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Abstract. We investigate the contribution of a recently proposed adap-
tive diversification strategy (ADS) to the performance of an iterated lo-
cal search (ILS) algorithm. ADS is used as a diversification mechanism
by breakout local search (BLS), which is a new variant of the ILS meta-
heuristic. The proposed perturbation strategy adaptively selects between
two types of perturbations (directed or random moves) of different in-
tensities, depending on the current state of search. We experimentally
evaluate the performance of ADS on the quadratic assignment problem
(QAP) and the maximum clique problem (MAX-CLQ). Computational
results accentuate the benefit of combining adaptively multiple pertur-
bation types of different intensities. Moreover, we provide some guidance
on when to introduce a weaker and when to introduce a stronger diver-
sification into the search.

Keywords: adaptive perturbation strategy, iterated local search, break-
out local search, quadratic assignment, maximum clique.

1 Introduction

To be successful, a heuristic approach needs to find a suitable balance between an
intensified and a diversified search. Intensification is the ability of the method
to examine in depth specific search areas while diversification is the capacity
of the method to diversify the search in order to find promising new search
areas. If the diversification is too weak, the search has a great chance to end
up cycling between two or several previously encountered local optima. On the
other hand, a too strong diversification is no better than a random restart and
may reduce the chances of finding better solutions in the following iterations.
Determining the right degree of diversification is not a straightforward task, since
it greatly depends on structural characteristics of the given instance such as the
distribution of local optima, the correlation between solutions, the number of
global optima, etc. Additionally, the optimal diversification degree required at
one stage of the search is not necessarily optimal at another stage. These facts
constitute the motivation for our adaptive diversification mechanism.

In this paper, we investigate the contribution of a new adaptive diversifica-
tion strategy (ADS) employed by a recent breakout local search (BLS) meta-
heuristic [3,4,5,6]. BLS is a variation of iterated local search (ILS) [9] since it
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combines a descent-based local search with a perturbation mechanism. However,
BLS has a particular focus on the importance of the perturbation phase. Based
on some information on the search history, it dynamically determines the num-
ber of perturbation moves, and adaptively chooses between two or several types
of perturbation moves of different intensities. In this work, we fix the number
of perturbation moves, and evaluate the efficiency of this adaptive multi-type
diversification on the quadratic assignment problem (QAP) and the maximum
clique problem (MAX-CLQ). More precisely, we integrate ADS into a basic ILS
algorithm and compare the performance of this adaptive diversification based
ILS against two other ILS versions based respectively on random and directed
perturbation moves. The obtained computational results accentuate the benefit
of combining adaptively multiple perturbation types of different intensities. Fur-
thermore, we analyze the distribution of local optima to provide some guidance
on when to introduce a weaker or a stronger diversification into the search.

2 Iterated Local Search with a Adaptive Diversification
Strategy

2.1 General Framework

The basic idea of iterated local search (ILS) is to alternate iteratively between
a local search phase to attain local optima, and a perturbation phase (applied
to the current or best found local optimum) to direct the search towards new
unexplored regions of the search space.

Alg. 1 shows the general framework of our adaptive diversification based ILS
(denoted by AD-ILS), which we later apply to two NP -hard problems consid-
ered in sections 3 and 4. Starting from an initial feasible solution, AD-ILS first
initializes the best-found solution Sbest, the tabu list H (see Section 2.2), the
counter ω for consecutive non-improving local optima, and the global iteration
counter iter (lines 1-5 of Alg. 1). While a stopping condition is not satisfied,
AD-ILS applies a simple descent (ascent in case of maximization) local search
to reach a local optimum S (lines 8-12 of Alg. 1). Each iteration of this descent-
based procedure searches the given neighborhood for the best solution to replace
the current solution, and stops if no improving neighbor exists (i.e., once local
optimality is reached). After each solution transition, AD-ILS updates the tabu
list H (see Section 2.2) and increments the global iteration counter iter.

If the quality of the local optimum S, reached in the last descent phase, is
better than the quality of the best-found solution Sbest, AD-ILS updates Sbest

and re-initializes the number of consecutive non-improving local optima ω (lines
13-15 of Alg. 1). Otherwise, ω is incremented by one (lines 16-17 of Alg. 1). If ω
exceeds a certain threshold T , it is reset to zero (lines 19-21 of Alg. 1).

In order to escape from the current local optimum S, AD-ILS applies its
perturbation mechanism ADS to S, and returns a perturbed solution which
becomes a new starting point for the next phase of the descent/ascent procedure
(line 22 of Alg. 1).
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Algorithm 1. Adaptive Diversification-based Iterated Local Search
Require: The jump magnitude L, the threshold T and the tabu tenure γ.
Ensure: Solution Sbest.
1: S ← Initial Solution
2: Sbest ← S; /* Initialize the best-found solution Sbest */
3: H ← 0; /* Initialize the tabu list H */
4: ω = 0; /* Initialize the number of consecutive non-improving local opt. ω */
5: iter = 0; /* Initialize the global iteration counter iter */
6: while stopping condition not reached do
7: Let m be the best move eligible for S
8: while f(S ⊕m) is better than f(S) do
9: S ← S ⊕m /* Perform the best-improving move */
10: Hm ← Iter + γ /* Update tabu list, γ is the tabu tenure */
11: Iter ← Iter + 1
12: end while
13: if f(S) is better than f(Sbest) then
14: Sbest ← S
15: ω = 0
16: else
17: ω = ω + 1
18: end if
19: if ω > T then
20: ω = 0
21: end if
22: S ← Adaptive Diversification Strategy(S, H, ω, L, iter, T, γ) /* Sect. 2.2*/
23: end while

Since the local search phase is a simple decent/ascent procedure, it alone can-
not escape from a local optimum. The performance of AD-ILS thus strongly
depends on its perturbation mechanism ADS which is detailed in the next
section.

2.2 Adaptive Diversification Strategy (ADS)

The AD-ILS algorithm, that we apply to QAP (Section 3) and MAX-CLQ (Sec-
tion 4), employs a directed and a random perturbation to guide the search to-
wards new regions of the search space. This adaptive perturbation mechanism
is illustrated in Alg. 2.

The directed perturbation (DIRP) is based on the idea of tabu list from
tabu search [7]. It uses a selection rule that favors the move that minimizes
the degradation of the objective, under the constraint that this move is not
prohibited by the tabu list. The information for move prohibition is maintained
in a tabu list H , such that each element in H is the iteration number when
the corresponding move was last performed, plus the tabu tenure γ (represented
as a natural number). The tabu status of a move is neglected only if the move
leads to a new solution better than the best solution found so far. The directed
perturbation relies thus both on 1) history information which keeps track, for
each move, of the last time (iteration) when it was performed and 2) on the
quality of the moves to be applied for perturbation in order not to deteriorate
too much the perturbed solution. History-based diversifications have previously
been used in [2,8].



64 U. Benlic and J.-K. Hao

Algorithm 2. Adaptive Diversification Strategy(S,H, ω, L, iter, T, γ)
Require: Local optimum S, tabu list H, number of consecutive non-improving local optima visited

ω, jump magnitude L, global iteration counter Iter, threshold T , tabu tenure γ.
1: P ← Determine Probability for Directed Perturbation(ω, T) /* see Eq. 1 */
2: if (P > random[0.0, 1.0]) then
3: PERT = DIRP /* L moves of DIRP will be applied to S */
4: else
5: PERT = RNDP /* L moves of RNDP will be applied to S */
6: end if
7: for i := 1 to L do
8: S ← Perturbation Move(S, PERT ) /* Apply a move m of the predetermined perturb.*/
9: Hm ← Iter + γ
10: Iter ← Iter + 1
11: if f(S) is better than f(Sbest) then
12: Sbest ← S
13: ω = 0
14: end if
15: end for

The random perturbation (RNDP) is the most popular type of perturbation
for ILS algorithms. It consists in performing randomly selected moves.

It is obvious that DIRP and RNDP introduce different balances between in-
tensification and diversification. More precisely, DIRP is more oriented towards
search intensification than RNDP since it considers the quality of moves in or-
der not to degrade too much the resulting solution. The search thus has greater
chances to end cycling between two or more local optima if DIRP is used alone.
On the other hand, RNDP may prevent the search from cycling, but it may as
well decrease the chances of finding a global optimum by passing too quickly to
new regions while promising regions were not sufficiently exploited.

To insure the best balance as possible between an intensified and a diversified
search, the adaptive diversification strategy ADS applies probabilistically DIRP
and RNDP. The probability of applying a particular type of perturbation is de-
termined dynamically depending on the search state, i.e., the current number ω
of consecutive non-improving attractors visited (lines 13-21 of Alg. 1). The idea
is to apply more often directed perturbations (with a higher probability) as the
search progresses towards improved new local optima (the non-improving con-
secutive counter ω is small). With the increase of ω, the probability of using the
directed perturbations progressively decreases while the probability of applying
the random moves increases for the purpose of a stronger diversification.

Additionally, it has been observed from an experimental analysis that it is
useful to guarantee a minimum of applications of DIRP. Therefore, we constrain
the probability P of applying DIRP to take values no smaller than a threshold
P0:

P =

{
e−ω/T if e−ω/T > P0

P0 otherwise
(1)

Once the type of perturbation is determined (lines 1-6 of Alg 2), AD-ILS applies
L moves of the selected perturbation to the current local optimum S (lines 7-15
of Alg 2).



A Study of Adaptive Perturbation Strategy for Iterated Local Search 65

3 Case Study I: Quadratic Assignment Problem (QAP)

3.1 Problem Description

The quadratic assignment problem (QAP) is a well-known NP -hard problem
which consists in assigning at minimal cost a set of n locations to a given set
of n facilities, given a flow fij from facility i to facility j for all i, j ∈ {1, ..., n}
and a distance dab between locations a and b for all a, b ∈ {1, ..., n}. Let Π
denote the set of the permutation functions π : {1, ..., n} → {1, ..., n}, QAP can
mathematically be formulated as follows:

minπ∈ΠC(π) =
n∑

i=1

n∑
j=1

fijdπiπj (2)

where f and d are the flow and distance matrices respectively, and π ∈ Π is
a solution where πi represents the location assigned to facility i. The problem
objective is then to find a permutation π∗ in Π that minimizes the sum of the
products of the flow and distance matrices, i.e., C(π∗) ≤ C(π), ∀π ∈ Π .

3.2 Neighborhood Relation and Its Exploitation

A candidate solution for QAP can be encoded as a permutation π of {1, ..., n},
such that πi denotes the location assigned to facility i ∈ {1, ..., n}. Like many
existing local search methods for QAP, our ILS employs the swap move to π
which consists in exchanging the locations of two facilities.

The neighborhood N(π) of a solution π is then defined as the set of all the
permutations that can be obtained by exchanging any two values πu and πv, i.e.,
N(π) = {π′ : π′u = πv, π

′
v = πu, u �= v and π′i = πi, ∀i �= u, v}. The size of N(π)

is thus equal to n(n− 1)/2.
The local search phase of ILS explores the whole neighborhood N(π) to find

the best swap move which is then applied to π to obtain a new solution. This
process is repeated until a local optimum is reached. To evaluate the whole
swap neighborhood N(π) in O(n2) time, we use an effective strategy which
incrementally updates the objective variation of each move [10].

3.3 Perturbation Types Combined with ADS

The directed perturbation (see Section 2.2) applies a swap move that minimizes
the value of the objective function C, under the constraint that the move has not
been applied during the last γ iterations (γ is the tabu tenure that takes a random
value from a given range). The eligible moves for the directed perturbation are
identified by the set A such that:

A = {swap(u, v) : min{δ(π, u, v)}, Huv < Iter or (δ(π, u, v) + c) < cbest, u �= v}
where H is the tabu list that keeps track of the iteration number when a move
was last performed plus γ, Iter the current iteration number, c the cost of the



66 U. Benlic and J.-K. Hao

current solution, and cbest the cost of the best solution discovered so far. A larger
value of γ implies stronger diversification.

The random perturbation simply performs swap moves that are selected uni-
formly at random.

Our AD-ILS for QAP combines and applies these two types of perturbations
as explained in Section 2.2.

3.4 Experimental Results and Comparisons

To evaluate the efficiency of the proposed AD-ILS algorithm for QAP, we carry
out experiments on a set of 16 difficult QAPLIB instances1 of three different
types (unstructured instances, real-life like instances, grid-based instances).

We contrast the results of AD-ILS with those obtained with two other ILS
versions which respectively employ perturbation strategies based on directed
(DIR-ILS) and random moves (RND-ILS). For all the three ILS versions, the
number of perturbation moves is L = 0.15n. For both AD-ILS and DIR-ILS,
the tabu tenure γ takes a random value in the range [0.9n, 1.1n]. For AD-ILS,
the setting of the parameters used for adaptive perturbation is P0 = 0.9 and
T = 2500. This setting of parameters is determined by a preliminary experiment
and can be justified to some extent by the analysis provided in Section 5. We
make 20 independent executions per instance, with the time limit per run set to
2 hours.

Table 1. Computational comparison of AD-ILS with DIR-ILS and RND-ILS on 16
hard QAP instances

Instance AD-ILS DIR-ILS RND-ILS
Name BKR %ρbest %ρavg t(m) %ρbest %ρavg t(m) %ρbest %ρavg t(m)
tai40a 3139370 0.000(12) 0.030 30.2 0.000(14) 0.022 41.5 0.000(3) 0.116 49.4
tai50a 4938796 0.000(4) 0.121 62.3 0.000(3) 0.136 60.8 0.301(0) 0.576 58.0
tai60a 7205962 0.000(1) 0.359 65.9 0.191(0) 0.400 57.9 0.313(0) 0.837 47.9
tai80a 13499184 0.651(0) 0.764 67.8 0.600(0) 0.755 66.7 0.812(0) 1,179 43.9
tai100a 21052466 0.626(0) 0.804 59.7 0.648(0) 0.788 50.6 0.948(0) 1,218 68.2
tai80b 818415043 0.000(9) 0.423 34.2 0.000(1) 0.755 28,4 0.000(9) 0.001 65.4
tai100b 1185996137 0.000(12) 0.253 17,9 0.000(6) 0.382 37.9 0.000(10) 0.001 39.2
tai150b 498896643 0.000(1) 0.322 68.6 0.161(0) 0.429 80.2 0.023(0) 0.138 84.5
sko81 90998 0.000(20) 0.000 11.8 0.000(20) 0.000 2.7 0.011(0) 0.032 65.0
sko90 115534 0.000(7) 0.045 14,7 0.000(6) 0.063 24,6 0.011(0) 0.040 74.2
sko100a 152002 0.000(12) 0.006 11,7 0.000(8) 0.022 15,9 0.045(0) 0.069 64.1
sko100b 153890 0.000(20) 0.000 15,4 0.000(16) 0.019 16,9 0.016(0) 0.045 55.2
sko100c 147862 0.000(20) 0.000 9,8 0.000(19) 0.021 11,6 0.009(0) 0.046 69.4
sko100d 149576 0.000(10) 0.002 61,2 0.000(11) 0.066 29,6 0.044(0) 0.076 59.6
sko100e 149150 0.000(18) 0.000 40,3 0.000(16) 0.034 16,7 0.011(0) 0.030 69.8
sko100f 149036 0.000(20) 0.000 23,3 0.000(15) 0.013 23,1 0.023(0) 0.063 60.2
Average 0.080 0.196 38.9 0.100 0.244 37.5 0.160 0.279 60.9

Table 1 shows for each algorithm the best (column %ρbest) and average (col-
umn %ρavg) percentage deviation from the best-known result (column BKR)
obtained over 20 runs. The percentage deviation %ρ is computed as %ρ =
100(z − BKR)/z[%], where z is the result obtained by a given approach and

1 http://www.seas.upenn.edu/qaplib/

http://www.seas.upenn.edu/qaplib/
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BKR the best-known objective value. Next to the percentage deviation ρbest, we
indicate in parentheses the number of times the best-known solution was found
over 20 executions. Moreover, we provide the average times in minutes required
to reach the returned solution after a trial. The best results are indicated in
bold. The averaged results are provided in the last row.

From the results in Table 1, we can make the following conclusions. In most
cases, the best performance is obtained with AD-ILS which reports an aver-
age %ρavg of 0.196 (vrs. 0.244 for DIR-ILS and 0.279 for RND-ILS) over the
16 QAP instances. Indeed, AD-ILS is unable to attain the best-known result
from the literature only for two instances (tai80a and tai100a), while DIR-ILS
and RND-ILS are unable to reach the best-known objective value for 4 and
13 instances respectively. The worst performance on the QAP instances is thus
obtained with the RND-ILS algorithm, except for three real-life like instances
(i.e., tai80b, tai100b and tai150b) for which RND-ILS algorithm insures the best
performance. The Posthoc test reveled that AD-ILS statistically outperforms
RND-ILS with a p-value of 0.016. In Section 5, we provide an explanation for
these performances based on a landscape analysis. In terms of computing times,
AD-ILS and DIR-ILS show comparable performances with an average time of
38.7 and 37.5 minutes respectively for the 16 instances, while RND-ILS requires
on average around 70 minutes. These results show the advantage of applying
directed or adaptive perturbations over the classic random perturbations.

4 Case Study II: Maximum Clique Problem (MAX-CLQ)

4.1 Problem Description

Given an undirected graph G = (V,E) where V is the set of vertices and E the
set of edges, a clique C of G is a subset of V such that all the vertices in C
are pairwise adjacent, i.e., ∀v, u ∈ C, {v, u} ∈ E. The maximum clique problem
(MAX-CLQ) is to find a clique C of the maximal cardinality. It is one of the
first problems shown to be NP -complete.

4.2 Neighborhood Relations and Their Exploitation

For solution transformations, ILS employs four distinct move operators (moves
for short) whose basic idea is to generate a new clique from the current clique C
by adding vertices v ∈ V \ C to C, swapping vertices u and v such that u ∈ C
and v ∈ V \ C, or removing vertices v ∈ C from C.

Three sets PA, OM and OC are involved in the definition of these moves. The
vertex set PA consists of nodes excluded from the clique C that are connected
to all the vertices in C, i.e., PA = {v : v /∈ C, ∀u ∈ C, {v, u} ∈ E}.

The OM set consists of vertex pairs (v, u) such that v is excluded from C and
is connected to all vertices in C except to vertex u ∈ C, i.e.,
OM = {(v, u) : v /∈ C and u ∈ C, |N(v) ∩ C| = |C| − 1, {v, u} /∈ E}, where
N(v) = {i : i ∈ V, {i, v} ∈ E}.
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The OC set consists of all the vertices excluded from the clique C, i.e., OC =
{v : V \ C}.

The four moves M1 to M4 can then be defined as follows:

M1: Select a vertex v ∈ PA and insert it into C. After this move, the change in
the objective function is given by the following expression: Δ = wv.

M2: Select a vertex pair (v, u) ∈ OM . Insert v into C and remove u from C.
The change in the objective function can be computed as: Δ = wv − wu.

M3: Select a vertex v ∈ C and remove it from C. The change in the objective
function is given as: Δ = −wv.

M4: Select a vertex v ∈ OC such that (wv+
∑
{v,u}∈E,u∈C wu) ≥ α∗f(C), where

f(C) is the current solution cost and 0 < α < 1. Add v to C. Repair the
resulting clique C by removing from C all vertices x such that {v, x} /∈ E.

The descent-based local search phase of ILS consists in identifying the best move
m from the union M1 ∪M2 and applying it to C to obtain a new solution. This
procedure is repeated until a local optimum is reached. The directed perturbation
(see Section 4.3) applies a move m from M1∪M2∪M3. For random perturbation
(see Section 4.3), m is selected from M4.

4.3 Perturbation Types Combined with ADS

As previously explained in Section 2.2, the directed perturbation is based on
the tabu search principles and favors non-tabu moves that minimize the cost
degradation. Move prohibition is determined in the following way. Each time a
vertex v is added into the clique C, it can be removed from C without restrictions.
However, each time v is dropped from C, it is forbidden to place it back to C
for γ iterations. The value of γ is determined by the following relation:

γ = φ+ random(|OM |),
where φ is a coefficient and random is a function which returns at random a value
ranging from 1 to |OM | (the number of elements in the OM set, see Section 4.2).

The eligible moves for the directed perturbation are identified by the set A
such that:

A = {m : m ∈ {M1 ∪M2 ∪M3},max{Δm}, prohibited(m) = false or
(Δm + f(C)) > fbest}

where Δm is the change in the objective function after performing move m (see
Section 4.2). Note that the directed perturbation considers all the eligible moves
from the union of three types of moves M1, M2 and M3 (see Section 4.2).

The random perturbation, which is significantly stronger than the directed
perturbation, consists in performing moves randomly selected from the set of
moves M4 (see Section 4.2). The degree of random perturbation can be adjusted
by changing the value of parameter α (0 < α < 1). If α ≈ 0, the random
perturbation is very strong and can be compared to a random restart. If α ≈ 1,
the strength of the random perturbation is insignificant.
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4.4 Experimental Results and Comparisons

We report computational results using 6 instances from the BHOSLIB bench-
mark2 and 11 instances from the more popular DIMACS benchmark3. To evalu-
ate the significance of ADS, we compare the performances of AD-ILS, DIR-ILS
and RND-ILS. For AD-ILS, the setting of the parameters used for adaptive per-
turbation is P0 = 0.9 and T = 2000. α = 0.8 for both AD-ILS and RND-ILS.
For both AD-ILS and DIR-ILS, the coefficient φ for tabu tenure is set to 7. The
number of perturbation moves L is set to L = 0.05|V | for AD-ILS and DIR-ILS,
while L = 0.01|V | for RND-ILS. This setting of parameters is determined by a
preliminary experiment. Each ILS version is independently executed 50 times,
with the time-limit per run set to 90 minutes.

Table 2 reports the computational results. Column BR indicates the best-
known or optimal (indicated with an asterisk) result. For each ILS, we report
the best (column |C|best) and the average result (column |C|avg) obtained over
50 independent runs, as well as the average computing time in minutes required
to reach the best reported result from column |C|best. Next to the best-found
clique value |C|best, we indicate in parentheses the number of times the best-
known solution was found over 50 executions.

Table 2. Computational comparison of AD-ILS with DIR-ILS and RND-ILS on 11
hard DIMACS instances and 6 large BHOSLIB instances

Instance AD-ILS DIR-ILS RND-ILS
Name BR |C|best |C|avg t(m) |C|best |C|avg t(m) |C|best |C|avg t(m)
brock800 1 23� 23(9) 21.36 43.8 23(4) 21.16 28.9 21(0) 20.98 4.0
brock800 2 24� 24(27) 22.62 34.6 24(4) 21.24 36.7 24(4) 21.24 25.6
brock800 3 25� 25(41) 24.46 41.6 25(15) 22.9 28.3 25(5) 22.3 47.5
brock800 4 26� 26(45) 25.5 22.5 26(37) 24.7 45.3 26(21) 23.1 43.7
C1000.9 68 68(50) 68.0 0.5 68(50) 68.0 0.1 59(0) 58.5 31.9
C2000.9 80 79(0) 77.66 55.0 79(0) 78.36 43.4 64(0) 62.88 44.3
keller6 59 59(50) 59.0 3.4 59(50) 59.0 0.5 50(0) 47.66 11.9
san1000 15� 15(12) 11.2 27.4 15(33) 13.34 30.9 15(1) 9.66 0.1
san400 0.7 1 40� 40(50) 40.0 18.5 40(50) 40.0 2.5 23(0) 21.84 43.5
san400 0.7 3 22� 22(50) 22.0 0.0 22(50) 22.0 0.0 22(50) 22.0 16.5
hamming10-4 40 40(50) 40.0 0.0 40(50) 40.0 0.0 38(0) 35.92 53.6
frb53-24-1 53� 53(2) 52.04 33.6 53(4) 52.08 36.0 46(0) 44.76 36.9
frb53-24-3 53� 53(22) 52.44 33.4 53(50) 53.0 20.7 46(0) 44.92 62.2
frb53-24-5 53� 53(37) 52.74 35.2 53(50) 53.0 17.8 46(0) 44.72 50.6
frb56-25-1 56� 56(1) 54.88 6.3 56(15) 55.3 33.2 49(0) 46.88 82.9
frb56-25-3 56� 56(2) 55.0 56.1 56(13) 55.26 56.7 48(0) 47.06 22.2
frb56-25-5 56� 56(33) 55.62 43.9 56(49) 55.98 10.9 48(0) 47.04 28.5

Like for QAP, AD-ILS significantly and statistically outperforms RND-ILS
with a p-value = 3.751173e-04 according to the Posthoc test, which once again
highlights the drawback of the classic random perturbation often used within
the general ILS framework. However, the contribution of ADS is less significant
in comparison with the directed perturbation strategy. Although both AD-ILS
and DIR-ILS can attain the best-known result for all the used instances except
for instance C2000.9, DIR-ILS outperforms AD-ILS in terms of average results

2 http://iridia.ulb.ac.be/~fmascia/maximum_clique/BHOSLIB-benchmark
3 http://cs.hbg.psu.edu/txn131/clique.html

http://iridia.ulb.ac.be/~fmascia/maximum_clique/BHOSLIB-benchmark
http://cs.hbg.psu.edu/txn131/clique.html
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on all the BHOSLIB instances and 2 DIMACS instances (C2000.9 and san1000).
However, AD-ILS shows better performance than DIR-ILS on the four hard brock
instances. In Section 5, we justify these results with an analysis of distribution
of high quality local optima. In terms of average computing times, the difference
between AD-ILS and DIR-ILS is not very obvious.

5 Analysis

We observed from the computational comparisons (see sections 3.4 and 4.4) that
the best performance with ILS is often obtained when directed (weaker) and
random (stronger) perturbations are adaptively combined. On the other hand,
the results also showed that for some instances (e.g., BHOSLIB instances from
the MAX-CLQ benchmark) it is more useful to apply only the weak (directed)
perturbation, while for several other instances (i.e., QAP real-life like instances)
the best performance is achieved with random perturbation. In this section, we
try to justify such results by investigating the minimal distances between pairs of
medium or high quality local optima. To measure distance between solutions for
QAP and MAX-CLQ, we use the well-known hamming distance. Medium and
high quality local optima may be viewed as ‘strong’ attractors since it is more
likely that they are visited during the search than a low quality local optimum.
More precisely, given a set of medium or high quality local optima S, for all
loi ∈ S we determine the distance dmin between loi and some other solution
loj ∈ S which is the closest to loi, i.e., dmin = minloj∈S,loj �=loid(loi, loj). For
each possible distance di ∈ [0,Max] (Max is the maximal distance), we then
count the number of time that di is the distance between lo ∈ S and another
solution in S which is the closest to lo.

The results of this study for 4 MAX-CLQ instances and 3 QAP instances are
given in Figure 1. The x-axis shows the normalized minimal distance between
two ‘strong’ attractors, while the y-axis shows the number of pairs of ‘strong’
attractors separated by the given distance. Figure 1 indicates that there exists
a significant difference in the distribution of medium and high quality local op-
tima for QAP and MAX-CLQ instances. For brock800-2, tai100b and sko100a
the minimal distances between two strong attractors are generally small, com-
pared to instances C2000.9, frb53-24-1 and tai100a. Intuitively, a weaker diver-
sification introduced into the search for such instances may cause the search to
cycle between ‘strong’ attractors that are not globally optimal solutions. For an
effective solving of these instances, strong diversifications are required. On the
other hand, for instances C2000.9, frb53-24-1 and tai100a, the distribution of
local optima prevents the search from cycling even with weak diversification.
For this reason it may be worthwhile to perform a more intensive search. These
observations justify to some extent why DIR-ILS provides the best performance
on C2000.9 and frb instances, while RND-ILS seems to be the best for real-life
like instances (i.e., tai80b, tai100b and tai150b).
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Fig. 1. Distribution of medium and high quality local optima (i.e., ‘strong’ attractors)
for 4 MAX-CLQ and 3 QAP instances of different types and structures
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6 Conclusion

The purpose of this paper is to investigate the performance of the adaptive di-
versification strategy (ADS) which constitutes an essential component of the
recently proposed breakout local search (BLS). ADS adaptively applies a di-
rected (weaker) and a random (stronger) perturbation according to the current
search progress. We integrated ADS into the basic iterated local search (ILS)
framework and evaluated its performance on the quadratic assignment prob-
lem (QAP) and the maximum clique problem (MAX-CLQ). Numerical results
showed that the AD-ILS outperforms the standard ILS based on random moves
on almost all the tested instances, which highlights the drawback of this classic
perturbation strategy. Moreover, AD-ILS outperforms on most QAP instances
and on several hard MAX-CLQ instances the ILS version which applies solely
directed perturbation moves. We performed an analysis of the distribution of
local optima to provide some guidance on when to introduce a weaker and when
to introduce a stronger diversification into the search.
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