A Tabu Search Algorithm with Direct
Representation for Strip Packing

Jean-Philippe Hamiez*, Julien Robet, and Jin-Kao Hao

LERIA, Université d’Angers, 2 Bd. Lavoisier, 49045 Angers, France
{hamiez,robet,hao}@info.univ-angers.fr

Abstract. This paper introduces a new tabu search algorithm for a two-
dimensional (2D) Strip Packing Problem (2D-SPP). It integrates several
key features: A direct representation of the problem, a satisfaction-based
solving scheme, two different complementary neighborhoods, a diversi-
fication mechanism and a particular tabu structure. The representation
allows inexpensive basic operations. The solving scheme considers the
2D-SPP as a succession of satisfaction problems. The goal of the combi-
nation of two neighborhoods is (to try) to reduce the height of the packing
while avoiding solutions with (hard to fill) tall and thin wasted spaces.
Diversification relies on a set of historically “interesting” packings. The
tabu structure avoids visiting similar packings. To assess the proposed
approach, experimental results are shown on a set of well-known bench-
mark instances and compared with previously reported tabu search al-
gorithms as well as the best performing algorithms.

Keywords: Tabu search, strip packing, direct representation, multi-
neighborhoods.

1 Introduction

Packing (and cutting) problems are optimization problems which are NP-hard
in the general case. “Small” objects of various shapes (regular or not) and di-
mensions have to be packed without overlap, with rotation and “guillotine” cutd]
allowed or not, into other larger objects. These larger objects are usually called
“containers” for the 3D cases (all dimensions fixed or infinite height) and “bins”
(all dimensions fixed) or “strips” (only width fixed, infinite height) in 2D. Ob-
jectives are, for instance, to minimize the number of containers and / or to
maximize the material used (hence to minimize the wasted area). The most
studied category of such problems seems to be in the 2D space.

This paper is dedicated to the 2D (non-guillotine and without rotation) Strip
Packing Problem (2D-SPP) which can be informally stated as follows. Given a set
of rectangular objects, pack them into a strip of an infinite height and fixed width
while minimizing the height of the packing. 2D-SPP is a NP-hard combinatorial

* Contact author.
! The guillotine constraint imposes a sequence of edge-to-edge cuts.

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 61-{72] 2009.
© Springer-Verlag Berlin Heidelberg 2009

62 J.-P. Hamiez, J. Robet, and J.-K. Hao

optimization problem with a number of practical applications such as cardboard
packing, glass and metal cutting or publicity scheduling for instance [T2I3/45].

Given the NP-hard nature of 2D-SPP, many (meta)heuristic procedures have
been tried: Greedy Randomized Adaptive Search Procedure (GRASP) [6], Intensifi-
cation / Diversification Walk (IDW) [7], Simulated Annealing [S[9ITO/IT], Tabu
Search (TS) [RIT2/13], Genetic Algorithm [QTOITIT3TATSTEI7ITRITI], hybrid
(meta)heuristic [TTJI3I20], HyperHeuristic [2I]. Exact algorithms have also been
considered but they are usually limited to “small instances” (up to 200 ob-
jects) [2212312425]. Among these procedures, the approximate GRASP and IDW
approaches [6/7] are probably the best performing ones.

In this paper, we introduce a new TS algorithm dedicated to the 2D-SPP
(TSD for “Tabu Search with Direct representation”). Compared with previous al-
gorithms for the 2D-SPP, our TSD has several notable features. First, it uses a
direct representation of the problem (location of the objects on the strip) while
many previous attempts manipulate permutations of the objects. Second, TSD
treats the optimization problem (minimizing the height of the packing) as succes-
sive satisfaction problems: Starting from a packing sy (obtained with a greedy
method e.g.) of height H (sg), TSD tries to solve the 2D-SPP with decreasing
values of H (sg). Finally, our algorithm includes two different complementary
neighborhoods, a diversification mechanism and handles a particular tabu struc-
ture. Preliminary computational results suggest that TSD may be of great interest
to efficiently solve the 2D-SPP.

In the next section, the 2D-SPP is formally stated. Section [is devoted to
the detailed presentation of our dedicated TS algorithm for the 2D-SPP. Ex-
perimental results are shown in Sect. 4] on a set of well-known benchmarks and
compared with previous TS attempts and the best performing state-of-the-art
algorithms. We finally discuss possible extensions in Sect. [5l before concluding.

2 Problem Formulation

Let P (for “Plane”) be a 2D vertical space with fixed width W and infinite height.
The bottom-left corner of P stands for the (0,0) point of an xy-plane where the
x-axis (respectively y-axis) is the direction of the width (resp. height) of P. The set
of n > 1 objects (Rectangles) to be positioned in P is R = {r1,...,7,} where the
weight (resp. height) of each r; (1 <i < mn)is0 < wl < W (resp. h} > 0).

According to these notations, the 2D-SPP is then to determine the (z7,y!)
coordinates of the bottom-left corner of all r; € R (i.e. the location of each r; in
P) so as to minimize the y! 4+ hl value of the highest object in P, see (Il). This
can be formally stated as follows:

Minimize: H = T 1
inimize: H Jnax (yf + hi) (1)
subject to: 0 <af <W —w] Ayl >0 (2)
A (2] > of + wj Vaf +wj <af (3)

Vi > yp by VYR <)) (4)

A Tabu Search Algorithm with Direct Representation for Strip Packing 63

where (2)) forces each r; to be inside P and [BH4) specify that any two r; and r;
objects (i # j) must not overlap horizontally and vertically, respectively.

3 TSD: A Tabu Search with Direct Representation

TS is an advanced local search method using general mechanisms and rules as
guidelines for smart search [26]. In Sect.B.IH3.6, we first describe the components
of our TSD algorithm for the 2D-SPP where all p variables (with subscripts) are
parameters whose values will be given in the experimentation part (Sect. [.T]).
The general procedure is finally summarized in Sect. B.7

3.1 Search Space: A Direct Representation

Many approaches for the 2D-SPP consider a search Space S composed of the
set of all permutations of the objects, see [13I14] for instance. More precisely,
for a given n-set of objects to be packed, a permutation of [1...n] is used to
introduce an order for all the objects which is followed by a given placement
heuristic (or “decoder”). In other words, given a particular permutation = and
placement heuristic ¢, one can pack all the objects using ¢ and according to the
order indicated by . Based on this permutation representation, several greedy
placement heuristics have been investigated for the 2D-SPP. BLF (Bottom Left
Fill) is such a heuristic [27]. Basically, BLF places each object at the left-most
and lowest possible free area. It is capable of filling enclosed wasted areas. Notice
that, according to the way BLF is implemented, its worst time complexity goes
from O(n?) [28] to O(n?) [29] for a permutation of n objects.

TSD does not code packings with permutations but adopts a direct represen-
tation where a “solution” s € S (optimal or not) is a {L, E} set:

— L, for “Location” (of the rectangular objects to be positioned in P), is an
n-vector. It indicates the coordinates (af,y!) of the bottom-left corner of
each rectangle r; € R in P.

— F is a set of rectangular “Empty” spaces in P. Each e; € E is characterized
by the coordinates (z§,yS) of its bottom-left corner, a width 0 < w§ < W
and a height 0 < hf < H(s) with 0 < zf <W —w§ and 0 < yf < H (s) — hs.
Each e; € E is a mazimal rectangle, i.e. V(e;,e;) € E x Efi # j,zf <
x§V T +wi > b+ w§ Vys < y§ Vs +hi > ys+ h§ (e is not included
into e;). Note that the notion of “maximal rectangular empty space” seems
to have been independently introduced in [30] (where it is called “maximal
area”) and [§] (“maximal hole”). In particular, it was proved in [30] that |E|
is at most in O(n?).

3.2 Initial Solution

In local search algorithms, the initial solution sg specifies where the search begins
in S. TSD uses the BLF procedure [27] to construct sg, where the 7 permutation

64 J.-P. Hamiez, J. Robet, and J.-K. Hao

orders the r; € R first by decreasing width, and, second, by decreasing height
if necessary (randomly last). We employed this decoder / order since previous
experiments suggested that the BLF placement algorithm usually outperforms
other ¢ decoders, see [28/31] for instance.

3.3 Fitness Function

To evaluate a solution s € S, TSD uses the following fitness (or “evaluation”)
function f to be minimized:

/0 if [R]=10
fle)= {Zrieflﬂ wi * (yf + hi — H* + py) otherwise . (5)

where [R| C R is the set of rectangles r; /yl +hl > H* — pg (integer 0 < ppr <
H*| for decrement of the Height) and H* is the best height found, initially the
height H (sg) of the starting solution sq introduced in the previous section.

Roughly speaking, the value f (s) is the area of rectangles exceeding H*—py in
P with f (s) = 0 meaning H (s) < H*, see Fig.[[lfor an example. In other words,
f measures the quality of s with respect to the current satisfaction problem
considered, defined by H* and pg: Is there a solution s € S/H (s) < H* —pg?
f is used to compare any (s,s’) € S x S: s is better than s" if f(s) < f(s).
TSD maintains a set S* of best solutions according to (@) with |S*| < p. and
S* ={so} at the beginning of the search. S* is used for the diversification process
described in Sect.

H*- - N <{,, ,,,,,,,,,
3 1
H*=pu--3 - K

Fig.1. Let m1 be the unit square. f(s”) = W since [R] = {rs} for s”. Similarly,
f(s)y=1and f(s) =0.

3.4 Neighborhoods and Their Exploitation

A Neighborhood N : S — S is an application used to explore S (and to guide the
search process) such as Vs € S, s' € N (s) if s and s’ only differ by a particular
operation called a “move” (noted u). TSD integrates two different complementary
neighborhoods called N7 (performed with probability py) and Ny (probability
1 —pn), both of them are based on the principle of ejection chains. The goal of
this combination is to reduce the height of the packing while avoiding solutions
with (hard to fill) tall and thin wasted spaces.

Each time a move is performed from s to s’ (at iteration m), S* and H* are
updated if necessary, and only whenever s’ ¢ S*, with the following rules where
[s*] (resp. |s*]) is the worst (resp. a best, found at iteration m*) element in S*
according to (B)) (consider the [s*] introduced the most recently):

A Tabu Search Algorithm with Direct Representation for Strip Packing 65

- (&) < f(ls*]) =6 —m—m* pp — m+pr*d, m* < m.d (number of
moves required to improve |s*|), pr (for “Increment”) and pp are used for
the Diversification process detailed in Sect.

- f()=0=H*— H(¢)

— |S*] < pi = S — S*U{s}

— IS =pa A f() < f([s7]) = 57 = S\ [s] U{s'}

N7 and N are based on the ejection chain principle and share a common char-
acteristic: They move (at least) one rectangle r; to another location. This new lo-
cation for r; may generate overlaps with a set R,, C R of other rectangles: R,, =
{rj € RJj#iNa] <af +wj Aaf +w] > af ANyl <yf+hj Ayl +hi > yj}. To
repair the overlaps between r; and all r; € R,, (Le. to insure s’ € S), all
r; € R,, are removed from P, sorted like in Sect. and, then, relocated
with BLF.

Finally, notice that changing the location of r; and the deletion or reposition-
ing of all ; € R,, (possibly) imply updates of E. This is done using the efficient
“incremental” procedures introduced in [8I20].

N7: Reduce the Height of the Packing. This is done by moving a r; €
[R] below its current location (a%,y!), at the bottom-left corner either of an
empty space e¢; € E (defining a sub-neighborhood N¥) or of another ; € R
(defining N{?).

Start with N¥. From the current s, all r; € [R] (considered from the highest
and left-most to the lowest and right-most) are first tried to be relocated to the
(5,y5) coordinates of all e; € E/ys < yi Ax§+wj <W. This generates | [R] |
sets NF (s,i) of neighbors: N{ (s) = U,erp1NE (s,1). Let |[NE (s)] € NF (s)
be the set of the best evaluated neighbors of s according to N and (&]).

If f(s') =0Vs € |[NE (s)], select randomly one s’ € | N¥ (s)| minimizing ()
to become the new “current” solution for the next iteration (s < s’). Otherwise,
if f(s') < f(s)Vs' € |[NF (s)] make s « s’ (select s’ randomly if | N¥ (s)]
contains more than one such element).

Possibly Apply N{t. If NE cannot improve s according to (&), i.e. if f(s') >
f(s)Vs' € [NF (s)], try to do so with N{¥. In this case, N{¥ (s) is explored in a
random order and the first improving move (if available) is performed.

From the current s, a random r; € [R] is first selected. Then, all r; € R/j #
PNy <yi Nxh+w] < W are considered in a random order. If transferring r;
at (:1:;, y;) leads to an improved solution s’, the exploration of N{? (s) halts and
the search continues from s’ (s <« s’). Otherwise, another such r; is selected. If
all ; have been tried, the exploration of N{¥(s) continues with another r;.

In the Worst Case, Make a Best Non-Improving Move. Let | Ny (s)] be the set
of the best evaluated neighbors of s according to N¥, N{* and (B). If N; cannot
improve s, i.e. f(s') > f(s)Vs' € | N1(s)], a random non-improving neighbor
s' € | N1 (s)] is selected for the next iteration: s «— s'.

66 J.-P. Hamiez, J. Robet, and J.-K. Hao

N>: Avoid Solutions with Tall and Thin Wasted Spaces. This second
neighborhood relies on the following empirical observation: Some empty spaces
(usually tall and thin) have a low area / perimeter ratio. Intuitively, since they
are often located on the borders of the strip, they cannot be used with NF.
Indeed, preliminary computational experiments, using only N;, has shown that
some of them (those with a maximum perimeter) were persistent and hard to fill.
N3 has thus been designed to (try to) avoid these situations, i.e. to concentrate
on these particular empty spaces to limit their number.

Let [E] C FE be the set of empty spaces with maximum perimeter: [E| =
{ej € E/w§ + b > w$, + hG, Ve € E}. Choose the empty space e; € [E]
located the highest and the left-most in P, ie. yj > y5 Azf < x5 Vej €
[E]. e; is said to be “not adjacent” to r, € R (shortly noted “e; Nry =
07) if af, > @ 4+ wi Vg +wp < x5 Voyp > oyl +hE Voyp b < 5V
(2 = o5 +wy v ag +wj = 25) A (yf + i, = 5 Vi = v5 +55)). Let [Re, | €
R be the set of rectangles with a greater area than that of e; and that are not
adjacent to e;: (Rej] = {rk € R/wj, * hj, > w§ * h§ Aej Ny = V)}.

From the current s, all r; € [Rej-‘ (considered from the highest and left-
most to the lowest and right-most) are first tried to be relocated to the four
corner of e;. To be more precise, the bottom-left corner of each r; € [Rej] is
positioned at (z§,y5) if x5 +w] < W, (2§ + w§ — w],y5) if 2§ + w§ —w] >0,
(x5, y5 +h5—hi) if y;+hs—hi > 0Azs+w] < W and (2§ +w§ —wy, yj+h§—h)
if y§ + h§ — by > 0Az§ +wj —w] > 0. This generates | [Re,]| | sets Na(s,i)
of neighbors with 1 < |Ny(s,i)| < 4: Na(s) is the union of these sets. Let
| N2 (s)] be the set of the best evaluated neighbors of s according to N2 and
@): [N2(s)] = {s' € Na(s)/Vs" € No(s),f(s") < f(s")}. Similarly to Ny, if
f(s) = 0Vs € | Na(s)], select randomly one s’ € | N3 (s)] minimizing ().
Otherwise, choose s’ € [N3 (s)] at random for the next iteration.

3.5 Tabu List

One fundamental component of TS is a special short-term memory that main-
tains a selective history of the search. It is composed of previously encountered
solutions or, more generally, pertinent attributes of such solutions. The aims
of a Tabu List (shortly “T'L”) are to avoid cycling and to go beyond local
optima.

At current iteration m, since a TSD move p,, from s to a neighbor s’ € N (s)
consists in relocating (at least) one r; € R from (z7,y?) to another location
(@'}, y'7), ie. 2’y # 27 V', # 1yl it seems quite natural to forbid 7; to return
to (a7,yr) from s'. This “reverse” move (noted p,!), that can be characterized
by pi,t = (i,27,y;), will then be stored in T'L (shortly TL — TL U {u,;'}) for
a duration TT (called the “T'abu Tenure”) to indicate that p,! is forbidden,
at least up to iteration m + T7T. In TSD, TT is a random integer number from
[Pmin TT - -+ Pmax TT]-

This strategy has one main drawback. Assume that p,, has been performed
and that the next move pi,41 relocates a r; € R to (2f,y]) such that j # i
and fim41 is not tabu (tm41 ¢ TL). If r; and r; are of the same dimensions,

A Tabu Search Algorithm with Direct Representation for Strip Packing 67

Le. wi =wj Ahi = h’, pm41 may return the search to s (already visited) or to
solutions (already visited or not) too close to s.

To avoid these situations, TSD does not record (i, z7,y?) but (w!, hl, zl,y7).
Note that the following simple “aspiration criterion” (that removes a tabu status)
is available in TSD: A tabu move is always accepted if it leads to a solution s’ that
is better than the best solution |s*| ever found (f (s') < f (|s*])). Furthermore,
if all potential moves are tabu, we select the first one with the lowest tabu
duration that would be performed if all tabu status were (temporarily) removed.

3.6 Diversification

The TSD algorithm maintains a set S* of high quality solutions obtained from
the beginning of the search (see Sect.B.3land B:4). These elite solutions are used
as candidates for diversification.

When the current search cannot be improved for a number of iterations, TSD
picks one solution s* € S* at random. This solution is then slightly perturbed
by moving a random r; € R to (z, H* — py — hl), where x is chosen randomly
from [0...W — w]]. Rectangles overlapping with r; are relocated like in Sect.
B4l This perturbed solution becomes finally the new current solution (s «— s*)
with the tabu list reset to empty (except the move used for perturbation).

3.7 TSD: An Overview

The TSD algorithm begins with an initial solution (Sect.[B2]). Then it proceeds
iteratively to visit a series of (locally best) solutions following the neighborhoods
(Sect.B4). At each iteration, the current solution s is replaced by a neighboring
solution s’ even if s’ does not improve s.

While it is not mentioned here for simplicity, note that TSD can also end (see
Step @A below) before reaching the maximum time Limit py,. This may occur each
time S* is updated whenever the optimum height Hopr (or an upper bound) is
known and H (|s*|) < Hopr.

1. Initialization. m < 0 (current number of iterations), build s using BLF.
H* «— H (s), §* « {s}, m* — 0, TL — (.
Stop condition. If elapsed time has reached py, Then: Return H* and |s*].
3. Diversification. If m > pp Then:
— Choose at random s € S*, r;, € Rand xz € [0... W —w]].
— Update s by relocating r; to (x, H* — pgr — h7), defining a move p.
— TL {u‘l}, m* < m, pp < m + py * 6. Possibly update S* or H*.
4. Ezploration of the neighborhood. Let N be N; or Ny according to py.
Update s according to N (s), defining a move p. m «— m + 1.
TL—TLU {/fl}. Possibly update S*, H* or pp. Go to step 2l

[\

4 Experimentations

We used a set of 21 well-known benchmark instances [28] available from http://
mo.math.nat.tu-bs.de/packlib/xml/ht-eimhh-01-xml.shtml to compare

http://
mo.math.nat.tu-bs.de/packlib/xml/ht-eimhh-01-xml.shtml

68 J.-P. Hamiez, J. Robet, and J.-K. Hao

Table 1. Main characteristics of the test problems from [28]

Category Instances w n Hopr
C1 C1P1, C1P2, C1P3 20 16, 17, 16 20
C2 C2P1, C2P2, C2P3 40 25 15
C3 C3P1, C3P2, C3P3 60 28, 29, 28 30
C4 C4P1, C4P2, C4P3 60 49 60
C5 C5P1, C5P2, C5P3 60 73 90
C6 C6P1, C6P2, C6P3 80 97 120
c7 C7P1, C7P2, C7TP3 160 196, 197, 196 240

TSD with previously reported TS algorithms as well as the best performing ap-
proaches. The main characteristics of these instances are given in Tab. [Il Note
that these benchmarks have a known optimal height Hopr.

4.1 Experimentation Conditions

The comparison is based on the percentage gap v of a solution s from the opti-
mum or its best bound (Hopr): 7y (s) =100« (H (s) — Hopr) /H (). Similarly
to the best-known approaches considered in Tab. 2] mean gap 7 (resp. best gap
~*) is averaged over a number of 10 runs (resp. over best runs only), each run
being Limited to pr seconds.

The TSD parameters are: py = 1 (to define the current satisfaction problem
to solve), p, = 30 (maximum size of S*), py = 0.65 (probability to explore
neighborhood N1), pminrr = 5 and pmaxrr = 15 (minimum and maximum
Tabu Tenure), pp = 10 and p; = 3 (for diversification), pr € [60...2700]
(time Limit, in seconds). TSD is coded in C++ and all computational results were
obtained running TSD on a 2 Ghz Dual Core PC.

4.2 Computational Results

TSD is compared in Tab. 2l with the previously reported TS algorithms denoted
as “TS1” [13] and “TS2” [12] and the best performing approaches: GRASP [6] and
IDW [7]. Note that TS was also tried in [], achieving “good performance”, but no
numerical results were reported. While the stopping criterion per run for GRASP,
IDW and TS1 is also a time Limit pz, (60, 100 and 360 seconds resp.), TS2 used
a maximum number of iterations (1500).

In Table @ “-” marks mean unknown information, “Mean Ci” are averaged
values on category Ci, the last three lines reporting averaged values for the
largest (and hardest) instances and all the 21 instances, and (minimum) number
of instances optimally solved. No 7 or v* is mentioned for IDW, TS2 and TS1 since
this information is not given in [7J12I13].

According to Tab.[2] TS1 is the worst performing (TS) approach for the bench-
mark tried. Indeed, v* = 0 only for C2P1 and C2P3 while other methods always
solved at least 6 instances.

On the “smallest” (easiest) instances C1-C3, TS2 is the best method since it
always solved all the 9 instances. However, TSD (and GRASP) compares well with
TS2 since only one instance was not solved optimally (H* = 31 for C3P2).

A Tabu Search Algorithm with Direct Representation for Strip Packing 69

The largest instances (C4—C7) are quite challenging since no approach reached
Hopr to our knowledge on these instances (except IDW perhaps but this is not
clearly mentioned in [7]). Note that, while IDW achieved here the smallest 7 value,
TSD is slightly better than GRASP on C6 (1.37 < 1.56) and C7 (1.23 < 1.36), see
also line “Mean C4-C7” where 1.33 < 1.41.

Table 2. Mean and best percentage gap (7 and 7™ resp.) on instances from [28]

Instances TSD TS1 [I3] TS2 [12] GRASP [6] IDW [7]
¥ o 7" 7" o 5
C1P1 0 0 9.09 0 0 o -
C1P2 4.76 0 9.09 0 0 0 -
C1P3 0 0 4.76 0 0 0 -
Mean C1 1.59 0 7.65 0 0 0
C2P1 0 o0 0 0 0 0
C2P2 0 0 6.25 0 0 o -
C2P3 0 0 0 0 0 0 -
Mean C2 0 o0 2.08 0 0 0
C3P1 0 o0 3.23 0 0 0
C3P2 3.23 3.23 9.09 0 3.23 3.23 -
C3P3 0 0 9.09 0 0 0 -
Mean C3 1.08 1.08 7.14 0 1.08 1.08 2.15
C4P1 1.64 1.64 6.25 - 1.64 1.64 -
C4P2 1.64 1.64 4.76 - 1.64 1.64 -
C4P3 1.64 1.64 3.23 - 1.64 1.64 -
Mean C4 1.64 1.64 4.75 - 1.64 1.64 1.09
C5P1 1.1 1.1 5.26 - 1.1 1.1 -
C5P2 1.1 1.1 3.23 - 1.1 1.1 -
C5P3 1.1 1.1 6.25 - 1.1 1.1 -
Mean C5 1.1 1.1 4.91 - 1.1 1.1 0.73
C6P1 1.64 0.83 4.76 - 1.56 0.83 -
C6P2 0.83 0.83 3.23 - 1.56 0.83 -
C6P3 1.64 0.83 3.23 - 1.56 0.83 -
Mean C6 1.37 0.83 3.74 - 1.56 0.83 0.83
C7P1 1.23 1.23 - - 1.64 1.64 -
C7P2 1.23 1.23 - - 1.19 0.83 -
C7P3 1.23 1.23 - - 1.23 1.23 -
Mean C7 1.23 1.23 - - 1.36 1.23 0.41
Mean C4-C7 1.33 1.2 - - 1.41 1.2 0.76
Mean C1-C7 1.14 0.84 - - 0.96 0.84 0.4
#Hopr /21 8 >2 9 8 9

5 Possible Extensions

The TSD approach reported in this paper is in fact the first version of an ongoing
study. In this section, we discuss possible extensions which are worthy of fur-
ther study and would help to improve the performance of TSD: Diversification,
combined utilization of neighborhoods and evaluation function. All these points
merit certainly more investigations and constitute our ongoing work.

Diversification: The diversification technique described in Sect.[3.6]is based on
a random perturbation strategy. This strategy can be reinforced by a more
elaborated strategy using useful information extracted from high quality
solutions. For instance, it would be possible to identify a set of critical objects

70 J.-P. Hamiez, J. Robet, and J.-K. Hao

that prevent the search from converging toward a good packing and then
focus on these objects in order to realize a guided diversification.

Combined utilization of neighborhoods: Two neighborhoods are proposed
in Sect. [3:4l They are used in a particular manner, applying N; with proba-
bility py or Ny with probability 1 — py. These two neighborhoods can also
be employed in other combined ways, for instance, by the union of N7 and
Ny (N1 U N3) or sequentially (token-ring, Ny — No — Ny ...).

Evaluation function: The current evaluation function (see Sect.[B3) is unable
to distinguish two solutions with the same height. However, such a situation
occurs often during a search process. To overcome this difficulty, it would
be useful to introduce an additional criterion into the evaluation function.
For instance, the free surface under H* may be such a potential criterion.
As such, we can say a solution s’ is better than another solution s if s’ has
a larger total free area under H* than s does even if both solution have the
same height. Indeed, it would be easier to improve s’ than s.

6 Conclusions

In this paper, we presented TSD, a Tabu Search algorithm for the 2D Strip Pack-
ing Problem. TSD uses a solution strategy which traits the initial optimization
problem as a succession of satisfaction problems: Starting from a packing sg of
height H, TSD tries to solve the 2D-SPP with decreasing values of H.

TSD uses a direct representation of the search space which permits inexpensive
basic operations. Two complementary neighborhoods using ejection chains are ex-
plored in a combined way by TSD. The goal of this combination is to reduce H*
(hence to solve the current satisfaction problem) while avoiding solutions with
(hard to fill) tall and thin wasted spaces. A specific fitness function f is designed to
guide the search. A diversification mechanism, relying on a set of historically best
packings, helps to direct the search to promising and unexplored regions. The tabu
structure includes knowledge of the problem to avoid visiting similar packings.

Preliminary computational results were reported on a set of 21 well-known
benchmark instances, showing competitive results in comparison with two recent
best performing algorithms. The results on the largest and hardest instances are
particularly promising. Several issues were identified for further improvements.

Acknowledgments. We would like to thank the reviewers of the paper for
their useful comments. This work was partially supported by two grants from
the French “Pays de la Loire” region (MILES and RadaPop projects).

References

1. Wischer, G., Hauflner, H., Schumann, H.: An improved typology of cutting and
packing problems. European Journal of Operational Research 183(3), 1109-1130
(2007)

2. Dowsland, K., Dowsland, W.: Packing problems. European Journal of Operational
Research 56(1), 2-14 (1992)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A Tabu Search Algorithm with Direct Representation for Strip Packing 71

Sweeney, P., Ridenour Paternoster, E.: Cutting and packing problems: A cate-
gorized, application-orientated research bibliography. Journal of the Operational
Research Society 43(7), 691-706 (1992)

Fowler, R., Paterson, M., Tanimoto, S.: Optimal packing and covering in the plane
are NP-complete. Information Processing Letters 12(3), 133-137 (1981)

Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completness. W.H. Freeman and Company, San Francisco (1979)
Alvarez-Valdes, R., Parreno, F., Tamarit, J.: Reactive GRASP for the strip-packing
problem. Computers & Operations Research 35(4), 1065-1083 (2008)

Neveu, B., Trombettoni, G.: Strip packing based on local search and a randomized
best-fit. In: Fifth International Conference on Integration of Al and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems: First Work-
shop on Bin Packing and Placement Constraints (CPAIOR: BPPC), Paris, France,
May 22 (2008)

Neveu, B., Trombettoni, G., Araya, I.: Incremental move for strip-packing. In:
Avouris, N., Bourbakis, N., Hatzilygeroudis, I. (eds.) Proceedings of the 19th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI), vol. 2, pp.
489-496. IEEE Computer Society, Los Alamitos (2007)

Soke, A., Bingul, Z.: Hybrid genetic algorithm and simulated annealing for two-
dimensional non-guillotine rectangular packing problems. Engineering Applications
of Artificial Intelligence 19(5), 557-567 (2006)

Zhang, D., Kang, Y., Deng, A.: A new heuristic recursive algorithm for the strip
rectangular packing problem. Computers & Operations Research 33(8), 22092217
(2006)

Zhang, D., Liu, Y., Chen, S., Xie, X.: A meta-heuristic algorithm for the strip
rectangular packing problem. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC
2005. LNCS, vol. 3612, pp. 1235-1241. Springer, Heidelberg (2005)
Alvarez-Valdes, R., Parrefio, F., Tamarit, J.: A tabu search algorithm for a two-
dimensional non-guillotine cutting problem. European Journal of Operational Re-
search 183(3), 1167-1182 (2007)

Tori, M., Martello, S., Monaci, M.: Metaheuristic algorithms for the strip packing
problem. In: Pardalos, P.M., Korotkikh, V. (eds.) Optimization and Industry: New
Frontiers. Applied Optimization, vol. 78, pp. 159-179. Springer, Heidelberg (2003)
Gémez-Villouta, G., Hamiez, J.P., Hao, J.K.: A dedicated genetic algorithm for
two-dimensional non-guillotine strip packing. In: Proceedings of the 6th Mexican
International Conference on Artificial Intelligence, Special Session, MICAI, Aguas-
calientes, Mexico, pp. 264-274. IEEE Computer Society, Los Alamitos (2007)
Bortfeldt, A.: A genetic algorithm for the two-dimensional strip packing problem
with rectangular pieces. European Journal of Operational Research 172(3), 814
837 (2006)

Mukhacheva, E., Mukhacheva, A.: The rectangular packing problem: Local opti-
mum search methods based on block structures. Automation and Remote Con-
trol 65(2), 248-257 (2004)

Yeung, L., Tang, W.: Strip-packing using hybrid genetic approach. Engineering
Applications of Artificial Intelligence 17(2), 169177 (2004)

Leung, T., Chan, C., Troutt, M.: Application of a mixed simulated annealing-
genetic algorithm heuristic for the two-dimensional orthogonal packing problem.
European Journal of Operational Research 145(3), 530-542 (2003)

Gomez, A., de la Fuente, D.: Solving the packing and strip-packing problems with
genetic algorithms. In: Mira, J., Sdnchez-Andrés, J. (eds.) IWANN 1999. LNCS,
vol. 1606, pp. 709-718. Springer, Heidelberg (1999)

72

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

J.-P. Hamiez, J. Robet, and J.-K. Hao

Neveu, B., Trombettoni, G., Araya, 1., Riff, M.C.: A strip packing solving method
using an incremental move based on maximal holes. International Journal on Ar-
tificial Intelligence Tools 17(5), 881-901 (2008)

Araya, 1., Neveu, B., Riff, M.C.: An efficient hyperheuristic for strip-packing prob-
lems. In: Cotta, C., Sevaux, M., Sorensen, K. (eds.) Adaptive and Multilevel Meta-
heuristics. Studies in Computational Intelligence, vol. 136, pp. 61-76. Springer,
Heidelberg (2008)

Kenmochi, M., Imamichi, T., Nonobe, K., Yagiura, M., Nagamochi, H.: Exact
algorithms for the 2-dimensional strip packing problem with and without rotations.
European Journal of Operational Research (2008) (to appear)

Bekrar, A., Kacem, I., Chu, C.: A comparative study of exact algorithms for the
two dimensional strip packing problem. Journal of Industrial and Systems Engi-
neering 1(2), 151-170 (2007)

Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M.: Exhaustive approaches to
2D rectangular perfect packings. Information Processing Letters 90(1), 7-14 (2004)
Martello, S., Monaci, M., Vigo, D.: An exact approach to the strip packing problem.
INFORMS Journal on Computing 15(3), 310-319 (2003)

Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht
(1997)

Baker, B., Coffman Jr., E., Rivest, R.: Orthogonal packings in two dimensions.
SIAM Journal on Computing 9(4), 846-855 (1980)

Hopper, E., Turton, B.: An empirical investigation of meta-heuristic and heuris-
tic algorithms for a 2D packing problem. European Journal of Operational Re-
search 128(1), 34-57 (2001)

Chazelle, B.: The bottom-left bin-packing heuristic: An efficient implementation.
IEEE Transactions on Computers 32(8), 697-707 (1983)

El Hayek, J.: Le probleme de bin-packing en deux-dimensions, le cas non-orienté :
résolution approchée et bornes inférieures. Ph.D thesis, Université de Technologie
de Compiegne, France (2006) (in French)

Imahori, S., Yagiura, M., Nagamochi, H.: Practical algorithms for two-dimensional
packing. In: Gonzalez, T. (ed.) Handbook of Approximation Algorithms and Meta-
heuristics. Chapman & Hall/CRC Computer & Information Science Series, ch. 36,
vol. 13. CRC Press, Boca Raton (2007)

	Introduction
	Problem Formulation
	TSD: A Tabu Search with Direct Representation
	Search Space: A Direct Representation
	Initial Solution
	Fitness Function
	Neighborhoods and Their Exploitation
	N1: Reduce the Height of the Packing.
	N2: Avoid Solutions with Tall and Thin Wasted Spaces.

	Tabu List
	Diversification
	TSD: An Overview

	Experimentations
	Experimentation Conditions
	Computational Results

	Possible Extensions
	Conclusions
	Acknowledgments.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

