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Abstract. A key step in study of biosynthesis of membrane proteins is
to look for the code that could be used to explain and predict which pro-
teins would eventually be inserted in the membrane and which proteins
would be secreted into the ER lumen when they cross the translocon
channel. The aim of this work is to present an improvement of a pre-
vious method based on a local search approach. The proposed method
relies on new in-depth biological observations to design a new search
space for the local search algorithm. Experiments conducted on a dedi-
cated dataset show that our new approach leads to improved outcomes
in terms of prediction rates.

Keywords: Amino Acid Position, Transmembrane Segment Insertion,
Signal peptide, Local Search, Multi-Neighborhood Search

1 Introduction

Proteins transported across the endoplasmic reticulum (ER) membrane include
soluble proteins and membrane proteins. Recent studies have led to a better
understanding of the transport mechanisms of these proteins ([1], [2]). A target-
ing signal localized in the N-terminal sequence and called signal peptide (SP)
guides the nascent protein to the ER membrane. Next, the nascent protein gets
into the sec61 translocon, a protein complex located in the ER membrane. The
translocon discriminates between the proteins which cross the ER membrane
and are released in the ER lumen and the proteins which get inserted in the
ER membrane. When membrane proteins lack discrete signal peptides, the first
transmembrane sequence directs the nascent protein to the membrane like a
signal peptide. In this case, the first transmembrane segment is called a signal
anchor (SA).

The recognition inside the translocon channel is based on identifying the
"right key”. If the segment of amino acids contains the code, the translocon
opens sideways and the protein fits in the membrane. Otherwise, the protein is
fully translocated across the ER, membrane and released into the ER lumen.

There exist several methods using both experimental and statistical data
that are optimized to predict the insertion of membrane proteins. Some of them
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are based on experimental works that try to elucidate precisely how membrane
proteins get inserted or secreted through the ER membrane. Scampi [3] is a pre-
diction method using recently published experimental results of the energetics of
insertion of a single transmembrane (TM) segment into the ER membrane [4].
MINS [5] and MINS2 [6] use computational methods for predicting the mem-
brane insertion free energies of protein sequences. Following the same principle,
we proposed in a previous work a prediction method based on a local search
algorithm [7]. The idea was to mimic the insertion phenomena as closely as pos-
sible by modeling the likelihood of each amino acid residing in the membrane.
This work assumed that the insertion efficiency of a TM segment depends on its
amino acid composition and on the position of the amino acids within the TM
segment. It led to a new in silico scale composed of 20 curves where each curve
represents the insertion profile of one amino acid. These curves are also used to
discriminate between SP and TM segments, a problem that is still not fixed.

In this paper, we present a multi-neighborhood local search (MN-LS) ap-
proach which is based on new biological knowledge. This approach explores two
spaces which are composed of straight lines and symmetric curves respectively
and employs different neighborhoods to explore these spaces. The basic idea of
MN-LS is to optimize separately the straight lines and symmetric curves by ad-
justing a straight line or a symmetric curve each time. Tested on a dedicated
data set, the proposed approach proves to be able to provide good prediction
accuracy as well as more interesting results for the curves.

The remainder of this paper is organized as follows. In Section 2, we present
some biological knowledge to understand the problem and a summary of our
previous method. In section 3, we describe the construction of a new database
and we discuss the representation of the data. Section 4 and 5 present the im-
provements of the approach and give the experimental results on three datasets.
The conclusion and perspectives are given in section 6.

2 Local search for modeling amino acid insertion curves

2.1 Biological knowledge

This work deals with the recognition of two types of proteins: those secreted in
the ER lumen and those inserted in the ER membrane [8] and tries to identify
the ’code’ recognized by the translocon.

Recently, several experiments were designed to read the ’sequence code’. Hessa
et al. [9] carried out a series of in vitro experiments which assess the contribution
of each amino acid in different positions along the membrane. The experiments
revealed that the amino acid position plays a determining role during targeting
by the translocon. The hydrophobicity of an amino acid is related to its transfer
energy from a polar medium such as the cytoplasm to an apolar medium such as
the membrane. So, Hessa et al. suggest a biological hydrophobicity scale derived
from their experiments. Even if most of the hydrophobicity scales have been
derived experimentally, we assume that we can elaborate an in silico scale based
on the study of the insertion phenomena from two sets of protein segments which
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cross the translocon and share the same chemical hydrophobic profile : SP and
TM segments. This scale could benefit from a larger quantity of data stored
in the protein databases and consequently could be much more precise. In this
scale, each amino acid has different hydrophobic indexes for different positions
and the scale is represented by 20 symmetric curves across sequence positions
[3]. The length of the curve is 19 amino acids which corresponds to the thickness
of the membrane.

2.2 Local search for in silico determining the curves

In a previous system called LSTranslocon [7], we used a local search approach
to determine in silico the hydrophobic indexes of the amino acids. Following
the hypotheses assessed by biological experiments, we search indexes defined by
symmetric curves over [ = 19 positions, and a solution is therefore a set of 20
curves, one for each amino acid.

Given a solution, the insertion index of a sequence of amino acids of length [
is the average of its indexes. In the case of a longer sequence, a sliding window of
fixed length [ is scanned on the sequence and we define the insertion index of the
sequence as the maximum index calculated on a sub-sequence of length [. The
distinction between a SP and a TM segment is decided according to the following
principle: if the insertion index is lower than a threshold 7 then the sequence
is a SP, otherwise the sequence is a TM segment. The quality of this classifier
is evaluated by the Area Under the ROC Curve (AUC) [10] that estimates the
ability of the solution to obtain a suitable discrimination between SP and TM
segments.

LSTranslocon tries to maximize the AUC and solves this optimization prob-
lem by a local search algorithm that has the following characteristics.

Search space. A configuration s is a set of 20 curves defined on the interval
[1..19] and each curve is defined by an equation Y = a(z — Xo)? + 8. In fact
we represent each curve by Ye,; the value at the extremities of the interval for
r =1 and x = 19 and Y,,,;4 the value for x = 10.

Initialization. The initial configuration sg is a set of 20 constant values
given by the hydrophobic scale of Kyte and Doolittle [11].

Neighborhood. A neighbor of a configuration s is defined by randomly
selecting a curve C from s and by computing a new curve C’, by slight modifica-
tions of C. In this implementation, each configuration has a neighborhood of size
16 which is visited by a descent algorithm. The stopping condition is reached
when the AUC becomes stable on a validation set.

Dataset. To assess LSTranslocon, we used a database, called SWP-v1, of 900
SP and 798 TM segments extracted from the Swiss-Prot database 57-8 (released
on 22 September 2009).

Training, validation and test. This database is used to train and evaluate
LSTranslocon according to the following cross-validation process that involves
10 experiments. For each experiment, the initial dataset is split into three parts
by randomly drawing 60% of the data for the training set, 10% for the validation
set and 30% for the test set. The training set is used for the optimization of the
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insertion curves of the amino acids and for the determination of the threshold
7. The validation set is used to determine the stopping condition and to avoid
overfitting. When the curves and the threshold are computed, the test set is used
to evaluate the classification accuracy of the predictive model.

For each experiment, a 10-fold cross-validation provides an average value for
the classification accuracy achieved by the system.

Results The results of LSTransLocon were encouraging since we obtained
a predictive accuracy of 80% on our benchmark dataset, which is quite close
to the results of Phobius [12], when we consider TM segments located in the
N-terminal region of the protein.

However, we observed that different runs of LSTranLocon may lead to dif-
ferent solutions, that means different insertion curves for the amino acids. For
an amino acid that has few occurences in the dataset, it is not surprising that
we cannot correctly adjust its curve, but this phenomenon is also observed for
some frequent amino acids, like Leucine.

Therefore we tried to analyze the reasons for this instability. The following
sections propose different modifications of our approach in order to obtain more
reliable results and to improve the discrimination of TM segments and SP.

3 Benchmark dataset and representation of the data

Since the publication of our previous results with LSTranslocon, new releases of
the database Swiss-Prot are available. Each new version contains more proteins
and up-to-date information. It is very important for our approach to deal with
numerous and reliable data. Therefore we constructed a new benchmark dataset
from the Swiss-Prot database 57.15 (released on 02-march-2010).

This section describes precisely how this dataset, named SWP-v2, is ex-
tracted. It also presents the first improvement of our approach, namely a change
of representation for TM segments.

3.1 Construction of a benchmark dataset: SWP-v2

All datasets generated during the experiments are extracted according to the
following steps: (1) The selected proteins are only those that are marked in the
OC (organism classification) line as ”eukaryota”, the eukaryotic proteins differ
from prokaryotic proteins in particular in the addressing in the cell. (2) For the
proteins obtained from the above step, we extract those which were marked as
"signal peptide” and ”transmem” in the FT (Feature Table) line. (3) For the
proteins having a signal peptide, we only select those marked in the CC (sub-
cellular localization) line by ”secreted”. For transmembrane proteins, we select
those marked at line CC (subcellular localization) by ”membrane” or ”endo-
plasmic reticulum”. (4) We remove the proteins having a SP and annotated as
”potential”, "probable”, or by similarity”. However, for transmembrane pro-
teins, we only remove proteins annotated ”probable”, or ”by similarity”. (5) For
the resulting dataset, the sequence identity is checked and analyzed by using
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the program CD-HIT [13], which produces a non-redundant dataset at the 50%
sequence identity level.

By strictly following the above steps, we finally obtained a benchmark databa-
se for eukaryotic proteins. The database contains 1050 sequences with signal
peptide and 734 transmembrane proteins.

The signal peptide is located in N-terminal region, and the length varies
between different proteins. For eucaryotic proteins the average length of signal
peptide ranges from 22 to 32 amino acid residues [14]. So, we represent the SP
with the first 32 amino acids.

Note that in our study we consider a SA as a TM segment. Furthermore, the
polytopic membrane proteins are different from the bitopic membrane proteins
because they do not have the same ability to be inserted in the membrane [6].
For this reason, we selected only the first TM or SA segment according to its
annotations in Swiss-Prot. In the case where the selected segment has a length
inferior to 19, we expanded the selected window to represent a TM segment by
a sequence of 19 amino acids.

3.2 Influence of TM segment representation

The annotation of TM segments in UniProtKB/Swissprot is based on the infor-
mation given by the published papers [14]. Nevertheless, experimentally proven
transmembrane regions are generally annotated with the qualifier Potential due
to the difficulties in determining their precise boundaries. In our dataset, several
of the 734 TM proteins are annotated with the qualifier Potential and in this
case, the transmembrane regions are predicted by the application of predictive
tools TMHMM, Memsat, Phobius and the hydrophobic moment plot method of
Eisenberg and coworkers. These prediction tools introduce a bias in our learning
data. We want to determine whether the annotation of TM segments has an
influence on our prediction method.

Therefore, we carried out several experiments to study the influence of TM
segment representation on the performance of discrimination between SP and
TM segments. We consider the chain of amino acids that represents the anno-
tation of the TM segment in the dataset SWP-v2 and we widen this chain by
adding a certain number of amino acids before and after this annotation position.

Table 1 reports the accuracy obtained with LSTranslocon method on SWP-
v2. A represents the number of amino acids added before and after the extraction
window of the TM segments. Note that A0 means that the TM segments are
represented with their original length (annotation in Swiss-prot). Ak represents
a chain of amino acids enlarged of 2k amino acids, k before and k after the
annotated position of the TM segment.

We observe that widening the extraction window of the TM improves the
predictive performance. Therefore, for all the following experiments, a TM seg-
ment is represented by a chain of amino acids which is widened by 10 amino
acids before and after the given position of the TM segment.



6 Sami Laroum, Béatrice Duval, Dominique Tessier, and Jin-Kao Hao

Widening A0 A2 A4 A6 A8 | A10
Average accuracy |0.792|0.808 | 0.816 | 0.825 | 0.825 | 0.827
Standard deviation|0.0204|0.0069(0.0144|0.0063|0.0131|0.0087

Table 1. The table reports an evaluation of the effect of TM segment length for
discrimination between SP and TM segments. Each cell of table indicates the average
accuracy and the standard deviation achieved by a 10-fold cross-validation on SWP-v2.

3.3 Statistical data analysis

Our method adjusts the insertion curve of each amino acid in order to obtain
a good classification of the TM segments and SP of the training dataset. So it
is interesting to observe the statistical distribution of the amino acids in our
benchmark database. This information is presented in Figure 1. Note that our
dataset SWP-v2 represents a small portion of the total database Swiss-Prot.

We can observe that some amino acids, like Histidine, have very few oc-
curences in SWP-v2 and the same observation is true in SwissProt. Other amino
acids like Leucine (L), Alanine (A), Valine (V), Isoleucine (I), Phenilalanine (F)
and Serine (S) are very frequent in SWP-v2 as well as in SwissProt. However,
in our data the amino acid Phenilalanine (F) is quite frequent but is not very
present in the complete database. Besides, most of these frequent amino acids
have a high hydrophobic value.

We shall exploit this information in section 4 to propose different training
models for the amino acids.
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Fig. 1. Statistical distribution of each amino-acid in the SWP-v2. The Y axis gives the
percentage of occurrences of each amino acid in the SP segments (dark bars) and in
the TM segments (grey bars) in the SWP-v2 dataset.

3.4 Evaluation on other test datasets

As explained before, we use a cross-validation process to evaluate the new
method described in this paper. The training set and the validation set are
used to learn the curves and to propose a classification threshold; then the test
set is used to evaluate the accuracy of the resulting classifier. A series of 10
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experiments gives an average accuracy calculated on SWP-v2, that is extracted
from the Swiss-prot database.

We also propose to test our method on additional sets of membrane proteins.
These sets are extracted from the SCAMPI dataset [3]. This database is inter-
esting because it contains proteins with known 3D structure and the position of
the TM segment is more reliable. So this is a good benchmark for a predictive
method.

SCAMPI dataset [3] is divided into two collections of proteins. The first
collection is a ”high-resolution” set of 123 transmembrane proteins. The max-
imum homology among these 123 proteins is 40%. The second collection is a
”low-resolution” set of 146 proteins with homology reducing at 40% sequence
identity.

These two collections provide examples that are different from the TM seg-
ments of SWP-v2 because SWP-v2 contains proteins with a unique TM segment
while the proteins from Scampi contain several TM segments. On the contrary,
SWP-v2 and Scampi datasets contain the same SP. So to follow an unbiased
methodology, we apply a cross-validation process where the test set is a collec-
tion of TM segments of Scampi completed by a set of SP drawn from SWP-
v2. By dividing SWP-v2 in 10 parts, we can achieve 10 experiments and we
call “ScampiHigh” the case where the test TM segments are obtained from the
Scampi collection of high resolution, and “Scampilow” the other case.

4 New search space of insertion indexes for amino acids

4.1 Principle

As explained in section 2.2, our previous method [7] represents the insertion
index of each amino acid by a symmetric curve defined on I = 19 positions.
We observed that the curves of some amino acids were unstable in the sense
that different runs of our local search algorithm may provide different shapes
of curves for the same amino acid. One explanation for this observation is that
these amino acids are not very frequent in our database and the algorithm has
some difficulty to properly adjust their insertion curve.

Therefore, in our new algorithm, we propose to consider that an insertion
index may be defined by a constant straight line or by a symmetric curve. A
symmetric curve is defined by two parameters (Yeut, Yinig) whereas a straight
line is defined by a sole parameter Y;,;q4.

According to the statistical distribution of amino acids in our benchmark
dataset (see section 3.3) and to the hydrophobicity values of amino acids, we
propose to consider two clusters of amino acids.

On the one hand, the amino acids Alanine (A), Phenylalanine (F), Isoleucine
(I), Leucine (L) and Valine (V) are highly frequent in our data. We also notice
that they are known to have high hydrophobic values. So they form a group noted
C and for each element of this group we search a symmetric curve to define the
insertion index. The second group D contains all the fifteen other amino acids
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and for each element of this group we search a straight line to define the insertion
index.

These hypotheses define a new search space for our new algorithm, where a
solution (s) is a set of 15 straight lines and 5 curves, each being defined on the
interval [1..19]. As a constant line is defined by a unique parameter, this reduces
the number of parameters that characterize a solution.

To explore this search space, we adopt the following two-stage strategy. We
start with an initial solution (sg) defined by 20 constant hydrophobicity values.
Our algorithm first optimizes the values of the 15 straight lines. Then when
an optimum is reached for the lines, we optimize the 5 symmetric curves. In
each case, we explore the whole neighborhood of the current solution in order to
choose the solution that provides the best AUC improvement.

In table 2, we compare the results obtained with this search space to the
results obtained with LSTranslocon. In the two cases, we use the scale of Kyte
and Doolittle [11] as a initial solution.

We notice that the new search space enables a slight improvement of the
discrimination performance on the three test sets.

Moreover, this new search space guarantees a stability of the insertion curves,
since we reduced the problem dimensionality and the algorithm tries to adjust
symmetric curves only for amino acids that are very frequent in the data.

Method New search space LSTranslocon

Data SWP-v2|ScampiHigh|ScampiLow |SWP-v2|ScampiHigh|ScampiLow
Average accuracy 0.829 0.807 0.824 0.827 0.795 0.804
Standard deviation| 0.0131 2.4e-05 0.0077 0.0087 0.0002 0.0125

Table 2. Results of the algorithm with the new search space compared to LSTranslo-
con: average accuracy and standard deviation achieved by a 10-fold cross-validation on
3 datasets.

4.2 Influence of the initial scale

In a local search process, the initial solution may be randomly chosen or defined
by relevant knowledge to provide good conditions for the algorithm. In all our
previous experiments, we chose the Kyte and Doolittle scale [11] to fix the con-
stant values of the initial solution. The literature provides other hydrophobicity
scales. This section studies whether a particular scale is better suited to initiate
our search process.

We consider the three following hydrophobicity scales: Kyte and Doolittle
[11], Eisenberg [16] and Engelman [17]. We study what results can be obtained
with the new search space described in the previous section when the initial so-
lution (sg) is defined by each of these scales. These scales are not normalized and
their range are quite different. So we give different variation steps and different
running times to the search process to lead this experiment in a fair manner.

Table 3 shows that the results obtained with the Kyte and Doolittle scale and
with the Eisenberg scale are comparable with a slight advantage to Eisenberg
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scale. The Engelman scale provides less interesting results, especially on the
Scampi data where the accuracy is below 0.80.

So, in the rest of the paper, the experiments use the Eisenberg scale to define
the initial solution of the local search process.

Scale Kyte and Doolittle

Data SWP-v2|ScampiHigh|ScampiLow
Average accuracy 0.829 0.807 0.824
Standard deviation| 0.0131 2.4e-05 0.0077
Scale Eisenberg

Data SWP-v2|ScampiHigh|ScampiLow
Average accuracy | 0.837 0.817 0.826
Standard deviation| 0.0134 3.9e-05 0.0063
Scale Engelman

Data SWP-v2|ScampiHigh|ScampiLow
Average accuracy | 0.806 0.777 0.791
Standard deviation| 0.0001 0.0001 0.0078

Table 3. Comparison of three hydrophobic scales. Each cell reports the average accu-
racy and the standard deviation achieved by a 10-fold cross-validation on 3 datasets.

5 Multi-Neighborhood Search

To carry out efficiently the search task of determining in silico the hydrophobic
indexes of the amino acids, we introduce in this section a multi-neighborhood
local search (MN-LS) algorithm which is based on the observations made in
Sections 3 and 4. This algorithm is designed to explore two different search
spaces in two sequential phases in order to optimize 15 straight lines associated
to the amino acids of the group D (see Section 4.1) and the set of 5 symmetric
curves of the group C (see Section 4.1).

For this purpose, our MN-LS algorithm employs different neighborhoods and
uses steepest descent strategies to explore these neighborhoods in a sequential
manner.

5.1 Neighborhoods

Neighborhood of straight lines (group D): Since each straight line is de-
fined by the value of the Y,,;q parameter, a solution of the first search space
(group D of the 15 amino acids) is identified by a vector of 15 values. Given
such a solution (s), we define a neighboring solution by adding a shift value € to
or subtracting € from one single component of (s). Since (s) contains 15 compo-
nents, each solution has exactly 30 neighboring solutions. Large values for € lead
to important changes of a straight line while small values for e give only slight
changes. In this paper, € is experimentally set at 0.7.
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Neighborhood of symmetric curves (group C): Recall that each symmetric
curve is defined by a couple (Yeut, Yinia)- A solution of the second search space
(group C of the 5 amino acids) represents thus 5 symmetric curves which can
be considered as a vector of 5 couples (Yeuzt, Yinia). Given such a solution (s),
we generate a neighboring solution by adding a shift value € to or subtracting e
from one couple (Yeut, Yinia) of (s) by excluding (Yegzi+e€, Yiniat+e) and (Yeui-e,
Yinia-€). Since for each couple (Yezt, Yinia) of (s), we have six neighbors {(Yeu+,
Ymid+€)7 (}/exh Yrmid‘da (Yext+€7 Ymid)7 (Yewt‘ea Ymid) (}/ext+67 Ymid‘€)7 (Yext‘ea
Yinia+e)}, each solution has exactly 30 neighboring solutions.
In this paper, € is experimentally set at 0.7, 0.5 and 0.3.

5.2 Move strategy and multi-neighborhood exploration

As explained in Section 4.1, each candidate solution is assessed according to the
associated AUC score. To make a move from the current solution, the search
algorithm examines all the neighboring solutions and picks the best improving
neighbor (according to the AUC score) to replace the current solution. The
search stops if no such an improving neighbor exists in the neighborhood.

The algorithm starts its exploration by examining the first search space com-
posed of 15 straight lines. This is simply realized by applying the steepest descent
strategy to the given neighborhood. When this phase is finished, the algorithm
proceeds to the next phase for the optimization of symmetric curves.

To explore the neighborhoods of symmetric curves, the algorithm operates
successively by examining the second search space with the neighborhood de-
fined by the largest € value 0.7. Upon reaching a local optimum, the algorithm
switches to the next neighborhood defined by € = 0.5 to find another local op-
timum solution. The search then continues with the neighborhood defined by €
= 0.3. We justify these successive explorations by the fact that it is preferable
to make important changes to ensure a large exploration of the search space at
the beginning of the search and limit the changes for finer examination toward
the end of the search.

For both phases of the search, the initial solution is generated by using the
values given by the Eisenberg scale (See Section 4.2).

5.3 Experiments

Table 4 (higher part) shows the experimental results that assess our approach
MN-LS ( a multi-neighborhood search combined with the new search space). For
comparison, we recall in the table (middle part) the best results shown in the
preceding section with the new search space and a simple neighborhood as well
as the results achieved by LSTranslocon (lower part). The three methods begin
with an initial solution generated from the Eisenberg scale (See Section 4.2).
Each method is evaluated 10 times on the three test datasets.

We observe that the results of MN-LS and the algorithm with the new search
space are very close, with a slight improvement by MN-LS on SWP-v2. When we
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Method MN-LS

Data SWP-v2|ScampiHigh|ScampiLow
Average accuracy | 0.866 0.811 0.826
Standard deviation| 0.006 0.0001 0.0037
Method New search space

Data SWP-v2|ScampiHigh|ScampiLow
Average accuracy | 0.837 0.817 0.826
Standard deviation| 0.0134 3.9e-05 0.0063
Method LSTranslocon

Data SWP-v2|ScampiHigh|ScampilLow
Average accuracy | 0.834 0.797 0.809
Standard deviation| 0.0285 0.0002 0.0145

Table 4. Comparison between MN-LS using the new search spaces and LSTranslocon.

compare MN-LS with LSTranslocon, we observe that MN-LS achieves improved
classification accuracy on the three datasets. These results highlight the impor-
tance of separating the search space into straight lines and symmetric curves
and the interest of using multi-neighborhoods for searching good solutions.

6 Conclusion

In this paper, we have introduced two features to improve a previous local search
approach for membrane protein prediction. Based on biological observations, the
new method optimizes first a set of 15 straight lines corresponding to the set
of amino acids with a low hydrophobic value, followed by learning symmetric
curves for the 5 remaining amino acids which are highly hydrophobic.

To explore the two spaces (straight lines and symmetric curves), the proposed
method investigates different neighborhoods and examines them in a sequential
and exhaustive manner. The experimental results show that the method gives
better results compared with LSTranslocon in terms of classification accuracy
and stability of insertion curves.

Concerning the recognition of TM segments in the full sequence of a protein,
we observe that the proposed approach is able to predict the position of the
first TM segment. For the other TM segments of a protein, it seems that the
proposed threshold is not adequate. This is not a surprising result since our
training phase is devoted to the discrimination between SP and the first TM
segments of proteins.

We are currently studying alternative curves to get closer to the real phe-
nomenon of membrane protein insertion. In [5, 18], the authors use asymmetric
curves because it appears that some amino acids are better in the insertion at the
N-terminal region than at the C-terminal region. Moreover, we are investigating
other search approaches like genetic algorithm in order to improve further the
classification accuracy.
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