, 28] report remarkable results with an evo-
lutionary algorithm using an edge-window-decoder strategy. In addition to
these early methods, even more heuristics have been proposed in recent years,
mostly based on neighborhood search. For example, the Tabu Thresholding
algorithm [21] alternatively performs local search and random moves. In [22],
an iterated tabu search (ITS) is proposed and compared to a multi-start sim-
ulated annealing algorithm and a hybrid genetic algorithm, showing that ITS
performs the best. An artificial bee colony algorithm is developed in [29]. Cor-
done and Passeri [11] adopt a novel data structure and updating technique
to reduce the amortized time of neighborhood exploration from O(mn2) to
O(mn), based on which they further propose a tabu search (TS) algorithm
and report a number of improved results over previous best known results.
Recently, Lozano et al. [17] propose an iterated greedy (IG) and a strategic
oscillation (SO) heuristic, and combine them with the ITS [22] algorithm to
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obtain a powerful hybrid algorithm named HSII. In addition, for the QMSTP
variant only with adjacency costs, Maia et al. develop a Pareto local search [18]
as well as several evolutionary algorithms [19].

In this work, we propose a three-phase search approach named TPS for effec-
tively solving QMSTP, whose main contributions are as follows.

• From the perspective of algorithm design, the proposed TPS approach con-
sists of three distinctive and sequential search phases which are iterated: a
descent-based neighborhood search phase (to reach a local optimum from a
given starting solution), a local optima exploring phase (to discover more
nearby local optima within a given regional area), and a perturbation-based
diversification phase (to jump out of the current search area and move to un-
explored new areas). At a high abstraction level, TPS shares similar ideas
with other popular search frameworks such as iterated local search [16],
reactive tabu search [2, 8] and breakout local search [3, 4, 13]. Still the pro-
posed approach promotes the idea of a clear separation of the search pro-
cess into three distinctive phases which are iterated, each phase focusing on
a well-specified goal with dedicated strategies and mechanisms. The pro-
posed TPS approach also includes two original search strategies designed
for QMSTP. The first one is a pre-estimation criterion, which boosts the
efficiency of local search by discarding a large number of hopeless neigh-
boring solutions (so as to avoid useless computations). The second one is a
new swap-vertex neighborhood, which complements the conventional swap-
edge neighborhood and proves to be particularly useful for tackling the
challenging and special QMSTP instances transformed from the Quadratic
Assignment Problem (QAP).
• From the perspective of computational results, TPS yields highly compet-
itive results with respect to the best known results and best performing
algorithms (tested on 7 sets of 659 benchmarks). Respectively, for the 630
conventional instances, TPS (using the same parameter setting) improves
within comparative time the best known results (new upper bounds) on 30
instances and matches easily the best known results for all the remaining
instances only except three cases (for which TPS also finds improved best
known results within the same cutoff time by simply tuning some param-
eters). For the set of the 29 instances transformed from QAP which are
known to be extremely challenging for existing QMSTP algorithms, TPS
consistently attains the known optimal values within very short time.

In the rest of the paper, we describe the proposed approach (Section 2), show
extensive computational results on the benchmark instances (Sections 3) and
study several key ingredients of the algorithm (Section 4). Conclusions are
drawn in Section 5, followed by a parameter analysis in the Appendix.
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2 A three-phase search approach for QMSTP

2.1 General framework

The proposed three-phase search approach TPS for QMSTP is outlined in
Algorithm 1, which is composed of several subroutines. Starting from an ini-
tial solution (generated by Init Solution), the first search phase, ensured by
Descent Neighborhood Search, employs a descent-based neighborhood search
procedure to attain a local optimal solution from the input solution. The
second search phase Explore Local Optima is then used to discover nearby
local optima of better quality within the current regional search space. If no
further improvement can be attained, the search turns into a diversified per-
turbation phase Diversified Perturb, which strongly modifies the incumbent
solution to jump out of the current regional search area and move to a more
distant new search area. From this point, the search enters into a new round
of Descent Neighborhood Search and Explore Local Optima followed by Di-
versified Perturb search phases. This process is iterated until a given terminal
criterion is met (cutoff time, allowed number of iterations, etc).

Algorithm 1: Framework of the Proposed TPS Approach for QMSTP

Data: Graph G(V,E), linear function E → R, quadratic function E × E → R
Result: The best solution found

1 T ← Init Solution() ; /* Construct an initial solution, Section 2.3 */

2 T best ← T ; /* T best records the best solution found so far */

3 while The terminal criterion is not met do
// Find a local optimum, Section 2.4

4 T ← Descent Neighborhood Search(T ) ;

// Explore nearby local optima, Algorithm 2 and Section 2.6

5 T ← Explore Local Optima(T ) ;

// Update T best if an improved solution is found

6 if F (T ) < F (T best) then
7 T best ← T ;

// Strongly perturb the incumbent solution, Section 2.7

8 T ← Diversified Perturb(T ) ;

9 return T best ;

Fig. 1 illustrates the idea followed by the TPS procedure, where X-axis in-
dicates all the feasible solutions T , and Y -axis indicates the corresponding
objective values F (T ). As shown in Fig. 1, A,B,C,D,F,G,I,J,K,L,M are lo-
cal optima of different qualities, while E,H,N are feasible solutions. Start-
ing from a randomly generated initial solution, say N, the search calls De-
scent Neighborhood Search to reach a first local optimum M, and then uses
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the Explore Local Optima search phase to discover nearby local optima L

and K. At this point, the Diversified Perturb phase is executed to jump from
K to a faraway enough solution E, which is subsequently optimized by De-
scent Neighborhood Search (E → F) and Explore Local Optima (F → G), to
obtain a high-quality solution G.

2.2 Solution representation

Like the compact tree representation used in [11, 13], we uniquely represent
each feasible solution T as a rooted tree (with vertex 1 fixed as the root
vertex, being different from [11] where the root changes dynamically during
the search process), corresponding to a one-dimensional vector T = {ti, i ∈ V },
where ti denotes the parent vertex of vertex i, with the only exception for the
root vertex 1 (let t1 = null). Inversely, given a vector T = {ti, i ∈ V }, the
corresponding solution tree can be easily reconstructed.

2.3 Initialization

TPS requires an initial solution to start its search. We use a simple random-
ized procedure to build initial solutions. Starting from an empty solution T
containing only the root vertex, we iteratively select at random one edge from
E and add it to T (without leading to a closed loop), until n − 1 edges are
added, meaning that a feasible initial solution (tree) T = (V,X) is generated,
where V and X ⊆ E are respectively the vertex set of the graph and the edge
set of the tree. In the rest of this paper, we occasionally refer an edge of a
directed tree as an arc if needed, to avoid possible confusions.

T

F (T )

A
B

C
D E

F
G

H
I

J
K

L
M

N

Jump

Fig. 1. Procedure of searching a high-quality feasible solution of QMSTP
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2.4 Descent-based neighborhood search phase

As the basis of the proposed approach, a descent-based neighborhood search
phase Descent Neighborhood Search is used to reach a local optimum from
a given starting solution T = (V,X). For this, we adopt two different move
operators to generate neighboring solutions, including a conventional move op-
erator (swap-edge) widely used in the literature and an original move operator
(swap-vertex) newly introduced in this paper.

1

2

3 4 5

6 7 8

(a) Original solution T

1

2

3 4 5

6 7 8

(b) T
⊕

SwapEdge({5, 7}, {2, 4})
1

2

3 4 5

8 7 6

(c) T
⊕

SwapV ertex(6, 8)

6

2

3 4 5

1 7 8

(d) T
⊕

SwapV ertex(1, 6)

Fig. 2. Move operators for generating neighboring solutions

(1) The first one is the conventional swap-edge move operator inherited from
[11,17,22]. This operator first adds to X one of them−n+1 unused edges
e ∈ E\X, thus closing a loop Le of |Le| ≤ n edges, and then removes
an edge f from Le\{e}, to obtain a feasible neighboring solution denoted
by T

⊕
SwapEdge(e, f). The corresponding difference of the objective

function (also called move gain) is denoted by δef .
(2) The above move operator swaps only one pair of edges. It is tempting

to introduce a move operator by swapping two pairs of edges to obtain
an enlarged neighborhood. Nevertheless, such a move operator induces
a neighborhood with a total of O(m2n2) neighboring solutions, which is
extremely expensive for neighborhood examination. To control the size of
the neighborhood, we develop for the first time a restricted swap-vertex
move operator as follows. Let V 1 ⊆ V denote the subset containing all the
vertices with degree in the solution tree equal to 1 (including all the leaf
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vertices and possibly the root vertex), and for each vertex i ∈ V 1, let ri de-
note the related vertex, i.e., the vertex connected to i. Then, for each pair
of vertices i, j ∈ V 1 with ri ̸= rj and {i, rj} ∈ E, {j, ri} ∈ E, a feasible
neighboring solution denoted by T

⊕
SwapV ertex(i, j) could be gener-

ated by swapping vertices i and j, leading to a difference δij of the objec-
tive function. Note that, if we denote edges (more precisely, arcs) {i, rj},
{j, ri}, {i, ri}, {j, rj} by e1, e2, f1, f2 respectively, SwapV ertex(i, j)
is indeed equivalent to SwapEdge(e1, f1)

⊕
SwapEdge(e2, f2). Clearly,

SwapV ertex(i, j) defines a neighborhood whose size is bounded byO(n2).

For example, Fig. 2 illustrates several neighboring solutions generated by the
above move operators. From the original solution (a), solution (b) is generated
by adding arc {5, 7} and deleting arc {2, 4}, while solutions (c) and (d) are
obtained by swapping vertices 6−8 and 1−6 respectively. Note that, to ensure
that vertex 1 is always fixed as the root, before swapping vertex 1 and vertex
6, we should at first traverse all the arcs from vertex 6 to vertex 1 and reverse
the parent-child relationship on these arcs (as shown in sub-figure (d)).

Based on these move operators (SwapEdge(e, f) and SwapV ertex(i, j)), two
different neighborhoods N1 and N2 are defined as follows:

N1 = {T ⊕
SwapEdge(e, f) | e ∈ E\X, f ∈ Le\{e}},

N2 = {T ⊕
SwapV ertex(i, j) | i, j ∈ V 1, ri ̸= rj, {i, rj} ∈ E, {j, ri} ∈ E}.

(5)
where T = (V,X) is a feasible solution, and T

⊕
SwapEdge(e, f) (respec-

tively, T
⊕

SwapV ertex(i, j)) designates the neighboring solution obtained
by applying SwapEdge(e, f) (respectively, SwapV ertex(i, j)) to T . As shown
in Section 4.2, these two basic move operators are effective respectively for
solving different types of instances (specifically, the new swap-vertex move is
extremely powerful for the challenging instances transformed from QAP with
very special structures), thus being adopted in a combined mode as follows.

Typically, at each iteration of Descent Neighborhood Search, the algorithm
first examines in random order neighborhood N1 and uses the first met im-
proving neighbor solution (with δef < 0) to replace the incumbent solution.
If no improving solution exists in N1, it turns to examine neighborhood N2
in the same manner to accept the first met improving neighbor solution (with
δij < 0). This process is iterated until no improving solution exists in N1∪N2,
meaning that a local optimum is reached.

Additionally, one observes that |N1| = O(m − n + 1) × O(max(|Le|)) ≤
O(mn) ≤ O(n3), and |N2| = O(|V 1|2) ≤ O(n2), being statistically much
less than |N1|. In the next section, we describe how to quickly evaluate the
needed move gains for both neighborhoods. In particular, we further devise a
pre-estimation criterion which is able to identify and discard a large number
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of useless SwapEdge(e, f) moves. As shown in Section 4.1, this pre-estimation
criterion ensures a fast exploration of neighborhood N1 and considerably re-
duces the computational complexity of Descent Neighborhood Search.

2.5 Fast examination technique

Like in [11], we maintain a vector D, whose components indicate the actual or
potential contribution of each edge g ∈ E to the overall cost of the incumbent
solution T = (V,X).

Dg = cg +
∑
h∈X

(qgh + qhg),∀g ∈ E. (6)

With this vector, for each of the O(mn) possible SwapEdge(e, f) moves of
neighborhood N1, the change in objective value is given by:

δef = De −Df − qef − qfe. (7)

which can be calculated in constant time O(1) [11]. After performing the
chosen move SwapEdge(e, f), as in [11], vector D is updated in O(m) as
follows:

Dg ← Dg + qge + qeg − qgf − qfg, ∀g ∈ E. (8)

Clearly, the overall complexity for exploring neighborhoodN1 at each iteration
is bounded by O(mn)×O(1) +O(m) = O(mn).

Similarly, since each of the O(n2) possible SwapV ertex(i, j) moves of neigh-
borhood N2 is equivalent to SwapEdge(e1, f1)

⊕
SwapEdge(e2, f2), where

e1, e2, f1, f2 denote arcs {i, rj}, {j, ri}, {i, ri}, {j, rj} respectively, the dif-
ference of the objective function is obtained by:

δij = De1 +De2 −Df1 −Df2 + qe1e2 + qe2e1 + qf1f2 + qf2f1

−qe1f1 − qf1e1 − qe1f2 − qf2e1 − qe2f1 − qf1e2 − qe2f2 − qf2e2.
(9)

where each term can be evaluated in constant time O(1). Then, vector D is
updated in O(m) as follows:

Dg ← Dg + qge1 + qe1g + qge2 + qe2g − qgf1 − qf1g − qgf2 − qf2g, ∀g ∈ E. (10)

Clearly, the computational complexity needed for exploring neighborhood N2
at each iteration is at most O(n2)×O(1) +O(m) = O(n2).

Furthermore, we attempt to reduce the computational time needed for exam-
ining neighborhood N1, which is the most expensive part of the first search
phase. As mentioned above, at each iteration ofDescent Neighborhood Search,
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up to O(mn) legal swap-edge moves are possible. However, many of these
moves are definitely hopeless since no improvement over the incumbent solu-
tion can be gained. Since Descent Neighborhood Search only accepts improved
solutions with δef < 0, it is interesting to identify the hopeless moves with
δef ≥ 0 and discard them directly to avoid irrelevant computations.

Based on this idea, we develop a pre-estimation criterion as follows. Let γ =
Max{Dg, g ∈ X} denote the maximum cost value of Dg of all the edges
g belonging to the incumbent solution T = (V,X), and let λ = Max{qhk +
qkh, h, k ∈ E} denote the maximum possible value of quadratic costs between
any pair of edges. Note that γ is a variable which should be updated at each
iteration, within an amount ofO(|X|) = O(n) extra time, while λ is a constant.
Then, it is clear that, for each edge e ∈ E\X, if we add it to X, the objective
function would increase by De. At this point, one can observe that no matter
which edge f ∈ Le\{e} we choose to remove from X, the decreased cost is
strictly bounded within γ+λ. Obviously, ifDe−γ−λ ≥ 0, it means that all the
possible moves SwapEdge(e, f), f ∈ Le\{e} lead to a solution no better than
the incumbent solution T . In other words, it is definitely impossible to obtain
an improved solution by exchanging e against any other edge belonging to the
incumbent solution. Consequently, we can directly discard all these moves to
avoid useless evaluations, thus reducing the computation time.

While exploring the solutions belonging to neighborhood N1, for each edge e ∈
E\X, we first use the above pre-estimation criterion to check if it is possible to
gain any improvement by exchanging e against some other edge f ∈ Le\{e}. If
this is not the case, we discard all the moves involving e and skip to the next
edge in E\X. Otherwise, we evaluate one by one the possible legal moves
SwapEdge(e, f), f ∈ Le\{e} to identify an improving neighboring solution.
As shown in Section 4.1, the pre-estimation criterion allows the algorithm
to discard a high number of hopeless moves, accelerating considerably the
neighborhood exploration without sacrifice of solution quality.

2.6 Local optima exploring phase

Obviously, the Descent Neighborhood Search procedure described in Section
2.4 alone cannot go beyond the achieved local optimum. In order to be able
to discover nearby local optima which are possibly of better quality and to
intensify the search in a given regional search space, we develop a local optima
exploring phase (Explore Local Optima, Algorithm 2), which is based on two
directed perturbation operators. Inspired by the idea of breakout local search
[3, 4], these directed perturbation operators rely on the tabu search principle
[15], which favors moves with the weakest objective deterioration. In order
to distinguish these two perturbation operators from the following diversified
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perturbation operator (Section 2.7), we call them Directed Perturb operators.
Precisely, Directed Perturb takes one of the following two forms.

(1) The swap-edge directed perturbation operator applies the swap-edge move
operator (Section 2.4). For each edge g ∈ E, this perturbation saves in an
array the last iteration Ig when edge g is added into or removed from the
current solution. With this information, before exchanging edge e ∈ E\X
and edge f ∈ Le\{e}, we first check whether the current iteration index
is larger than both Ie + lin and If + lout, where lin and lout are parame-
ters indicating the length of the prohibition, i.e., the tabu tenures [15].
If this is not the case, the corresponding move SwapEdge(e,f) is marked
tabu (otherwise it is declared non-tabu). This prohibition aims to avoid
the inclusion of a recently removed edge or the removal of a recently in-
cluded edge, unless the move meets the aspiration criterion, i.e., leading
to a solution better than the overall best found solution. Typically, this
perturbation operator examines all the non-tabu legal moves and itera-
tively applies the best legal move to the incumbent solution (no matter it
leads to an improved solution or not), until a given number Ldir (called
perturbation strength) of such moves are performed.

Algorithm 2: Local Optima Exploring (Explore Local Optima) Phase

Data: The incumbent local optimal solution T , allowed maximum consecutive
non-improving rounds ωmax

Result: The best found local optimal solution near T
1 T ♯ ← T ; /* T ♯ records the best found local optimum */

2 ω ← 0 ; /* ω counts the number of consecutive non-improving rounds */

3 while ω < ωmax do
// Apply a directed perturbation operator to perturb T

4 T ← Directed Perturb(T ) ;

// Optimize T to a new local optimum

5 T ← Descent Neighborhood Search(T ) ;

// Update the best found solution and the value of ω

6 if F (T ) < F (T ♯) then
7 T ♯ ← T ;
8 ω ← 0 ;

9 else
10 ω ← ω + 1 ;

11 return T ♯ ;

(2) The new swap-vertex directed perturbation operator is based on the
swap-vertex move operator (Section 2.4). For each pair of vertices i, j ∈
V , we save in a two-dimensional array the last iteration Iij when vertex
i is swapped with vertex j. Then, before swapping any pair of vertices
i, j ∈ V 1, we first check whether the current iteration index is larger than
Iij + lswap, where lswap is a parameter indicating the tabu tenure. The
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moves satisfying this condition are marked non-tabu, while the others
are declared tabu, unless they meet the same aspiration criterion above.
This perturbation operator iteratively applies Ldir times the best non-
tabu move to the incumbent solution.

In general, these two directed perturbation operators could be used in a com-
bined mode. Nevertheless, as analyzed in Section 4.2, we only apply the
swap-edge directed perturbation for solving the conventional instances, and
the swap-vertex directed perturbation for solving the special instances trans-
formed from QAP. Whenever a directed perturbation is executed, we call the
Descent Neighborhood Search phase again to the perturbed solution, to obtain
a new local optimum. Typically, the local optima exploring phase alternates
between Directed Perturb and Descent Neighborhood Search, until no further
improvement is gained after ωmax consecutive such rounds (ωmax is fixed to be
5 in this paper), meaning that it is difficult to find better local optima within
the current search region. At this point, the search turns into a diversified
perturbation phase described below, to jump out of the current region.

2.7 Diversified perturbation phase

The diversified perturbation phase aims to jump out of the current regional
search area and displace the search to more distancing search areas, while
retaining a certain degree of structure information of the incumbent solution.
For this, we develop a diversified perturbation operator Diversified Perturb,
which iteratively removes at random an edge f from T = (V,X) and subse-
quently adds the best feasible edge e ∈ E\X into T , without leading to any
closed loop (to ensure the feasibility of the solution after insertion), until a
given number Ldiv (parameter for controlling the perturbation strength) of
such perturbation moves are performed.

The Directed Perturb and Diversified Perturb operators introduce different
degrees of diversification to the search process. Indeed, with tabu principle,
Directed Perturb modifies the incumbent solution more gradually and keeps
the search within areas close to the incumbent solution. On the other hand, by
random moves, Diversified Perturb may disrupt strongly the incumbent solu-
tion and leads the search to a more distant new region. By combining these two
types of perturbations, it is expected that a better trade-off between intensi-
fication and diversification would be reached in the general search procedure.

Finally, as illustrated in Algorithm 1, TPS alternatively calls the above three
search phases, until the terminal criterion is satisfied. The best found solution
T best is returned as the obtained solution.
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2.8 Discussion

TPS borrows ideas from several existing methods like iterated local search
(ILS) [16], reactive tabu search (RTS) [2, 8] and breakout local search (BLS)
[3, 4]. We briefly discuss the similarities and differences between TPS and
these methods. First, TPS follows the general ILS framework since it alter-
nates between descent phases to locate local optima and perturbation phases
to escape from local optima. However, TPS introduces an intermediate phase
(Explore Local Optima) to discover nearby local optima by applying directed
perturbations. Second, like RTS, TPS uses tabu mechanism to forbid visited
solutions. However, unlike RTS, TPS uses tabu mechanism for its directed
perturbations and does not adopt any reactive mechanism for its tabu list
management. Finally, similar to BLS, TPS distinguishes directed perturba-
tions from diversified perturbations. Yet, TPS organizes these two types of
perturbations in a different way: the diversified perturbation phase is trig-
gered only after an Explore Local Optima phase. By contrast, in BLS, the
directed perturbations and diversified perturbations are handled at the same
level and managed adaptively. More abstractly, TPS clearly divides the search
process into three distinctive phases, while the above methods typically consist
of two search phases (intensification phase and diversification phase).

3 Experimental results

In order to evaluate the performance of our TPS algorithm 1 (which is coded
in C language and compiled by g++ with the ”-O3” option), we test it on
all the currently existing benchmarks, and compare the results with respect
to the state-of-the-art heuristics in the literature. For information, our TPS
algorithm is executed on an Intel Xeon E5440 2.83 GHz processor with 2 GB
RAM, while a 1.6 GHz Pentium IV processor is used in [28], a 3 GHz Pentium
IV CPU with 2 GB RAM in [21], a 3.0 GHz core 2 duo system with 2 GB RAM
in [29], a 3.0 GHz Intel core 2 duo in [22], a 2.6 GHz Intel Pentium Core 2 Duo
E6700 and 2 GB RAM in [11], a 3.2 GHz Intel processor with 12 GB RAM
in [17]. One can observe that the clock frequency of our processor is about 80%
faster than the computer used in [28], while being similar to the machines used
in [11, 17, 21, 22, 29]. Note that our TPS algorithm is a sequential algorithm
and runs on one single core of the processor. For the reference algorithms, no
precise information is known in this regard.

1 All the best solutions reported in this paper are available on http://www.info.

univ-angers.fr/pub/hao/qmstp.html, the TPS source code will also be made
available upon the publication of the paper.
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Given that the reference algorithms are executed on different platforms with
different configurations, it seems impossible to exactly compare the compu-
tational times. For this reason, we focus our assessment on solution quality
achieved by our TPS algorithm (within reasonable runtime), with respect
to the existing state-of-the-art algorithms. Nevertheless, following the newest
QMSTP references [11,17,23], we include for indicative purposes the runtimes
of the compared algorithms, which could still provide some rough indications
about the computational efficiency of each algorithm.

3.1 Benchmark instances

Given the importance of QMSTP, a large number of benchmark instances (to
the best of our knowledge, 659 instances in total) are currently available in the
literature, corresponding to different problem sizes (from small graphs to large
graphs), different network densities (from sparse graphs to complete graphs),
and different types of quadratic costs (randomly distributed or artificially
distributed). Given the diversity of these instances, they form a reasonable
basis to evaluate QMSTP algorithms. One notes that previous algorithms of
the literature only report computational results on some of these 659 instances
(see Sections 3.3–3.8). To assess our TPS algorithm thoroughly, we evaluate
TPS on the whole set of all the 659 benchmarks. For convenience, we classify
the QMSTP benchmarks into seven groups as follows 2 .

• Benchmark CP [10] consists of 108 instances, with vertices number n ranging
from 10 to 50, and graph density ρ = 33%, 67% or 100%. The linear costs
and the quadratic costs are randomly distributed in [1,10] or [1,100].
• Benchmark OP1 [21] consists of 480 complete graphs, with n=6-18, 20, 30,
50 respectively, each group having 30 instances. These instances are further
divided into three subclasses:

(1) SYM: with linear costs uniformly distributed at random within [1,100],
and quadratic ones within [1,20];

(2) VSYM: the linear costs are uniformly distributed at random in [1,10000],
for the quadratic costs, each vertex is assigned with a value randomly
distributed in [1,10] and the quadratic cost qef is obtained by multiplying
the four values associated with the end vertices of edges e and f ;

(3) ESYM: the vertices are randomly distributed in a square of side 100, then
the linear costs are the Euclidean distances between the end vertices of
each edge, and the quadratic costs are the Euclidean distances between
the mid-points of the edges.

2 The CP benchmarks can be downloaded from http://www.dti.unimi.it/

cordone/research/qmst.html and the RAND and SOAK instances are available
at http://sci2s.ugr.es/qmst/QMSTPInstances.rar. The others can be provided
on request to the authors (fu@info.univ-angers.fr or hao@info.univ-angers.fr).
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• Benchmark SCA [28] includes 6 complete graphs, with vertices number rang-
ing from 50 to 100, by steps equal to 10. For each instance, the vertices are
uniformly spread in a square of side 500, then the linear costs are the Eu-
clidean distances between the vertices and the quadratic costs are uniformly
distributed within [0,20].
• Benchmark SS [29] consists of 18 complete graphs with n =25, 50, 100, 150,
200 and 250 (each corresponds to 3 instances), the linear costs are uniformly
distributed at random within [1,100] and the quadratic costs are randomly
distributed within [1,20].
• Benchmark RAND [17] consists of 9 large instances (with n =150, 200
or 250) recently generated by Lozano et al., with linear costs uniformly
distributed in [1, 100], and quadratic ones uniformly distributed in [1,20].
• Benchmark SOAK [17] includes 9 large instances (with n =150, 200 or 250),
with vertices uniformly distributed at random on a 500×500 grid. The edge
costs are the integer Euclidean distances between any pair of vertices, and
the quadratic ones are uniformly distributed between [1,20].
• Benchmark QAP-QMSTP (originally named OP2) consists of 29 special
QMSTP instances converted from the NUG [20] and CHR [9] benchmarks
of the Quadratic Assignment Problem (QAP), using a one-to-one transfor-
mation procedure between the two problems [21]. Note that, although the
original QAP instances have already been solved to optimality by previous
QAP algorithms [7], they are difficult for existing QMSTP algorithms to
reach the optimal results, due to the special problem structures after trans-
formation. Even the best QMSTP algorithm misses 17 optimal solutions.

The largest QMSTP instances have up to 250 vertices (complete graphs) and
are extremely difficult for QMSTP algorithms to reach optimality, due to their
O(|E|)×O(|E|) = O(|V |4) quadratic costs. Indeed, for a complete graph with
250 vertices, the size of the input file is about 1.15 GB, implying that once
the number of vertices increases to 1000, the input file size will increase to
be unreasonably large (over 290 GB). On the other hand, for most of the
existing instances with more than 100 vertices, the current best known results
(reported by previous algorithms) can possibly be further improved (as we
show below), confirming the difficulties to reach their optimal solutions.

One notes that all the instances of the CP and OP1 groups are small-sized,
with up to 50 vertices. For all the 108 instances of group CP and almost all
(476 out of 480) the instances of group OP1, our TPS algorithm can easily
match the optimal or current best known results. Moreover, for the left 4
instances of group OP1, TPS succeeds in finding improved best solutions.
The other five groups of instances are much more challenging, due to their
large-scale sizes or special structures. To emphasize the effectiveness of TPS
for solving challenging instances, we provide the detailed results of TPS on
the five challenging groups with respect to previous state-of-the-art heuristics,
while showing the results on groups CP and OP1 in a summarized form.
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Table 1
Default setting of each parameter

Parameter Description Default Setting

lin Tabu tenure, Section 2.6 [1, 3]

lout Tabu tenure, Section 2.6 [0.3n, 0.4n]

lswap Tabu tenure, Section 2.6 [n, 2n]

Ldir Strength of directed perturbation, Section 2.6 [0.5n, 2n]

Ldiv Strength of diversified perturbation, Section 2.7 [n, 5n]

3.2 Parameters

As described in Section 2, TPS requires several parameters: the tabu tenures
lin, lout, lswap used in the directed perturbation operators, as well as the per-
turbation strengths Ldir and Ldiv. Generally, these parameters could be tuned
with respect to each benchmark group given that the groups have different
characteristics and structures. However, to show the efficiency and the robust-
ness of the proposed approach, we uniformly adopt a fixed set of parameter
values for all the test instances even if better results could be achieved by
finely tuning some parameters.

Following the analysis detailed in the Appendix, we choose an interval as the
default setting of each parameter (shown in Table 1). During the search pro-
cess of TPS, whenever a parameter value is needed, a value is taken at random
within the corresponding interval. Additionally, one notes that in the litera-
ture, various stop conditions have been adopted by the QMSTP algorithms
for solving different groups of instances. To ensure an assessment of our TPS
algorithm as fair as possible, we set the stop criteria for TPS relative to the
reference algorithms as follows.

3.3 Results of the CP instances

This group contains 108 instances with up to 50 vertices, among which 42, 23,
36 largest instances are respectively tested by ITS [22], QMST-TS [11], and
HSII [17] to evaluate their performances. Both ITS and QMST-TS solve each
instance 10 times, each run continues until the previous best known solution is
reached 3 . Experimental results show that for each of their selected instances,
each run of ITS and QMST-TS can reach the best known result, with a mean
computing time ranging from less than one second to about two minutes. HSII
also executes 10 independent times to solve each of its selected instances, with
a cutoff time of 10 seconds for each run. However, for many selected instances,
HSII occasionally fails to match the previous best known results within the
allowed time. On the other hand, the best existing exact algorithms [23] can

3 The previous best known results for the 108 CP instances are available at http:
//www.dti.unimi.it/cordone/research/qmst.html.
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solve all the instances with up to 20 vertices and 127 edges to optimality with
a time limit of 100 hours. Recently, Rostami and Malucelli [26] provide lower
bounds on all these 108 instances.

To evaluate the performance of our TPS algorithm on this set of 108 instances,
we independently run TPS 10 times to solve each instance, each run continues
until the optimal result (for instances with known optima) or the best known
result (for the remaining instances) is reached. Our results show that, each
TPS run unexceptionally succeeds in reaching the optimal or the best known
result, with an average time from less than one second to less than one minute,
indicating that TPS performs similarly with respect to ITS and QMST-TS
for this group of small benchmarks. Since these instances are not challenging
enough, we do not list our detailed results.

3.4 Results of the OP1 instances

This group consists of three subclasses (SYM, ESYM, VSYM), each includes
160 instances, with |V | ranging from 6 to 50 (a total of 480 instances). These
benchmarks have been used to evaluate many algorithms, including several
ones which aim to provide optimal solutions or strong lower bounds, i.e.,
the refined Lagrangian lower bounding procedure in [21], the B&B algorithm
QMST-BB in [11], the enhanced B&B algorithms in [23], and the reformula-
tion scheme for computing lower bounds in [26]. Nevertheless, even the best
existing exact approach [23] can only solve a subset of these instances to op-
timality, i.e., the SYM instances with up to 18 vertices, and the VSYM and
ESYM instances with up to 50 vertices, with computational time ranging from
less than one second to more than five hours.

There are also two heuristics which aim to provide sub-optimal solutions
within reasonable time, i.e., the RLS-TT algorithm in [21] and the tabu
search algorithm QMST-TS in [11]. For the instances of subclass SYM with
20 ≤ |V | ≤ 50, only heuristics are able to produce feasible solutions within
reasonable time. Note that the RLS-TT heuristic just provides summarized re-
sults on this group of 480 benchmarks, without giving detailed results for each
instance. Unfortunately, as pointed out in [11,23], some of the results reported
by RLS-TT exhibit internal inconsistencies, probably due to typographical
errors. It means that it is impossible to reproduce the results reported by
RLS-TT on the inconsistent instances.

To ensure that the computation time required by our TPS approach is compa-
rable to the existing approaches, we independently run TPS 10 times to solve
each instance, each run continues until the best found solution can not be fur-
ther improved after 10 consecutive rounds of Descent Neighborhood Search
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Table 2
Four improved results of the SYM subclass of group OP1
|V | |E| Index QMST-TS [11] TPS

Best T (s) Best T (s) t(s) σ
√

= ×
50 1225 2 17600 25.38 17587∗ 4.88 0.49 0.19 3 0 7

50 1225 7 17643 25.29 17633∗ 4.00 0.40 0.14 5 0 5

50 1225 8 17685 25.11 17663∗ 5.32 0.53 0.18 6 0 4

50 1225 10 17639 25.35 17623∗ 5.71 0.57 0.17 5 0 5

Average - - 17641.8 25.28 17626.5∗ 4.98 0.50 0.17 4.75 0 5.25

and Explore Local Optima search phases followed by Diversified Perturb, or
up to 50 such rounds have been applied. Our results show that, for all these 480
instances, TPS succeeds in matching the optimal results (for instances with
known optima) or finding solutions no worse than the previous best known
solutions (for instances with unknown optima) 4 , with an accumulated CPU
time ranging from less than one second to about five seconds.

Most importantly, for four largest SYM instances with unknown optima (with
|V |=50), TPS succeeds in improving the current best solutions (new upper
bounds) of the literature. The detailed results of these four instances are given
in Table 2, where the first three columns are about the instances, and the next
two columns respectively report the best objective value and the accumulated
CPU time (in seconds) of QMST-TS. The last seven columns show perfor-
mance information of TPS, including the best objective value (’Best’), the
accumulated CPU time of 10 runs (in seconds, ’T(s)’), the average CPU time
of one run (in seconds, column ’t(s)’), the standard deviation on runtime (col-
umn σ), as well as the times that TPS improves (column

√
), matches (column

=) or misses (column ×) the best known result among 10 runs. The best re-
sults reported by all the competing algorithms (including our TPS algorithm)
are indicated in bold, and once our TPS yields a result better than the previ-
ous best known result, it is indicated with a symbol ’*’. Finally, the last row
indicates the average value of each column (marked as ’-’, if not applicable).

3.5 Results of the SCA instances

This set include six old instances, which are generated by Soak et al. [28] and
have been widely used by various heuristics [11, 21, 28, 29]. For each of these
instances, we independently run TPS 20 times (like QMST-TS [11]), each run
using the same stop criterion as for group OP1. The obtained results are given
in Table 3, with respect to the results reported by four reference heuristics:
EWD [28], RLS-TT [21], ABC [29], QMST-TS [11]). The first column pro-
vides the problem size |V |, while the following eight columns indicate the best
found results and the accumulated CPU times (in seconds) of each competing

4 All the previous best known results of the OP1 instances could be downloaded
from http://www.dti.unimi.it/cordone/research/qmst.html.
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algorithm, and the last seven columns show the results of our TPS algorithm,
with information similar to the last seven columns of Table 2. The average of
each column is listed in the last row.

Table 3 discloses that for all these 6 instances, TPS steadily (indicated by a
small value of σ) improves or matches the previous best results within a short
time. Moreover, for the instance with |V |=80, TPS repeatedly (16 times out of
the 20 independent runs) improves the best known result. It also improves 6,
6, 2, 3 results compared to EWD, RLS-TT, ABC, QMST-TS, respectively. Fi-
nally, TPS yields a better averaged objective value, indicating its effectiveness
on these old benchmarks.
Table 3
Results of the SCA instances
|V | EWD [28] RLS-TT [21] ABC [29] QMST-TS [11] TPS

Best T (s) Best T (s) Best T (s) Best T (s) Best T (s) t(s) σ
√

= ×
50 25339 343.0 25226 3242.1 25200 87.0 25200 44.5 25200 5.6 0.3 0.0 0 20 0

60 36086 495.7 35754 4321.4 35466 169.0 35447 83.2 35447 12.6 0.6 0.1 0 20 0

70 48538 716.6 48536 5738.5 48125 337.2 48125 178.5 48125 21.3 1.1 0.2 0 20 0

80 63546 1086.7 63546 7026.3 63022 417.8 63004 340.4 62963∗ 41.1 2.1 0.6 16 0 4

90 79627 1337.2 79922 8623.6 78879 751.8 78912 579.7 78879 55.1 2.8 0.8 0 6 14

100 98342 1828.9 98811 10431.3 96750 1542.4 96757 789.4 96750 89.2 4.5 1.3 0 10 10

Average 58579.7 968.0 58632.5 6563.9 57907.0 550.9 57907.5 336.0 57894.0∗ 37.5 0.38 0.5 2.7 12.7 4.7

3.6 Results of the SS instances

These 18 instances have been used to test ABC [29] and QMST-TS [11]. For
comparison, for each of these instances, we independently run TPS 20 times
(like QMST-TS), each run stops if the best found solution can not be further
improved for 5 consecutive rounds of the three search phases or up to 40 such
rounds have been applied. The obtained results are listed in Table 4, where the
first two columns identify each instance, the next four columns indicate the
best results and the total computational time in seconds of ABC and QMST-
TS, and the last seven columns report the information for our TPS algorithm
like in Table 3. The averaged results are also listed in the last row.

Table 4 discloses that for all the 12 instances with |V | ≥100, TPS can repeat-
edly find improved results over the best known results, while for the left 6
smaller instances with |V | ≤50, TPS can easily reach the best known results.
Unsurprisingly, TPS obtains a best averaged objective value. Moreover, TPS
requires reasonable (short) total run-times with small standard deviations.

3.7 Results of the RAND and SOAK instances

Recently, Lozano et al. [17] propose a hybrid heuristic named HSII and eval-
uate its performance using two groups (RAND and SOAK) of 18 newly gen-
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Table 4
Results of the SS instances
|V | Index ABC [29] QMST-TS [11] TPS

Best T (s) Best T (s) Best T (s) t(s) σ
√

= ×
25 1 5085 18.2 5085 6.7 5085 0.4 0.02 0.01 0 20 0

25 2 5081 20.4 5081 6.6 5081 0.6 0.03 0.01 0 19 1

25 3 4962 21.0 4962 6.9 4962 0.4 0.02 0.00 0 20 0

50 1 21126 173.6 21126 50.4 21126 5.5 0.28 0.10 0 14 6

50 2 21123 176.8 21106 50.4 21106 5.5 0.28 0.09 0 8 12

50 3 21059 190.2 21059 50.6 21059 4.2 0.21 0.06 0 16 4

100 1 89098 2333.2 88871 965.8 88745∗ 81.2 4.06 1.12 2 0 18

100 2 89202 2319.0 89049 957.7 88911∗ 76.4 3.82 1.62 7 0 13

100 3 89007 1977.6 88720 961.2 88659∗ 87.5 4.37 1.76 3 0 17

150 1 205619 8897.4 205615 2928.7 204995∗ 510.6 25.53 9.70 12 0 8

150 2 205874 7486.6 205509 2923.0 205219∗ 493.7 24.68 10.56 4 0 16

150 3 205634 8658.6 205094 2928.6 205076∗ 596.7 29.84 10.73 1 0 19

200 1 371797 22828.4 371492 6320.3 370873∗ 1519.5 75.98 36.28 9 0 11

200 2 371864 23112.0 371698 6332.1 370853∗ 1386.3 69.32 25.17 15 0 5

200 3 372156 25534.2 371584 6324.3 370954∗ 1282.8 64.14 21.80 9 0 11

250 1 587924 51268.2 586861 9572.3 586265∗ 2916.5 145.82 45.36 7 0 13

250 2 588068 56818.2 587607 9592.9 586778∗ 2253.3 112.66 31.68 17 0 3

250 3 587883 46565.8 587281 9601.2 585851∗ 2709.9 135.49 53.58 14 0 6

Average - 213475.7 14355.5 213211.1 3310.0 212866.6* 774.0 38.70 13.87 5.56 5.39 9.06

Table 5
Results of the RAND instances
Instance ABC [29] ITS [22] HSII [17] TPS

Best T (s) Best T (s) Best T (s) Best T (s) t(s) σ
√

= ×
RAND-150-1 194294 4000 192946 4000 192606 4000 192369∗ 4000 400 0 2 0 8

RAND-150-2 194218 4000 193034 4000 192607 4000 192579∗ 4000 400 0 1 0 9

RAND-150-3 193882 4000 192965 4000 192577 4000 192046∗ 4000 400 0 4 0 6

RAND-200-1 353163 12000 351216 12000 350517 12000 350321∗ 12000 1200 0 3 0 7

RAND-200-2 353784 12000 351312 12000 350389 12000 350658†1 12000 1200 0 0 0 10

RAND-200-3 353169 12000 351466 12000 351057 12000 350601∗ 12000 1200 0 7 0 3

RAND-250-1 561864 20000 558451 20000 556929 20000 557278†2 20000 2000 0 0 0 10

RAND-250-2 560704 20000 558820 20000 557474 20000 556604∗ 20000 2000 0 1 0 9

RAND-250-3 561497 20000 559304 20000 556813 20000 557060†3 20000 2000 0 0 0 10

Average 369619.4 12000 367723.8 12000 366774.3 12000 366612.9*12000 1200 0 2.0 0.0 8.0

†1: TPS achieves an improved value of 350231 (within 12000 seconds) with re-tuned parameters Ldir ∈ [0.1n, n] and Ldiv ∈ [n, 2n]

†2: TPS achieves an improved value of 556596 (within 20000 seconds) with re-tuned parameter Ldiv ∈ [0.5n, 2n]

†3: TPS achieves an improved value of 556378 (within 20000 seconds) with re-tuned parameter Ldiv ∈ [0.5n, 5n]

Table 6
Results of the SOAK instances
Instance ABC [29] ITS [22] HSII [17] TPS

Best T (s) Best T (s) Best T (s) Best T (s) t(s) σ
√

= ×
SOAK-150-1 207652 4000 206721 4000 206925 4000 206721 4000 400 0 0 1 9

SOAK-150-2 208206 4000 206761 4000 207102 4000 206761 4000 400 0 0 5 5

SOAK-150-3 207533 4000 206802 4000 206781 4000 206759∗ 4000 400 0 2 3 5

SOAK-200-1 372419 12000 370137 12000 370265 12000 369851∗ 12000 1200 0 5 0 5

SOAK-200-2 371641 12000 370028 12000 369982 12000 369803∗ 12000 1200 0 8 0 2

SOAK-200-3 372117 12000 370046 12000 370045 12000 369794∗ 12000 1200 0 7 0 3

SOAK-250-1 584799 20000 582282 20000 581819 20000 581671∗ 20000 2000 0 1 0 9

SOAK-250-2 584409 20000 582145 20000 581691 20000 581492∗ 20000 2000 0 2 0 8

SOAK-250-3 585717 20000 582708 20000 581854 20000 581573∗ 20000 2000 0 1 0 9

Average 388277.0 12000 386403.3 12000 386273.8 12000 386047.2*12000 1200 0 2.9 1.0 6.1
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erated benchmarks, in comparison with two previous heuristics, i.e., ITS [22]
and ABC [29] 5 . For each instance, the above three algorithms are respectively
executed 10 independent times, each run stops using a time limit that varies
according to the problem size (400, 1200, 2000 seconds respectively for in-
stances with |V |=150, 200, 250, uniformly on a 3.2 GHz Intel processor with
12 GB RAM). To evaluate our TPS algorithm under a comparable condition,
we also independently run TPS 10 times to solve each instance, using the
same cutoff time like in [17] for each run (we use a computer with an Intel
Xeon E5440 2.83 GHz processor and 2 GB RAM). The obtained results are
provided in Tables 5 and 6 (with the averaged values given in the last row),
where the meanings of the columns are similar to those in previous Tables.

On the one hand, as listed in Table 5, for six out of the nine instances of
group RAND, TPS succeeds in finding an improved solution over the compared
algorithms, while for the left three instances (Rand-200-2, Rand-250-1 and
Rand-250-3, marked as ”†” in the table), TPS fails to match the previous best
known results within the limited runtime. However, as shown at the bottom of
Table 5, for each of these three instances, an improved solution over the best
known result can be found (within the same cutoff time) by TPS with re-tuned
parameters. On the other hand, for the nine SOAK instances (Table 6), TPS
improves seven best known results and matches the left two results. Finally,
considering the averaged objective value, we observe that TPS performs the
best on both these two groups, indicating its overall competitiveness in terms
of solution quality with respect to the existing algorithms.

3.8 Results of the QAP-QMSTP instances

This group of 29 special QMSTP instances are transformed from QAP (includ-
ing 14 CHR ones [9] and 15 NUG ones [20]), while guaranteeing a one-to-one
correspondence of the feasible solutions after transformation [21]. For each of
these 29 instances, we independently run TPS 10 times, each run continues
until the best found solution can not be further improved after 500 consecu-
tive rounds of the three search phases, to ensure that the accumulated runtime
remains comparable with respect to the compared heuristics.

Table 7 lists in detail the obtained results. The first two columns show the
instance name and its optimal value known from the QAP literature [7] 6 . The

5 ITS and ABC did not report results on groups RAND, SOAK, and QAP-QMSTP.
In order to test ITS and ABC on these benchmarks, Lozano et al. use the source
code of ITS from http://www.soften.ktu.lt/~gintaras/qmstp.html and re-
implement the ABC algorithm, and then compare the obtained results with the
HSII algorithm using the same computing platform.
6 The optimal solutions of the original QAP instances are available online at the
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Table 7
Results of TPS on the QAP-QMSTP instances compared with RLS-TT [21], ABC
[29], ITS [22], HSII [17] and QMST-TS with re-tuned parameters [11].
InstanceOpt. RLS-TT ABC ITS HSII QMST-TS TPS

Best T (s) Best T (s) Best T (s) Best T (s) Best T (s) Best T (s) t(s) σ = ×
chr12a 9552 11170 783 14290 10000 16694 10000 9552 10000 9552 288 9552 43 4.3 0.1 10 0

chr12b 9742 10753 790 21552 10000 16356 10000 9742 10000 9742 287 9742 37 3.7 0.0 10 0

chr12c 11156 12712 783 15810 10000 17434 10000 11156 10000 11156 286 11156 44 4.4 0.2 10 0

chr15a 9896 11638 1239 24224 10000 16718 10000 9952 10000 9936 497 9896 92 9.2 0.5 10 0

chr15b 7990 10145 1136 28340 10000 17208 10000 8384 10000 7990 492 7990 90 9.0 0.3 10 0

chr15c 9504 12769 1254 25566 10000 19302 10000 9504 10000 9504 492 9504 91 9.1 0.4 10 0

chr18a 11098 12757 3325 24954 10000 22496 10000 13834 10000 11098 793 11098 170 17.0 1.0 10 0

chr18b 1534 1676 3354 2160 10000 1534 10000 1534 10000 1534 789 1534 148 14.8 0.2 10 0

chr20a 2192 2445 4968 4742 10000 2232 10000 2276 10000 2192 1043 2192 356 35.6 8.0 6 4

chr20b 2298 2730 4652 3704 10000 2440 10000 2462 10000 2352 1044 2298 482 48.2 15.2 3 7

chr20c 14142 30124 4763 49842 10000 36558 10000 20206 10000 14202 1046 14142 260 26.0 0.8 10 0

chr22a 6156 8760 5089 8688 10000 6390 10000 6334 10000 6228 1395 6156 450 45.0 4.8 10 0

chr22b 6194 8402 4741 8908 10000 6314 10000 6396 10000 6314 1422 6194 581 58.1 15.0 3 7

chr25a 3796 9658 5223 8540 10000 4300 10000 4310 10000 3866 2135 3796 841 84.1 24.0 7 3

nug12 578 605 639 656 10000 578 10000 578 10000 578 287 578 40 4.0 0.1 10 0

nug14 1014 1084 724 1140 10000 1014 10000 1026 10000 1014 414 1014 67 6.7 0.1 10 0

nug15 1150 1265 1348 1404 10000 1150 10000 1152 10000 1150 493 1150 78 7.8 0.0 10 0

nug16a 1610 1742 2311 1944 10000 1638 10000 1634 10000 1622 583 1610 102 10.2 0.3 10 0

nug16b 1240 1350 2936 1480 10000 1248 10000 1246 10000 1240 579 1240 97 9.7 0.1 10 0

nug17 1732 1874 3422 2066 10000 1768 10000 1774 10000 1750 685 1732 123 12.3 0.3 10 0

nug18 1930 2056 3482 2224 10000 1964 10000 1984 10000 1942 793 1930 152 15.2 0.3 10 0

nug20 2570 2860 5151 2900 10000 2644 10000 2662 10000 2580 1047 2570 228 22.8 0.3 10 0

nug21 2438 2698 5184 3042 10000 2502 10000 2540 10000 2488 1201 2438 248 24.8 1.6 10 0

nug22 3596 3868 5482 4580 10000 3712 10000 3750 10000 3672 1371 3596 317 31.7 0.6 10 0

nug24 3488 3874 5914 4340 10000 3648 10000 3688 10000 3590 1838 3488 410 41.0 1.4 10 0

nug25 3744 4083 5983 4522 10000 3954 10000 3940 10000 3874 2098 3744 475 47.5 5.2 10 0

nug27 5234 5966 6025 6284 10000 5456 10000 5534 10000 5352 2788 5234 651 65.1 7.6 10 0

nug28 5166 5819 6087 6238 10000 5406 10000 5484 10000 5262 3228 5166 771 77.1 6.8 10 0

nug30 6124 6923 6227 7688 10000 6506 10000 6528 10000 6364 4283 6124 1251 125.121.5 10 0

Average 5064.3 6614.0 3552.2 10063.010000.0 7902.2 10000.0 5488.3 10000.0 5108.4 1161.9 5064.3*299.8 30.0 4.0 9.3 0.7

next 10 columns report the best results and the accumulated CPU times (in
seconds) of each compared algorithm, i.e., RLS-TT [21], ABC [29], ITS [22],
HSII [17] and QMST-TS with re-tuned parameters [11]. Note that, like for
the RAND and SOAK instances, the results of ABC and ITS are reproduced
by Lozano et al. [17]. The last six columns indicate the results of our TPS
algorithm with information similar to previous tables (column

√
is removed

from the table, since all these 29 instances have known optimal results, thus
being obviously impossible to be improved). Again, the last row gives the
averaged value of each column.

From Table 7, one observes that the previous QMSTP algorithms RLS-TT,
ABC, ITS, HSII, QMST-TS respectively miss 29, 29, 25, 23, 17 optimal solu-
tions. On the contrary, for all these instances, our TPS algorithm can consis-
tently match (within very short time) the optimal solutions. This is the first
time a QMSTP algorithm manages to attain all the optimal values of these
particular instances, clearly indicating its effectiveness and competitiveness.

QAPLIB: http://www.seas.upenn.edu/qaplib.
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Table 8
Improve percentage on each group of instances
Algorithms \ Instances SCA SS RAND SOAK QAP-QMSTP

TPS ↔ EWD 1.11% - - - -

TPS ↔ RLS-TT 1.02% - - - 15.34%

TPS ↔ ABC 0.02% 0.21% 0.84% 0.56% 31.79%

TPS ↔ ITS - - 0.30% 0.07% 15.17%

TPS ↔ QMST-TS 0.02% 0.10% - - 0.99%

TPS ↔ HSII - - 0.06% 0.07% 4.52%

3.9 Summarized results

We now summarize the overall performance of TPS on each group of instances,
with respect to the reference algorithms. First, we calculate the mean improve-
ment percentage of TPS over each compared algorithm, which is defined as∑

I∈Gr

F1(I)−F2(I)
F1(I)

|Gr| , where Gr, I, F1(T ), F2(T ) are respectively a benchmark
group, an instance of group Gr, the best objective value obtained by the com-
pared algorithm as well as our TPS algorithm. The values of all the possible
mean improvement percentages are given in Table 8, where the columns in-
dicate the benchmark groups (excluding groups CP and OP1 which are too
easy for the competing algorithms), and the rows indicate pairs of competing
algorithms (our TPS algorithm against each previously existing algorithm).
The unavailable items are marked as ’-’, meaning that the compared algorithm
did not report results on the corresponding benchmark group.

Table 8 shows that, compared to each reference algorithm (if applicable),
TPS yields a positive mean improvement percentage (ranging from 0.02% to
31.79%) on each benchmark group, corresponding to various problem sizes,
network densities and types of quadratic costs. Specifically, TPS is extremely
competitive on the instances transformed from QAP (see more discussions in
Section 4.2).

Furthermore, to check the statistical significance of the observed differences,
we apply the Friedman test to compare TPS and each compared algorithm
(in terms of the best found objective values) on each benchmark group. The
p-values of this test are given in Table 9 where the columns and rows indicate
the same information as in Table 8. This test confirms that the differences
are statistically significant (with a p-value smaller than 5 × 10−2) on almost
every group of instances, with only three exceptions, i.e., TPS ↔ ABC, TPS
↔ QMST-TS on group SCA, and TPS ↔ HSII on group RAND.

These results demonstrate that TPS competes very favorably with the existing
QMSTP approaches on different types of benchmark instances.
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Table 9
Friedman test results on each group of instances, based on the best objective values
Algorithms \ Instances SCA SS RAND SOAK QAP-QMSTP

TPS ↔ EWD 1.43×10−2 - - - -

TPS ↔ RLS-TT 1.43×10−2 - - - 7.24× 10−8

TPS ↔ ABC 1.57×10−1 3.12×10−4 2.70×10−3 2.70×10−3 7.24× 10−8

TPS ↔ ITS - - 2.71×10−3 8.15×10−3 5.73× 10−7

TPS ↔ QMST-TS 8.32×10−2 5.32×10−4 - - 3.74× 10−5

TPS ↔ HSII - - 3.17×10−1 2.69×10−3 1.62× 10−6

Table 10
Importance of the pre-estimation criterion

Group Total (×103) Discarded (×103) Ratio

CP 185 163 164 617 88.9%

OP1 20 088 14 427 71.8%

SCA 38 567 35 869 93.0%

SS 1 064 156 1 033 653 97.1%

RAND 5 339 866 5 198 101 97.3%

SOAK 5 062 492 4 921 408 97.2%

QAP-QMSTP 14 840 14 419 97.2%

4 Analysis of search components

4.1 Impact of the pre-estimation criterion

The TPS algorithm employs a pre-estimation criterion to discard useless swap-
edge moves while applying the swap-edge operator (Section 2.5). To highlight
the importance of this fast examination technique, we realize the following
experiment. While solving each group of instances, we record the total number
of all the possible edges e ∈ E\X, associated with the number of the useless
edges discarded by the pre-estimation criterion, as detailed in Table 10. Table
10 reveals that for benchmarks CP, OP1, SCA, SS, RAND, SOAK, QAP-
QMSTP, the pre-estimation criterion can respectively identify and discard
88.9%, 71.8%, 93.0%, 97.1%, 97.3%, 97.2%, 97.2% useless edges among all the
possible edges.

Furthermore, we study the influence of the pre-estimation criterion in terms
of the problem size. For this purpose, we classify all the 659 instances into
two categories, i.e., small-sized instances with |V | ≤ 100 (including all the in-
stances of groups CP, OP1, SCA, QAP-QMSTP and nine instances of group
SS), and large-sized instances with |V | > 100 (including all the instances of
groups RAND, SOAK and nine instances of group SS). Similarly, we record
the ratio between the number of useless edges discarded by the pre-estimation
criterion and the total number of all the possible edges e ∈ E\X. The reduc-
tion ratio is 89.3%, 97.3% on the small and large-sized instances respectively.

This experiment confirms the relevance of the pre-estimation criterion to the
proposed algorithm for solving various instances of different types and sizes.
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4.2 Impact of the directed perturbation operators

Our TPS algorithm relies on two tabu-based directed perturbation operators
(swap-edge and swap-vertex). To analyze the impact of these directed pertur-
bation operators, we implement as follows three variants of TPS by varying
the directed perturbation operator. Respectively, TPS-V1 always applies the
swap-edge directed perturbation operator, and TPS-V3 always applies the
swap-vertex directed perturbation operator, while TPS-V2 applies each oper-
ator with probability 50%. All the remaining ingredients and parameters keep
in accordance with the standard TPS (described in Section 2 and Section 3.2).

For this study, we select a subset of 44 most challenging instances (among all
the 659 instances) as sample instances, including 30 conventional instances
(i.e, the 12 instances with |V | ≥ 100 of group SS, together with all the 18
instances of groups RAND and SOAK) and 14 special instances transformed
from QAP (i.e., the 14 instances with |V | ≥ 40 of group QAP-QMSTP). For
each instance, we independently run each variant 10 times, each run continues
until a given cutoff time is elapsed. Respectively, for groups RAND and SOAK,
we use the same cutoff time as in Section 3.7, and for groups SS and QAP-
QMSTP, each run continues for six minutes, thus a total time of one hour is
allowed for 10 independent runs. The obtained results are provided in Table
11, including the best and average objective values of the 10 independent runs,
and the accumulated CPU times (in seconds). The result in bold indicates
that the corresponding variant performs the best on this instance, in terms of
best or average objective value.

We use the Friedman test to examine the statistical differences between dif-
ferent variants. Respectively, on the 30 conventional instances, the Friedman
test detects significant differences in terms of both best and average objective
values (with p-values of 2.04 × 10−11 and 7.13 × 10−13 respectively). On the
14 QAP-QMSTP instances, the Friedman test also detects significant differ-
ences in terms of both best and average objective values (with p-values of
2.84× 10−5 and 7.43× 10−6 respectively). These observations indicate the im-
portance of the directed perturbation to the performance of TPS on various
types of instances.

For the 30 conventional instances, Table 11 indicates that TPS-V1 clearly
dominates TPS-V3 on almost all the test instances, in terms of both best
and average objective values. Furthermore, we find TPS-V1 is also superior
to TPS-V2. In terms of best objective values, TPS-V1 yields 23 better and 2
equal results compared to TPS-V2. In terms of average objective values, TPS-
V1 dominates TPS-V2 on 26 out of the 30 test instances. These comparisons
imply that the swap-edge directed perturbation operator is suitable for tack-
ling the conventional instances. On the other hand, for the 14 QAP-QMSTP
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Table 11
Results corresponding to different directed perturbation operators
Instance TPS-V1 (only swap-edge) TPS-V2 (combined) TPS-V3 (only swap-vertex)

Best Average T (s) Best Average T (s) Best Average T (s)

SS-100-1 88730 88790.3 3600 88780 88865.0 3600 88780 88874.1 3600

SS-100-2 88772 88806.9 3600 88725 88833.5 3600 88855 88915.8 3600

SS-100-3 88619 88619.0 3600 88619 88656.1 3600 88619 88762.8 3600

SS-150-1 205011 205069.3 3600 204984 205258.5 3600 205350 205641.0 3600

SS-150-2 204873 205178.4 3600 204991 205143.5 3600 205337 205736.9 3600

SS-150-3 204770 205034.5 3600 204992 205233.4 3600 205429 205700.7 3600

SS-200-1 370506 370941.1 3600 370587 371264.7 3600 371532 372135.9 3600

SS-200-2 370827 371059.6 3600 370825 371178.3 3600 371727 372080.9 3600

SS-200-3 370582 371159.2 3600 370990 371472.9 3600 371840 372278.4 3600

SS-250-1 586812 587174.0 3600 586968 587586.5 3600 588403 589189.4 3600

SS-250-2 586689 587157.5 3600 586980 587445.2 3600 588743 589361.5 3600

SS-250-3 586717 587004.1 3600 586269 587168.3 3600 588805 589377.7 3600

RAND-150-1 192369 192754.6 4000 192560 192909.9 4000 192827 193388.0 4000

RAND-150-2 192579 192856.1 4000 192587 192931.8 4000 193297 193508.4 4000

RAND-150-3 192046 192583.6 4000 192496 192876.0 4000 193067 193420.6 4000

RAND-200-1 350321 350901.1 12000 350676 351147.8 12000 351703 352196.6 12000

RAND-200-2 350658 350880.5 12000 350711 351184.9 12000 351828 352114.6 12000

RAND-200-3 350601 350980.1 12000 350506 351152.2 12000 351680 352305.1 12000

RAND-250-1 557278 557823.4 20000 557626 558193.0 20000 558656 559514.1 20000

RAND-250-2 556604 557822.8 20000 557789 558200.4 20000 559387 560003.1 20000

RAND-250-3 557060 557762.0 20000 557399 558045.7 20000 558690 559650.3 20000

SOAK-150-1 206721 206900.7 4000 206721 206890.4 4000 206895 207030.9 4000

SOAK-150-2 206761 206894.5 4000 206922 207176.1 4000 206922 207425.3 4000

SOAK-150-3 206759 206839.9 4000 206785 206889.4 4000 206898 207164.0 4000

SOAK-200-1 369851 370220.1 12000 369990 370377.8 12000 370741 371148.6 12000

SOAK-200-2 369803 369932.6 12000 369822 370263.8 12000 370590 371117.7 12000

SOAK-200-3 369794 370010.2 12000 370089 370182.8 12000 370403 370709.1 12000

SOAK-250-1 581671 582364.4 20000 581959 582357.1 20000 582935 583791.0 20000

SOAK-250-2 581492 581903.0 20000 581671 582154.7 20000 581884 583431.3 20000

SOAK-250-3 581573 582323.8 20000 581596 582290.2 20000 582641 583270.8 20000

chr20a 2192 2231.2 3600 2192 2192.0 3600 2192 2192.0 3600

chr20b 2334 2373.2 3600 2298 2298.0 3600 2298 2302.6 3600

chr20c 14214 14929.8 3600 14142 14142.0 3600 14142 14142.0 3600

chr22a 6384 6438.2 3600 6156 6156.0 3600 6156 6156.0 3600

chr22b 6364 6465.0 3600 6194 6198.4 3600 6194 6201.2 3600

chr25a 3970 4248.8 3600 3796 3796.0 3600 3796 3796.0 3600

nug20 2602 2637.0 3600 2570 2570.0 3600 2570 2570.0 3600

nug21 2550 2574.8 3600 2438 2438.0 3600 2438 2438.0 3600

nug22 3714 3745.8 3600 3596 3596.0 3600 3596 3596.0 3600

nug24 3686 3721.6 3600 3488 3488.0 3600 3488 3488.0 3600

nug25 3872 3961.6 3600 3744 3744.0 3600 3744 3744.0 3600

nug27 5446 5488.4 3600 5234 5234.0 3600 5234 5234.0 3600

nug28 5358 5420.8 3600 5166 5166.0 3600 5166 5166.0 3600

nug30 6470 6543.4 3600 6124 6124.0 3600 6124 6124.0 3600

instances, one finds that TPS-V3 performs similarly to TPS-V2 (without sig-
nificant difference detected by Friedman test), while they both dominate TPS-
V1 on almost all the test instances (in terms of both best and average objective
values), implying that the swap-vertex directed perturbation is very useful for
solving these particular instances.

The excellent performance of TPS with the swap-vertex operator on the QAP-
QMSTP instances (transformed from QAP) could be explained as follows. In
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fact, QAP is to uniquely assign k source vertices to k destination vertices
of minimal cost (including linear and quadratic terms) [9]. According to the
transformation rules described in [21], any transformed QAP-QMSTP instance
has the following features: 1) The input graph also consists of k source ver-
tices and k destination vertices. 2) In the optimal solution (a tree), every
source vertex must be a leaf vertex, being connected to a unique destination
vertex (otherwise the total cost would become unreasonably high). 3) The ob-
jective value of a feasible solution tree completely depends on its edges that
connect source vertices and destination vertices (call these edges as bridge
edges), regardless of other edges between destination vertices. According to
these features, given a feasible solution tree T = (V,X) of reasonable quality
(with each source vertex being a leaf vertex connected to a unique destination
vertex), we can find that swapping any two bridge edges e ∈ E\X and f ∈ X
would always lead to an unfeasible solution (not a tree) or a solution tree of
unreasonably high objective value (with two source vertices connected to the
same destination vertex), thus disqualifying the conventional swap-edge oper-
ator. By contrast, by applying the swap-vertex operator which is equivalent
to swapping two pairs of bridge edges, the search has more opportunity to
reach feasible solutions of reasonable quality, thus being able to jump out of
the current local optimum.

These observations also explain why the standard TPS algorithm applies re-
spectively the swap-edge directed perturbation and swap-vertex perturbation
to solve the conventional QMSTP instances and the special QAP instances.

4.3 Impact of the diversified perturbation operator

Now we analyze the impact of the diversified perturbation operator. For this
purpose, besides the standard TPS algorithm described in Section 2, we imple-
ment for comparisons two TPS variants by varying the diversified perturbation
operator. Respectively, variant TPS-V4 adopts a random restarting strategy
which uses the randomized initialization procedure of Section 2.3 instead of the
original diversified perturbation operator of Section 2.7, and variant TPS-V5
uses the directed perturbation of Section 2.6 instead. All the other ingredients
and parameters keep in accordance with the standard TPS (with default pa-
rameters of Section 3.2). Again, we use the 44 most challenging instances to
evaluate the performances of these two variants as well as the standard TPS
algorithm. For each instance, we run each variant 10 times, using the same
cutoff time as stop condition as before (Section 4.2). The results are detailed
in Table 12, with the same meaning of each column as in Table 11.

We use the Friedman test to examine if there exist significant statistical dif-
ferences. Respectively, on the 30 conventional instances, the Friedman test

27



Table 12
Results corresponding to different diversified perturbation operators
Instance Standard TPS TPS-V4 (random restart) TPS-V5 (directed perturb instead)

Best Average T (s) Best Average T (s) Best Average T (s)

SS-100-1 88730 88790.3 3600 88829 88919.4 3600 88780 88819.5 3600

SS-100-2 88772 88806.9 3600 88862 88947.6 3600 88773 88829.9 3600

SS-100-3 88619 88619.0 3600 88671 88762.2 3600 88619 88664.8 3600

SS-150-1 205011 205069.3 3600 205436 205632.3 3600 204936 205266.5 3600

SS-150-2 204873 205178.4 3600 205492 205629.6 3600 204911 205134.1 3600

SS-150-3 204770 205034.5 3600 205232 205556.7 3600 204860 205072.3 3600

SS-200-1 370506 370941.1 3600 370938 371760.9 3600 370827 371103.8 3600

SS-200-2 370827 371059.6 3600 371283 371731.6 3600 370937 371169.5 3600

SS-200-3 370582 371159.2 3600 371210 371779.6 3600 370892 371192.2 3600

SS-250-1 586812 587174.0 3600 587332 587873.1 3600 586302 586831.1 3600

SS-250-2 586689 587157.5 3600 587263 587692.4 3600 586411 586921.3 3600

SS-250-3 586717 587004.1 3600 587257 587651.8 3600 586298 586604.9 3600

RAND-150-1 192369 192754.6 4000 193287 193502.5 4000 192721 192866.9 4000

RAND-150-2 192579 192856.1 4000 193204 193462.4 4000 192603 192891.6 4000

RAND-150-3 192046 192583.6 4000 193026 193470.8 4000 192495 192678.3 4000

RAND-200-1 350321 350901.1 12000 351575 352126.3 12000 350610 350954.7 12000

RAND-200-2 350658 350880.5 12000 351352 351934.2 12000 350328 350754.4 12000

RAND-200-3 350601 350980.1 12000 351449 352057.9 12000 350462 350780.5 12000

RAND-250-1 557278 557823.4 20000 559206 559607.1 20000 557551 557894.9 20000

RAND-250-2 556604 557822.8 20000 558400 559512.1 20000 557122 557677.2 20000

RAND-250-3 557060 557762.0 20000 559029 559454.8 20000 556714 557858.1 20000

SOAK-150-1 206721 206900.7 4000 206721 207064.1 4000 206721 206784.7 4000

SOAK-150-2 206761 206894.5 4000 207076 207356.2 4000 206905 207089.4 4000

SOAK-150-3 206759 206839.9 4000 206914 207087.2 4000 206759 206906.0 4000

SOAK-200-1 369851 370220.1 12000 370701 371004.8 12000 370060 370277.0 12000

SOAK-200-2 369803 369932.6 12000 370056 370766.4 12000 369736 370086.0 12000

SOAK-200-3 369794 370010.2 12000 370035 370674.5 12000 369808 370124.0 12000

SOAK-250-1 581671 582364.4 20000 582829 583544.8 20000 581639 582051.7 20000

SOAK-250-2 581492 581903.0 20000 582817 583228.2 20000 581556 582043.6 20000

SOAK-250-3 581573 582323.8 20000 583196 583571.7 20000 581775 582158.7 20000

chr20a 2192 2192.0 3600 2192 2192.0 3600 2192 2192.0 3600

chr20b 2298 2302.6 3600 2298 2307.2 3600 2298 2298.0 3600

chr20c 14142 14142.0 3600 14142 14142.0 3600 14142 14142.0 3600

chr22a 6156 6156.0 3600 6156 6156.0 3600 6156 6156.0 3600

chr22b 6194 6201.2 3600 6194 6194.0 3600 6194 6194.0 3600

chr25a 3796 3796.0 3600 3796 3796.0 3600 3796 3796.0 3600

nug20 2570 2570.0 3600 2570 2570.0 3600 2570 2570.0 3600

nug21 2438 2438.0 3600 2438 2438.0 3600 2438 2438.0 3600

nug22 3596 3596.0 3600 3596 3596.0 3600 3596 3596.0 3600

nug24 3488 3488.0 3600 3488 3488.0 3600 3488 3488.0 3600

nug25 3744 3744.0 3600 3744 3744.0 3600 3744 3744.0 3600

nug27 5234 5234.0 3600 5234 5234.0 3600 5234 5234.0 3600

nug28 5166 5166.0 3600 5166 5166.0 3600 5166 5166.0 3600

nug30 6124 6124.0 3600 6124 6124.0 3600 6124 6124.0 3600

reveals a p-value of 3.41 × 10−10 in terms of best objective values, and a p-
value of 2.46× 10−10 in terms of average values, indicating the importance of
the diversified perturbation operator on these instances. By contrast, on the
14 QAP-QMSTP instances, the Friedman test does not detect a significant dif-
ference in terms of both best objective values (all the three compared variants
could reach the optimal solutions of these 14 instances, leading to a p-value of
1) and average objective values (corresponding to a p-value of 3.75× 10−1).
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Furthermore, concerning the 30 conventional instances, Table 12 shows that
the standard TPS algorithm clearly dominates TPS-V4 on almost all the test
instances, in terms of both best and average objective values. The standard
TPS algorithm also competes favorably with TPS-V5. In terms of best objec-
tive values, the standard TPS algorithm yields respectively 18 better, 3 equal
and 9 worse results compared to TPS-V5. In terms of average objective values,
the standard TPS algorithm dominates TPS-V5 on 20 out of the 30 test in-
stances and performs worse on the remaining 10 instances. These comparisons
provide some insights about the importance of the diversified perturbation
operator to the performance of TPS on challenging conventional instances.

5 Conclusion

We have originally proposed a three-phase heuristic approach named TPS
for the quadratic minimum spanning tree problem (QMSTP), which could be
used to model a number of network design problems. The proposed approach
consists of a descent-based neighborhood search phase for local optimization,
a local optima exploring phase for intensive search in a given regional search
space, and a diversified perturbation phase for jumping out of the current
regional search space. Particularly, TPS integrates a novel pre-estimation cri-
terion to avoid useless computations, a new swap-vertex move operator as well
as its application for perturbations which prove to be particularly useful for
solving the special instances transformed from QAP.

Extensive experimental comparisons on all the available 659 benchmarks show
that TPS produces highly competitive results with respect to the state-of-the-
art QMSTP approaches. For the 630 conventional instances, TPS succeeds
in discovering, with a reasonable computational time, improved best known
solutions (new upper bounds) for 33 challenging instances, while matching
the best known results for the remaining instances. Finally, for the 29 special
instances transformed from QAP, TPS can reach all the known optimal solu-
tions within a short time, while the previous best QMSTP algorithm can only
reach 12 optimal solutions within high computing times. TPS proves to be
quite robust by providing excellent results with a standard default setting of
its parameters. Additional analysis helps understand the influences of several
key ingredients of the proposed algorithm, including the pre-estimation crite-
rion, the perturbation operators (Section 4), as well as the main parameters
(detailed in the Appendix).
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A Appendix: Parameters tuning

We discuss how we tune the parameters of the TPS algorithm. Given that the
benchmark instances have very different structures, it is extremely difficult
to obtain a set of parameter values which yield uniformly the best result on
every instance. Thus we only determine parameter values within reasonable
ranges in order to obtain a globally good performance. As mentioned in Section
3.2, our preliminary experiments show that lin ∈ [1, 3], lout ∈ [0.3n, 0.4n],
lswap ∈ [n, 2n], Ldir ∈ [0.5n, 2n], Ldiv ∈ [n, 5n] perform reasonably well on
each group of instances (lin and lout are disabled for the instances transformed
from QAP, and lswap is disabled for the remaining conventional instances).
In order to confirm these choices, for each parameter, we implement eight
scenarios by varying the chosen parameter within a reasonable range (shown
at the head of the tables of this Appendix), while fixing the other parameters
in accordance with the default settings (i.e., the above parameter values).

We use the 44 challenging instances mentioned in Section 4.2 (including 30
conventional instances and 14 QAP-QMSTP instances) as sample instances
to evaluate the performances of the compared scenarios. Corresponding to
each parameter, we only use the instances on which the performance of TPS
might be affected by this parameter. It means, we only use the 30 conventional
instances to tune parameters lin and lout, and only use the 14 QAP-QMSTP
instances to tune parameter lswap, while using all these 44 instances to tune
parameters Ldir and Ldiv.

Given the eight scenarios of each parameter, we independently run each sce-
nario 10 times to solve each sample instance (each run is given six minutes,
thus a total time of one hour is allowed for each scenario to solve each in-
stance), and then record the average objective values of 10 independent runs
in Tables A.1–A.5. Moreover, in order to evaluate the overall performance of
each scenario for solving all the tested sample instances, we adopt two eval-
uation criteria as follows. First, for each scenario i, we count the number of
sample instances (denoted by νi) on which scenario i performs the best among
all the eight competing scenarios (corresponding to the same parameter). The
second criterion is the mean rank of each scenario for solving all the tested
sample instances, which is precisely defined as follows: let λij = χ + 1 be the
rank of scenario i for solving instance j, where χ denotes the number of sce-
narios (among the eight compared scenarios) which achieve a better average
objective value than scenario i on instance j, then the mean rank of scenario

i for solving all the sample instances is defined as λi =

∑|SI|
j=1

λij

|SI| , where |SI|
denotes the number of sample instances selected to tune a specified parame-
ter. Intuitively, a larger value of νi or a lower value of λi generally indicates
a better overall performance of scenario i, with respect to other compared
scenarios.
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The detailed results (averaged objective values of 10 independent runs of each
scenario for solving each instance) corresponding to each parameter are given
in the following tables, in each table the rows and columns respectively indicate
the instances and the scenarios, while the final two rows give the values of νi
and λi of each scenario, in order to evaluate their overall performances. Prior
to detailed comparisons, we first use the Friedman test to check the statistical
differences between the competing scenarios.

Parameter lin (Table A.1): The Friedman test reveals a p-value of 9.45 ×
10−7, indicating that lin is somewhat sensitive to the performance of TPS.
Furthermore, we observe the scenario with lin ∈ [1, 3] achieves the largest
value of νi = 9 and the second lowest value of λi = 3.67, indicating a good
overall performance among all the eight scenarios.

Parameter lout (Table A.2): The Friedman test detects a significant difference
(with a p-value< 2.21 × 10−16) between these eight scenarios, meaning that
parameter lout should be carefully tuned. Furthermore, one observes that the
scenario with lout ∈ [0.3n, 0.4n] achieves the largest value of νi = 11 and the
lowest value of λi = 2.20, indicating its excellent overall performance with
respect to other compared scenarios.

Parameter lswap (Table A.3): For parameter lswap, no significant difference is
detected by the Friedman test (with a p-value of 7.96 × 10−2). Furthermore,
there are two scenarios (lswap ∈ [10, 100] and lswap ∈ [n, 2n]) both achieving
the largest value of νi = 14 and the lowest value of λi = 1.00. We choose
lswap ∈ [n, 2n] as default setting in the final version of the TPS algorithm.

Parameter Ldir (Table A.4): We decide to tune parameter Ldir with a uniform
setting for solving each instance, but we examine the statistical differences
respectively on the conventional instances and the instances transformed from
QAP. The Friedman tests show that Ldir is sensitive on the 30 conventional
instances (with a p-value of 2.72× 10−14) and is quite robust on the 14 QAP-
QMSTP instances (with a p-value of 3.69 × 10−1). Furthermore, among the
eight compared scenarios, the scenario with Ldir ∈ [0.5n, 2n] yields the largest
value of νi = 26 and the lowest value of λi = 2.00, thus being adopted in the
final version of the TPS algorithm.

Parameter Ldiv (Table A.5): Like parameter Ldir, we observe from the Fried-
man tests that parameter Ldiv is quite sensitive on the 30 conventional in-
stances (with a p-value of 4.05 × 10−8) and is rather robust on the 14 QAP-
QMSTP instances (with a p-value of 4.82 × 10−1). Additionally, we find the
scenario with Ldiv ∈ [n, 5n] competes favorably with other scenarios, corre-
sponding to the second largest value of νi = 21 and the second lowest value
of λi = 2.57, thus being adopted in the final version of TPS algorithm.
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Table A.1
Results obtained by varying parameter lin on the 30 conventional instances
Instances TPS with varied values (intervals) of parameter lin

[1,3] [3,10] [10,100] [0.1n,0.2n] [0.2n,0.3n] [0.3n,0.4n] [0.4n,0.5n] [0.5n,n]

SS-100-1 88808.9 88809.9 88817.3 88800.1 88786.9 88804.2 88800.6 88800.5

SS-100-2 88824.1 88830.8 88814.4 88851.3 88818.5 88815.5 88810.8 88839.6

SS-100-3 88625.3 88629.7 88623.4 88671.5 88631.0 88641.3 88629.8 88660.1

SS-150-1 205196.5 205037.9 205141.8 205113.8 205135.9 205171.8 205095.5 205220.8

SS-150-2 205306.6 205077.1 205226.1 205122.5 205154.6 205107.8 205179.3 205174.9

SS-150-3 205178.0 204989.4 205090.3 205069.6 205072.1 205136.0 205021.7 205180.4

SS-200-1 371036.6 371010.6 371205.3 370930.7 370748.8 370952.8 370968.6 371175.8

SS-200-2 371040.2 371165.3 371216.7 371150.3 371304.0 371126.3 370972.7 371242.3

SS-200-3 371209.3 371242.9 371271.8 371244.2 371340.3 371134.3 371087.2 371469.4

SS-250-1 587177.0 587050.9 587227.2 586820.5 587165.4 587104.5 587356.0 587438.2

SS-250-2 586690.1 587041.8 586820.2 586947.2 586717.9 586871.2 587035.5 587095.4

SS-250-3 586711.6 586867.6 586995.5 586849.7 586629.6 586633.7 586873.2 587089.8

RAND-150-1 192705.9 192770.7 192766.1 192839.6 192745.1 192801.0 192927.1 192830.2

RAND-150-2 192842.1 192964.3 192861.0 192933.9 192946.7 192978.7 192960.4 192779.8

RAND-150-3 192698.9 192856.8 192783.2 192757.6 192811.5 192796.7 192870.8 192783.0

RAND-200-1 351546.4 351762.5 351594.6 351561.7 351622.4 351588.0 352004.7 351884.5

RAND-200-2 351457.4 351918.2 351524.9 351643.4 351282.8 351689.8 351801.5 351836.7

RAND-200-3 351658.7 351695.6 351491.9 351238.4 351555.0 351639.5 351937.2 351875.1

RAND-250-1 558750.8 558920.7 559327.7 558778.0 559220.4 558873.9 559253.8 559313.4

RAND-250-2 559296.6 558854.4 559148.9 558784.3 559222.4 559004.5 559149.2 559286.7

RAND-250-3 558678.6 558714.0 558689.5 558876.5 559431.2 559366.5 559266.4 559697.3

SOAK-150-1 206835.0 206830.0 206938.0 206880.2 206917.9 206888.7 206912.6 206965.9

SOAK-150-2 207004.8 207003.7 207030.9 206958.8 207083.6 207076.4 206978.5 207029.1

SOAK-150-3 206877.2 206888.4 206904.9 206896.5 206944.4 206901.5 206910.2 206966.8

SOAK-200-1 370572.6 370679.9 370592.9 370670.0 370752.4 370835.3 370679.8 371032.7

SOAK-200-2 370488.9 370680.2 370658.0 370529.8 370545.8 370667.1 370589.9 370955.6

SOAK-200-3 370799.4 370474.3 370413.5 370076.2 370479.1 370519.2 370615.4 370613.2

SOAK-250-1 583541.8 583073.7 583152.0 583057.5 582963.5 583201.5 583483.9 583895.6

SOAK-250-2 583119.7 582798.1 582740.6 583304.2 583209.8 583049.8 583244.6 583423.2

SOAK-250-3 583315.1 582916.5 583239.0 583226.0 583703.4 583708.4 583157.6 583557.7

νi 9 5 2 5 5 0 3 1

λi 3.67 4.03 4.43 3.33 4.40 4.53 4.87 6.73
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Table A.2
Results obtained by varying parameter lout on the 30 conventional instances
Instances TPS with varied values (intervals) of parameter lout

[1,3] [3,10] [10,100] [0.1n,0.2n] [0.2n,0.3n] [0.3n,0.4n] [0.4n,0.5n] [0.5n,n]

SS-100-1 88833.6 88828.2 88847.4 88855.8 88770.2 88818.4 88810.9 88787.8

SS-100-2 88848.0 88871.8 88865.9 88831.3 88818.2 88834.0 88812.9 88840.1

SS-100-3 88654.6 88695.3 88742.1 88697.3 88644.9 88654.7 88643.6 88680.1

SS-150-1 205188.3 205237.5 205714.0 205123.2 205147.7 205060.0 205129.2 205224.5

SS-150-2 205249.6 205289.7 205726.3 205166.4 205126.4 205124.3 205142.3 205229.4

SS-150-3 205300.0 205236.5 205513.5 205097.4 205018.7 205064.2 204997.1 205093.0

SS-200-1 371135.4 371181.9 371880.3 370865.4 371214.7 370778.3 370989.9 371210.7

SS-200-2 371254.9 371394.1 372056.5 370894.1 371174.9 370903.7 371101.4 371276.3

SS-200-3 371535.3 371310.9 372048.0 370847.7 371115.0 370823.5 371423.7 371390.7

SS-250-1 587993.4 587188.1 588617.0 586477.4 587142.6 586609.2 587093.8 587274.5

SS-250-2 587525.4 586587.8 588199.9 586624.3 586559.9 586877.6 587152.4 586784.7

SS-250-3 587455.5 586739.5 588323.1 586357.3 586631.1 586610.2 587131.9 586802.4

RAND-150-1 192879.7 192843.5 193364.0 192850.4 192862.1 192949.8 192883.1 192781.6

RAND-150-2 193222.1 192948.8 193456.8 192872.9 192796.1 192803.4 192953.1 192971.6

RAND-150-3 192895.7 192873.1 193404.8 192827.6 192681.7 192718.3 192933.4 192997.8

RAND-200-1 352226.4 351540.1 353068.5 351475.1 351499.2 351312.0 351635.1 352184.6

RAND-200-2 352177.3 351413.9 352832.2 351380.9 351398.4 351327.6 351699.0 351943.5

RAND-200-3 352034.9 351433.9 352856.9 351310.6 351380.7 351277.2 351506.7 351778.1

RAND-250-1 559519.1 558925.9 561506.1 558415.2 558756.3 558537.4 559115.9 559378.6

RAND-250-2 560533.0 559190.7 561395.0 558398.5 558818.0 559087.1 559183.5 559246.1

RAND-250-3 560002.2 558947.6 561363.8 558278.9 558869.4 558543.3 559034.8 559162.4

SOAK-150-1 206993.6 206989.0 207179.3 206878.3 206911.5 206907.7 206918.4 206991.4

SOAK-150-2 207284.8 207160.4 207404.7 207118.9 207147.2 206911.8 206943.2 207198.5

SOAK-150-3 206998.3 206950.4 207168.2 206861.7 206855.8 206841.5 206841.0 206928.5

SOAK-200-1 371093.3 370850.4 371872.6 370505.7 370743.7 370572.9 370589.0 371060.1

SOAK-200-2 371123.4 370831.0 371700.9 370580.5 370594.2 370345.1 370608.1 370667.7

SOAK-200-3 370758.5 370538.0 371414.9 370475.8 370516.5 370456.3 370529.0 370412.4

SOAK-250-1 583595.1 583239.0 585526.4 582996.2 583127.4 582756.5 583228.8 583656.8

SOAK-250-2 583382.6 583298.4 585262.2 582891.7 582959.2 582931.5 582917.8 583314.6

SOAK-250-3 583694.4 583726.0 585592.5 583234.1 583016.2 582930.4 583189.3 583682.1

νi 0 0 0 9 4 11 4 2

λi 6.33 5.03 7.93 2.60 2.93 2.20 3.77 5.20

Table A.3
Results obtained by varying parameter lswap on the 14 QAP-QMSTP instances
Instances TPS with varied values (intervals) of parameter lswap

[1,10] [10,100] [100,500] [n,2n] [2n,3n] [3n,4n] [4n,5n] [5n,10n]

chr20a 2192.4 2192.0 2192.0 2192.0 2192.0 2192.0 2192.4 2192.0

chr20b 2311.8 2298.0 2323.4 2298.0 2312.0 2314.4 2322.8 2307.2

chr20c 14142.0 14142.0 14142.0 14142.0 14142.0 14142.0 14142.0 14142.0

chr22a 6156.0 6156.0 6156.0 6156.0 6156.0 6156.0 6156.0 6156.0

chr22b 6197.6 6194.0 6232.8 6194.0 6210.8 6214.4 6219.0 6208.6

chr25a 3918.4 3796.0 3817.0 3796.0 3817.0 3819.6 3820.6 3843.2

nug20 2570.0 2570.0 2570.0 2570.0 2570.0 2570.0 2570.0 2570.0

nug21 2438.0 2438.0 2438.0 2438.0 2438.0 2438.0 2438.0 2438.0

nug22 3596.0 3596.0 3596.0 3596.0 3596.0 3596.0 3596.0 3596.0

nug24 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0

nug25 3744.0 3744.0 3744.0 3744.0 3744.0 3744.0 3744.0 3744.0

nug27 5234.0 5234.0 5234.0 5234.0 5234.0 5234.0 5234.0 5234.0

nug28 5166.0 5166.0 5166.0 5166.0 5166.0 5166.0 5166.0 5166.0

nug30 6124.0 6124.0 6124.0 6124.0 6124.0 6124.0 6124.0 6124.4

νi 10 14 11 14 11 11 10 11

λi 2.29 1.00 2.14 1.00 1.71 2.00 2.64 2.29

36



Table A.4
Results obtained by varying parameter Ldir on all the 44 challenging instances
Instances TPS with varied values (intervals) of parameter Ldir

[0.1n,0.5n] [0.1n,n] [0.5n,n] [0.5n,2n] [n,2n] [n,5n] [2n,5n] [2n,10n]

SS-100-1 88801.8 88807.5 88798.8 88796.2 88808.7 88816.9 88788.6 88826.9

SS-100-2 88807.0 88833.5 88837.8 88828.6 88834.0 88829.4 88842.3 88865.3

SS-100-3 88655.7 88649.3 88630.1 88650.1 88628.6 88629.2 88628.0 88635.1

SS-150-1 205156.8 205140.3 205146.7 205037.8 205227.9 205154.8 205131.2 205247.9

SS-150-2 205165.2 205243.5 205227.7 205071.3 205177.2 205136.9 205181.0 205157.9

SS-150-3 205122.5 205079.1 205087.5 204985.1 205106.3 205097.4 205152.5 205166.2

SS-200-1 370928.4 371009.5 370917.6 371003.1 370812.9 371014.2 371137.5 371145.2

SS-200-2 370945.5 370838.6 370832.8 370999.6 370971.0 371191.3 371306.0 371414.9

SS-200-3 370845.8 371220.0 371169.7 371044.2 371200.1 371329.1 371236.0 371737.0

SS-250-1 586878.5 586889.3 587001.1 587054.4 587168.1 587315.0 587170.4 587510.2

SS-250-2 586820.7 586792.1 586731.9 586705.8 586867.4 587089.2 587332.8 587554.5

SS-250-3 586272.9 586714.4 586562.8 586790.0 586619.3 586904.3 586976.9 587376.6

RAND-150-1 192713.6 192789.8 192784.0 192676.3 192679.7 192900.4 192921.7 193132.5

RAND-150-2 192759.3 192835.7 192887.7 192869.1 192982.0 192923.7 193004.8 193033.2

RAND-150-3 192784.4 192676.2 192683.4 192748.2 192838.9 192987.6 192999.8 192923.3

RAND-200-1 351245.3 351651.6 351486.3 351399.6 351637.2 352031.6 351778.3 351958.4

RAND-200-2 351332.4 351478.7 351547.3 351310.9 351848.9 351824.6 351799.2 351933.1

RAND-200-3 351357.3 351783.5 351371.4 351516.3 351281.3 351525.1 351852.0 351914.0

RAND-250-1 558795.9 559053.2 558602.2 558818.1 558799.9 559334.2 559450.4 559380.3

RAND-250-2 558620.9 558854.2 558931.8 558552.1 558947.8 559194.0 559427.0 559551.8

RAND-250-3 558757.1 558892.3 558884.8 558639.3 559085.4 559243.4 558927.8 559469.0

SOAK-150-1 206876.9 206869.0 206811.0 206893.3 206873.3 206919.8 206967.4 206970.1

SOAK-150-2 207060.7 206958.0 207084.7 206905.4 207070.5 206855.7 206958.3 206933.0

SOAK-150-3 206866.2 206845.1 206855.9 206848.4 206922.4 206931.4 206913.5 206949.1

SOAK-200-1 370560.0 370647.3 370570.1 370471.2 370697.5 370753.3 370986.7 370861.5

SOAK-200-2 370481.6 370423.2 370359.9 370528.7 370538.2 370577.6 370613.5 370747.1

SOAK-200-3 370293.0 370436.1 370329.0 370211.8 370322.2 370463.6 370536.1 370816.1

SOAK-250-1 582844.9 583013.1 582866.8 582778.0 583009.8 583351.6 583447.5 583671.5

SOAK-250-2 582884.7 582978.5 582811.8 582861.5 582901.2 583203.0 582969.3 583516.8

SOAK-250-3 583115.3 582970.6 583002.5 582861.5 582887.9 583357.2 583180.3 583673.0

chr20a 2192.0 2192.0 2192.0 2192.0 2192.0 2192.0 2192.0 2192.0

chr20b 2298.0 2298.0 2311.8 2298.0 2298.0 2298.0 2298.0 2298.0

chr20c 14142.0 14142.0 14142.0 14142.0 14142.0 14142.0 14142.0 14142.0

chr22a 6156.0 6156.0 6156.0 6156.0 6156.0 6156.0 6156.0 6156.0

chr22b 6197.6 6201.2 6201.2 6194.0 6197.6 6194.0 6201.2 6198.4

chr25a 3796.0 3803.0 3796.0 3796.0 3796.0 3796.0 3796.0 3796.0

nug20 2570.0 2570.0 2570.0 2570.0 2570.0 2570.0 2570.0 2570.0

nug21 2438.0 2438.0 2438.0 2438.0 2438.0 2438.0 2438.0 2438.0

nug22 3596.0 3596.0 3596.0 3596.0 3596.0 3596.0 3596.0 3596.0

nug24 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0

nug25 3744.0 3744.0 3744.0 3744.0 3744.0 3744.0 3744.0 3744.0

nug27 5234.0 5234.0 5234.0 5234.0 5234.0 5234.0 5234.0 5234.0

nug28 5166.0 5166.0 5166.0 5166.0 5166.0 5166.0 5166.0 5166.0

nug30 6124.0 6124.0 6124.0 6124.0 6124.0 6124.0 6124.0 6124.0

νi 19 14 17 26 15 15 15 13

λi 2.45 3.20 2.77 2.00 3.32 4.18 4.55 5.45
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Table A.5
Results obtained by varying parameter Ldiv on all the 44 challenging instances
Instances TPS with varied values (intervals) of parameter ldiv

[0.1n,0.5n] [0.1n,n] [0.5n,n] [0.5n,2n] [n,2n] [n,5n] [2n,5n] [2n,10n]

SS-100-1 88911.7 88873.1 88870.6 88814.9 88853.0 88787.2 88798.4 88793.4

SS-100-2 88919.5 88908.7 88893.6 88872.6 88836.2 88838.7 88829.2 88810.0

SS-100-3 88804.2 88717.7 88713.8 88732.1 88713.1 88635.7 88640.5 88619.0

SS-150-1 205423.6 205210.8 205235.3 205159.6 205377.8 205128.8 205120.2 205080.1

SS-150-2 205355.8 205291.3 205325.9 205222.2 205158.6 205168.5 205165.3 205084.4

SS-150-3 205227.5 205334.9 205138.1 205099.9 205113.5 205081.0 205120.0 204957.5

SS-200-1 371401.8 371087.6 371049.3 371058.6 371077.5 371007.2 370952.7 371058.6

SS-200-2 371278.0 371308.1 371089.0 370999.1 371105.2 370982.6 371021.9 371179.9

SS-200-3 371386.7 371233.2 371274.6 371009.0 371017.3 371165.8 371086.1 371220.7

SS-250-1 586970.1 586929.7 586971.8 586835.3 587058.2 587211.0 587184.3 587128.7

SS-250-2 587027.8 586721.0 587094.7 586508.3 587088.0 586913.8 587037.6 587071.2

SS-250-3 587150.0 586687.8 586748.5 586530.9 587086.1 586782.6 586753.2 586764.6

RAND-150-1 193159.3 193067.1 192884.4 192835.1 192847.1 192734.8 192812.7 192890.5

RAND-150-2 193177.8 193183.9 193119.0 192918.8 192937.2 192914.3 192816.5 192994.7

RAND-150-3 193021.5 192958.3 192930.4 192872.8 192733.5 192728.7 192705.4 192995.1

RAND-200-1 351631.5 351553.9 351711.8 351695.4 351553.8 351555.1 351247.1 351724.7

RAND-200-2 351763.7 351715.7 351631.7 351723.5 351627.7 351399.6 351552.1 351831.4

RAND-200-3 351613.4 351706.6 351606.3 351655.4 351511.9 351434.2 351595.5 351760.9

RAND-250-1 559418.3 559187.9 558842.1 558833.8 558856.7 558927.4 558930.4 559381.5

RAND-250-2 559280.0 559285.0 559100.4 558877.6 558930.2 559314.8 559189.1 559377.7

RAND-250-3 558997.6 558981.3 558721.1 558761.8 559104.2 559137.9 559096.0 559364.4

SOAK-150-1 207093.9 207026.2 207060.8 206955.0 207034.5 206855.7 206889.5 206885.8

SOAK-150-2 207401.5 207261.5 207234.8 207098.2 207092.3 207003.9 206966.8 206943.6

SOAK-150-3 206980.5 206869.8 206845.5 206867.8 206865.9 206893.2 206847.2 206871.0

SOAK-200-1 370901.0 370753.8 370875.1 370559.3 370754.7 370837.9 370657.7 370514.2

SOAK-200-2 371060.1 370922.0 370775.3 370693.6 370421.7 370515.6 370761.3 370487.8

SOAK-200-3 370661.1 370710.8 370525.2 370334.9 370585.5 370384.9 370518.4 370117.6

SOAK-250-1 583780.1 582928.5 583481.8 583162.7 583330.8 583164.3 583416.6 583107.5

SOAK-250-2 583316.3 583413.6 583167.5 583001.1 582855.4 582855.1 582988.1 582938.2

SOAK-250-3 583525.5 583852.2 583409.2 583737.2 583538.0 583255.8 583222.3 583344.2

chr20a 2192.0 2192.0 2192.0 2192.0 2192.0 2192.0 2192.0 2192.0

chr20b 2298.0 2302.6 2298.0 2298.0 2298.0 2298.0 2298.0 2298.0

chr20c 14142.0 14142.0 14142.0 14142.0 14142.0 14142.0 14142.0 14142.0

chr22a 6156.0 6156.0 6156.0 6156.0 6156.0 6156.0 6156.0 6156.0

chr22b 6194.0 6194.0 6194.0 6194.0 6194.0 6194.0 6194.0 6194.0

chr25a 3796.0 3796.0 3796.0 3796.0 3796.0 3796.0 3796.0 3796.0

nug20 2570.0 2570.0 2570.0 2570.0 2570.0 2570.0 2570.0 2570.0

nug21 2438.0 2438.0 2438.0 2438.0 2438.0 2438.0 2438.0 2438.0

nug22 3596.0 3596.0 3596.0 3596.0 3596.0 3596.0 3596.0 3596.0

nug24 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0 3488.0

nug25 3744.0 3744.0 3744.0 3744.0 3744.0 3744.0 3744.0 3744.0

nug27 5234.0 5234.0 5234.0 5234.0 5234.0 5234.0 5234.0 5234.0

nug28 5166.0 5166.0 5166.0 5166.0 5166.0 5166.0 5166.0 5166.0

nug30 6124.0 6124.0 6124.0 6124.0 6124.0 6124.0 6124.0 6124.0

νi 14 14 16 20 15 21 19 22

λi 5.07 4.34 3.75 2.73 3.14 2.57 2.48 3.16
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