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Abstract. In this paper, we study the perturbation operator of Iterated
Local Search. To guide more efficiently the search to move towards new
promising regions of the search space, we introduce a Critical Element-
Guided Perturbation strategy (CEGP). This perturbation approach con-
sists of the identification of critical elements and then focusing on these
critical elements within the perturbation operator. Computational exper-
iments on two case studies—graph coloring and course timetabling—give
evidence that this critical element-guided perturbation strategy helps re-
inforce the performance of Iterated Local Search.

Keywords: iterated local search, perturbation operator, critical
element-guided perturbation, graph coloring, course timetabling.

1 Introduction

Local search based metaheuristics are known to be an effective technique for
solving a large number of constraint satisfaction and combinatorial optimiza-
tion problems [14]. However, they may sometimes be trapped into a poor local
optimum and it becomes extremely difficult to jump out of it even with more
computing efforts. Therefore, diversification mechanisms play an important role
in designing such kinds of algorithms.

In order to obtain a tradeoff between intensification and diversification in lo-
cal search metaheuristics, many kinds of high-level diversification mechanisms
have been proposed in the literature to avoid the search to fall into local optima.
Typical examples include tabu list in Tabu Search [11], random acceptance cri-
teria in Simulated Annealing, perturbation operator in Iterated Local Search
[16], multiple neighborhoods in Variable Neighborhood Search [12] and so on. In
particular, it is of significance to utilize low-level problem specific knowledge for
constructing strong diversification mechanisms.

In this paper, we study the main diversification mechanism of Iterated Local
Search (ILS) [16], i.e., the perturbation operator. ILS is a popular metaheuristic
which is mainly composed of two basic components: one is a local search proce-
dure and the other is a perturbation operator. When a local optimum solution
cannot be improved any more using the local search, a perturbation operator
is employed to produce a new solution, from which a new round of local search
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starts. It is desirable that the perturbation should be able to guide the search
to a promising region of the search space.

As for other components of an ILS procedure, it is useful to integrate problem
specific knowledge to make a perturbation operator informative and effective.
One fundamental question is then what kind of problem knowledge should be
used in the design of an effective perturbation operator.

In this paper, we put forward that the structure of the local optimum solution
found so far itself can be used for constructing the perturbation operator. For
this purpose, we introduce a new perturbation strategy, called Critical Element-
Guided Perturbation (CEGP) for Iterated Local Search (Section 2). We illustrate
this on two typical hard combinatorial optimization problems—graph coloring
(Section 3) and course timetabling (Section 4), showing its importance in the
design of a powerful ILS algorithm.

2 Critical Element-Guided Perturbation (CEGP)

Iterated Local Search can be described by a simple computing schema (see Sec-
tion 2.3 for a general template). A fundamental principle of ILS is to exploit
the tradeoff between diversification and intensification. Intensification focuses
on optimizing the objective function as far as possible within a limited search
region while diversification should be able to drive the search to explore new
promising regions of the search space.

The diversification mechanism of ILS—perturbation operator—has two aims:
one is to jump out of the local optimum trap just visited; the other is to lead
the search procedure to a new promising region. A commonly-used perturbation
operator is to destruct partially the previous local optimum solution in a random
way, not necessarily guided by an evaluation function [16]. Zhang and Sun used
the idea of estimation of distribution algorithms to construct perturbation, which
combines global statistical information and the location information of good
individual solutions for generating new trial solutions [20]. However, we think
that the solution structure of the previously obtained local optimum itself can
be used in the design of more intelligent and informative perturbation operators.

2.1 CEGP Procedure

For the two purposes just mentioned previously, one more elaborated perturbation
should take into account the specific problem structure. Given a local optimum so-
lution obtained by the local search procedure, if one can identify the contribution
of each element to the cost function or constraint violations, then it is reasonable
that a perturbation by changing the values of these critical elements would be
helpful to jump out of local optimum trap. In its simplest form, an element can
be a decision variable. For example, in the knapsack problem, an element might
be an object while in university course timetabling problem, an element can be a
lecture of a course.

Generally speaking, our critical element-guided perturbation strategy is com-
posed of three phases: 1. Scoring : give each element a score; 2. Selection : choose
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a certain number of highly-scored elements; 3.Perturbing : randomly perturb the
solution using the chosen critical elements.

In order to score an element ei in the Scoring phase, it is indispensable to
define a scoring function and its parameters. Generally, the parameters include
the current element ei and those elements which are strongly related to ei. More
formally, an element ei can be scored as Score(ei) = h(ei, êi), where êi are the
elements set related to ei and h(·) is a scoring function. For a specific problem,
in order to score an element ei, it is necessary to define its related elements set
êi and the appropriate scoring function h(·) according to the problem specific
knowledge. We will show two examples in Sections 3.5 and 4.4.

The Selection phase consists of choosing a certain number of elements ac-
cording to their scores. For the Selection phase, it is implemented in an adaptive
and random way, i.e., the higher score an element has, the more possibly this
element is chosen. Note that this selection procedure is problem independent as
shown in Algorithm 1 line 6.

After a certain number of critical elements are chosen, the Perturbing phase
randomly perturbs the chosen elements. The perturbation operator can employ
the moves in the local search procedure or quite different moves. In Sections 3.5
and 4.4, we respectively use these two kinds of perturbation operators.

2.2 CEGP Framework

Given a general constraint satisfaction and optimization problem (CSOP) [19]
and a local optimum solution, the proposed critical element-guided perturbation
operator is described in Algorithm 1, where φ is a positive real number and in
this paper we empirically set φ ∈ [1.5, 3.0]. One observes that the value of φ
determines the intensity of the selection procedure: the larger the value of φ is,
the higher is the possibility that the high-score elements are selected. Note that
the commonly-used random perturbation is a special case of our CEGP strategy
with φ = 0. In this case, the selection probability becomes P (k) = 1/n. On the
other hand, setting φ = ∞ will select always the first η elements.

Algorithm 1. Critical Element-Guided Perturbation Strategy
1: Input: a local optimum solution s
2: Output: a perturbed solution s′

3: Scoring: score each element ei, i = 1, . . . , n: Score(ei) = h(ei, êi)
4: sort all the elements in a non-increasing order according to their scores
5: determine a perturbation strength η
6: Selection: randomly select η elements to be perturbed. The rth critical element

is selected according to the following probability:

P (r) = r−φ/
n

∑

i=1

i−φ (1)

7: Perturbing: randomly perturb the selected η elements
8: get a perturbed solution s′



4 Z. Lü and J.-K. Hao

It should be noted that the scoring method (Algorithm 1, line 3) is essential in
the CEGP strategy. It must be combined with low level problem specific knowl-
edge, as shown in Sections 3.5 and 4.4. In addition, the perturbation strength η
should also be determined according to the given problem.

2.3 ILS with CEGP

Iterated local search starts with an initial solution and performs local search until
a local optimum is found. Then, the current local optimum solution is perturbed
and another round of local search is performed to the perturbed solution. The
perturbation procedure is implemented by the CEGP strategy just described
above. Finally, an acceptance criterion is used to decide whether the new local
optimum solution is accepted as the initial solution for the next run of local
search. Algorithm 2 shows the pseudocode of CEGP-based ILS. The detailed
description of the general ILS procedure can be found in [16].

Algorithm 2. Iterated Local Search with CEGP Strategy
1: s0 ← Initial Solution
2: s′ ← Local Search(s0)
3: repeat
4: s∗ ← Critical Element-Guided Perturbation(s′)
5: s∗

′ ← Local Search(s∗)
6: s′ ← Acceptance Criterion(s∗

′
,s

′
)

7: until stop condition met

In order to implement the CEGP strategy for a given problem, we just need to
define what an element ei is, how the related elements of each ei are identified,
how the scoring function is designed and what is the perturbation moves for
the chosen elements. In the following two sections, we show two case studies of
applying the ILS algorithm with the proposed CEGP strategy to two difficult
problems—graph coloring and course timetabling.

3 Case Study 1: Graph Coloring

3.1 Problem Description

Given an undirected graph G = (V, E) with a set V of n vertices and an edge
set E as well as the number of colors to be used k, a legal k-coloring of graph
G is a partition of V into k independent sets where an independent set is a
subset of nonadjacent vertices of G. In a formal way, let ci be the color of
vertex vi (ci ∈ [1, k], i = 1, . . . , n), a legal k-coloring of graph G is a coloring
C = {c1, . . . , cn} such that ∀{vi, vj} ∈ E, ci �= cj .

Graph coloring aims at finding the smallest k for a given graph G (the chro-
matic number χG of G) such that G has a legal k-coloring.
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3.2 General Solution Procedure

The graph coloring problem can be solved from the point of view of constraint
satisfaction by solving a series of k-coloring problems. We starts from an initial
number of k colors (k = |V | is certainly sufficient) and solve the k-coloring
problem. As soon as the k-coloring problem is solved, we decrease k by setting
k to k-1 and solve again the k-coloring problem. This process is repeated until
no legal k-coloring can be found.

3.3 Initial Solution and Evaluation Function

For a k-coloring problem with a given k, we generate an initial solution by means
of a greedy algorithm presented in [10]. It can be considered as an improved
version of the famous DSATUR algorithm [2]. Note that this greedy heuristic
generally generates an illegal k-coloring.

Once an initial solution is obtained where each vertex has been assigned a
color, our CEGP-based ILS algorithm is used to minimize the number of edges
having both endpoints with a same color (or the conflict number). Therefore,
our evaluation function is just the number of conflicts f(C) such that

f(C) =
∑

{vi,vj}∈E

δij (2)

where

δij =
{

1, if ci = cj ;
0, otherwise. (3)

Accordingly, any coloring C with f(C) = 0 corresponds to a legal k-coloring
which presents a solution to the k-coloring problem.

3.4 Local Search Procedure

In this paper, we employ the Tabu Search algorithm presented in [8] as our
local search procedure. This TS algorithm is an improved version of the TABU-
COL algorithm in [13]. Here a neighborhood of a given configuration is ob-
tained by changing the color ci of a conflicting vertex vi to another color cj

(cj �= ci), denoted by (vi, cj). The cost deviation of the move (vi, cj) is denoted
by Δf(vi,cj)(C). More details can be found in [8].

For the tabu list, once a move (vi, cj) is performed, vertex vi is not allowed
to receive again the color ci for the next tt iterations. The tabu tenure tt is
empirically determined by tt = f + random(10) where f is the conflict number
of the current solution and random(10) takes a random number in {1, . . . , 10}.
The stop condition of our tabu search is just the maximal number of iterations
during which the best solution has not been improved. In this work, we set this
number to be 1,000,000 for all the tested instances.
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3.5 Perturbation

Once the local search procedure stops with a local optimum solution, a Critical
Element-Guided Perturbation operator is performed to reconstruct the obtained
local optimum solution. Given the general CEGP strategy described in Section
2, one just needs to know how to score each vertex (element) and what is the
perturbation operator for the chosen vertices.

Let us first consider the Scoring phase. For a vertex (an element) vi, its
related element set v̂i is defined as the set of vi’s adjacent vertices, i.e., v̂i =
{vj |{vi, vj} ∈ E}. Based on v̂i, the following three sets can be derived:

V 1
i = {vj |vj ∈ v̂i, ci = cj} (4)

V 2
i = {vj|vj ∈ v̂i, |V 1

j | > 0} (5)

Ki = {cj|cj �= ci, Δf(vi,cj)(C) = 0} (6)

Given these notations, the score of a vertex vi is calculated as:

Score(vi) = h(vi, v̂i) = ω1 · |V 1
i | + ω2 · |V 2

i | + ω3 · |Ki| (7)

where ω1, ω2 and ω3 are the associated weights for these three kinds of scores
and we set empirically ω1 = 5 and ω2 = ω3 = 1 respectively.

In the above formulations, |V 1
i | denotes the total number of vertices conflicting

with vertex vi: |V 1
i | = 0 means that vertex vi is conflict-free while |V 1

i | > 0
implies that vertex vi is conflicting. |V 2

i | denotes the number of vi’s adjacent
vertices which themselves are conflicting. It is easy to observe that V 1

i is a subset
of V 2

i . The larger |V 1
i | and |V 2

i | are, the higher score vertex vi has. The rationale
behind this is that a conflicting vertex should naturally change its color while
the vertex adjacent to a number of conflicting vertices should also be recolored
since it would be impossible for the conflicting vertex to become conflict-free in
the next round of the local search if its adjacent vertices are not reassigned.

Furthermore, it is reasonable to give a higher priority to a vertex with a large
number of side walks, where a side walk of vertex vi denotes a move (vi, cj)
(cj �= ci) that will not change the total cost function, i.e., Δf(vi,cj)(C) = 0. |Ki|
represents the number of side walks for vertex vi. Note that changing the color
of a vertex having a large number of side walks will not worsen the solution
quality to a large extent, thus the reassignment of these vertices might help the
search to jump out of local optimum solution while keeping the solution quality
at a good level.

Once all the vertices are scored in accordance with Eq. (7), they are sorted
in a decreasing order according to their scores. The perturbation strength is
empirically determined by η = 0.33 · n + random(100). We observed that a
weaker perturbation strength did not allow the search to escape from the local
optima. According to Eq. (1) in Algorithm 1, η vertices are randomly chosen.
After that, we remove all these η vertices and reassign them using the greedy
heuristic as shown in Section 3.3. This is the Perturbing phase in our CEGP
strategy. Thus, a perturbed solution is obtained, from which a new round of
local search starts.
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3.6 Experimental Results and Comparisons

To evaluate the efficiency of this CEGP-based ILS algorithm, we carry out ex-
periments on a set of 23 non-trivial DIMACS coloring benchmarks. We contrast
the results of our CEGP-based ILS algorithm with the uniformly random per-
turbation strategy (URP) in order to highlight the impact of the CEGP strat-
egy. To make the comparison as fair as possible, the only difference between
URP-based and CEGP-based ILS algorithms is that the perturbed vertices are
selected in a blindly uniform way with the URP strategy, as described in Section
2.2. Moreover, we compare our coloring results with those of some best perform-
ing reference algorithms. Our algorithm is run on a PC with 3.4GHz CPU and
2.0Gb RAM. To obtain our computational results, the total CPU time limit for
each instance is limited to 8 hours. Note that the time limit for the reference
algorithms is from several hours to several tens of hours.

Table 1 gives our computational results. Column 2 presents the best known k∗

ever reported in the literature. Columns 3 and 4 give the results of the CEGP-
based and URP-based ILS algorithms respectively, together with the CPU time
in minutes (in brackets). Columns 5 to 11 give the results of seven reference al-
gorithms, including four local search algorithms [1,3,6,13] as well as three hybrid
algorithms [7,8,9].

One finds that the CEGP-based ILS algorithm obtains smaller k than the
URP-based ILS algorithm for 4 out of 23 instances while larger k for only 1
instance, which would suggest the effectiveness of the proposed CEGP strategy.
Furthermore, the CEGP-based ILS algorithm obtains comparable results with
these famous reference algorithms.

Table 1. Computational results of CEGP-based ILS algorithm on graph coloring
problem

ILS Local Search Algorithms Hybrid Algorithms
Instances k∗ CEGP(t) URP(t) [1] [3] [6] [13] [7] [8] [9]
dsjc250.5 28 28 (1) 28 (2) — 28 28 — 29 28 28
dsjc500.1 12 12 (1) 12 (1) 12 12 13 — — — 12
dsjc500.5 48 48 (76) 48 (98) 49 49 50 51 49 48 48
dsjc500.9 126 126 (10) 126 (16) 127 126 127 — — — 126
dsjc1000.1 20 21 (3) 21 (4) 20 — 21 — — 20 20
dsjc1000.5 83 87 (35) 88 (29) 89 89 90 94 84 83 84
dsjc1000.9 224 224 (46) 225 (32) 228 — 226 — — 224 224

r125.5 35 36 (6) 36 (8) — — 36 — — — —
r250.5 65 65 (4) 65 (4) 66 — 66 — 69 — —

r1000.1c 98 98 (7) 98 (6) 98 — 98 — — — —
r1000.5 234 253 (38) 252 (51) 249 — 242 — — — —

dsjr500.1c 85 85 (14) 85 (19) 85 — — — — — 86
dsjr500.5 122 125 (29) 125 (38) 126 124 — — 130 — 127
le450 15c 15 16 (1) 16 (1) 15 15 — 18 15 15 15
le450 15d 15 15 (24) 15 (34) 15 15 — 18 15 — 15
le450 25c 25 25 (28) 26 (1) 25 26 — — 25 26 26
le450 25d 25 25 (34) 26 (1) 25 26 — — 25 — 26

flat300 26 0 26 26 (3) 26 (3) — 26 26 32 26 — 26
flat300 28 0 28 30 (18) 30 (15) 28 31 31 32 33 31 31
flat300 50 0 50 50 (6) 50 (8) 50 — 50 — 90 — 50
flat300 60 0 60 60 (10) 60 (17) 60 — 60 — 90 — 60
flat300 76 0 82 87 (46) 87 (69) 88 — 89 93 84 83 84

latin square 10 98 100 (37) 100 (34) — — — — — — 104
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4 Case Study 2: Course Timetabling

The course timetabling problem consists of scheduling all lectures of a set of
courses into a weekly timetable, where each lecture of a course must be assigned a
period and a room in accordance with a given set of constraints. In this problem,
all hard constraints must be strictly satisfied and the weighted soft constraint
violations should be minimized. In this paper, we study the curriculum-based
course timetabling problem (CB-CTT), which is one of the three topics of the
second international timetabling competition (ITC–2007)1.

4.1 Problem Description

In the CB-CTT problem, a feasible timetable is one in which all lectures are
scheduled at a timeslot and a room, such that the hard constraints H1-H4 (see
below) are satisfied. In addition, a feasible timetable satisfying the four hard
constraints incurs a penalty cost for the violations of the four soft constraints
S1-S4 (see below). Then, the objective of CB-CTT is to minimize the weighted
soft constraint violations in a feasible solution. The four hard constraints and
four soft constraints are:

• H1. Lectures: Each lecture of a course must be scheduled in a distinct period
and a room.

• H2. Room occupancy: Any two lectures cannot be assigned in the same
period and the same room.

• H3. Conflicts: Lectures of courses in the same curriculum or taught by the
same teacher cannot be scheduled in the same period, i.e., no period can
have an overlapping of students nor teachers.

• H4. Availability: If the teacher of a course is not available at a given period,
then no lectures of the course can be assigned to that period.

• S1. Room capacity: For each lecture, the number of students attending
the course should not be greater than the capacity of the room hosting the
lecture.

• S2. Room stability: All lectures of a course should be scheduled in the
same room. If this is impossible, the number of occupied rooms should be as
few as possible.

• S3. Minimum working days: The lectures of a course should be spread
into the given minimum number of days.

• S4. Curriculum compactness: For a given curriculum, a violation is
counted if there is one lecture not adjacent to any other lecture belong-
ing to the same curriculum within the same day, which means the agenda of
students should be as compact as possible.

1 http://www.cs.qub.ac.uk/itc2007/
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4.2 Initial Solution, Search Space and Evaluation Function

Starting from an empty timetable, we generate first an initial feasible solution by
means of a greedy graph coloring heuristic. We simply mention that for all the 21
competition instances, this greedy heuristic can easily obtain feasible solutions.
Once a feasible timetable that satisfies all the hard constraints is reached, our
ILS algorithm is used to minimize the soft constraint violations while keeping
hard constraints satisfied. Therefore, the search space of our algorithm is limited
to the feasible timetables. The evaluation function of our algorithm is just the
weighted soft constraint violations as defined for the ITC–2007.

4.3 Local Search Procedure

For this problem, we use a Tabu Search algorithm with two distinct neigh-
borhoods defined by two moves denoted as SimpleSwap and KempeSwap. Sim-
pleSwap move consists in exchanging the hosting periods and rooms assigned to
two lectures of different courses while a KempeSwap move produces a new feasi-
ble assignment by swapping the period labels assigned to the courses belonging
to two specified Kempe chains. Our Tabu Search algorithm explores these two
neighborhoods in a token-ring way. More details about these neighborhoods and
the TS algorithm are given in [17].

4.4 Perturbation

For the Scoring phase of this problem, an element is just one lecture of a
course and the related elements of a lecture are the lectures involved in the
calculation of the lecture’s soft constraint violations. When the current TS phase
terminates with a local optimum solution, the scoring function of a lecture is just
the weighted sum of soft constraint violations involving the lecture.

Then, all the lectures are ranked in a decreasing order according to their scores
and a number of lectures are randomly selected in accordance with
Eq. (1). Finally, the Perturbing phase consists of randomly selecting a se-
ries of SimpleSwap or KempeSwap moves involving the chosen lectures. Thus, a
perturbed solution is obtained from which a new round of Tabu Search starts.

4.5 Experimental Results

In this section, we report computational results on the set of 21 competition
instances using two formulations of the CB-CTT problem [4]. The first formu-
lation is previously studied by Di Gaspero et al in [5] and the second one is just
the topic of the ITC–2007. Like in Section 3.5, we contrast the results of our
CEGP-ILS algorithm with that of URP-ILS. We also compare our results with
the best known results obtained by other algorithms from the literature. To ob-
tain our computational results, each instance is solved 100 times independently
and each ILS run is given a maximum of 2,000,000 local search steps.

Table 2 shows the best results of the CEGP-based and URP-based ILS al-
gorithms on the 21 competition instances for both formulations as well as the
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Table 2. Computational results and comparison on the 21 course timetabling compe-
tition instances

Old Formulation ITC-2007 Formulation
Instance best CEGP(t) URP(t) [4] [15] best CEGP(t) URP(t) [4] [15] [18]
comp01 4 4 (0) 4 (0) 4 — 5 5 (0) 5 (0) 5 — 5
comp02 24 20 (35) 22 (28) 24 — 33 29 (64) 35 (52) 56 33 35
comp03 39 38 (29) 40 (20) 39 — 66 66 (35) 68 (28) 79 — 66
comp04 18 18 (36) 18 (48) 18 — 35 35 (9) 35 (13) 38 — 35
comp05 240 219 (8) 224 (4) 240 — 298 292 (3) 310 (5) 316 — 298
comp06 16 18 (72) 20 (60) 25 16 37 37 (99) 38 (112) 55 — 37
comp07 3 3 (28) 3 (36) 7 3 7 13 (67) 14 (75) 26 — 7
comp08 20 20 (18) 21 (12) 22 20 38 39 (51) 41 (40) 42 — 38
comp09 59 54 (42) 56 (50) 59 — 99 96 (29) 102 (38) 104 99 100
comp10 2 3 (15) 4 (17) 6 2 7 10 (14) 14 (10) 19 — 7
comp11 0 0 (0) 0 (0) 0 — 0 0 (0) 0 (0) 0 — 0
comp12 241 239 (45) 242 (31) 241 — 320 310 (42) 315 (61) 342 — 320
comp13 33 32 (24) 32 (17) 36 33 60 59 (70) 60 (78) 72 60 61
comp14 28 27 (34) 28 (38) 29 28 51 51 (66) 51 (48) 57 51 53
comp15 39 38 (14) 38 (19) 39 — 70 68 (156) 69 (145) 79 — 70
comp16 21 16 (95) 18 (76) 21 — 28 23 (171) 30 (176) 46 28 30
comp17 41 34 (42) 36 (48) 41 — 70 69 (47) 72 (68) 88 — 70
comp18 37 34 (21) 34 (38) 37 — 75 65 (125) 68 (118) 75 — 75
comp19 33 32 (70) 33 (52) 33 — 57 57 (164) 57 (143) 64 — 57
comp20 14 11 (16) 11 (9) 14 — 17 22 (146) 30 (130) 32 17 22
comp21 56 52 (31) 53 (46) 56 — 89 93 (82) 96 (70) 107 — 89

previous best known results available in the literature. The average CPU time
for our CEGP-ILS and URP-ILS algorithms is also indicated in brackets (in
minutes). The reference algorithms include the tabu search algorithm in [4], the
integer programming algorithm in [15] and the hybrid algorithm in [18]. Inter-
estingly, these reference best known results are from a web site maintained by
the organizers of ITC–2007 (track 3)2, which provides a complete description
about the CB-CTT problem and the continuously updated best known results
uploaded by researchers (the column “best” in Table 2).

From Table 2, one easily observes that the CEGP-based ILS algorithm reaches
quite competitive results. First of all, it performs better than the URP-based ILS
algorithm for the majority of the 21 competition instances and no worse result
is observed for any instance. In order to testify the influence of the proposed
CEGP perturbation operator, we performed a 95% confidence t-test to compare
CEGP-ILS with URP-ILS for both formulations. We found that for 13 (respec-
tively 15) out of the 21 instances of the old formulation (respectively ITC-2007
formulation), the difference of the computational results obtained by CEGP-ILS
and URP-ILS is statistically significant. In addition, the CEGP-based ILS al-
gorithm improves the previous best known solutions for 14 and 9 out of the 21
instances respectively for the two formulations, showing the strong search power
of the CEGP-based ILS algorithm.

5 Conclusion and Discussion

The purpose of this paper is to investigate the diversification scheme of Iter-
ated Local Search. To this end, we proposed a general Critical Element-Guided
2 http://tabu.diegm.uniud.it/ctt/index.php
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Perturbation strategy for jumping out of local optimum solution. The essential
idea of this perturbation strategy lies in identifying the critical elements in the
local optimum solution and adaptively perturbing the solution using these criti-
cal elements. This perturbation approach provides a mechanism for diversifying
the search more efficiently compared with the commonly-used uniformly random
perturbation strategy.

An ILS algorithm with this CEGP strategy was tested on two case studies—
graph coloring and course timetabling, showing clear improvements over the
traditional blindly uniform perturbation strategy. The results also show that the
CEGP-based ILS algorithm competes well with other reference algorithms in the
literature.

The practical effectiveness of this strategy depends mainly on the problem-
specific scoring method and the perturbation moves that will be performed. For
constrained problems, the score for each element can be simply based on the
number of violations involved. For optimization problems, such as Job Shop
Scheduling (JSS) and TSP problems, the problem-specific knowledge must be
explored in order to score each element. For JSS, the elements in the bottleneck
machine or the critical path should reasonably have high scores. For TSP, the
scores for elements might be marked according to the tour length involved.

To conclude, we believe that the Critical Element-Guided Perturbation strat-
egy helps design high performance ILS algorithm. At the same time, it should be
clear that for a given problem, it is indispensable to realize specific adaptations
by considering problem-specific knowledge in order to obtain high efficiency.
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1. Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Computers and Operations Research 35(3), 960–975 (2008)

2. Brélaz, D.: New methods to color the vertices of a graph. Communications of the
ACM 22(4), 251–256 (1979)
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14. Hoos, H.H., Stützle, T.: Stochastic local search: foundations and applications. Mor-

gan Kaufmann, San Francisco (2004)
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